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Let M be the set of all continuous real-valued func-
tions defined on the interval [0, 1] which do not have a finite
derivative anywhere. It is shown that M forms a coanalytic,
non-Borel, subset in the space of all real-valued continuous
functions on [0, 1] provided with the uniform norm.

Let C be the space of all real-valued continuous functions defined
on the unit interval provided with the uniform norm. In the
Scottish Book, Banach raised the question of the descriptive class
of the subset D of C consisting of all functions which are dif-
ferentiable at each point of [0,1]. Banach pointed out that D
forms a coanalytic subset of C and asked whether D is a Borel set.
Later Mazurkiewicz showed that D is not a Borel set [3].

In this paper, we shall investigate the subset M of C consisting
of all functions which do not have a finite derivative at any point
of [0,1]. It is well known that M is residual in C [2]. We shall
prove the following theorem.

THEOREM A. Let M = {f €C: f does not have a finite derivative
at any voint of [0,1]}. The set M is a coanalytic subset of C which
is mot a Borel set.

In order to see that C — M is an analytic set, notice that a
continuous function f has a finite derivative at some point z of
[0, 1] if and only if for each positive integer =, there is a positive
integer m so that (*) if 0 < |k, |kl <1/m and x + h, and « + h,
are both in [0, 1], then

S+ h) — fle) _ fl@+ hy) — f2)
h, hy

IA

1
=

For each pair of positive integers (n, m), let E(n, m) = {(f, x) €
C x [0,1]: (*) holds}. Then C — M is the projection into C of
Ne-. Us-, E(n, m). 1t may be checked that each set E(n, m) is a
closed subset of C x [0,1]. Thus, M is a coanalytic subset of C.
The remainder of this paper is devoted to demonstrating that M is
not a Borel set.

Let us make the following conventions. The set of positive
integers will be denoted by N; by N* shall be meant the set of all
finite sequences of positive integers. We shall denote elements of
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J = N¥ by Greek letters and the terms of such a sequence by its
nearest Roman equivalent. Also, if ¢ = (s,)5-,€¢J and nec N, then
O'I’n = <slr ) 3n>'

For each element s = (s, ---, s,> of N*, let I(s) be the left open,
right closed interval with left end point

a,(s) = Q7% 4 Qe L L. QT (et
and with right end point
b(S) — a(S) + Q81+ sp) .

Notice, that (0, 1] = Up., 1K), I(<8y, -+, 82) = Us=y I({84y -+ -, 81y DY)
and if s and ¢ are distinct elements of N* having the same length,
then I(s) and I(t) are disjoint. For each oe.J, let x(o) be the point
of intersection of Ni-, I(c|k). We have x(g) = 3,2, 27t For
each interval (a, b], set

r—a, if a<w=(a+b)2,
Pun(®) =1b —z, if (@ +b)2=Z2x=b,
0, otherwise .

For each positive integer =, let h, = 39,,, where the summa-
tion is taken over all elements of N* which have length n. Also,
let us set ho(x) =1/2 — |x — 1/2|, for 2 €[0,1]. For each =, h, is a
“sawtooth” function on [0, 1]. First we give three lemmas concern-
ing these functions.

LemMmA 1. For each n, h, is nonnegative and h,(x) < x/@"* — 1),
for each x in [0, 1].

Proof. It can be checked that the line through (0, 0) and the
highest point of the graph of h, over the interval I({s,, ---, s,>) has
slope 1/1 + 2(1 + D7, 2%+ +%) < 1/(2*™ — 1). This means h,(x) <
x/2*t — 1), for x€]0, 1].

We will also require the fact that the action of the functions
h, is being reproduced on each of the intervals I({q,, ---, ¢,»). This
is the content of the next lemma which may be proven by induction.

LEMMA 2. Let {q,, -+, ¢, € N* and let

(o) = 2attang — ( Ly —1——) .

2'11 2q1+---+qn

Then g maps I({q,, -+, ¢»)) onto (0, 1] and for each p =0, k,(g(x)) =
(2q1+m+q”)hn+p(x)! fOI' re I(<q1, Ty qn>)'
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LEmMMA 3. Let {q, -+, gy € N*, then
es®) S (2= (o + o + o))

92k ou QUi+ +agk
for each xeIq, -, @)

Proof. By Lemma 2, for xc I({q, ---, q:))
1

has®) = (5 9@

where g is the appropriate function defined in Lemma 2. According
to Lemma 1,

1 g(x)
Boea(®) < <2q1+...+q2k>22k+1 —1-

Substituting for g(z) and noting that 22* < 22+t — 1.

() = %(x - <2% + oo+ ﬁ)} :

It can be shown that Xk, does not have a finite derivative at
any « in the (0, 1], although we shall not use this fact. However,
Theorem A will be demonstrated by continuously modifying a sub-
sequence of {h,};-,. We proceed as follows.

Let E be an analytic subset of the Cantor set K. Let H be a
map from N* into the clopen subsets of K so that

E=UNHeolk .

ged k=1

We may assume that H(o|k) = H(c|n) if n > k and diam (H(o|k)) <
1/k [2]. .
For each ¢ = {q, ¢, - *+, ¢zs) € N¥, set

Ag = 1-— XA(q)UHKq],-'-,qzi‘O)

where A(q) = U{H(s): se N¥ and |a(s) — b(g)| < 2¢/(2*+* — 1 + 2")}. Of
course, X, denotes the characteristic function of B on the Cantor set
K.

For each ne N, set

fn(x; t) = Z)"s(t)qjl(s)(x) ’

where summation is taken over all elements s of N* of length 2.
Let Gz, t) = 2., fo(x,t) and Flz,t) =t +1V 2 + Gz, t), for
(z, t)€[0,1] x K. Finally, define the map ' from K into C by
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setting I'(¢) = F(-, ©), for each ¢t in K. We next note three elementary
properties of I'.

First, notice that since f,(z, ) < h,.(2) <27, for each =, the
series Xf,(x, t) converges uniformly over [0, 1] x K. Since, for each
t, the functions f,(-, t) are continuous, the function I'(t) is an ele-
ment of C. Since F(0,t) = ¢, I" is one-to-one.

Second, notice that I'(¢) does not have a finite derivative at 0.
This is because (1 )'(0) = + and G(z, t) — G(0, t) = 0.

Third, notice that I” is a Borel measurable map of K into C.
This may be seen by as follows. Define I",: K— C by

(M) =t + V7 + z Fola, 1) .

Then {I",};-, converges uniformly to I'. Also, note that if (X, M) is
a measurable space, Y is a metric space and {f,}7-. is a sequence of
measurable maps from X into Y and this sequence converges uniform-
ly to f, then f is a measurable map. This last fact may be used
to verify that each function I', is Borel measurable and then applied
onee again to show that I" is Borel measurable.

We shall require some deeper properties of the function I".

LEMMA 4. Suppose oed and {t} = N, H(o|n) and =z, = x(a).
Then I'(t) has a left derivative at x, and G{(-, t) has left derivative
zero at «,.

Proof. It suffices to show that G(-,t) has left derivative zero
at x,.

Let ¢ > 0. Let n be a positive integer so that 2™ < e. Let o
be a positive number so that (z, — 8, x,] & I(¢|2"). Since fi(x, t) = 0,
for all 1,

Sz, t)

x — %,

G(x, t) - G(xm t)‘ =< zﬂ:

T — X,

Z Souin(2, )

X — X,

=1

Let ¢, —0<ax<x. If 1=Zt¢=Zmn, then f,(x,t) =0. Suppose
p=1 Seta=2"""_-1, B=2""?and d = (a/a + B)x,. If x <d,
then
Suip(®, ?)

xr — X,

Using Lemma 1 and the fact that 1/(x, — ) < 1/(z, — d), we have

fn+p(x; t) < _(;Z__ 1 = 2 (n+p) .
-2, | a x—d

< hz'n-!—p(w) .
- %0 — X

If d < 2 <, then there is some z = {z,, -, %,.4,) s0 that
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fn+p(wy t) = 7\’z(t)¢l(:z)(x) .

If z = 0|2"'7 then f, (%, t) = 0. Otherwise, d < b(z) < a(c|2"*?) < &,.
Thus, |a(c]2"*?) — b(z)| < %, — d = 21 — af(a + B)) < B/(a + B). This
implies that ¢ is in A(z) and therefore f, ,(x, t) = 0. These considera-
tions lead to the conclusion that G(-,¢) has left derivative zero at

o ]

Let us make the following conventions. The set of all elements
of J which are equal to one from some term on will be denoted by
Q. Let R(Q) denote the set of all x in [0, 1] such that there is some
element 0@ for which x = 2(c). Notice that Q@ and R(Q) are
countable sets and o€ J — Q if and only if x(o) is in the interior of
I(o|k), for each E.

LEMMA 5. Suppose ced — Q, {t} = NH(olk), and x,= x(0).
Then I'(t) is differentiable at x,.

Proof. In view of Lemma 4, it suffices to show that G(-, ¢) has
right derivative zero at «,.

Let ¢ > 0. Let » be a positive integer so that 2™ < e. Since
oced —Q, x, is in the interior of I(c|2*!). Let 6 be a positive
number so that [z, x, + 6) S I(c|2"') and let x be between z, and
2, + 0. Since f,(x,, t) = 0, for all k, we have

G(xy t) — G(xo, t)l > .fi(x t) Z f‘n+p(w: t) .

T — X, T — o, T — X,

=1

It can be checked that if 1 < ¢ < n, then fi(x, t) = 0.

Suppose p = 1. If xel(o|2"**"), then f,.,(x,t) =0. Suppose
b(o|2"7"™) < x <&, + 0. There is some q = {q,, -+, ¢us,-1) SO that
x € I(q). Using Lemma 3, we have

Suis(®, T)

X — X,

< hzm—i-p(x) — h2n+p(m> . r — a(Q) < 2—-2(”‘“"“1) < o= (ntp)
T —x, z—alg) x=—x

It follows from these considerations that G(-, t) has right derivative
zero at x,.

LEemMMA 6. Ift is in K — E, then I['(t) does nmot have a finite
derivative at any point of [0, 1] — R(Q).

Proof. We have already noted that I'(t) does not have a finite
derivative at 0. Thus, it suffices to show that G(-, t) does not have
a finite derivative at any point of (0, 1) — R(Q).

Let 0 be an element of J — Q and let z, = z(o).
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Suppose there is a positive integer p, so that if » = »,, then
Nige(t) = 0. If p =p, then ¢t is in A(c|2?) or ¢ lis in H(o|27™).
If { were in H(o|2?™), for infinitely many p, then ¢ would be in
E. Thus, we may assume that if p = p,, then ¢t is in A(c|2%).
For each p = p,, there is a point ¢” = {¢?, ---, ¢%> in N* so that ¢
is in H(g?) and |a(g®) — b(c|2?)| < 27/(2"+* — 1 + 2?). This implies
that the sequence {a(g®)};-, converges to x,. Since z, is in the interior
of I(o|l), this implies that there is a positive integer =, so that if
p > n,, then ¢ =s,. This means that ¢ is in H(o|l). Similar con-
siderations show that for each 4, ¢ is in H(o|4). This implies that
tisin K. This contradicts the assumption that ¢ is not in E. Thus,
there are infinitely many p such that X, .(t) = 1.

Let § > 0. Choose p so that \,.,(t) =1 and (a, b] = I(c]2?) is a
subset of (x, — 0/2, x, + 6/2). Let m = (a + b)/2. Since m = x, and

G, t) — Ga, 1) _ G(b, t) — G(m, ?)

b—a b—m
— G(by t) _ G(a‘i t) . G(my t) . G(a’ t)
b—a m—a
_ | fo®, 8) — fula, B) _ fb, ©) — fi(m, D)
b—a b—m
— fp(b, t) __fp(a’y t) . fp(mr t) - fﬂ(a’y t) =1
b—a m—a ’

it follows that G(-, t) does not have a finite derivative at x, [4, pD.
114-116].

Let us collect the preceding lemmas together.

THEOREM B. There 1s a countable subset Y of [0, 1] such that
for each analytic subset E of K there is a one-to-one Borel measura-
ble map I of K into C and a countable subset S of E so that (1)
if t is in E — S, then I['(t) has a finite derivative at some point of
[0,1] — Yand (2) if t is in K — E, then I'(t) does mot have a finite
derivative at any point of [0, 1} — Y.

A proof of Theorem A can now be given. Let Y = {y,}.-, be a
countable subset of [0, 1] so that Theorem B holds. Let D(Y) =
{f eC: f has a finite derivative at some point of [0, 1] — Y}. It can
be shown that D(Y) is an analytic subset of C (in fact, if Y is any
coanalytic subset of [0, 1], then D(Y) is an analytic subset of C).
Now, if D(Y) were a Borel subset of C, then by applying Theorem
B, every analytic subset of K would be a Borel subset of K. This
contradiction establishes that D(Y) is not a Borel subset of C. If
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M were a Borel subset of C, then D(Y) would be a Borel set, since
DY) = (€~ M)~ UD,,

where D, = {f € C. f has a finite derivative at v,}, and each set D,
is an F; subset of C. This contradiction establishes Theorem A.
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