ON THE SOBRIFICATION REMAINDER $sX - X$

RUDOLF-EBERHARD HOFFMANN
ON THE SOBRIFICATION REMAINDER $*X - X$

RUDOLF-E. HOFFMANN

The topics of this paper are (1) a study of the sobri- fication remainder $*X - X$ (hence our title), (2) a new, simple proof of the characterization of T_δ-spaces Y as those spaces Y such that Y is the smallest subspace X of $*Y$ for which the embedding $X \hookrightarrow *Y$ is the universal sobrification, (3) an elegant characterization of Noetherian sober spaces. These themes are linked by the common tool by aid of which they are investigated, the so-called b-topology L. Skula [28].

Recall that a space Y is called irreducible iff $O_1 \cap O_2 \neq \emptyset$ for every pair of nonempty open subsets O_i of Y ($i = 1, 2$) — sometimes, in addition, $Y \neq \emptyset$ is assumed. A space X is called "sober" ([3] IV 4.2.1) iff every irreducible, nonempty, closed subset M of X has a unique "generic" point m, i.e., $M = \text{cl}\{m\}$ (hence T_δ = "sober" = T_σ). To every space X one associates a sober space $*X$ whose elements are all irreducible, closed, nonempty subsets of X. The open sets of $*X$ are all sets of the form $^*O := \{M \in *X | M \cap O \neq \emptyset\}$ for some open set O of X. The map $\chi: x \mapsto \text{cl}\{x\}$ is the reflection morphism for the category Top of topological spaces and continuous maps into its full subcategory cob of sober spaces. If X is a T_δ-space, then χ_X is an embedding; we shall sometimes identify X with the subspace $\chi_X[X]$ of $*X$, in particular we shall write $*X - X$ for a T_δ-space X instead of $*X - \chi_X[X]$. For further information on sober spaces see [19], [20] (3.1), [21] and some recent work of S. S. Hong [22], J. R. Isbell [23], L. D. Nel [26], L. D. Nel and R. G. Wilson [27] (to the historical survey of [21] p. 365/366 a reference to [8] II, (1) on p. 17 has to be added).

An essential tool for the investigation of sober spaces is the b-topology introduced by L. Skula ([28]; cf. also [11] p. 288). The b-topology associated with a space X is the topology which has $\{O \cap A | O \text{ open in } X, A \text{ closed in } X\}$ as an open basis. The members of this basis are called locally closed sets (N. Bourbaki [6] Chap. I, §3.3). The terms "b-dense", "b-isolated" etc. will refer to the b-topology, i.e., the topological space bX associated with a given space X; in particular, a b-dense subspace Y of X is a subspace of X which is a dense subset of bX. A subspace Y of X is b-dense, iff whenever O_1, O_2 are open subsets of X, $O_1 \neq O_2$, then $O_1 \cap Y \neq O_2 \cap Y$. In [7] G.C.L. Brümmer looks at the uniformity (canonically) associated with the Pervin quasi-uniformity of a topological space X; this uniformity induces a topology which is easily seen to be the b-topology associated
to the space X: thus bX is uniformizable by a distinguished uniformity ([7] p. 408). We note further that bX is O-dimensional, i.e., it has an open basis of sets which are both closed and open.

Recall that a space X is T_b iff for every $x \in X$ there is an open neighborhood U of x with $U \cap \text{cl} \{x\} = \{x\}$, i.e., every point of X is locally closed. The T_b-axiom was introduced by G. Bruns [8] II p. 7 ("$T_{1/2}$") and C. E. Aull and W. J. Thron [4] p. 29. For characterizations of T_b see [21] 2.1 and, in addition, [30] 2.1 (g). As a recent application of the T_b-axiom, we note that C. C. Moore and J. Rosenberg have shown that the space of primitive ideals of the group C^*-algebra of a connected and locally compact group G is T_b ([25] Thm. 1). Furthermore cf. [14] (§§3.2, 3.3).

To a preordered set (X, \leq) one may associate a topological space with the same carrier set and open basis $\{U_a \mid a \in X\}$ with $U_a := \{y \in X \mid a \leq y\}$. Such a space is called A-discrete (or Alexandrov-discrete) [1]. A topological space is A-discrete iff every union of closed sets is closed. Nowadays, A-discrete spaces are also known as finitely generated spaces, since they form the co-reflective hull of the class of finite spaces ([16] 22.2(4)). An A-discrete T_0-space is T_b ([8] II, p. 18, [4] p. 35). For some further information see [2].

I am indebted to B. Banaschewsky (Hamilton) and J. R. Isbell (Buffalo) for discussions (during the Oberwolfach meeting on category theory, August 1977) on some themes of this paper.

Lemma 1.1. Suppose β is a basis of the open sets of a space X, then

$$\{U \cap \text{cl} \{x\} \mid x \in U \in \beta\}$$

is a basis of the b-topology associated with X.

From this easily proved lemma we immediately obtain

Lemma 1.2. For topological spaces X and Y holds $bX \times bY = b(X \times Y)$.

Proof. Let τ_X and τ_Y denote the topologies of X and Y respectively, then $\{U \times V \mid U \in \tau_X, V \in \tau_Y\}$ is a basis for $X \times Y$, hence

$$\{(U \times V) \cap (\text{cl}_X \{x\} \times \text{cl}_Y \{y\})$$

$$= (U \cap \text{cl}_X \{x\}) \times (V \cap \text{cl}_Y \{y\}) \mid U \in \tau_X, V \in \tau_Y, x \in X, y \in Y\}$$

is a basis for $b(X \times Y)$ and, obviously, also for $bX \times bY$.

Proposition 1.3. Let $\{X_i \}_{i \in I}$ be a family of nonempty topological spaces. $b(\prod_I X_i) = \prod_I (bX_i)$ iff $K := \{i \in I \mid X_i$ is not indiscrete}$ is finite.
Proof. For every \(i \in K \), there is some \(x_i \in X_i \) with \(\text{cl}\{x_i\} \neq X_i \). If \(K \) is infinite, then \(\prod_{i} \text{cl}\{x_i\} \times \prod_{i \in K \setminus \{i\}} X_i \) is open in \(b(\prod_{i} X_i) \), but not open in a product topology arising from any modifications of the topologies of \(X_i \). If \(K \) is finite, then

\[
b(\prod_{i} X_i \times \prod_{i \in K \setminus \{i\}} X_i) = b(\prod_{i} X_i) \times \prod_{i \in K \setminus \{i\}} X_i = \prod_{i} (bX_i) \times \prod_{i \in K \setminus \{i\}} X_i = \prod_{i} bX_i
\]

(via some obvious identifications).

It is shown in [20] 3.1.2 that a sober space is the universal sobrification of every \(b \)-dense subspace via its embedding.

Theorem 1.4. For a family \(\{X_i\}_i \) of topological spaces holds \(^s \prod_i X_i = \prod_i ^s X_i \). In other words, the reflection functor \(^s(-) : \mathcal{Z}_{op} \to \mathcal{Sob} \) preserves products.

Proof. (i) We observe first the \(\mathcal{Z}_o \)-reflector \(\mathcal{Z}_{op} \to \mathcal{Z}_o \) preserves products. Recall that the canonical \(T_o \)-identification space \(X_o \) of a space \(X \) is defined by the equivalence relation \(x \approx y \iff \text{cl}\{x\} = \text{cl}\{y\} \).

(ii) Because of (i) we may assume now that every \(X_i \) is \(T_o \). Since \(\mathcal{Sob} \) is reflective in \(\mathcal{Z}_{op} \), \(\Pi_i ^s X_i \) is sober. Thus it suffices to show that \(\Pi_i X_i \) is \(\Pi_i \mathcal{X}_{x_i} \) — a \(b \)-dense subspace of \(\Pi_i ^s X_i \). Suppose \((C_i)_i \in \Pi_i \mathcal{X}_{x_i} \); then let \(\Pi_i U_i \) be an open neighborhood of \((C_i)_i \) with \(U_i \) open in \(X_i \); hence \(U_i = X_i \) for all but finitely many indices \(i \). Since \(U_i \cap C_i \neq \emptyset \) for every \(i \in I \), we choose some \(x_i \in U_i \cap C_i \), then \(\mathcal{X}_{x_i}(x_i) \in ^s U_i \cap cl_{X_i} \{C_i\} \). In consequence, \(\Pi_i X_i \) is \(\Pi_i \mathcal{X}_{x_i} \) — a \(b \)-dense subspace of \(\Pi_i ^s X_i \).

Remark 1.5. Let \(X \) be an infinite space with co-finite topology. \(^sX - X \) consists of the unique element \(X \). Let \(\pi : X \to X \) be a permutation of \(X \) without fixed point. The equalizer of \(\text{id}_X \) and \(\pi \) is the inclusion of the empty space \(\emptyset \) into \(X \), whereas the equalizer of \(\text{id}_{^sX} \) and \(\pi : ^sX \to ^sX \) is the inclusion of the one-element set \(\{X\} \). Thus \(^s(-) : \mathcal{Z}_{op} \to \mathcal{Sob} \) does not preserve equalizers, hence is not right adjoint.

Similarly, by two different constant selfmaps of a two point indiscrete space it is shown that the \(\mathcal{Z}_o \)-reflection functor does not preserve equalizers.

Let \(N = \{0, 1, 2, \cdots\} \) denote the space of natural numbers with its \(A \)-discrete topology, i.e., \(\emptyset \) and \(\{n, n + 1, \cdots\}(n \in N) \) are open in \(N \). Let \(^sN \) denote the sobrification space; if we designate the unique element \(N \) of \(^sN - N \) by \(\infty \), then \(\emptyset \) and \(\{\infty\} \cup \{n, n + 1, \cdots\} \) are the open sets of \(^sN \)(cf. [18] Theorem 2). For an arbitrary \(T_o \)-
space X let $N_x: = (sN \times sX) - ((00} \times X)$ with the topology induced from $sN \times sX$ (X is to be considered as a subspace of sX).

Theorem 1.6. For every T_0-space X holds $X \cong sN_x - N_x$, i.e., every T_0-space is a sobrification remainder.

Proof. It is sufficient to show that $sN \times sX$ is the sobrification of N_x via its embedding. Thus — by the result of [20] 3.1.2 quoted above — it suffices to show that N_x is b-dense in $sN \times sX$. This is clear from $N \times X \subseteq N_x \subseteq sN \times sX = s(N \times X)$, since $N \times X$ is b-dense in $s(N \times X)$ by the other implication of [20] (3.1.2).

The statement of (1.6) is analogous to the fact that every completely regular T_2-space is a Stone—Čech—remainder — cf. [13] (9K6, p. 138). The proof of (1.6) above is, in some sense, even more simple, since there is no straightforward analogue of (1.4) in the case of compact T_1-spaces. Maybe it is also worth noting that in (1.6) a single space sN of ordinals suffices — other than in [13] (8K5, p. 138).

Since every T_0-space is a sobrification remainder of some T_0-space (1.6), it may be of interest to look at the sobrification remainders of certain distinguished subclasses of the class of all T_0-spaces, e.g., T_D-spaces. When is N_x (1.6) a T_D-space?

Lemma 1.7. (a) If Y is a T_D-space, then $sY - Y$ is sober.
(b) N_x is T_D iff X is both sober and T_D.

Proof. (a) By (2.1) every element of Y is b-isolated in sY, hence Y is b-open in sY. Thus $sY - Y$ is b-closed in sY, hence sober.
(b) Suppose N_x is T_D, then $N \times X = N_x$, since $N \times X$ is b-dense in $sN \times sX$, hence in N_x (a discrete space has no proper dense subspace). In consequence, ($X = sX$ and) X is T_D. If X is sober and T_D, then $N_x = N \times X$ is T_D.

Remark 1.8. The sobrification process also gives rise to a (new?) cardinal invariant of a T_0-space X. Let

\[r_nX: = X, \quad u_0X: = sX - X, \quad u_nX: = \delta(r_nX), \quad r_nX, \quad r_{n+1}X: = \delta(u_nX) - u_nX. \]

Here $\delta(-)$ denotes the b-closure of ($-$) in sX. By [20] 3.1.2

\[u_nX \cong s(r_nX) - r_nX \]

and
We observe that
\[r_{n+1}X \subseteq r_nX \text{ and } u_{n+1}X \subseteq u_nX. \]

For \(n \rightarrow 0 \) and, similarly, for every limit number \(\lambda \) we may define
\[r_\lambda X := \bigcap_{\gamma < \lambda} r_\gamma X \]
and
\[u_\lambda X := \delta(r_\lambda X) - r_\lambda X. \]

There is a smallest cardinal \(\alpha \leq \text{card } X \) such that \(r_{\alpha+1}X = r_\alpha X \). \(Y := r_\alpha X \) has the property \(r_1Y = Y \). Such \(T_\emptyset \)-spaces \(Y \) may be called periodic. \(Y = r_\alpha X \) is the largest \(b \)-closed periodic subspace of \(X \). \(\alpha \) may be called the periodicity index of \(X \). (It is not difficult to describe a categorical setting in which such an index arises.)

Example 1.9. Let \(R \) denote the set of real numbers. The "left topology" on \(R \cup \{\infty\} \) has \(\emptyset, R \cup \{\infty\} \) and \(\{\infty\} \cup \{x \in R \mid r < x \}(r \in R) \) as its open sets. This space \(R^\ast \) is sober. Its \(b \)-dense subset \(Q \) of rational numbers is a periodic space in the induced topology. \(R^\ast \) is easily identified with the sobrification remainder of \((R, \subseteq) \) in its \(A \)-discrete topology: If \(X \) is \(T_D \), then \(sX - X \) need not be also \(T_D \).

2. In [9] J. R. Büchi discusses the problem of "minimal" representation of a lattice by a "set lattice" ([9] def. 37, Cor. 40); the case of a minimal representation of a lattice of open sets of a topological space has been investigated by G. Bruns [8] §§7, 8 who has obtained a characterization of those lattices, which admit such a minimal representation. Our result (2.1) below in part overlaps with the results of G. Bruns (cf. [8] §8, Satz 5, p. 13). The theme has been independently dealt with by D. Drake and W. J. Thron ([12], in particular Thm. 5.4). In the following we briefly rephrase part of Bruns' representation theory (and we add some information obtained in the meantime).

Let \((L, \leq) \) denote a complete lattice. A reduced, isomorphic, topological representation \((\varphi; X, \Gamma) \), for short: an \(r.i.t. \)-representation of \((L, \leq) \) consists of a \(T_\emptyset \)-space \((X, \Gamma) \) — whose lattice of closed subspaces is designated by \((\Gamma, \subseteq) \) — and a lattice-isomorphism \(\varphi: (L, \leq) \rightarrow (\Gamma, \subseteq) \). The class of \(r.i.t. \)-representations receives the following pre-order: \((\varphi; X, \Gamma) \leq (\psi; Y, \Delta) \) iff there is an embedding \(e \) of \((X, \Gamma) \) into \((Y, \Delta) \) such that
\[e^{-1}[\psi(a)] = \varphi(a) \]
for every \(a \in L \). This class contains — if it is nonempty\(^1\) — a greatest element \((\mathcal{L}; L, \mathcal{S}, \mathcal{S}) \) with \(L = \{ a | a \text{ "(join-)prime" in } L, \text{i.e., } \neq 0 \) and whenever \(a \leq \text{sup} \{ a_1, a_2 \} \) for \(a_1, a_2 \in L \), then \(a \leq a_1 \) or \(a \leq a_2 \) and \(\mathcal{S} = \{ \mathcal{S} \} | a \in L \} \) with \(\mathcal{S} : = \{ a \in L | a \leq c \} \), and \(\mathcal{L} : = \mathcal{S} \) for every \(c \in L \). Every \(r.-i.-t.-\) representation \((\varphi; X, \mathcal{S}) \) of \((L, \leq) \) is equivalent to (i.e., both smaller and greater than) an \(r.-i.-t.-\) representation \((\psi; Y, \mathcal{S}) \) arising from (and uniquely determined by) a subspace \((Y, \mathcal{S}) \) of \((\mathcal{S}, \mathcal{S}) \): \[
Y = \{ a \in L \} \varphi(a) \text{ is a point closure } cl_X \{ x \} \text{ in } X
\]
such that the canonical inclusion \(e: (Y, \mathcal{S}) \rightarrow (\mathcal{S}, \mathcal{S}) \) gives \(\psi(a) : = e^{-1}[\mathcal{L}(a)] \). The subspaces \((Y, \mathcal{S}) \) of \((\mathcal{S}, \mathcal{S}) \) thus obtained are easily seen to be precisely the \(b \)-dense subspaces of \((\mathcal{S}, \mathcal{S}) \). Thus an \(r.-i.-t.-\) representation of \((L, \leq) \) is an embedding of a \(b \)-dense subspace into \((\mathcal{S}, \mathcal{S}) \); the pre-order for \(r.-i.-t.-\) representations becomes the (partial) order between these inclusions\(^2\).

Recall that a point \(c \) of a space \(X \) is "isolated" iff \(\{ c \} \) is open in \(X \). A space \(X \) is \(T_0 \) iff every point of \(X \) is \(b \)-isolated, i.e., iff \(bX \) is discrete ([7] 4.1, cf. also [27], [18] Bemerkung).

Theorem 2.1. Let \(X \) be a \(T_0 \)-space, then the following conditions are equivalent:

(i) \(X \) has a smallest \(b \)-dense subspace \(Y_1 \).
(ii) \(X \) has a minimal \(b \)-dense subspace \(Y_2 \).
(iii) \(X \) has a \(b \)-dense subspace \(Y_3 \) which satisfies \(T_0 \).
(iv) \(X \) has a \(b \)-dense subspace \(Y_4 \) consisting of points which are \(b \)-isolated in \(X \).
(v) The set \(Y_5 \) of all \(b \)-isolated points of \(X \) is \(b \)-dense in \(X \).

If one (hence all) of these conditions is satisfied, then \(Y_1 = Y_2 = Y_3 = Y_4 = Y_5 \).

Proof. Note that the \(b \)-topology of a subspace is the induced \(b \)-topology. \(X \) is \(T_0 \), iff its \(b \)-topology is \(T_0 \) (hence \(T_0 \), etc.). Thus the questions reduce to minimality of discrete dense subspaces, and discreteness of minimal dense subspaces.

(i) \(\Rightarrow \) (ii): Trivial.

(ii) \(\Leftrightarrow \) (iii): A dense subset is minimal-dense, iff it is discrete as a subspace.

(ii) \(\Rightarrow \) (v): Suppose \(Z \) is a \(T_1 \)-space, \(P, Q \subseteq Z \) dense, \(P \) is the

1 It is nonempty iff every element of \(L \) is a join of "(join-)prime" elements [9] p. 157 (Th. 15), cf. [8] pp. 198-199.

2 Note that the inclusions and not the \(b \)-dense subspaces themselves are to be considered as 'representative' representations, since it may happen that two different \(b \)-dense subspaces are homeomorphic, e.g., \(Q \) and \(j + Q \) in \(R^* \) for an irrational number \(j \).
set of all isolated points of Z, $p \in P - Q$. Since P is discrete, there is an open set O of Z with $O \cap P = \{p\}$. Since Q is dense, there is some $q \in Q \cap O$. Since Z is T_1, there is an open set $V \subseteq O$ with $q \in V$, $p \notin V$, hence $V \cap P = \emptyset$ — contradiction. Thus $P \subseteq Q$.

(v) \Rightarrow (iv): Trivial.

(iv) \Rightarrow (i): A dense subspace necessarily contains all isolated points, hence $Y_i = Y_1$.

Let $\mathcal{D}(X)$ denote the lattice of open sets of the space X. From (2.1) one easily deduces

Corollary 2.2. ([8] II p. 18, [30] p. 673). Suppose X and Y are T_D-spaces and let $\varphi: \mathcal{D}(X) \to \mathcal{D}(Y)$ be a lattice-isomorphism, then there is a homeomorphism $f: Y \to X$ with $f^{-1}[?] = \varphi(?) : \mathcal{D}(X) \to \mathcal{D}(Y)$. In particular, a sober space is the sobrification space of at most one T_D-subspace.

Definition 2.3. A topological space X is called a \mathcal{B}-space iff X is T_0 and $^\delta X \cong ^\delta Y$ for some T_D-space Y.

The above Theorem 2.1 describes the class of \mathcal{B}-spaces X as those T_0-spaces X whose set of b-isolated points is b-dense in X.

Note that the property of a space to be a \mathcal{B}-space is lattice-invariant relative to T_0. Recall that a class \mathcal{R} (resp. a "property" \mathcal{R}) of topological spaces is called lattice-invariant ("verwandtschaftstreu" [24] p. 298) relative to a class \mathcal{L} of spaces with $\mathcal{R} \subseteq \mathcal{L}$ iff property \mathcal{R} is expressible (relative to \mathcal{L}) in terms of the lattice $\mathcal{D}(X)$ of open sets of the space X with the inclusion order, i.e., iff whenever $X \in \mathcal{R}$, $Y \in \mathcal{L}$, $\mathcal{D}(X) \cong \mathcal{D}(Y)$, then $Y \in \mathcal{R}$. (Remember that $\mathcal{D}(X) \cong \mathcal{D}(Y)$ iff $^\delta X \cong ^\delta Y$; clearly, a property expressible in terms of $\mathcal{D}(X)$ is also expressible in terms of the opposite lattice $\mathcal{U}(X)$ of closed subsets of X ordered by inclusion).

We give the following explicit description of this fact. Recall that an element a of a complete lattice L is strongly (join-)irreducible iff $a = \sup_{i \in I} a_i$ implies $a = a_i$ for some $i \in I$.

Theorem 2.4. A T_0-space X is a \mathcal{B}-space iff its lattice $\mathcal{U}(X)$ of closed subsets enjoys the following property: Every element of $\mathcal{U}(X)$ is the supremum (\(\equiv\) join) of strongly irreducible elements.

Proof. (1) We note that $x \in X$ is b-isolated iff $cl\{x\}$ is strongly (join-)irreducible in $\mathcal{U}(X)$. (Cf. [30] 2.1(g).)

(2) Suppose that there is an open neighborhood V of some $x \in X$ such that $V \cap cl\{x\}$ does not contain a b-isolated point, then the
supremum of all strongly irreducible elements of $\mathfrak{A}(X)$ which are smaller than $cl\{x\}$ is smaller than $cl\{x\} - V \in A(X)$.

In order to avoid any confusion with Büchi's theorem quoted by G. Bruns [8] I, p. 198 we note that the concept of \mathfrak{M}-δ-subirreducible element in a lattice L is usually different from the above concept.

Example 2.5. (a) An infinite power $\prod_i S$ of the Sierpinski space $S (\{0, 1\}$ with open sets $\emptyset, \{1\}, \{0, 1\})$ is not T_D (cf. [7] p. 408, [18] Thm. 1), but it is a \mathfrak{B}-space, since its subspace of b-isolated points \($(x_i)_{i \in \{0, 1\}, \{i \in I \mid x_i \neq 0\} \text{ is finite}} \text{ is } b\text{-dense in } \prod_i S$. We note in passing that this subspace is even A-discrete. A general criterion, when a space contains a b-dense A-discrete subspace, will be given elsewhere ("Topological spaces admitting a dual", in: Categorical Topology Springer Lecture Notes in Math., 719 (1978), 157–166).

(b) R^* (1.9), does not contain any b-isolated point, hence R^* is not the sobrification of any T_D-space. Of course, the same holds for every T_δ-space containing a b-dense periodic subspace. (cf. 1.8).

One readily observes that a point $(x_i)_i$ of a product space $\prod_i X_i$ is b-isolated iff it satisfies (1) and (2):

1. The set $K: = \{i \in I \mid \{x_i\} \text{ is not closed in } X_i\}$ is finite.
2. For every $i \in I$, x_i is b-isolated in X_i.

For the formulation of (2.6) below we need the following property:

(※) For every point x of a space X there is a closed point \(y \in X(i.e., cl\{y\} = y)\) with \(y \in cl\{x\}\).

Theorem 2.6. $\prod_i X_i$ with topological spaces $X_i \neq \emptyset (i \in I)$ is a \mathfrak{B}-space, iff conditions (i) and (ii) are satisfied:

(i) Every X_i is a \mathfrak{B}-space

(ii) $K: = \{i \in I \mid X_i \text{ does not satisfy property (※)}\}$ is finite.

Proof. Since a finite product of T_D-spaces is T_D, a finite product of \mathfrak{B}-spaces is a \mathfrak{B}-space by (1.2). Suppose $\prod_i X_i$ is a product of \mathfrak{B}-spaces X_i satisfying (※), let $(x_i)_i \in \prod_i X_i$ and let $\prod_i U_i$ be a neighborhood of $(x_i)_i$ in $\prod_i X_i$ with U_i open in X_i; hence $L: = \{i \in I \mid U_i \neq X_i\}$ is finite. For every $i \in L$ let y_i denote a b-isolated point of X_i contained in $U_i \cap cl\{x_i\}$; for $i \in L$ let y_i denote a closed point contained in $cl\{x_i\}$. By the remark preceding the theorem, $(y_i)_i$ is a b-isolated point of $\prod_i X_i$ contained in $(\prod_i U_i) \cap cl\{x_i\}$. — Conditions (i) and (ii) are easily seen (by similar considerations) to be necessary.

Remark 2.7. A space X may be called a \mathfrak{B}^*-space iff it is a \mathfrak{B}-space satisfying condition (※). Since (※) is productive, so is the class
of \(\mathcal{B}^* \)-spaces by (2.6), hence it is the greatest productive class of \(\mathcal{B} \)-spaces. Of course, every \(T_1 \)-spaces is a \(\mathcal{B}^* \)-space. However, a \(\mathcal{B}^* \)-space satisfying \(T_D \) need not be \(T_1 \).

Lemma 2.8. Every finite \(T_0 \)-space is a \(\mathcal{B}^* \)-space. An \(A \)-discrete \(T_0 \)-space is a \(\mathcal{B}^* \)-space iff every element — in terms of the associated pre-order — has a lower bound which is a minimal element.

Proof. A finite \(T_0 \)-space, and moreover ([8, 4]) an \(A \)-discrete \(T_0 \)-space is \(T_D \), hence a \(\mathcal{B} \)-space.

Lemma 2.9. The class of \(\mathcal{B}^* \)-spaces is lattice-invariant relative to \(T_0 \).

Proof. Property (*) may be rephrased in \(\mathcal{U}(X) \): Every (nonempty) irreducible element is minorized by an atom.

Remark 2.10. We note that the class of sober \(\mathcal{B}^* \)-spaces is productive, but not reflective in \(\mathcal{T}_0 \mathcal{P} \), since there are sober spaces which are not \(\mathcal{B} \)-spaces — cf. (2.5b) and [19] 1.3.

Remark 2.11. A \(T_0 \)-space \(X \) is called a Jacobson space\(^3\) ([10] 0.2.8.1) iff its subset of closed points is \(b \)-dense in \(X \) — cf. also [24] 5.7 (p. 311). Every Jacobson space is a \(\mathcal{B}^* \)-space; \(S \) is a \(\mathcal{B}^* \)-space, but not a Jacobson space. The proof of 2.6 shows that a product of nonempty topological spaces is a Jacobson space iff so is every coordinate space. Also the characterization Theorem 2.1 has an analogue; the following conditions (a), (b), (c), (d) are pairwise equivalent for a \(T_0 \)-space \(X \):

(a) \(X \) is a Jacobson space;
(b) \(X \) has a \(b \)-dense subspace which satisfies \(T_1 \);
(c) \(X \) has a \(b \)-dense subspace consisting of closed points of \(X \);
(d) there is \(T_1 \)-space \(Y \) with \(^sX \cong ^sY \).

A Jacobson space is a \(\mathcal{B} \)-space all of whose \(b \)-isolated points are closed points, i.e., a \(\mathcal{B} \)-space satisfying the property \(\mathcal{L}^* \) of [30] p. 675: Every strongly irreducible element of \(\mathcal{U}(X) \) is an atom\(^4\). Thus 2.4 with “strongly irreducible” replaced by “atom” characterizes Jacobson spaces.

3. Since for a space \(X, bX \) is uniformizable, i.e., completely

\(^3\) We observe that in [10] (0.2.8.1) the requirement of the \(T_0 \)-property is omitted.

\(^4\) Recall from [21] p. 374 that \(T_0 + \mathcal{L}^* \) ([30] p. 675) = sober + \(T_1 \). Furthermore, we observe that sober + \(T_D = T_0 + \) “every irreducible element of \(A(X) \) is strongly irreducible“.
regular, it is natural to ask: When is \(bX\) a compact \(T_2\)-space? The answer is essentially based upon a result of M. Hochster [17] (Thm. 1, p. 45).

Recall that a space \(X\) is said to be Noetherian (N. Bourbaki, [5] II, 4.2, p. 123) iff every ascending chain of open subsets is eventually stationary, i.e., iff every open subspace is quasi-compact (for a detailed study see [29]). — A Noetherian sober space is sometimes called a Zariski space ([15] 3.17, p. 93).

Theorem 3.1. A topological space \(X\) is both Noetherian and sober iff \(bX\) is a compact \(T_2\)-space.

Proof. (i) Suppose that \(bX\) is compact and Hausdorff, and let \(V\) be open in \(X\). Then \(bV\) is a closed subspace of \(bX\), hence \(bV\) is quasi-compact. Since \(V\) is coarser than \(bV\), \(V\) is also quasi-compact. — Now let \(C\) be an irreducible, closed, nonempty subspace of \(X\). \(\mathcal{O} = \{V \cap C \mid V \text{ open in } X, V \cap C \neq \emptyset\}\) is a family of \(b\)-closed subsets of \(X\) with the property that every finite subfamily has a nonempty intersection. Since \(bC\) is closed in \(bX\), hence compact, there is an element \(x \in \bigcap \mathcal{O}\), hence \(C = \overline{\{x\}}\). Since \(bX\) is \(T_2\), \(X\) is \(T_0\).

(ii) Suppose that \(X\) is a Zariski space, then, of course, \(X\) is a "spectral space" in the sense of M. Hochster, and the \(b\)-topology coincides with M. Hochster's "patch topology" ([17] p. 45, p. 52), thus [17] (Theorem 1, p. 45) applies.

A space is called quasi-sober [22] (2.1) iff every irreducible, closed, nonempty subset has at least one generic point (cf. also [20] 2.6).

Corollary 3.2. \(bX\) is quasi-compact, iff \(X\) is a quasi-sober Noetherian space.

Proof. Suppose \(bX\) is quasi-compact. Then the \(T_\gamma\)-identification space \((bX)_0 = b(X_0)\) is compact and \(T_\gamma\), hence \(X_0\) is a Zariski space (3.1), i.e., \(\mathcal{O}(X) \cong \mathcal{O}(X_0)\) is "Noetherian" and \(X\) is quasi-sober ([22] 2.2). — The other implication is established by reversing these conclusions.

Note that the \(A\)-discrete space \(N\) above is both Noetherian and \(T_\gamma\), but not sober, hence \(bN\) is not quasi-compact.

Note Added in Proof. The space \(sN\) appearing in 1.6 above was characterized in [18] Theorem 2. By the aid of this result (and 2.1 above!), we obtain an interesting characterization of the space
ON THE SOBRIFICATION REMAINDER \(\mathring{s}X - X \)

\(N \) of natural numbers in in \(A \)-discrete topology: Up to a homeomorphism \(N \) is the only \(T_0 \)-space \(M \) which enjoys the following properties:

(i) \(M \) (is a \(T_D \)-space which) is not sober.

(ii) Whenever \(X \) is a \(T_0 \)-space which fails to be \(T_D \), then there exists a continuous surjective map \(f: X \to \mathring{s}M \).

Proof. By 2.1 above, \(\mathring{s}M \) cannot be a \(T_D \)-space, since \(M \neq \mathring{s}M \). Thus, by [18] Theorem 2, \(\mathring{s}M \) is homeomorphic to \(\mathring{s}N \). Now—by 2.1 above—\(M \) is either homeomorphic to \(N \) or to \(\mathring{s}N = \{N \cup \{\infty\}\} \). By (i), \(N \) is homeomorphic to \(M \).

REFERENCES

20. ———, *Topological functors admitting generalized Cauchy-completions*, in Cate-

Received March 13, 1978 and in revised form November 29, 1978.

Universität Bremen
Fachbereich Mathematik
D-2800 Bremen
Federal Republic of Germany
Richard Neal Ball, *Topological lattice-ordered groups* 1
Stephen Berman, *On the low-dimensional cohomology of some infinite-dimensional simple Lie algebras* 27
R. P. Boas and Gerald Thomas Cargo, *Level sets of derivatives* 37
James K. Deveney and John Nelson Mordeson, *Splitting and modularly perfect fields* 45
Robert Hugh Gilman and Ronald Mark Solomon, *Finite groups with small unbalancing 2-components* 55
George Grätzer, Andras Hajnal and David C. Kelly, *Chain conditions in free products of lattices with infinitary operations* 107
Benjamin Rigler Halpern, *Periodic points on tori* 117
Dean G. Hoffman and David Anthony Klarner, *Sets of integers closed under affine operators—the finite basis theorem* 135
Rudolf-Eberhard Hoffmann, *On the sobrification remainder* \(X / X \) 145
Gerald William Johnson and David Lee Skoug, *Scale-invariant measurability in Wiener space* 157
Michael Keisler, *Integral representation for elements of the dual of \(ba(S, \Sigma) \)* 177
Wayne C. Bell and Michael Keisler, *A characterization of the representable Lebesgue decomposition projections* 185
Wadi Mahfoud, *Comparison theorems for delay differential equations* 187
R. Daniel Mauldin, *The set of continuous nowhere differentiable functions* 199
Robert Wilmer Miller and Mark Lawrence Teply, *The descending chain condition relative to a torsion theory* 207
Yoshiomi Nakagami and Colin Eric Sutherland, *Takesaki's duality for regular extensions of von Neumann algebras* 221
William Otis Nowell, *Tubular neighborhoods of Hilbert cube manifolds* 231
Mohan S. Putcha, *Generalization of Lentin’s theory of principal solutions of word equations in free semigroups to free product of copies of positive reals under addition* 253
Amitai Regev, *A primeness property for central polynomials* 269
Saburou Saitoh, *The Rudin kernels on an arbitrary domain* 273
Heinrich Steinlein, *Some abstract generalizations of the Ljusternik-Schnirelmann-Borsuk covering theorem* 285