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Ljusternik and Schnirelmann and independently Borsuk
proved the following well known result: Let H, ---, H, be
closed subsets of the sphere S* such that U%., H, = S and
Hn(—H)=¢ fori1=1,---,k, then k= n + 2.

In this paper, this result is considered from an abstract
topological viewpoint: We develope methods for the proof
of generalizations of this result in the context of the genus
in the sense of A. S. Svarc.

1. Introduction The main concept, which is used in this paper,
is the “genus” in the sense of A. S. Svarc (cf. [6, 7]).

DeriNITION 1. (ef. [6, 7, 8]; for another way to introduce this
notion cf. [6, 7].) Let M be a topological Hausdorff space, p a prime
number and f: M — M a free Z,-action (i.e., f is continuous, f? = id
and f(x) # « for all xe M). Then

& (M, f): = {G < M|There exist disjoint closed sets G,, ---,G,_,.C M
with U= G, = G and fY(G,) =G, for i =1, ---,p — 1},

and the genus g(M, f) is defined by
gM, f): =minfeard & | cE M, f), UL = M}.

The genus has several very nice properties (ef. [6, 7, 8]). It
is closely related to the earlier notions of the Ljusternik-Schnirelmann
category [5] and the Yang index [9]. In general, it is difficult to
compute the genus, but there are various estimates in terms of the
dimension, connectivity, or (co-)homology of the space.

As for the Ljusternik-Schnirelmann-Borsuk result, it is interest-
ing that, independently of the prime number p and the action f,
we always have g¢g(S", f) =% + 1 (this result is mainly due to
Krasnosel’skii [4]). Thus, in the Ljusternik-Schnirelmann-Borsuk
theorem, we could replace the estimate k=n+2 by k=
g(S", —id) + 1, and with this estimate, the result holds in a trivial
way in a much more general setting.

THEOREM. (cf.[9, 8].) Let M be a Hausdorff space, f: M — M a
free Z-action (i.e., a fized-point-free involution) and let M,,---, M,C M
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be closed sets such that Ui, M; =M and M, NfM) =@ for i=
1, .-+, k. Then k=g(M, f) + 1.

On the other hand, the analogous question for Z,-actions with
» =3 seems to be much more complicated. I formulate it only for
normal spaces, since I have no idea how one could treat the general
case of Hausdorff spaces.

Problem 1. Let M be a normal topological space, p = 3 a prime
number, f: M — M a free Z,action and M, ---, M, C M closed sets
such that Ui, M, = M and M; N f(M,) = @ for 4 =1, ---, k. What
is the best estimate of g(M, f) in terms of & and p?

There is some motivation for this problem. If one could prove
an estimate g(M, f) = rk, p) with r(k, p) = o(p) for every fixed &,
this would imply that the following long standing conjecture in
asymptotic fixed point theory is true (cf. [8]).

Conjecture. Let E be a normed space, H C E a nonempty closed
convex set and f: H— H a continuous map such that fmo(H) is
relatively compact for some m,e N. Then f has a fixed point (?).

At present, instead of the needed o(p)-estimate, only a O(p)-
estimate is known: In [8], g(M, f) < (p — 1)/2(k — 2) was proved
for compact spaces M, a result which will be slightly improved in
this paper.

The main result of this paper (Theorem 2) is a reduction of
Problem 1 to the equivalent problem of computing the genus of
nice space L, , with nice actions ¢, , on it. It will be shown that

9(M, ) < 9Ly, py Pr.»), Where (L, ,, P, is a prototype for (M, f) in
Problem 1.

To date, only for p =2 or for k=38 have the values of
9(Ly, ,, Pr,») been computed and only rough estimates are available
for the general case. But the spaces L, , and the actions @, , seem
to be nice enough to allow numerical computations of ¢(L,, ,, #.,)
for small numbers & and » (e.g., k&, p £ 7), which might suggest the
general result one should expect. My own (a little vage) conjecture
is 9(Li,py Pr») = k — s(k, p) with s(k, p)e{l, 2, 3}.

2, The reduction of Problem 1. Let N:=1{1,2 38, ---} and
R ={x: N— R|x(n) = 0 for almost every ne N}, equipped with
the usual Euclidean topology. Let E,c R, H,(n): = §,, for all n¢c N,
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and for ge N, Ic{l, +--,q} and t€{l, ---, ¢} let

Aq—].: = €O {Eu tt Eq} ’
di—i = co{l;|jel},
Aot = 4327 = co {Ej|jefl, ---, gi\{i}} ,

q
04, ;2 = H Ay_iis »

Thus 4,., is the closed (¢ — 1)-dimensional simplex spanned by
E,...,E, and 4]_, and 4,_,, are (closed) faces of 4,_.,. We denote
by [o] the barycenter of a simplex o.

Now we are able to state our first theorem:

THEOREM 1. Let M be a normal space, ke N, p a prime number,
fiM— M a free Z,action, and M, «--, M, C M closed sets such that
EM,=Mand M,Nf(M,) = @ for i =1, ---, k. Then there exists

a continuous map h: M — 04,_, such that h(M,) C 4,_,.; and

WA ) < U o ([4ED 1) < K (L, -, B

J

in particular WLy ) O dri = @ for i =1, -+, k.

Proof. Because of M,N f(M,) = @ and the normality of the
space M, there exist open N,Cc M with M,C N, and N, N f(N,) = @&
(=1, k). Forl, JC{l,---, K}, let W, ,i=icrr,..ons Mi\Ujes Nj.

We want to define A:M— 04,, such that for g =JcCclIcC
{1, ---, k} we have

(1) MW,,;) Ceof{[di]lJ c K I}

(i.e., roughly speaking, h maps W, , into the traverse Tr (4{_) in
the complex 4i_,; cf. [2]). The existence of such a map % can be
proved as follows:

We proceed by induction on card I, starting with the trivial
case card [ = 0, i.e., I = @. In this case we have J = ¢ and hence
WI,J = ﬂ M =09
i€l eee, k}

(observe that f(Micw....n M) N M; C f(M;) N\ M; = @ for every je
{1, ---, k} and hence Nicy,....s M; = @).
Let ne{0, ---, &k — 2} and assume that we could define % on
M™: = U n M;

TC{1, sy} T (L, BN
card I=n
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such that (1) holds for @ = JcCIC{l, - -+, k} with card] < n and
such that 2 is continuous on M™.

Since for I, I,c{l, .---,k} with I, # 1, and card I, = card I, =
n + 1, we have
M, N ﬂ M, = N M,cM™ ,
Te (L, -, kN Pe (L, kiI\Tg Te (L, kNI N Tg)
it suffices to extend % independently to all the sets M"™ U
Nicw,...oons M; with card I = n + 1 according to our conditions. The
union of all these extensions will be an extension of h to M»tv
with all the desired properties.

Thus we choose a fixed I, {1, .-+, k} with cardI, =n + 1. We
define the extension of 2 to M™ U Nicu,....n, M; by induction on
card J, where JC I,;: We start with cardJ =« + 1, i.e., J = I, and
define

h(z): = [4i,] for all xze W, ,, .

Since M™ N W,,,, = @, this extension is justified and of course
continuous.
Let me{2, ---,n + 1} and assume that we have defined % on
M7P:=M"U U Wi,

0 JcIp
card J=m

such that (1) holds for all @ #JcCIcC{l, ---, k} with cardI < or
card J = m and I = I, and such that 4 is continuous on M{".

Since for J, J,c I, with J, =+ J, and cardJ, =cardJ,=m — 1
we have

Wipsr, W Wisy = Wi 00, © M2,
0v1 0°Y2 0Y1 2 0

it suffices to extend & independently to all the sets M{;' U W,,, with
card J = m — 1 according to our conditions. The umon of all these
extensions will be an extension of ~ to M’ with all the desired

properties.
Accordingly, let J,c I, with cardJ,=m — 1. Then we have
Wiysy O MEY

0

= Wiy 0 (M“”U u w, J)

JCIg
card JZm

= (WIO,JO nNM™*yu U (WIO,JO N WIO,J)

JCI
card Jzm

= U (WIO,JO N ieuﬂ i Mz) u u WI(, JUJ,

TC{l, ek} JCIg
card Isn card J=m
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= U WIﬂIo,JOU U WIO,JUJO
JcI

Icil,---, k}

card Isn card Jzm
= U WI,JO u U WIO,J ’
JocIcIy JocJ Iy
card I'sn card J=m
and hence
MWy N M) = U MWi,) U B(W,,,0)
JocICIg JoCJ CIg
card Isa card J2m
c U co{ifi]l/icKcItU U cofl4i,]lJcKc I}
JoCIcCTg JoCJ I
card I=n card J=m

ceo{l4i ]|J,c K1} .

Since every closed convex subset of a finite dimensional normed
space is an AR(normal), we can extend hIWIOJOM;':) continuously to
W, 7, such that

(W4 Ceof{[di]lJ,c KT I} .

By this iterative construction, we finally obtain an extension
of h to the set M{®, which is equal to M™ U Micu,....ons, M, since
for every xe M there is a je{l, .-+, k} with z¢ N,.

This shows that we can extend & continuously to M such
that (1) holds for @ #JcIc{l, ---,k} with card/ <» + 1 and
such that

M=y U - U cofldi]lJCc KT}

IC{l,---,k} @+JCI
card Isn+1

k
cu U U co{lfillJcKCI}
=1 IC{1.---k}\{8} @=JcI
card I=n+1

k
c L:Ji Ak——m‘ = aAk——1 .

Thus we have proved the existence of a continuous map h: M — 04, _,,
which fulfills (1) for all @ =JcIc{, ---,k}. We have to prove
that (1) implies h(M;) < 4,_,.; and

WA (4 ) © U o (116} S K (L, -+, BAGY
for i=1, .-, k.
Let I: = {1, ---, k}\{z}. Then we have
W Y MW c U eo(l4E]l/cKCI)
c Aﬁq = dy_1is -

In addition,
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WM\N) = U h(,\N)

k
c JL=Jl co{[4i ]It c K1, -, k\(5}} C 04k \dy—1s
and hence

ROy 1)) © BAND) © WCMANY
c o (IEI6) S K, -, N .

J#+t

For every k€ N and every prime number p we define

Ly, = {(@y, -, x,) € (04,-)?|1f m, me{l, -+, p}, n = m + 1(mod p)
and x, € 4,_,;, then x, ¢ 4,_,..}

and

Ly = {@, +++, 2,) € 04,_)?|If m, me{l, -+, p}, n = m + L(mod p)
and z, € 4,_,,;, then

zae U eo (45116} C KL, -, B -

i#e

Obviously, L,,, C L, ,, and the map @, ,: Ly, — Ly, py Prp(@y, =-¢, €,): =
(@) +++, ®,, x,) is a free Z,-action on L,, and on L,,. Now we can
prove

THEOREM 2. Let M be a normal space, ke N, » a prime number
and fr M— M a free Z,action. Let M, ---, M, C M be closed sets
such that Ui, M, = M and M;Nf(M,)= @ for v =1, ---, k. Then
we h(we g(My f) é g(ik,zn @k,p) = g(Lk,m q)k,p)'

Proof. By Theorem 1, there exists a continuous map h: M — o4, _,
such that h(M,) C 4,_,.;, and such that

M) € U o {45116} S KL, -+, B\

- aAIc——l\Ak—I:i .

Let P:M— L,,, Pk): = (h(z), h(f()), -+, h(f*"'(x))). Obviously, P
is an equivariant map (i.e., Pof = @,,0 P) and hence g(M, f) <
g(Zk,zn @k,p) é g(Lk,py ?k,p) (Cf- [79~8])-

Conversely, g¢(Li.» Pu.o) = 9(Lt,p Pi.,) follows from the fact that
L,, can be covered by the closed subsets M: = {(x, -+, 2,) €
L,,lx.€d,;} 4=1,---,k), which obviously have the property
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M,N @ (M;) = @, and hence the estimate g(M, f) < g(L;,, Pi.,)
applies to (L, ,, ?:.,) instead of (M, f).

REMARKS. 1. Theorem 2 reduces Problem 1 to the following
equivalent problem:

Problem 2. Let ke]y and p a prime number. What is the
value of g(Ly,,, Pr.») = 9(Ls,p, Prp)?

The end of the proof of Theorem 2 shows that, in fact, the
value of g(L, ,, P.,) gives the best estimate for g(M, f).

2. Since the L, , are finite dimensional compact sets, Theorem
2 shows that for Problem 1 one cannot expect a better estimate for
finite dimensional compact spaces M than for the larger class of
normal spaces.

3. Computing g(L,,,, ®:,,): First results. I can give here the
exact value of g(L,,,, P, only for the special cases p = 2 and k = 3.
For the rest, only rough estimates are available.

THEOREM 8. (cf. [9] and [8], Satz 8.) Let keN. Then
9Ly sy Pro) =k — L.

Proof. Let M;: = {(x, x.)€ Ly |, €44} 4 =1, ---, k). Then we
have M; N @,.(M;) = @ and hence M, C Uiz} ®..(M;), which implies

k k—1 k-1
Lk,z = !:{Mi = zL=Jl M; U M, = H(Mz U QDk,z(M)) .

Since M; U @, o(M;) € G (Lt Pr2), We have g(ly s, Pre) <k — 1.

It is a well known fact that the sphere S** can be covered by
closed sets M, ---, M, such that M,N(—M,) =@ for i =1, ---, k
(ef. [1]). Thus, by Theorem 2 we have g(L,,, P..) = 9(S¥ 2 —id) =
E— 1.

A less trivial result is

THEOREM 4. Let p = 3 be a prime number. Then

1 of p=3
L3 » Ps,0) = .

9(Lis,py Ps,5) 2 if p=5.

Proof. 1. Obviously, L,, # @ and hence g(L,, ®,:) = 1. On the
other hand, for every xe€ L,,, the set M;: = {(x, %, ;) € L, ,| %, € 4,..}
contains exactly one of the points z, @,,(x), Pi,x), which shows
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that @i (M) Npt(M,) = @ for j,k=0,1,2, j # k and Ui 9i(M,) =
L,,. Hence g(Lss, s = 1.

II. Let p =5. To show that g(L,,, #;,) =2, we consider the
space SY(CC) with the Z,-action f:S' — 8, f(z): = e®V/P=z,  We
cover S' by the sets M;: = {¢*|2rx(j — 1)/3 < a < 275/3} for j =1, 2, 3.
By the definition of f, it follows that M, N f(M,;) = @. Hence, by
Theorem 2, we have 2 = g(S", ) =< 9(Ls,,, Ps.p)-

It remains to prove that g¢g(L,,, #,,) <2. For every =z =
(%), «--, x,) € L,,, we define

T.: ={(a, -+, a,)€{1,28P|x;€ 4y, for j =1, .-+, p}.
For a,be{l,2, 3}, a # b, let

1 if b=a + 1(mod3)

b): =
"M@ =15 it b=a+2mods)

and for each je{l, ---, p}, let

. _[f+1if j<p—1 . J—1if j=2
gt = o - and j7: = [P
1 if j=0»p D if j=1.

Then, for z¢ L,,, we define
_1e
'U(x)- - "g‘ Z Ir(aj’ ai‘*‘) )

where (a,, -+, a,) is an arbitrary element of 7,. We have to show
that this definition does mnot depend on the special choice of
(@, *++,a,)eT,. Let (a, -+, a,), b, ---,b,)eT, and let 5, ---, J,€
{1, ---, p} with j, < j, < --- < J, such that a;, #b; fork=1, ---, [,
but a; = b; for je{l, ---, pD\{4y, - -+, i} Then, by the definition of
L, ,, we have

aj+=a,-~=bj+=b 123}\{013, } for k:].,"‘,l.
k k Ik

Hence we have, setting J: = {57, ---, 47, 71, -+, 7.},

=3, a0 = 5

3 del o\

=L S b rl=
3 e o

’r(a,-, aj+) + l

o]

S 7(bs, bt) -
i=1

Obviously, w(x)e N, p/3 < v(x) < 2p/3 and v(x) = v(®; ,(x)) for all
xeL,,. Furthermore, all the sets W,: = v™*(n) (ne N) are closed.
Since L,, is the finite, disjoint union of the closed sets W,(ne N,
p/38 < n < 2p/3), which are invariant under @, ,, it suffices to show
that g(W,, #:,) =< 2 for all ne N, p/3 =< n < 2p/3.
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We assume that there exists such an n with g(W,, ¢,,) = 3.
Without loss of generality, we may assume that g(W,, ®;,) = 3
otherwise we could replace W, by a subset W, with @, ,(W,) =

and g(Wm @3,9) - 3
Let h: 04, — S'(cC) be a homeomorphism such that

h<42,>=1ew|<a—1)-—<a<92§} for j=1,2,3.

We want to construct a map P: W, — S' via a homotopy argument,
such that P is equivariant with respect to ¢, , and f: S'— S,

@) = ¥ e, P(P,(a) = e P) = f(P@)

for all xe W,. This will imply that g(W,, ®,,) <g9(S, f) =2 in
contradiction to g(W,, #,,) = 3 (cf. [7] and [8], Hilfssatz 10).

Since g(W,, ®;,) = 3, there exist closed subsets WyJ"», Wy
G=1,238k=0,---,p— 1) such that W = Uizt W@», Ui, WP =
W, W W =0gp for k,k,=0,---,p—1, k #k, and
@t (W) = WE» for k=1,---,p—1 (=1,2,8). We have to
construct a special homotopy

H: (WP UWP UwWe?) x [0, 1] — 8"
(a) We define

H(z, t): = h(®) for (z,¢) = (&, -+, @), 1)
e(W U W2 U W) x {0h) U (W x [0,1]),

and
H(x, 1): = fY(H(@L (@), 1)) = ! &P p(x, ., )

for ¢ = (xv ] wp)e Wb with ke {1; D — 1}° Thus: Hl(.>: =
H(-, 1) is equivariant on W.
(b) Let d;: W& x [0, 1] — (0, 27),

d(x, t): = arg (fﬁ%ﬁ) for (z,t)e W2 x {0, 1}

and
d,(z, t): = td,(x, 1) + 1 — t)d(x, 0) for (x,t)e WP x (0,1).

Observe that we used here the fact that for z = (v, ---, 2,) e WY
we have x, # x,, which implies H(®; ,(x), 0) = h(x,) # h(z,) = H(z, 0).
Now we can define

k
H(z, 1): = H(@i34w), £) TI eusdsmeno
m=1
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for (x,8)e W» x (0,1), kefl, ---, »p — 1},

(¢) H isnow given in particular on (W x [0, 1]) U (W&® x {0}).
By a well known homotopy extension theorem (cf. [3], p. 14), we
can extend H continuously to the set (W' U W) x [0, 1] such that
H((WP U W x [0,1]) < 8. Furthermore, we can define for xe
wen with ke{l, ---, p — 1}

H(x, 1): = fHH(@L (@), 1)) = " H(pgk@), 1) .

(d) Let dy: (WP UWP) x [0,1] — (0, 27) be defined analogously
to d,. Since, for xe WP UW?, (a,, ---,a,)€T, and sefl, ---, p},
we have

2 3 10 ) — 3, il @), 0 = 2
m=1 m=1 3
which implies

< m—1 —_— 272" <

2 (P (@), 0) = == 3, 7(@ny Qi) = 27m
it follows for every (z, t) e (WP U W) x [0, 1] that

mﬁ;l dy(Pi7" (), t)

= ¢ 3, d(@3"@), D + (L — ) 3 d@2m(@), 0)
=ti2—nn+(1—t)27m=27m.
m=1 p

Hence, for (x,¢)e W x [0,1] and ke{l, ---, p — 1}, we have
k
H(@i ), t) T1 @il e
m=1

k
eidl(gog’;m(z),t) H eid(m;’:’sm(m),t)

1 m=1

= H(x, t)

m

= H(z, t)

m:

=Ry

k
eidg(gog’;m(m),t) H eidg(g:g,;m(z),t)
+1 m=1

sl
>

= H(w, t) 11 ¢"*i5" 0 = Hlw, t)e* = Hw, 1) .
This justifies the definition
H(z, t): = H@iz@), 0) 11 et
for (x,t)e W» x (0,1), ke{l, ---, p — 1}.

() To obtain H on (WP U W2 U WS”) x [0,1], we apply the
same homotopy extension theorem as in (¢). Finally, we obtain
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P.W,— S by

P(&) H(x,1) for xe WP UWE2 U WS
x): =
FHH@E @), 1) for xe WS with ke{l, ---,p — 1} .

For k = 4 and p = 3, only estimates of ¢g(Li,,, ®:.,) are known,
which seem to be not best possible in most cases. However, we
can prove a new result, which yields, in conjunction with Theorem
2, a slight improvement of Satz 10 in [8]:

THEOREM 5. Let p = 3 be a prime number and ke {8,4,5, ---}.

Then we have

1 if p=3
2 if p=5.

g(Lk,m @k,p) = g(Zk,p) @k,p> = D ; 1(’0 - 3) =+ {

Proof. Let Mg: = {®, -, 2,)€Ly, |04, ;) and F:=
13l (M) (i=1,---,k —3), and let

Then we have
. kE~3
Lk,p = L—J1 F,, U G .
As a consequence of Theorems 2 and 4, we have

1 if p=3
G =
g( ’ @k,p) = {2 if p Z 5 .

Furthermore, in the proof of Satz 10 in [8], it was shown that
9(F, P < (p —1)/2. It follows that
~ k-3
g(Lk,zn @k,p) é g;g(Fu @k,p) + g(G, EDk,p)
1 if p=3
2 if p=5.

p—1,
s 2=t 3>+{

REFERENCES

1. K. Borsuk, Drei Sitze iber die m-dimensionale euklidische Sphdre, Fund. Math.,
20 (1933), 177-190.

2. J. Dugundji, A duality property of merves, Fund. Math., 59 (1966), 213-219.

3. Sze-Tsen Hu, Homotopy Theory, Academic Press, New York and London, 1959.

4. M. A. Krasnosel’skii, On special coverings of a finite-dimensional sphere, Doklady
Akad. Nauk SSSR, 103 (1955), 961-964. (Russian)

5. L. Ljusternik and L. Schnirelmann, Topological methods in variational problems,



296 H. STEINLEIN

Issledowatel’skil Institut Mathematiki i Mechaniki pri J. M. G. U., Moscow, 1930.
(Russian)

6. A. S. Svarc, Some estimates of the genus of a topological space in the sense of
Krasnosel’skii, Uspehi Mat. Nauk, 12 (1957), no. 4 (76), 209-214. (Russian)

7. ————, The genus of a fiber space, Trudy Moskov. Mat. Obs¢., 10 (1961), 217-272
and 11 (1962), 99-126; (Russian), English translation in Amer. Math. Soc., Translat.,
II. Ser., 55 (1966), 49-140.

8. H. Steinlein, Borsuk-Ulam Sdtze und Abbildungen mit kompakten Iterierten, Habili-
tationsschrift, University of Munich, 1976.

9. Chung-Tao Yang, On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobd and
Dyson, I, Ann. Math., 60 (1954), 262-282.

Received October 30, 1978. This research was started, when I was visiting the
Université de Montréal in fall 1977. I would like to thank Prof. Granas and the
mathematical institute for their kind hospitality.

MATHEMATISCHES INSTITUT
DER UNIVERSITAT MUNCHEN
THERESIENSTR. 39

D-8000 MUNCHEN 2, GERMANY



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
DONALD BABBITT (Managing Editor) J. DUGUNDIJI
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California
Huco RossI Los Angeles, California 90007
University of Utah R. FINN AND J. MILGRAM
Salt Lake City, UT 84112 Stanford University

C.C. MOORE and ANDREW OGG Stanford, California 94305

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

UNIVERSITY OF OREGON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 83, No. 1 March, 1979

Richard Neal Ball, Topological lattice-ordered groups .................... 1
Stephen Berman, On the low-dimensional cohomology of some

infinite-dimensional simple Lie algebras . ........................... 27
R. P. Boas and Gerald Thomas Cargo, Level sets of derivatives ............ 37
James K. Deveney and John Nelson Mordeson, Splitting and modularly

perfect flelds ... ... ... 45
Robert Hugh Gilman and Ronald Mark Solomon, Finite groups with small

unbalancing 2-COmMpOnents . ..........o.o.uuueeeeeneiiiiieeenanannns 55
George Gritzer, Andras Hajnal and David C. Kelly, Chain conditions in free

products of lattices with infinitary operations. ...............c.c....... 107
Benjamin Rigler Halpern, Periodic points ontori ........................ 117
Dean G. Hoffman and David Anthony Klarner, Sets of integers closed under

affine operators—the finite basis theorem ........................... 135
Rudolf-Eberhard Hoffmann, On the sobrification remainder*X — X ....... 145
Gerald William Johnson and David Lee Skoug, Scale-invariant

measurability in Wiener space ...............ouuiiiiiiieennnannnn.. 157
Michael Keisler, Integral representation for elements of the dual of

DA, E ) et e 177

Wayne C. Bell and Michael Keisler, A characterization of the representable
Lebesgue decomposition projections ...............
Wadi Mahfoud, Comparison theorems for delay differenti
R. Daniel Mauldin, The set of continuous nowhere differe
JURCHIONS .« oo oot
Robert Wilmer Miller and Mark Lawrence Teply, The des
condition relative to a torsion theory ...............
Yoshiomi Nakagami and Colin Eric Sutherland, Takesaki’
regular extensions of von Neumann algebras . . . . . . ..
William Otis Nowell, Tubular neighborhoods of Hilbert ¢
Mohan S. Putcha, Generalization of Lentin’s theory of pri
word equations in free semigroups to free product of
reals under addition . .................... ... . ....

Amitai Regev, A primeness property for central polynomi

Saburou Saitoh, The Rudin kernels on an arbitrary domai

Heinrich Steinlein, Some abstract generalizations of the
Ljusternik-Schnirelmann-Borsuk covering theorem . .


http://dx.doi.org/10.2140/pjm.1979.83.1
http://dx.doi.org/10.2140/pjm.1979.83.27
http://dx.doi.org/10.2140/pjm.1979.83.27
http://dx.doi.org/10.2140/pjm.1979.83.37
http://dx.doi.org/10.2140/pjm.1979.83.45
http://dx.doi.org/10.2140/pjm.1979.83.45
http://dx.doi.org/10.2140/pjm.1979.83.55
http://dx.doi.org/10.2140/pjm.1979.83.55
http://dx.doi.org/10.2140/pjm.1979.83.107
http://dx.doi.org/10.2140/pjm.1979.83.107
http://dx.doi.org/10.2140/pjm.1979.83.117
http://dx.doi.org/10.2140/pjm.1979.83.135
http://dx.doi.org/10.2140/pjm.1979.83.135
http://dx.doi.org/10.2140/pjm.1979.83.145
http://dx.doi.org/10.2140/pjm.1979.83.157
http://dx.doi.org/10.2140/pjm.1979.83.157
http://dx.doi.org/10.2140/pjm.1979.83.177
http://dx.doi.org/10.2140/pjm.1979.83.177
http://dx.doi.org/10.2140/pjm.1979.83.185
http://dx.doi.org/10.2140/pjm.1979.83.185
http://dx.doi.org/10.2140/pjm.1979.83.187
http://dx.doi.org/10.2140/pjm.1979.83.199
http://dx.doi.org/10.2140/pjm.1979.83.199
http://dx.doi.org/10.2140/pjm.1979.83.207
http://dx.doi.org/10.2140/pjm.1979.83.207
http://dx.doi.org/10.2140/pjm.1979.83.221
http://dx.doi.org/10.2140/pjm.1979.83.221
http://dx.doi.org/10.2140/pjm.1979.83.231
http://dx.doi.org/10.2140/pjm.1979.83.253
http://dx.doi.org/10.2140/pjm.1979.83.253
http://dx.doi.org/10.2140/pjm.1979.83.253
http://dx.doi.org/10.2140/pjm.1979.83.269
http://dx.doi.org/10.2140/pjm.1979.83.273

	
	
	

