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ON A THEOREM OF HAYMAN CONCERNING THE
DERIVATIVE OF A FUNCTION OF

BOUNDED CHARACTERISTIC

PATRICK AHERN

W. Hayman [On Nevanlinna's second theorem and exten-
sions, Rend. Circ. Mat. Palermo, Ser. II, II (1953).] has
given sufficient conditions on a function, /, of bounded
characteristic in the unit disc, in order that / ' also have
bounded characteristic. In this paper it is shown that one
of these conditions is also necessary for the conclusion of
the theorem to hold.

Let U be the open unit disc in the complex plane and let T be
its boundary. It is well known that there are functions /, that are
bounded and holomorphic in U, such that f'gN(U). Here N(U) is
the Nevanlinna class. In fact, 0. Frostman, [1, Theoreme IX], has
shown that there are Blaschke products with some degree of "smooth-
ness" whose derivatives fail to lie in N(U). More precisely, he
shows that there is a Blaschke product B, whose zeros {an} satisfy
the condition,

| y < c o , for all a >±. ,
2

but B'ίN(U). In Frostman's example, every point of T is a limit
point of the sequence {an}.

W. Hayman, [2, Theorem IV], has proved a result in the positive
direction. A function /, that is holomorphic in a bounded domain D,
is said to be of order K if, for every complex number α, the number
of solutions of the equation, f(z) = α, that are at a distance of at
least ε from the boundary of D is at most Cε~κ, for some constant
C. C may depend on a but not on ε. We say / has finite order if
it has order K for some K. Now let D be a bounded open set such
that U Q D, and let D Π T = \Jn Inf where In = {ei0: an < θ < βn}.

THEOREM A (Hayman). Suppose that

( i ) (a) Σ (βn - a J = 2ττ
(b) Σ (βn - an) log l/(β% _ α J < - .
(ii) there are constants ε, C > 0 such that if an < θ < βn, then

Λ dD) ^ e(\θ - an\\θ - βn\)c .

(iii) / is holomorphic and of finite order in D and feN(U).

297



298 PATRICK AHERN

Then Γk)eN(U) for ft = 1, 2, 8, .

The conditions (i)(a) and (i)(b) just mean that the set E - T\\Jn In

is what is usually called a Carleson set.
In [4], P. Kennedy investigates the necessity of condition (i)(b).

He shows that if (i)(a) holds but

then there is a bounded open set D^Usuch that Z) Π T = JJ»In, In =
{eΐ0: an < θ < βn), and a function / that is bounded and holomorphic
in D such that f'$N(U). He observes that condition (*) does not
follow from the condition

Σ ( A - α ) l o g — - co ,

and writes that "there is still a gap between the positive information
given by Hayman's theorem and the negative information" given by
his example.

In this note we close the gap by showing that condition (i)(b)
is the right one. Our example is a Blaschke product that retains
the same degree of smoothness as the one of Frostman's example.

THEOREM. TO each sequence of arcs {In}, In — {eiθ: an < θ < βn),
that satisfies (i)(a) but not (i)(b), there corresponds a Blaschke product,
B, whose zero sequence, {an}, clusters only on T\\Jn In, such that
B' £ N(U) and Σ (1 ~ \an\)a < °° for all a > l/2 Moreover, there is
a bounded open set D, such that D^U, Df]T = \J»In, D satisfies
condition (i)(c) with C = 2, and B extends to be bounded and of order
1 in D.

Proof Let εn = βn — an. We are assuming that Σ * εn log (1/εJ =
cχ3. We may choose numbers δn, 0 < δn < 1, such that limΛ ^ δn — 0,
and ^Σjnδnεnlogl/εn = oo, Now define dn = εl~δn and cn = (1 — dn)eίan

and 7n = (1 — dn)eiβn. Let B be the Blascke product whose zeros are
K} U {7»}. The zeros of B cluster only on the set E = T\\Jn In so
B is holomorphic on In for every n. We calculate that

£> \Z) = ^{Zji^ Γ~̂  ~~Z "T" 2-i ! —z f

so that when eiθ e In we get
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If B' were in N(U) it would follow that

299

Now,

\ei9 -

^ d* + (0 - α J

and hence

I oi0 — o |2 ~ dl + (θ - aj

If ei0 e /„ then

log+(Σ * " |Cfe l,2) έ log ( Σ T V 1 ^

^ log
c "[ , ^ log

di + (0 -

So we see that

ck\

d +ei

Since δM < 1, we see t h a t dn = ε^~5>ί ^ eΛ (assuming εn < 1), so

X I JL I ς

log-

Hence,

Σ ( l o g + J Σ l

ί0

 lCkl ^ 2π log i . + Σ δnεn log A = oo .
2 sw

So B'ίN(U). Also we see that

Σ (1 - I «• l)β = 2 Σ # = Σ ei2-5 ϊβ <

if a > 1/2 because (2 — δn)a ^ 1 for all sufficiently large n.
It remains to construct the domain D. We have the inequality,
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\B(rei0)\2 >1 v / [ - -rη Σ

re" - —1 I'

(We may assume \ck\ ^ 1/2, | 7* | ^ 1/2.)

Now suppose α Λ ^ θ ^ (α n + jSM)/2 and | z | ^ 1, t h e n

So,

I reιa — e ί α " |

^ 1/4 if

1 - r 2 ^ . 3

Σd -

re 1" —

SΊ

Note that C is independent of θ and n. Similarly we see that if
(an + βn)/2 Sθ^βn and

\rei0 - e^«|2 ~ 16 Σ (1 - Io*j ) + Σ (1 - ίΎfcI
2)

A;

then | S ( r O I 2 ^ 1/4. We may calculate that, for C > 0,

< Cl = {rei0: \ re" - ρeiλ \ > 1 - p] ,

where p - C/(l + C).
So, if

A - {r*w: r ^ 1, an rei - p
and |re<tf - peiβ*\ > 1 - p) and J - U. A , then

^ 1/2, 2 6 i .

Now for |z | > 1, B(z) = 1/5(1/2), so |5(2)| ^ 2 if 1/2 6 4. Assuming,
as we may, that C < 1, we see that ΓΛ = {z: 1/2 6 4} = {s: M ^ 1>
2 + δe<αw| < 1 + 8 and |2 + δeiβ»\ < 1 + δ}, where δ - C/(l - C).

Finally, if we let & = ί7 U U% Λ* then ^ is an open set and | B{z) \ ̂  2
for 2 G Λ

Now we define a function

' - an)\θ - βnγ if an<θ <βn for some w

0 otherwise .

We check that ψ\θ) exists for all θ and that there is a constant K
such that
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(See [4, Lemma 1J for a similar calculation.) For ε > 0 we define
Dε = {re": r < e^ί0)}. Then Dε satisfies condition (ii). of Theorem A
with C = 2. (Again, see [4, Lemma 2], for a similar calculation.)
Also, it is not hard to that DB £ 6? for all sufficiently small ε > 0.
So we fix some ε > 0 such that Zλ Q έ? and let D = Zλ. Since D £
^ , 5 is bounded in Zλ It remains to show that B has order 1 in Zλ
Let φ:D-^U be a conformal map. Since ^' satisfies a Lipschitz
condition it follows from a theorem of Kellogg [3], that φ' extends
to be continuous and nonvanishing on D. From this we can conclude
that there is a 8 > 0 such that 1 - | φ{z) | ^ 8 dist (s, 3D) for all zeD.
Fix aeC and let / = B — α and let {α%} be the zero sequence of /.
Then {φ(an)} is the zero sequence of the bounded function f°φ~ι so
Σn (1 — 19(01) < °° a n d hence Σ» dist(αn, 3D) < oo. From this we
may conclude that B has order 1 in D.

As a final remark we point out that we may choose the arcs In

in such a way that E = T\]Jn In is a countable set with only one
limit point, and such that (i)(b) fails. If we apply the theorem to
this situation we get a Blaschke product B whose zeros converge to
a single point such that B'$N(U), while the zeros sequence, {αΛ},
satisfies Σ ( l - KD" < °° for all a > 1/2.
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FINITENESS OF LOWER SPECTRA OF A CLASS
OF HIGHER ORDER ELLIPTIC OPERATORS

W. ALLEGRETTO

Finiteness criteria are established for the lower
spectrum of a class of higher order elliptic operators. The
results are obtained by the introduction and consideration
of a suitable second order operator. Examples are given
to show that the method can yield optimal results.

Let G denote a domain of Euclidean m-space Em. We always
consider the topology of one point compactification of Em, so that
if G is unbounded, then oo is a point of dG, the boundary of G.
This note deals with the spectrum of the Friedrich's extension L
of the operation / defined on C™(G) by:

(1) su = (-ΐ)n4nu - qu .

Here we denote by An the w-times iterated Laplacian and we assume
that q is a real function defined in G.

In the case n — 1 there is a well known connection between the
spectrum S(L) of L and its oscillation properties, [1], [2], [6], [7], [8].
Basically, it is shown that, under suitable regularity conditions, the
oscillation constant of L is the least point μ of the essential spectrum
of L and that (—°°, μ) A S(L) is finite iff L — μ is nonoscillatory.
It is our purpose to obtain conditions, based on oscillation theory,
which guarantee that (—oo9 δ)ΛS(L) is a finite set, where 3 is a
constant which is assumed hereafter to be zero. We observe that,
given the monotonic dependence of the least eigenvalue as a domain
function, the same proof as in [6], for the case n = 1, shows that
if L is oscillatory then (— &o, 0) Λ S(L) is infinite. It does not
appear known, however, whether there is a higher order version of
the arguments used in [7] to show that if L is nonoscillatory then
(— °o, 0) Λ S(L) is finite. This observation is the main reason behind
our attempt to relate L to a second order operator.

Basically, our method consists in introducing a second order
expression s19 related to /, and in then obtaining finiteness conditions
for (— oo, 0) Λ S(L) by examining the nonoscillation properties of slm

It may intuitively appear that the introduction of a second order
expression implies that the results obtainable in this way are not
optimal. This indeed can happen, but we show by example that
our method may yield best possible results in the sense that the
constants appearing in the expressions can not be improved.

After some preliminary results we shall consider (1) only for

303



304 W. ALLEGRETTO

the case n — 2, and merely indicate how the formulas are to be
modified for the cases n > 2. We do this because our method
remains unchanged in the general case, while the expressions
involved can become quite lengthy and complicated (depending on
n, m, G).

We now state our assumptions on /. We shall assume that:
( i ) qeCΐoc (i.e., q is locally Holder continuous) in a neighbor-

hood of 3G and qeL2

lo,(G);
(ii) / i s bounded below on C™(G) so that L is well defined.

Consider a real second order elliptic expression /v given by

with atj — aάι. We shall say that /; is admissible iff the following
condition is satisfied:

(iii) if (?! is any bounded smooth subdomain of G with G1(zG
and σeLco{3G^)1 then the form B(u, v) given by:

σuvB(u, v) = \ {Σa^D^DjV - quv) -f- \

on C^Gi) gives rise, by extension, to a self-adjoint operator in L2(GL)
with finite negative spectrum.

Explicit conditions on q, aτj which are sufficient in special cases
for (ii), (iii) to hold may be found in [9], [11]. We observe that
our assumptions allow the possibility that q become singular on
parts of (possibly all of) 3G.

We also recall the following definition of nonoscillation at 3G
(see [1]); The operator L (or the expression /) is nonoscillatory at
dG iff there exists a neighborhood N of dG (i.e., N is open in Em\J
{co} and dGaN) such that if F is a bounded domain in NAG then
(-<*>, 0] Λ S(L(F)) = φ. Here L{F) denotes the extension of /
defined on C™(F). The definition of L oscillatory at parts of dG is
analogous.

Finally, we shall say that G satisfies condition (A) iff: there
exists a family of nested bounded smooth closed surfaces {SJΓ=o and
associated domains {G{} (j > i) such that: G{ c Gy dG{ = SiU Sj9

j = i + i9 . . . ? co; {UjLιl-iG]}Γ=1 is a deleted neighborhood base of dG
(in the induced topology on G). Condition (A) is usually satisfied by
the regular domains considered in oscillation theory.

THEOREM 1. Assume that G satisfies condition (A) and that
there exists an admissible second order expression /x with C°° coef-
ficients such that:

( 2 ) (ώ, ( - 1 ) M » ^ ($
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for all φeC™(G). Assume further that s[ — q is nonoscillatory at
dG. Then S(L) A (— °°, 0) is a finite set.

Proof. Since /λ — q is nonoscillatory at dG, it follows from our
assumptions that there exists a positive solution v of (< — q)v = 0
in a neighborhood N of dG. A suitable form B, as given in (iii),
may then be constructed using v so that if φ e C™(G) is perpendicular
(in L2) to a finite dimensional subspace (determined by B) of L2 we
then have:

(Φ, A , Φ) - (qφ, Φ) ^ 0 .

Detailed proofs of the above statements follow by trivially modifying
the arguments given in [6 — 9]. The conclusion now follows from
inequality (2) and the spectral theorem.

We remark that if G is an exterior domain with smooth boundary
then Theorem 1 remains valid if "nonoscillatory at <>o" is substituted
for "nonoscillatory at dG". Furthermore it is now sufficient that
q e C?oc near c>o. In the definition of admissible we substitute here
for the form B of (iii) the form Br defined on {u\ue Cι(G A {\x| ^ R}),
u = 0 near dG — {°o}} by:

B'(u, v) — \ {Σ atjDiUDjV — quv} + I σuv .
J ( ? Λ { !» !<#} J\x\=R

The proof of this remark is essentially identical to that of
Theorem 1. We remark that an essential requirement is that ô be
an isolated point of dG. Analogous results are possible for problems
on bounded domains G with singularities on isolated parts of dG.

COROLLARY 1. Assume that for some function w > 0, we C°°(G)
we have (φ, ( — l)n~ιAn~ιφ) ^ (wφ, φ) for all φeC?(G), and let /[ denote
the expression: /$ — — ΣΓ=i Dk(wDkφ). If sx is admissible and A — q
is nonoscillatory at dG then S(L) A (— °°, 0) is a finite set.

COROLLARY 2. Let G be contained in an exterior domain. Then
there exists constant C, a, β (which depend on ny m) such that for
any φeC™(G) we have (φf ( — l)n~ιAn~ιφ) ^ (wφ, φ), where w =
C\x\a(/n\x\γ.

The proof of Corollary 1 is immediate from the observation:

(φ, (- l)M^) - Σ (Dkφ, (-I)*-*Δ^Drf) ^ Σ (wDkφ, Dkφ) .
k k

Corollary 2 is a summary of results found in [3], [4] where explicit,
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but often lengthy, expressions are given for suitable C, α, β in
terms of n, m.

The general operator L may now be considered by using
Corollaries 1 and 2. As mentioned above, however, we proceed by
explicitly considering only the case n = 2, and by showing that in
this case Theorem 1 can lead to optimal results. We do this by
first obtaining a lemma which gives better results than those
obtainable from Corollaries 1 and 2.

LEMMA 1. Let G be an exterior domain, m > 4 and let φ e C™(G).
It follows that:

( 3 ) ( J M ^ T

4

Proof. We adopt the procedure used in [3], [10] for similar
estimates. Let F, denote a system of complete orthonormal spherical
harmonics and let k = k(i) denote the order of Yt. For a given

Φ e Co°°((?) we set fi = \φ Y€dw where Φ is the full range of the
JΦ

angular variables and dw denotes the angular component of the
volume element in polar coordinates. It follows that:

ί W = Σ Γ
J i=o Jo

i=o Jo \ r r

and:

Σ (Dtφ)% = Σ Γ {r-3(/02 + /fr -%(fc + m
γ <=o Jo

Consequently, (3) will be satisfied if we can show that for all k:

" + (W ~ 1)/'
( 4 )

ϋ L I TO - 2)}dr ,

where we have set ft = /. We first expand and integrate by parts
the left hand side of (4) and then estimate the (/")2 term by Formula
(9) of [5, p. 83]. This procedure shows that for (4) to hold it is
sufficient that:

( 5 ) V \rm~Xf')22k(k + m - 2) + rm~δ

f2[k\k + m-2)2 + k(k + m-2)(2m-S-~Yjj ^ 0 .x
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Estimating the (/')2 term by the results of [3] reduces (5) to showing
that, for each possible value of ft, we have:

But this inequality is easily seen to be valid by direct examination,
and the result follows.

We remark that if m ^ 4 the above procedure apparently leads
to worse constants than m2/4.

To apply the lemma we first recall that, by [3], [10], the
operator L generated by

/u — Δ2u — qu

in G(zEm, m > 4, is oscillatory (resp. nonoscillatory) if 16|#|2g ^
m\m — 4)2 + δ (resp. <̂  m\m — 4)2) near infinity, where δ > 0.

COROLLARY 3. Lei w = 2, m > 4 ami iβί G be an exterior domain
with smooth boundary. Assume that — 4"1 Σ A(m 21»| ~2A^) is
admissible and that for all \x\ sufficiently large we have 161 x\*q(x) <;
m\m — 4)2. ΓAβ^ S(L) A (— °°, 0) is finite. Furthermore m\m — 4)2

is the largest possible constant.

Proof. By the remark following Theorem 1 and by Lemma 1
it is sufficient to show that the operator generated by:

- QΦ

is nonoscillatory at {co}. Since 16\x\*q(x) ^ m\m — 4)2 near oo, this
is the case by the results in [3]. Finally that m\m — 4)2 is optimal
follows from the above remarks.

As another simple example where "optimal" results are obtained,
let us consider the case where G is the 1/2 plane in E2 given by
x2 > 0 and q has singularities on a;2 Ξ 0. In this case the analogue
of Corollary 3 is:

COROLLARY 4. Let —^Dk((l/4:Xl)D^) be admissible. Assume
further that near dG we have x\q(x) ̂  9/16. Then S(L) A (— °°, 0)
is finite. Furthermore 9/16 is the optimal constant.

Proof. In this case we have (see [1])

(φ, —Δφ) I



308 W. ALLEGRETTO

and it is therefore sufficient to show that the operator generated
by the expression:

-ΣDi\—ζDiΦ\ - QΦ

is nonoscillatory at dG. Again from [1] it follows that the condition
x\q(x) ̂  9/16 is sufficient for nonoscillation at dG. That this constant
is best possible follows from a separation of variables argument
which makes use of the observation that 9/16 is optimal in one
dimension (by a theorem of Leighton and Nehari [12, p. 143]).

In conclusion we remark that other second order nonoscillation
theorems (for example those involving integral and/or logarithmic
estimates, which are explicitly given in [1], [3], [4], [12]) could be
used in place of the simple criteria we employed. It is also evident
that other regions could be substituted for the exterior domains
and 1/2 plane case which we explicitly considered. By these means,
several variants of our results can easily be stated.

Finally, we note that the regularity requirement "q e Cfoc" of
condition (1) can be modified. It is also sufficient, by the spectral
theorem, that the expression /[u + qu "majorize" (in the sense of
forms) a nonoscillating second order expression with regular
coefficients.
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SUPERHARMONIC INTERPOLATION IN
SUBSPACES OF CC(X)

L. ASIMOW

Let E be a closed subset of the compact Hausdorff
X and let A be a closed separating subspace of CC(X) Let
p be a dominator (strictly positive, l.s.c.) defined on Xx T, T
the unit circle in C. Conditions, formulated in terms of
boundary measures, are discussed for approximate and exact
solutions to the problem of finding ^-dominated extensions
in A of functions g£(A\E)~ satisfying re tg (%)^p(x,t) on
ExT. Various interpolation theorems of Rudin-Carleson
type for superharmonic dominators are incorporated into
this framework.

We do not assume that A contains the constant functions. We
denote M(X) = C(X)*, the space of regular Borel measures on X.

We consider N — M(E) as situated in M(X) as the range of
the projection πxμ — μ \E and denote the complementary projection
π2μ = μ\X\E. Thus (A\Ey is identified with the subspace A1 Π N in
M(X).

We call μeM(X) a boundary measure if \μ\ is maximal with
respect to the Choquet ordering as a measure of X (embedded by
evaluation) in the w* compact unit ball Af. If l e i then this is
the same as \μ\ being maximal on the state space SA, as I c S 4 , a
w* closed face of At.

For brevity we denote the boundary measures by dAM{X), or
dM(X), if A is understood, and in general, adopt the convention of
writing dAS for S Π dAM(X). Thus, dAA

L refers to the boundary
measures annihilating A. The space A* is the quotient space
M(X)/Aλ and images under the quotient map are denoted μ for
μeM(X). A subset SaM(X) is called A-stable if S = (dASy.

We call E an interpolation set if A\E is closed in C(E). Gamelin
[8] shows that E is an interpolation set if and only if there is a
k; 0 ^ k < co, such that for each me A1,

(1) \\^m + A±ΠN\\ ^k\\π2m\\ .

The best value of k is called the extension constant, e(A, E).
In [10] Roth introduces a general framework for interpolation

problems by means of a dominator, p, defined as a strictly positive
l.s.c. extended real-valued function on X x T (T the unit circle in
C). We let

U - {/ 6 C(X): re tf (x)/ρ(x, t) ^ 1 for all (x, t) e X x T)

311
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and write

| | / 1 | , = svp{retf(x)/p(x, t): (x, t ) e X x T)

for the Minkowski functional of U. Thus | | / | | , ^ 1 if and only if
retf(x) ^ p(x, t), (x, t)eX x T. T h e n \\μ\\p, μeM(X), r e f e r s t o t h e
polar functional given by

Since p is l.s.c and positive there is a constant c such that
c\\f\\ (the uniform norm corresponding to p = 1) and if <o is bounded
above the two are equivalent.

We say E is an approximate p-interpolation set for A if 1? is
an interpolation set and for each g e (A \E)~ and ε > 0 there is an
/ e A such that f\E = 9 and | | / | | , < ||flr||, + e. We say E is an
e x α c ί p - i n t e r p o l a t i o n set i f / c a n b e c h o s e n w i t h \\f\\p = \\g\\P. I t
is shown in [5] that for bounded p, E is an approximate ^-interpola-
tion set for A if and only if for each me A1,

(2) Wπ.m + A±ΠN\\P ^ | |-τr 2m||, .

If, in addition, the image U of U° under the quotient map is
decomposable by N then E is an exact ^-interpolation set. If there
is an s, 0 ^ s < 1, such that for each me A1,

(3) \\πxm + A1 Π JV||P ^ sH-^mll,

then the above holds and E is ^-exact for A. Gamelin's results
[8] can be phrased as follows: Let G be a compact set in X\E
and let

p(G, k)(x, t) =

(1 for (x,t)eE x T

Jc for (x,t)eG x T

lVfc otherwise.

Then E is Jan approximate <o((τ, fe)-interpolation set for all such G
if and only if (1) holds and if, in addition, e(A, E) < 1 then E is an
exact ^-interpolation set for any continuous Γ-invariant p such that
p > e(A, E) on X x T. This was obtained in abstract form using
polar techniques by Ando [3].

In [6] Briem shows that if E is a subset of the Choquet
boundary, dAX, then E is an interpolation set if and only if (1)
holds only for medAA

L. Further, if X is metrizable then (1) holds
for dAA

ι if and only if E is an approximate p(G, /^-interpolation
set for each compact GadAX\E. The A-stability of the unit ball
M,(X) (Hustad's theorem [9]) and of N = M(E) (since EczdAX) are
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essential here. If (1) holds for e(A, E) < 1 (again, e is the smallest
k such that (1) holds for all m 6 dAL) then E is p(G, k) exact for
any G c dAX\E and k > e.

If (1) holds for all m e δ^A1 with k = 0 this can be expressed as

(4 ) med^A1 imples πxm6 A .

The set # is called an M-set if M(E) is A-stable and (4) holds. Roth
[10] shows that if E is an ikf-set and p is a bounded A-super-

harmonic (if l e A this means p(x, t) :> \p{ , t)dμ for any ^eM^CX)
and μ — xeXaA?) dominator then E is an exact ^-interpolation
set for A. This generalizes the Alfsen-Hirsberg theorem [2] which
deals with T-invariant p and EadAX.

In this note we consolidate these results by showing that for
E an interpolation set with M(E) A-stable and p A-superharmonic
then E is an approximate ^-interpolation set if and only if (2) holds
for medAA

λ. If in addition U is decomposable by N in A* then
the interpolation is exact. This is the case if p is bounded and (3)
holds for medAA

1. (If p is bounded and (2) or (3) holds then E is
already an interpolation set.) We give a measure theoretic condition
for the decomposability of U and show by means of simple examples
of A(K) spaces that exactness of interpolation can be deduced in
this way even though equality holds in (2) which, of course,
precludes the use of (3).

1* Hustad-Roth stability theorems* Let A be a closed separat-
ing subspace of C(X). Define Φ:C(X)->C(Xx T) by Φf(χ,t) =
tf(x). By separating we shall mean that the range of Φ\A separates
the points of X x T. This assumption can be avoided, as is shown
in Fuhr-Phelps [7], but at the expense of additional technicalities.
If v 6 M(X x T) then the Hustad map is given by

μ = Φ*ve M(X); μ{f) = [ tf(x)dv(x, t) .

If φ = φ \A has range B c C(X x T) and v is a maximal probability
measure on I x TaBf representing LeB? then Hustad's theorem
says μ = Φ*v belongs to dAM(X\ with μ — L — φ*L. We combine
this with the following observations concerning JMnvariant A-super-
harmonic dominators to obtain a general stability theorem due to
Roth [11].

Thus let p be a strictly positive ϊ.s.c. extended real-valued
function on X such that for each xeX and μeM?(X) with μ = xe

A*, we have p(x) ^ 1 pdμf that is, p is A-superharmonic. If U =

{/ 6 C(X): refjp ^ 1} then U° is a w* compact convex subset of the
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positive cone M+(X), and we let U be the quotient image in A*.
Take R+ to be the one-point-compactification of R+ and

χ0 = {(χf s) e X x R+: ρ{x) ^ s ^ + 00} ,

Γo = {(&, <Φ0) € Xo: p(x) < co} ,

Y«, = {(«, |0(a?)) e XQ: ρ(x) = + 00} .

Since p is ί.β.c, Γ 0U ΓM and Y«, are both Gδ subsets of XQ so that
Γo is a Borel set. Define

ψ: C(X) > C(X0); ψf(x, s) = f(x)/s ,

and let θ — ψ\A with (not necessarily closed) range BczC(X0). Since
p is strictly positive ψ is bounded and θ* is one-to-one from J5*
into A*. Let

^0: XQ > 1?!*

be the evaluation map and let V = w* — coφ0(X0).

PROPOSITION 1.1. Let p be a T-invariant A-superharmonic domi-
nator on X as above.

( 1 ) 0o is one-to-one on X0\(X X ί00}), X X {°°} = ^ ( O ) , and
Θ*V= U.

( 2 ) If v is a maximal probability measure on V then v[φo( Yo) U
{0}] = 1 and v may be identified with the measure on Yo given by
VoφQ.

( 3 ) If v is as in (2) and μ = ψ*v then for any bounded Borel
function h on X

I hdμ = \ (h(x)/ρ(x)dv(x, p(x)) .

In particular, μ 6 U°.
( 4 ) Let μ0 e Mt

+(X) with μQ = x0 e X c Af and define μ0 e M(X0)
by

μo(F) - (l/ρ(Xo))\ F(x, p(x))p(x)dμo(x) .

Then for any bounded Borel function h on X

\ (h(x)/s)dμo(x, s) = (l/p(xQ))\ hdμ, .
)x0 JX

In particular μ0 ^ 0, μo(Xo) — μo( Yo) ^ 1> and μ0 represents (x0, p(x0)) 6
V.

( 5 ) If v is maximal on V then μ = ψ *y is maximal on K =

coXczA*.
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Proof. (1) The separation theorem shows U = w*co{x/s: (x, s) e
X,}. Now

Θ*oφ0(x, s) = x/seA*

so the rest of (1) follows from the fact that A separates points in
X. For (2) let p = 1 — X{0] on V and note that the lower envelope
p is the Minkowski functional of V. Since v is maximal,

1 = v[{x: p(x) = p(x)}] = v[{x: p(x) = 1 or 0}] .

Now λ ;> 1 implies φΌ(x, Xs) = (l/\)φQ(x, s), so that

If feC(X) then γ*v(f) = \ {f{x)ls)dv{x,s)=\ (f(x)/p(x))dv(x, p(x))

and so (3) holds.
(4): If FeC(X0) and 0 ^ F ^ 1 then

0 ^ /Z0(F) ^ (l//o(a?o))J^o ^ 1

Thus /Zo ̂  0, βo(Xo) S 1 and μo[{x: p{x) = + co}] = 0. For F =

= ( (h(x)/s)dμo(x, s)
JX0

(5): Let / be a continuous convex function of K and denote the
upper envelope of / by f(K), where [1,1. 3.6]

f(K)(x0) = mvWy.μeMfiX) and /5 = xoe A*} .

If 9 = ψ(f\z) then βr e C(X0) with βf = 0 on X x {oo}. If μ0 = χ0 and
μQ is as in (4) then μ0 represents (xQ, ρ(x0)) e V and the upper envel-
ope, g(V), satisfies

g(V)(x0, p(x0)) ^ sup{//0(βr): //0 = x0} = (l/ρ(xo))f(K)(xo)

by part (4). Thus, using part (3), and [1, I. 4.5],

ί [f(K) - f]dμ = \ [f(K) - f]/pdv£\ [g(V) - g\dv = 0
Jx J F 0 Jr 0

since v is maximal. Hence, μ is maximal on K.

We now consider the case where p is defined on X x T. We
say such a ^ is Asnperharmonic if for each (x, t) e X x T and μ e
Λf(X x T)ί with
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' ( sf(y)dμ(y, s) = tf(x) for all fe A
jxxr

we have p(x, t) >̂ 1 pdμ.

THEOREM 1.2 (Hustad-Roth). If p is an A-superharmonic domi-
nator then U° is A-stable.

Proof. Let Φ: C(X) -» C(X x T); Φf(χ, t) = tf(x) and let

U1 = {Fe C(X x T): reF(x, t)/p(x91) ^ 1}

and φ — Φ \A with range B.
Let W: C(X x T) -> C(X0); r F f o ί, s) - F(α, t)/*, where Xo is the

closed epigraph of p in (XxΓ)χ JR
+. Now ΦUczU1 and ̂ (AΠ £7) =

βfl J71. Given LeU, let Le(UιT<=-B* and L ' e F (as in Proposi-
tion 1.1) with Θ*U - L and φ*l - L. We have Bf = w*co(X x Γ)
and the hypothesis says ^ on X x T is I?-superharmonic. Hence
the results of Proposition 1.1 apply. Thus if i/ is maximal on V
representing U then 1.1 (3) and (5) show v = Ψ*vr is maximal on
B* representing Le(C71)". Then μ = φ*ve U° and μ = Le U.
Furthermore, Hustad's theorem shows μ is a boundary measure.

If 1 e A then the condition for A-superharmonicity is somewhat
simpler.

PROPOSITION 1.3. If le A then p is A-superharmonic if and
only if for each μ e Mf(X) with μ = x,

p(x, t) ^

Proof. If p is A-superharmonic and μ e M?{X) with μ — x we
can embed X as X x {t} c X x Γ so that the measure μ satisfies

\ sf(y)dμ - tf(x)
JXxT

and hence

p(x, t) ^ ^ p{x, t)dμ = \χp(', Wμ

Conversely, if μ e M^(X x T) and represents tx then, since 1 e A,

we have tcoX = tSA(SA the state space of A) is a face of A*. Hence

suppjw c X x {ί} and the measure μλ(f) = \ fipήdμ represents a?

so that
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p(x,t)^ \ p(-,t^ = \ pdμ.
jx jxxr

2* Dominated interpolation• If E is a compact subset of X
we let

and denote M f) A by EL. It is well known that E is an interpola-
tion set for A if and only if A + M is closed in C(X) and this in
turn is equivalent to N being w* (or norm) closed in A*. The
following characterization of approximate ^-interpolation sets follows
from results in [5; 4.2]. We denote N= M(E)<zM(X).

THEOREM 2.1. Let p be a (strictly positive Ls.c) dominator on
X such that either p is bounded or E is an interpolation set. The
following are equivalent:

( i ) E is an approximate p-interpolation set for A,
(ii) A + M is closed in C(X) and

(A + M) ΓΊ (U + M) - (A n U + M)" ,

(iii) U
(iv) Hi
(v) || 7i

'ΠN = (i
«+ A^n
\m. + A1

7° n iv

ntfii,

VII

t - i x |
-τr2m

I? /or
II,. for

all
all

μe
m

N,
eA\

For xeA* we write H^l^ for the Minkowski functional of U
so that if μ = a?

The set U° is sp ί i ί , t h a t is, Hμil^ H l ^ l l ^ + H ^ l l ^ [10, 5].

PROPOSITION 2.2. Let N and U° be A-stable sets in M(X).
Then for μ e dJd(X),

( 1 ) ||/ι + il J-| | , = ||Ai + 3ilJ-||P = \\β\\P9

( 2 ) \\μ + N+ A1]], = \\πiμ + πίdAL\\p i^μ = μlxπ),
(3) If | |J«| |, = | | J8 | | , then

\\πtμ\\P =

Proo/. If ^ 6 3Λf(X) and \\μ\\p ̂  r then μ = rv + m with v 6 U°
and me A1. The stability of U° shows we can assume vedU0, so
that medA1. Then (1) follows. If μ = rv + η + ζ with vedU0,
η e diV, ζ 6 A1, then ζ 6 3A1 and π2μ = rπ2v + 7r2ζ 6 rτr2C/° + π2dAL.
Conversely, if π2μ — rv + ττ2ζ, vedU0, ζe dAΣ then
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μ = rv + (πji - πxζ) + ζerU0 -i-dN + dAL .

For (3), we have

1 1 ^ | | , ^ I K T Γ ^ Π I , = | | τ r^ + A 1 1 | , = \\μ - π2μ + A1^

^ \\μ\\p - \\w + A 1 ||, ^ | | j M | | , - \\π2μ\\p = H T Γ ^

Since we do not assume le A, we take the Choquet boundary,
dAX, to be XftextA*. There are two main instances where the
A-stability of N can be deduced.

PROPOSITION 2.3. Let E be a closed subset of X suck that
either

(a) E c dAX or
(b) E = F Π X, F a w* closed face of Af.

Then N is A-stable.

Proof. In the case (a) each probability measure on E is maximal
and so the result follows since coE spans N. In case (b) each
maximal probability measure μ with μecoE has its support on
(ext F)- c E.

THEOREM 2.4. Let E be a closed subset of X such that either
(a) EadAX, or
(b) E = F Π X, F a closed face of Af.

Let p be an A-superharmonic dominator such that either p is
bounded or E is an interpolation set. Then the following are equi-
valent:

( i ) E is an approximate p-interpolation set,
(ii) \\μ + AλnN\\P = \\μ + dAL\\p for all μedN,
(iii) ll^ra + A1 Π JV||, ^ | |-τr 2m|| p for all medA1.

Proof. The hypotheses imply that U° and N are A-stable and
so 2.2. (1) shows for μedM,

T h u s (i) ==> (ii) <=> (i i i) f o l l o w s f r o m 2 . 1 . I f (ii) h o l d s a n d xeUf]N
t h e n c h o o s e μ e d N w i t h μ = x a n d μe U° + A 1 . T h e n

\\μ + A1 Π N\\p = \\μ + d i^ | | , - \\μ + A^\\p £ 1

so that μ = v + m; veil0, meA1f]N. Hence v e N and /ϊ =x = ί> e
(U°Γ\Ny. Thus 2.1 (iii) holds and hence (i) is shown.

The exactness of ^-interpolation is characterized by the sum
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Af] U + EL{EL the ideal of functions in C(X) vanishing on E)
being closed in A, a condition which is implied by the decompo-
sability of U by N in A* [5; Theorem 3.2]. If E is an interpolation
set (so that N if w* closed in A*) then U is said to be decomposable
by N if there is an α ^ 1 such that each x e U is a convex combina-
tion of elements y, z with y e U Γ) N, ze U and | |z | | <̂  a\\z + N\\
(dual uniform norm).

The condition for decomposability, and hence exact interpolation,
can be formulated in terms of representing measures in M(X). We
illustrate this for boundary measures in the case where p is super-
harmonic.

THEOREM 2.5. Let E be a closed subset of X and A a closed
separating subspace such that either

(a) EadΛX, or
(b) E = F Π X, F a closed face of At,

and let p be an A-superharmonic dominator such that either p is
bounded or E is an interpolation set.

If for each x e U there is a μedAU° with μ — x and

\\π2μ + SA1!! Soc\\π2μ + π2dAL\\

(a a constant independent of μ) then E is an exact p-interpolation
set.)

Proof. Given xe U choose a boundary measure μ satisfying

β = Xf \\β\\p = \\μ\\p a n d \\π2μ + ΘA'-W^aWπzμ+ π2dA1\\. Now

\\μ\\p = Wπ^Wp + \\π2μ\\p shows that μ is a convex combination of
μLeU°Γ)N and μ2eU°, scalar multiples of TC^π^μ respectively.
Thus, \\μ2 + 3A11| <: a\\μ2 + π2dAλ\\ and x is a convex combination
of y e (17° Π NT and z e ZJ with (using 2.2 (1) and (2))

| | * | | = lift + dA" II ^ α | | f t + ττ23AL|| - a\\μ + N+A1\\

= a\\z + N\\ .

This shows that (U° Π JVT = UΠ N and that 17 is decomposable by
iV. Therefore E is an exact ^-interpolation set.

If E is an ikf-set then π2dAL c 9A1 so that

||τr2ju + TΓ^^I^ II

and the condition of 2.5 is automatically satisfied (for A-stable £7°).
More generally, if U° and N are A- stable and, for some s < 1

H^m + A1 Π Nil, ^ s | |-τr 2 m|| p for all medA1
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then a computation based on [5; 4.8] shows the condition of Theorem
2.5 holds, so that E is an exact ^-interpolation set.

COROLLARY 2.6. If E is an M-set for the closed separating
subspace A c C(X) then E is an exact p-interpolation set for A for
any Asuperharmonic dominator p.

Proof. If E is an M-set then N is the range of a projection in
A* so that E is an interpolation set for A. The conclusion then
follows from 2.5.

3* Examples* We illustrate the results of §2 with various
choices of p. First, let X be a compact metric space with E a
closed subset and M(E) A-stable for the closed separating subspace
AdC(X). Let G be the collection of compact subsets GadAX\E
and let p = p(G, k) be the dominator mentioned in the introduction.
Then (for k < oo)

(1) \\nxm + AL ΠiVΊI ^ k\\π2m\\ for all medA1

if and only if E is an approximate p(G, ^-interpolation set for all
Ge&. To see this we note that since GczdAX, U° is A-stable so
that the second property holds if and only if

(2) H^m + AL n JV||, ^ 11-^2^11, for all medA1,

It follows easily from [5; 4.1] that if Y = X\(E Π G) then

so that

Wπ.m + A1 n N\\ = | | ^ m + A1 n

and, since for boundary measures μ, the metrizability of X gives

lAi|(X\JS?) - \μ\(dAX\E) = sup{\μ\(G)

we have

k\\π2m\\ = a\ιj?{\\π2m\\p: p = p(G, k),

The equivalence of (1) and (2) is now immediate. If (1) holds for
k0 < 1 and k0 < k <̂  1 then for p = p(G, k)

\π,m + A L U iSΠI, = | | ^ m + A 1 n N\\ ^ ko(\\m\G\\ + | | m | r |

| + | |m | F | | ) = (kQ/k)\\π2rn\\p
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so that E is an exact p(G, /^-interpolation set for A.
The study of sufficient conditions for the A-convex hull of E

to be a generalized peak set (we now assume 16 A) has been shown
[4] to be related to an ordering on CC(X) and M(X) induced by
choosing P to be a closed proper convex cone with nonempty interior
in C. Let a, β be the generators (of modulus one) of the dual cone
P* = {zireaz ^ 0 for all aeP}. We denote by e the element of P
such that reey = 1 (7 = α, β). If / 6 GC{X) we say / ^ 0(P) if
f(X)aP and μ ^ 0(P*) means μ(B)eP* for all Borel sets J5czX
Then the function e == e becomes an order unit for C(X) in which
the order unit norm || ||β (equivalent to the uniform norm) is given
by

fl for t = ± 7
p(x, *) = -I y = a, β
r (l/β for ί ^ ± 7 ,

where c is a constant such that

cz\ <; |reα^| V \reβz\ .This provides an example of a p which is not T-invariant.
Let p+ and p~ be strictly positive Z.β.c. functions on X and

take

ρ{x, t) =

(p+(x) on X x {1}

p~(x) on X x {-ί-1}

+ oo otherwise.

Then U={fe C(X): -p~ ^ re/ ^ p+}. li μeU° and / is real then
λ if e U for all real λ so that

1 :> reμ(X if) = — Ximμ(f)

and hence imμ(f) = 0. Thus μ is a real measure and UoareM(X).
If Ao is a real subspace of C(X) then we can apply the results

of §2 to the self-adjoint space Ao + iA0 = A. Then \\f\\p = ||re/||^
and m e A^ if and only if m = Wi + ίm2 with ml9 m2 real measures
in A1. Also m is a boundary measure if and only if mlf m2 are
boundary. Hence E is an approximate (exact) ^-interpolation set
for A if and only if it is for Ao = reA, and the measure conditions
of §2 need only involve real measures in M(X). If X is a compact
convex subset of a locally convex space and Ao = A(X) (real affine
continuous functions) then p is A-superharmonic if and only if
p+ — (p+y and p~ = (p~Y, that is, if and only if p+ and p~ are
concave on X.

Let X be a square in R2 with vertices denoted {1, 2, 3, 4} with
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E = {1, 2} diagonally opposite and Ao = A(X), ρ+, p~ = 1. Then dA1

is a one-dimensional subspace of the four-dimensional space dM(X)
spanned by the point-masses {δJUi A generator for dA1 is m = <51 +
S2 — <53 — δ4. Clearly AL Π N = {0} since coί/ is a simplex and so

Wπjn + A1 Π -ΛΠI = H^mH = | |π 2 m| | .

This shows E is an approximate ^-interpolation set for A(X).
Obviously E is in fact an exact interpolation set, but this cannot
be concluded from a condition such as (3) in the introduction.
Nevertheless, the condition of 2.5 holds, since if

μ = ΣXA

then

\\μ\\ = Σ\\\

and

\\π2μ + π2dA"-\\ = m/{|λ3 - λ | + |λ4 - λ | : λ e i 2 } = |λ4 - λ3 | .

If λ3 and λ4 are opposite in sign then

\\π2μ + dAL\\ ^ \\π2μ\\ = | λ 3 | + | λ 4 | - | λ 4 - λ 3 | = \\π2μ + π2dAλ II .

If, say 0 <; λ3 ^ λ4, consider v = μ + λ3m. Then ί) = /e and

- λ 3 | ^ ( | λ j + |λ2| + 2 | λ 3 | ) + | λ j - |λβ|

and

\\π2\> + δA1!! ^ | |π 2v| | = λ4 - λ3 = \\π2μ + π2dAL\\ .

We conclude with an example of an approximate interpolation
set which is not exact. Let X be the unit ball of the sequence
space lι(w* topology) and let p = 1. Then take A = c0, the pre-dual
of I1, so that Hall, = l|α|U = sup{\an\). Let E be the singleton
{x0}, xl = l/2%, n = 1, 2, . If (α, α;0) = 1 then Σ ί U «J2W = 1 so
that some an must be greater than one. Clearly we can find such
an a with | | α | | ^ 1 + ε for any ε > 0. Thus E is an approximate,
but not exact, ^-interpolation set.
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AN ANTI-OPEN MAPPING THEOREM FOR
FRECHET SPACES

STEVEN F. BELLENOT

It is well-known that completeness is necessary for the
usual open mapping theorem for Frέchet spaces. In contrast,
it is shown that, with the obvious exception of ω, each
infinite-dimensional Frέchet space has another distinct com-
plete topology with the same continuous dual.

By a space or subspace, we mean an infinite-dimensional locally
convex Hausdorff topological vector space over either the real or the
complex scalars. Our notation generally follows Robertson and
Robertson [7]. In particular, X' and σ(X, Xf) denote the continuous
dual and the weak topology on X, respectively. Denote by ω (re-
spectively, φ) the space formed by the product (respectively, direct
sum) of countably-many copies of the scalar field. We use c0, k and
lO0 to denote the Banach sequence spaces (with their usual norms)
of, respectively, null sequences, absolutely summable sequences and
bounded sequences.

Our main result can be stated as:

THEOREM. Each Frechet space (X, ζ) Φ ω has a topology τh so
that, σ(X, X') < η < ζ and the space (X, η) is complete.

By the open mapping theorem, (X, 7]) is a complete space which
is not barrelled. In Section one we prove the theorem for the special
cases of (X, ζ) = c0 (Case I) and (X, ζ) a nuclear space with a con-
tinuous norm (Case II). Then in Section two we reduce the theorem
to these special cases.

We will have occasion to use Grothendieck's characterization of
the completion of the space (X, ζ) as the set of linear f unctionals on
X' which are tf(X', X)-continuous on ζ-equicontinuous sets (see
Robertson and Robertson [7], p. 103). Berezanskii's [4] (see also [2,
pp. 61-62]) notion of inductive semi-reflexivity is used in Case II.
In particular, complete nuclear spaces are inductive semi-reflexive,
and the topology constructed from {μn} in Case II is complete in any
inductive semi-reflexive space. The only other fact used about nuclear
spaces is that their topology can be defined by means of (semi-)
inner products (see Case II and Schaefer [7] p. 103).

Perhaps it is worth pointing out, that there are always lots of
differently-defined complete topologies on each complete separable
space (see Bellenot [1], [2] and with Ostling [3]): the difficulty is in
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showing that these topologies are really different.

1* Two special cases* First we prove the theorem for the
following special cases:

Case I. The Banach space c0: Let ξ be the norm topology on
c0 and let ^ be a free ultrafilter on the set of positive integers
(i.e., n *2S = 0) . For each A e ^ and K> 0 let

E(A, K) = {x = (xjel,: \\x\\, ̂  K and xm = 0 for each m e A} .

Let η be the topology of uniform convergence of the collection of sets

{E(A, K) U {yn}: A e ^ , K > 0, {#*} a ^-norm-null-sequence} .

Since finite sets are ^-equicontinuous and each of the sets above are
f-equicontinuous, we have σ(c0, k) ^ Ύ] ^ ζ.

To see that η < £, note that if 57 = f there would be a set
E(A, K) U {?/w} whose polar is contained in the unit ball of c0. Since
yn is a ^-norm-null-sequence, there is an M, so that m ^> M implies
that 12/£ I < 2"1, for each n. (Where yn is the sequence {yZ}m.) Since
fS is free, A must be infinite and there is a k ^ ikf with A 6 A.
Consider a? e c0, the vector which is the zero sequence, except that
it is 2 in the A th position. Clearly x is not in the unit ball of c0,
but it is the polar of E(A, K) (J {yn}, a contradiction.

Consider X, the completion of (c0, η), as a subspace of the alge-
braic dual of Z1# Since each Zi-norm-null-sequence is ^-equicontinuous,
I c L Suppose D is a subset of the positive integers with Dg^S.
Then, since <?/ is an ultrafilter, D% the complement of D, is an
element of ^ . Thus the ^-topology restricted to the subspace
{x e c0: xn = 0 if n $ D} is the norm topology. It follows that for each
/ = (/») s ^> the subsequence {fn: ne D} is a null-sequence, since / is
σ(llf c0)-continuous on E(D% 1). Let / = (fn) e L with A = {n: |/n | ^ δ}
infinite, for some δ > 0. If i g ^ , then / g X by the above, so
assume 4 e ^ . Write A = B U C, a disjoint union of infinite sets,
one of them is not in ^/, and thus fίX. Therefore X = c0 and
(c0, yj) is complete.

Case II. (X, £) is a nuclear Frechet space with a continuous
norm: Let || j j^ <̂  || ||2 ^ be a sequence of continuous norms
which define the f-topology on X. Since X is nuclear, we assume
that the unit ball of each || ||fc+1 is precompact in the norm || ||fc and
that each ||a5|| | = (x, x)k, for some continuous inner product <-,•>*
on 1 0 X. Let || ||fc also represent (the possibly infinite-valued) dual
norm of || \\k on Xf. A sequence {a'n}c:Xf is called k-admίssible if
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{|Iαi||fc} is bounded and the semi-norm, pa(x) = supM \a'n(x)\9 defined for
xeXf is stronger than || | | lβ That is, there is a constant K, with

(*) WxW^KpJtx), for each xeX.

A nonincreasing null-sequence of positive reals {Xn} is said to be
k-discriminating, if for each fc-admissible sequence {a'n},

lim sup HαiUfcλ"1 = oo .
n

Note that if {Xn} is ^-discriminating and {μn} is another nonincreasing
null-sequence of positive reals so that lim% μn/Xn — 0, then {μn} is also
A -discriminating.

First, we prove that for each k, there is a ^-discriminating
sequence. To see this, let {en} c X be a sequence orthogonal in < , ) k

and orthonormal in <• , >i (The {en} can be chosen inductively, by
picking en+1 e (ΠΓ ker /<) Π (ΠΓ ker f/<), where ft and gi are the continuous
linear functionals given by ft(x) = (ei9 x)1 and gt(x) = (ei9 x}k9 ί =
1, 2, •••%.) Re-order {en} so that the sequence {|| en \\k}n is non deer easing.
We claim that the sequence λΛ = 1/n \\ en* \\k is A -discriminating. Suppose
not, then there is ^-admissible {a'n} with

/**\ II ̂ ' 11 <C λ

Let δ = 2"1JBL~1, where K is the constant in (*).
Inductively choose fneX and an integer-valued function φ, so that
( 1 ) | |Λ H, - 1 and fn e spanfo: (n - I)2 < j £ n>};

( 2 ) a'φ{5){fn) = 0 for j < n; and
( 3 ) \a'ΦUfn)\^δ.

If /j and φ(j) have been chosen for j < w, it is possible to choose fn

satisfying (1) and (2) since condition (2) puts n — 1 constraints on fn

and fn is chosen from a (2n — l)-dimensional space. Thus by (*) we
can find a φ(n) such that 2" 1 | | / Λ | | 1 = 2"1 ̂  jfiT|aJ(w)(/w)|, i.e., that (3)
is satisfied.

Let A(n) = {j: (n — I)2 < j ^ n2} and suppose fn = Yji&A{n) α,^. Since
{βj is orthonormal in ( , -)19 condition (1) implies Σie^u) l^ i 2 = 1.
But {ej is orthogonal in <• , >Λ hence

I I Λ I I * = Σ l « * Π | β * I l i ^ l l ^ | | , - n - ' x - 1 .
Lί e A {n) J

Thus by condition (3), we have

(***) δ ̂  \a>φ{n)(f»)\ = HaJ(«)llfc'll/«IU = w ^"M^'Xw)IIA?

On t h e other hand, condition (2) implies t h a t φ is 1 — 1 and hence
Φ(n)^n9 infinitely often. Thus (**) implies \\a'φ{n)\\k ^ XΦin) ^ Xn,
infinitely often. Combining wi th (***) yields



328 STEVEN F. BELLENOT

0 < δ <; w~1λί1λn = — , for infinitely many n ,
n

a contradiction.
For k ^ 1, let {λ£} be a ^-discriminating. The sequence λn =

n"1 min {λ>: j <̂  w} is thus ^-discriminating for each k >̂ 1. Let /£. =
λΛ{n+1), and let 57 be the topology of uniform convergence on sequences
{αi}cΓ with the property that there is an integer k and constant K
with IK!!* ^ if/v It is easy to check that σ(X, X')<η^ ξ. Note
that if U is any f-neighborhood of the origin and if pσo is the gauge
functional of CT-polar in X', then there is an integer k and a constant
K so that α'eX' implies | |α'| | f c ^ Kpσo(a'). Thus by Bellenot [2, p.
62 and Th. 4.1, p. 64], η is a f-rotor topology and (X, 07) is complete.

To show that rj<ξ, we will prove that || ||i is not ^-continuous
on X. By Robertson and Robertson [7, p. 46], the ^-neighborhoods
of the origin are polars of finite unions of the above sequences (as
sets of values in X'). (Note that it is possible for lim(μjμ2n) — 00 9

and so we must consider finite unions.) Suppose || Hi is ^-continuous,
then there is a finite number of sequences {Kti}n, 1 <̂  i ^ i, used to
define η, so that \\x\l <̂  sup {\bf

n>i(x)\: 1 ^ i ^ j , n = 1, 2, •} for each
a e l Let k and iΓ be so that ||K}i\\k ^ Kμnf for l<Li<.j and each
n. Let {αJJ be a listing of values in Xr contained in the sequences
{&»,<}*, 1 ^ ΐ ^ i, so that {||αήlW is nonincreasing. It follows that {a'n}
is ^-admissible. Since n > j ^ i ^ 1 implies (n + l)(n + 2) ^ nj + i,
and {λΛ} is nonincreasing, λu+1)(%+2) ^ λni+i. Thus if m ^ i 2 + i + 1,
then m = nj + ί with w > i ^ i ^ 1, and

||<C||fc ^ Kμn+1 = ίΓλ(w+1)(Λ+2) ^ î λTO .

Hence limsupm(||αij|fc/λm) < 00 and since {λm} is ^-discriminating, {a'n}
is not A -admissible. This contradiction completes the proof of the
theorem for this case.

2* The general case* The following two lemmas are of a general
nature. The first lemma shows that completeness is a "three space
property" while the second is used often in the proof of the theorem.
The referee has pointed out that Lemma 1 is known, we include a
proof for completeness.

LEMMA 1. Let X be a space, Y a closed subspace of X and Z =
X/Y, the quotient. If Y and Z are complete, then X is complete.

Proof. Let φ:X->Z be the quotient map and let j:X->X be
the injection of X into its completion X. Since Z is complete, ψ
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extends to a map φ: X —> Z so that φoj = φ. Furthermore, since Y
is complete, i( Y) is closed in X, and thus we can construct the
quotient W = X/j( Y) with quotient map ψ: X -> W. Since ker ψoj = γ9

there is a map θ: Z ->W so that θoφ = ψoj:χ^W. Thus θoφoj =
ψ°j, but since i(X) is dense in X and since θoφ and ψ are continuous,
we have θoφ = ^. Therefore 0 and thus j are surjective maps, so
that X is complete.

LEMMA 2. A Frechet space X satisfies the conclusions of the
theorem if X has a closed subspace Y which satisfies the conclusions
of the theorem.

Proof Let ξ be the topology on X with neighborhood basis of
the origin ^ . Let η be a topology on Y with σ(Y, Yr) £ η < ξ\r

and so that the space (Y, η) is complete. Let JΓ be the neighborhood
basis of the origin for (Γ, η). Let W = {F + tf: F e ^ i7e ^ } . It
is straightforward to check that W is a neighborhood basis of the
origin for a topology ζ on X with the properties:

( i )
(ϋ)

Thus by (ii), (iii) and Lemma 1, (X, ζ) is complete and by (i) it satisfies
the conclusion of the theorem.

Proof of the theorem: Let (X, ξ) be a Frechet space Φ ω. It
follows that ξ is not the weak topology on X. First, we show there
is a separable closed subspace Y of X, so that £, restricted to Y has
a continuous norm. Since ζ is strictly stronger than σ(X, Xf), there
exists a continuous semi-norm on (X, £) which is not a linear com-
bination of semi-norms x-+\(x, x') \ with x' e X', and thus from
Schaefer [8], corollary on p. 124 it follows that X has a continuous
semi-norm p so that the dimension of X/ker p is infinite. Let E be the
normed space X/ker jθ with p norm and let ψ\X-*E be the quotient
map. Let {en}cE be a linearly independent sequence. Let{#Λ}cX
be so that ψ(xn) — en, and let Y be the closed linear span of {xn} in
(X, £). Since p (ΣΓ^Λ ) = i°(ΣΓ^ei)r for all scalar sequences {αjf ^,
restricted to Y, is an isometry of Y with semi-norm |0 into a subspace
of E with norm p. Thus by Lemma 2, we assume that (X, ξ) is
separable and has a continuous norm.

Suppose (X, ξ) is a Banach space. In the notation of Bellenot
and Ostling [3], since X is separable and complete, we have ξ = ξM.
Furthermore, Theorem 3.1 of that same paper shows (X, ξSw) is
complete, where ξSw is the topology of uniform convergence on £-
equicontinuous σ(X'f X)-null sequences. Clearly, σ(X, X') < ξsw ^ ξf
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and if ξsw < ξ, then we are done. If ζSw = ξ and since (X, ξ) is a
Banach space, there must be a σ(X', X)-null sequence {a'n} c X', whose
polar in X is contained in the unit ball of X. It is easy to check
that the map, T:X-> c0, which sends x e X to the sequence {a'n(x)} e c0,
is an isomorphism of X onto a closed subspace of c0. (These results
are known, see the author [1].) A classical result of Banach (see
Lindenstrauss and Tzafriri [6, p. 53]) says that X must have a
subspace isomorphic to co An application of Lemma 2 and Case I
completes the proof if (X, ξ) is a Banach space.

If {X, ξ) is not a Banach space, then X is not a subspace of B φ ω,
for any Banach space B. Thus a result of Bessaga, Pelczyήski and
Rolewicz [5] show that (X, ξ) has a nuclear subspace Y. Thus Case
II and Lemma 2 completes the proof of the theorem.

REMARKS. It is possible that the following statement is true:

( * ) Each complete space (X, ξ) with ξ Φ σ(X, X'), has another com-
plete topology η with σ(X, X') < η < ξ.

There are three places in the proof of the theorem where
metrizability was used. The most subtle use of the metric was in
Lemma 2. If (X, ξ) is not Frechet, it is possible that X/Y is not
complete (Schaefer [6, Ex. 11, p. 192]) and hence Lemma 1 cannot
be used to show (X, ζ) is complete. (The author thanks E. G. Ostling
for pointing this out to the author.) Thus it is possible that (*)
could be true for separable X, but false in general.

If (X, ξ) is separable and complete, then, as in the proof of the
theorem (X, ζsw) is complete (see Bellenot and Ostling [3]). In this
case ξ = ξsw implies that (X, ξ) is a closed subspace of a product of
copies of the Banach space c0. In order to handle this in the manner
of Case I, one must extend this case to include each (X, ξ) which is
not inductively semi-reflexive, but for which ξ = ζsw. Examples of
spaces which fall into this extended case and which may fail (*) are
the spaces (X, ξsw) where (X, ξ) is any separable nonreflexive Banach
space.

The proof that the topology constructed in Case II is complete
works for any inductive semi-reflexive space. However, to show
that this constructed topology was different from the given topology
made strong use of the metrizability. In fact, if (X, ξ) = φ, then
for any positive nonincreasing null-sequence, {μn}9 the topology con-
structed in Case II will be the ξ-topology. It is open question if
φ is the only such exception among complete separable spaces with
a continuous norm. (Weak topologies are also exceptions.) In any
case the space φ is perhaps the most likely counter-example (among
the inductively semi-reflexive spaces) to (*).
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LOCALE GEOMETRY

B. J. DAY

We commence with a locale £f (that is, a complete
Heyting algebra) and introduce the notion of an ^-valued
betweenness relation on a set. The concept of an ?-valued
geometry is then formulated and the relevant versions of
the Radon, Helly and Caratheodory theorems are proved.

Introduction* The abstract theory of join systems was develop-
ed by W. Prenowitz [8] and [9] as an aid to studying descriptive
and spherical geometries. This notion of join system has since been
further developed by V. W. Bryant and R. J. Webster [1] to enable
the corresponding axiomatic treatment of such results as the Radon,
Helly and Caratheodory theorems. It is this aspect of the theory
with which the present article is concerned.

We commence this article by extending the notion of a join
system so that it is no longer necessarily two-valued. More precisely,
given a locale lattice £f, we introduce the notion of an &'-valued
betweenness relation (- , - , -) : X x X x X—»=5^ on a set X; if
(x, y:, z) = p e £f we might say that the point z lies on the segment
(%, v) with "probability p". This loose description is related to
theories of multivalued logic which arise in topos theory. Indeed,
one can develop join systems in a reasonably complete topos in terms
of multivalued join systems over the category of sets; see §4. These
notions, in turn, give rise to the forms of the Radon, Helly and
Caratheodory theorems dicussed in §3.

We emphasize here that, in this preliminary article, we do not
deal with multigroups (after W. Prenowitz) nor do we enter into
all aspects of dimension theory (after V. W. Bryant and R. J.
Webster). Also we leave the proof of the more basic elementary
deductions as simple exercises for the reader; these results are used
without reference.

1* j?-forms. Let j ? be a locale and let X be a set. A
symmetric JZf-form on X is a function X(-, -): X x X —» Sf such
that X(x, x) = 1, X(x, y) = X(y, x), supy X(x, y) A X(y, z) = X(x, z).
A functional on X is a set map A: X -> ^f such that A = sup* A(x) A
X(x, -). A singleton, or point is a functional of the form x = X(x, -):
X —> £f. Thus each functional is an "expansion of singletons" or
an "internal colimit of points". For notational convenience we shall
represent x simply by x unless we wish to emphasize the distinction.

The ordered set of functionals on X is denoted Fnl (X, JZf); it
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is a sublocale of JZ?λ\ Note that if A: X —> Sf is any functional
then A ^ x iff A{x) = 1.

A map of .S^-forms /: (X, X(-, -)) -* (X', X'(-, -)) is a set map
/: X --> X' such that X'(/z, /») = X(z, 2/) for all x,yeX.

2* Convexity spaces* An Jϊf-preconvexity space is a set X
equipped with a symmetric ^-form X(-, -): X x X-+ Jϊf and a map
(-,-,-): X x X x X~*£f which is functional in each variable
separately. A map of preconvexity space is a map f:X—>X' of
jS^-forms such that (/a?, /#, /z) = (a?, 7/, z) for all x,y,ze X. The
resultant category is denoted .^pc.

Given X e ^ p c we define the convolutions:

AB(x) = sup A(i/) Λ 5(z) Λ (y, z, x)

A/B(x) = sup il(i/) Λ B(z) A (z, xf y) .

Then xy = (α?, 7/, -) is the join of a? to 1/, while xfy = (1/, -, ίc) is the
extension oί x by y.

An interesting consequence of these definitions is the following
Kan-extension principle: If / and g are polynomials of -^-variables
in the convolution operations AB and A/B, and f(xu , xn) ^
0(3i, •••,&•) for all points α?lf ••-,&* then/(Ax, , AJ ^ ff(Alf , An)
for all functionals Au , An.

An £f-convexity space is an ^^-preconvexity space which satisfies
the following axioms:

Cl. (symmetry) (x, y, z) = (1/, x, z) .

C2. (idempotence) (α, α, a?) = X(α, as) , (α, », α) = X(α, «) .

C3. (associativity) sup (y, v, w) Λ (w, z, x) = sup (v, z, w) A (y, w, x) .
w w

C4. (transposition) sup (z, w, y) A (x, w, v) ^ sup (a?, y, w) A (z, v9 w) .
w w

C5. (cancellation) sup (a?, y, w) A (x9 z, w) = X(y, z) V (x, y, z) V (a?, z, y) .

The full subcategory of £fpc comprising the ^f-convexity spaces
is denoted £fc.

The following propositions are immediate from the axioms.

PROPOSITION, xy/xz = y/z V xy/z V y/xz.

PROPOSITION. AB = BA, (AB)C = A(BC), A^AA and A^AjA,
(A/B)/C - A/BC, A(B/C) ^ AB/C, and A/(B/C) ̂  AC/B.
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PROPOSITION. ( i ) xA/x = A V xA v A/x,

(ii) xA/xB = A/JS V αA/JB V A/a:JB,
(iii) x/xB = #/£.

The following relations are easily deduced by iterated use of
the preceding proposition:

LEMMA 2.1 (Radon).

χo'-'x« = v k 0 x i r , Xi«'" Xί° i0, , % all different] .
»o «• ( ^i s + 1 Xir

 ]

LEMMA 2.2 {Caratheodory). For n^ r

x° ' " g » = V U o •••&,, ^° " ' g ^ i ... i all different and

V — Q ^

For the remainder of this section we shall suppose that X is a
fixed i^-convexity space. A functional A: X —> £έ> is said to be
convex if A A = A; note that singletons are convex (C2). The convex
hull of a functional A is defined to be V*=iAw.

PROPOSITION. ( i ) // Aίf , An are convex then so are A1 An

and AJA2.
(ii) The convex hull of a functional A is the intersection in

Fnl (X, jSf) of all the convex functionals which contain A.

A functional A: X —> £? is said to be linear if it is convex and
A/A = A. The linear hull of a functional A is defined to be
Vϊ. -1 A /it and is denoted by [A].

PROPOSITION. ( i ) The linear hull of a functional A is the
intersection in Fnl (X, J*f) of all the linear functionals which
contain A.

(ii) If A is convex then A/A is linear.
(iii) // A is convex then [A] = A/A.
(iv) [x0 - xn] = α0 a?n/a?0 •••»»•

3* The Radon, Helly and Caratheodory theorems* Henceforth
in this section we suppose that X is a fixed ^-convexity space.
We shall also suppose that whenever we consider a set {x0, •••,»»}
then the x/s are distinct (recall that xt is denoted simply by xt).
The product functional of M = {xu , scj is denoted by ikf* =
α?i xn.
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A set {x0, , xn} of singletons is said to be strongly dependent
if there exists an i(0 <J i <J n) such that [xQ x^Xt+t xn](%i) — l
If every set of n + 2 singletons is strongly dependent then we say
that X has dimension ^ w.

THEOREM 3.1 (Radon). If {x0, , #%+1} is α sβί o/ w + 2 single-
tons in a convexity space of dimension ^ n then there exist disjoint
nonempty subsets M and N of {xQ, , xn+1) such that M* AN*Φθ.

Proof. The n + 2 points lie in a space of dimension ^ w so we
may assume, without loss of generality, that [xt xn+χ](Xo) — 1.
By Lemma 2.1 we have either N*(x0) Φ 0 where JV is a subset of
{xl9 , #%+1} or N*/P*(x0) Φ 0 where iV and P are nonempty disjoint
subsets of {xl9 , ίcΛ+1}. Thus the result follows from taking M — xQ

in the first case and M = {#0, P} in the second case. In the first
case we have N*(x0) Φ 0 implies x0 A iV* Φ 0 since x0 Λ iV* = 0
implies xo(xo) A N*(x0) = 0 implies N*(x0) = 0, and in the second case
we have N*/P*(xQ) Φ 0 implies supu>v iV*(^) Λ P*(v) A (v, x0, u) Φ 0
implies supwiV*(^) Λ #0P*(w) ̂  0 implies there exists a % e l such
that JNPO) Λ x0P*(u) Φ 0.

THEOREM 3.2 (Helly). If A*, '—,An+1 is a family of n + 2
convex functionals on a convexity space of dimension <Ξ n and any
n + 1 of these functionals intersect with certainty then all the
functionals have a nonzero intersection.

Proof. For each ΐ(0 <; i <; n + 1) there exists, by hypothesis, a
singleton a?, such that

XtύΛo A Λ Af_! Λ Ai+1 Λ Λ AΛ+1.

If ίcέ = a?y for some i Φ j then ^ <; Ao Λ Λ An+1 and the result
follows. Otherwise the singletons xt are distinct so that, by Theorem
3.1, there exist nonempty disjoint subsets M and N of {̂ 0, , xn+ι}
such that ΛΓ* Λ N* Φ 0. Because M* A iV* ^ Ao Λ • Λ Λ,+1 the
result follows.

LEMMA 3.3. If x ^ α̂ 0 xn and M*/N*(x) Φ 0 where M and N
are nonempty disjoint subsets of {x0, , xn} then there exists a
proper subset P of {xOf , xn} such that P*(x) Φ 0.

Proof. The proof is by induction on the cardinal of N. Firstly,
if |JV| = 1, assume N — x0 without loss of generality. Let S =
{xu - , xn}. Now x <; xQ xn implies x0 ^ x/S*. Moreover, if
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M*/xo(x) Φ 0 where M is a nonempty subset of S then S*/xo(x) Φ 0.
Thus 0 Φ S*/xQ(x) S S*/(x/S*) ̂  S*/x(x) since S* is convex. But
S*/x(x) Φ 0 implies suptt S*(u) A (x, x, u) Φ 0 implies S*(x) ^ 0 so
xx xn(x) Φ 0. Now suppose \N\ = r + 1 and x <> x0 - - xn and
M*/N*(x) Φ 0. Without loss of generality let N = {x0, , xr}. The
conditions • α <; xQ a?, and M*/x0 xr(x) Φ 0 imply that xx

 m x»
lxx a?r(aj) ^ 0 since as ίg a?0 xM implies xQ S xfai - a?w. Thus 0 ^
M*/x0 ajr(a?) <£ (a?! xn)l(x/Xι a?n)ajx a?r(«) implies #!-••&„
/a?a?! a;r(a0 Φ 0. But ^ xjxxx ccr(α;) = ((a^ xjxx xr)/x)(x)
so ίcx â /a?! a5r(a?) Φ 0. Thus, by Lemma 2.2, either P*(a?) ^ 0
where P is a nonempty subset of {xlf , a?Λ} or Q*/R*(x) Φ 0 where
Q and J? are nonempty disjoint subsets of {â , - -, xn} and \R\ ̂  r.

THEOREM 3.4 {Caratheodory). If x <£ a?0 cc%+1 /or singletons

in a convexity space of dimension <̂  % ίfcew ί/tβre exists a proper
subset P of {x0, , #Λ+1} ŝ cfc that P*(a?) ^ 0.

Proof. Without loss of generality let us assume a?0 ̂  [a?x a?»+J.
Thus, by Lemma 2.2, either Λf*(a?0) Φ 0 where M is a subset of
{xu , xΛ+1} or M*/N*(x0) Φ 0 where ikf and N are nonempty disjoint
subsets of {xl9 , α?w+1}. In the first case ^ xn+1(x) Φ 0 and in
the second ease xx xn+ί/N*(x) Φ 0. In order to establish these
assertions let S = {xlf , a;w+1}. In the first case note that M*(x0) Φ 0
implies S*(x0) Φ 0. But a? ̂  x0S* implies x0 ^ x/S* thus

0 Φ S*(x0) = sup S*(u) A X(xQ9 n) = sup S*(w) Λ a?0(w)
u u

^ sup S*{«) Λ x/S*(u) = sup S*(α) Λ φ) A S*(w) A (w, u, v)
11 U V W

= sup S*(u) A S*(w) A (w, u, x) = S*(x)
It W

since S* is convex. Thus xx a:Λ+1(a;) ^ 0. In the second case we
have to show that supω>ί; S*(u) A N*(v) A (v, x, u) = suptt S*(u) A
xN*(u) Φ 0. But we have

0 Φ sup S*(u) A x0N*(u) £ supS*(^) Λ (x/S*)N*(u)

^ sup S*(u) A xN*/S*(u) = sup S*(u) A xN*(v) A S*(w) A {w, u, v)
U U V W

= sup S*(v) A xN*(v)
V

since S* is convex, as required. Thus either P*(x) Φ 0 where P is
a nonempty subset of {a?!, , xn+1} or M*/N*(x) Φ 0 where M and
N are nonempty disjoint subsets of {xίf ••-, xn+1}. The first case is
as required while in the second case the result follows from Lemma
3.3.
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REMARK. In the case £? = 2 these results reduce to the
generalizations of Radon, Helly and Caratheodory theorems discussed
by Bryant and Webster [1].

4* Examples* Examples of iS^-convexity spaces can be generat-
ed by various different processes. Perhaps the most basic of these
arises from the fact that Sfc is closed under colimits in (jf'pc and
£?c has a generator (namely the one-point space). Thus, by the
special adjoint-functor theorem (Mac Lane [7]), the inclusion t&

?ca£?'pc
has a right adjoint, so every ^-preconvexity space has a canonical
associated convexity space.

If X is an ^-convexity space then Xz is an .S^-convexity space
for all sets Z. Thus it is consistent to define, in a topos £? (see
Johnstone [6]) for which each &(Z, Ω) is complete as a Hey ting
algebra, an i2-convexity space as a map ( - , - , - ) : I x I x I - > i 3 in
g7 such that £?(Z, X) is an i?(Z, i2)-convexity space for all
Ze&.

Another example arises as follows. Call a functional A:X-+Sf
left exact if A(x) A A(y) = supα A(a) A X(a, x) A X(a, y) and
supα A(a) = 1; a left-exact functional is always linear. Given XzSfc
define X to be the set of all left-exact functionals from X to <j?.
On X define X(A, B) = sup* A(x) A B{x) and (A, B, C) = supα,y,z A{x) A
B{y) A C(z) A (x, y, z). Then X is an .S^-convexity space and X^X
is a map of .^-convexity spaces.

Finally, if X x X x X-+ £fu XeA, represents a set of convexity
space structures on a set X, one for each λ e ^ , the induced map
I x I x I - ^ Π i ^ is a convexity-space structure. This fact
allows the construction of £f'-valued convexity spaces from families
of classical convexity spaces on X (see, for example, quasiconvexities
[5]).
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CONTINUOUSLY VARYING PEAKING FUNCTIONS

JOHN ERIK FORNAESS AND STEVEN GEORGE KRANTZ

Let X be a compact metric space, A £ C(X) a closed
subalgebra. Let - ^ ^ 1 be the set of peak points for A.
It is shown that there is a continuous function Φ;^~>A
such that Φ(x) peaks at x for all xe-^8.

0* Let X be a compact Hausdorff space, C(X) the continuous
functions on X under the uniform norm, and A a closed subspace
of C(X) containing 1. Let 3P be the set of peak points for A.
Clearly if X has more than one point and # e ̂  then there are
infinitely many functions in A which peak at x. Can one construct
a function

so that Φ(x) peaks at x and Φ has some regularity properties?
In [4], using the von Neumann selection principle, it was shown

that for I ^ S c c C 5 1 with smooth boundary, A = A(&) (the
analytic functions on & which extend continuously to j ^ ) , one can
choose Φ to be measurable. The same argument is valid under much
more general circumstances.

In the present note we prove that, for quite general X and for
A an algebra, Φ can be chosen to be continuous. This generalizes
results in [1, Theorem 3.1] and [2, Proposition 4].

l Throughout the discussion, -X" will be a fixed compact metric
space with metric d. We let C(X) denote the continuous, complex-
valued functions on X with the uniform norm and A £ C(X) will
be a closed complex linear subspace. If xeX, r > 0, then B(x, r) =
{teX:d(x, t)<r}.

DEFINITION. A point x e X is said to be a peak point for A if
there is an feA with f(x) = 1 and, for all yeX~ {x}, \f(y)\ < 1.
The function / is said to peak at x.

We let &(A) denote the set of peak points for A.

THEOREM. Let X be a compact metric space, A Q G{X) a closed
subalgebra (with or without 1). Then there is a continuous map

Φ: &>(A) > A

such that Φ(x) peaks at x for each x

341
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The remainder of the paper is devoted to the proof of the
theorem. We proceed via a sequence of lemmas. The plan of the
proof is as follows.

For each k e {1, 2, } we will construct a continuous function

such that for each xe^(A) we have
( i ) 110,01011=1;
( i i ) [Φk(x)](x) = 1;

(iii) if t e X ~ B(x, I/A?) then | [Φk(x)](t) | ^ 1 - 1/(Λ + 2).
Once the {Φk} are constructed, the proof is immediate. For let
φ = ΣΓ=i2~zΦi. Then Φ is continuous and for each xe^(A) we have
Φ(x) 6 A and [Φ(x)](x) = 1. Moreover, if £ ̂  a? and & > l/d(x, t) then

I [*(*)](«) I ̂  Σ2-'I[*«(*)](*)I + \2~k[Φk(χ)](t)\

^ 1 - 2~k + 2^fc(l - l/(fc + 2 ) ) < 1 .

So Φ(ίc) peaks at ». Thus it remains to construct the Φk.

LEMMA 1. Let xoe^(A). Let p be a strictly positive continu-
ous function on X with p(x0) — 1. Then there is an f e A with
f(x0) = 1 and \f(x)\ ^ p(x) for all xeX.

Proof. This is a special case of Theorem 12.5 of Gamelin [3],
p. 58.

COROLLARY 2. With hypotheses as in Lemma 1, there is a g eA

such that g(x0) = 1, \g(%)\ < p(x) for all xeX — {x0}.

Proof. Immediate.

LEMMA 3. Let xoe.^(A). Let ψeA peak at x0. There is a
map

Ψ: &>(A) Π {\ψ(x) i > 1/2} > A

so that
( i ) Ψ(x) peaks at x for each xe&*(A) Π {\ψ(%)\ > 1/2},
(ii) Ψ(xo) = ψ,
(iii) Ψ is continuous at α?0.

Proof. For each x e &*(A) — {x0} choose, by Corollary 2, a func-
tion <pxeA such that φx{x) = 1 and
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( * ) I φx{t) I < min {(2 - | f{x) \ - \ ψ(t) |)/2(1 - | ψ(x) |),

for all teX~ {x} .

Now for each xe^(A) D {1̂ 0*01 > 1/2} we define

[2(1— \ψ(x)\)φm+ sgnψ(x)f]/[2- \ψ(x)\] if x Φ x09 \f(x)\ > 1/2 ,

ψ if x = α?o .

Here sgn2 = «/|«|, any zeC~ {0}.
Clearly if a? ^ x0 and ίc is sufficiently close to x0 then | ψ(x) \ > 1/2

and we have

^ IF(χ) -
^ | | [ 2 ( 1 -

+ lit (i
ΞS {[2(1 -

+ (1 -
g 5(1 - |'

>0

-sgnir(x) ψ\\ + ||sι

\γ(x)\)φx + sgnψ(x)

• -sgnf(x))\\

ityίX/ljll^Px — sgn τ̂ (

• r\^(ίc)) s g n ^(ct/) ilr

Hχ)\) + |1 ~ sgnψ>(;

a s x ———> ΏQn

gnψ(x) ψ — ψ\\

* ψ*]/[2 — l^( ^)|] — sgn ^(x) * ψll

it?) ^5r||

||]}/[2— |^(ίc)|] + |1 — sgnτ/r(a;)|

x)\

It remains to verify that Ψ(x) peaks at x when \ψ(x)\ > 1/2. For
such x, we have W(x)](x) — 1. Further, if t =5̂= α? then by (*) we
have

2(1 - \ψ{x)\)\φu(t)\ < 2 - \f(x)\ - \f{t)\

or

12(1 - \f{x)\)φx{t)\ + |+(*)l < 2 - ItWI

whence

12(1 - I f(aθ |)?>.(ί) + sgnψ(x)f(t)\ < 2 -

or

LEMMA 4. Fίa; α positive integer k. There is a sequence
of functions,

Φί:^{A) >A

satisfying, for each z e ^(A) and every j,
( i ) | |Φί(*) | | .= l ;
(i i) [Φί(x)](x) = 1;
(iii) lim sup ||Φί(a;) - Φ{(y)\\ ^ 4r' (I/A;);

{A)
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(iv) for every 1e X ~ B(x, (1 - 2~0 (1/k)),

I [Φί(x)](t) I ̂  (1 - 2/(Je + 2)) + Σ 2"< (l/(fc + 2))

( v ) ||Φί(a?) - Φί-̂ aOH ^ 2 - . (1/fc), i ^ 2.

Proof. This lemma is the heart of the matter. We construct
the Φ{ inductively on j . First consider j = 1. For each as 6 <^(A)
construct, by Lemma 1, a function <px e A which satisfies <px(x) = 1
and

|9>.(t) I ̂  min {1 - Skd(x, t)/(k + 2), 1 - 2/(fc + 2)} .

Using ψ = <pz, construct a function

\ > 1/2} — > A

satisfying the conclusions of Lemma 3. Choose r\, 0 < τ\ < 1/4& so
that ί eB(x, rι

x) implies that \<px(t)\ > 1/2 and

Now observe that if y e B(xf r\) and t £ B(y, l/2k) then

d(x, t) ^ d(y, t) - d(y, x) ^

Therefore for such 2/, £ we have

\[¥l(y)](t)\ <: |[ri(a?)(ί)]| + |[Γi(»)](

(**) ^l9>.(*)l+4-.(l/(fc + 2))
2)) + 2"1 (l/(fc + 2))

Now since έ^(A) is a metric space, it is paracompact ([5], p.
160, Cor. 35). Hence there is a locally finite refinement ^ = {U1

ω}ωeΩί

of the covering {B(x, ri)}βe^u> of ^ ( A ) . Let ίcω, ωeΩlf be chosen
so that I7L £ J5(α?ω, ri,). Let BJ, denote jB(xω, riω). We may assume
that Ui C J3J,. Let {Zi,} be a continuous partition of unity sub-
ordinary to ^ 1 and define

Then conclusions (i) and (ii) are immediate. Conclusion (iv) follows
from (**). Conclusion (v) is vacuous for j = 1. It remains to
verify (iii).

Fix xe&*(A). Then there is a neighborhood W of x and
{ωl9 , ωj S Ωι so that WΠ supp lω Φ 0 only if co e {α ,̂ , α>Λ}.
Of course m may depend on x. Letting α̂  denote xω.f ί = 1, , m,
we have that
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lim sup 11 Φ\{%) - Φ\(y) 11 ̂  Σ Km sup | Xi(χ) - X\{y) \ \ \ ΨXf(y) | |

isup \\Ψl.(x) — Ψ\.{y)\\

ίUx) lim sup \\Ψx<(x)-Ψx(χi)\\

+ Σ,Άt(x) lim sup \\Ψit(xt) - Ψit(y)\\

^ 2 4Γ*/(k + 2) ^ 4-1 (1/fc) .

Now suppose that Φi, ,Φ{ have been constructed so that (i)-(v)
are satisfied. Let x e ^(A). Using -ψ = Φ{(x), we construct a
function

Π {|-f(α)| > 1/2} > A

satisfying the conclusions of Lemma 3. Choose H+1, 0 < ri+ι <
2-*-1 (1/k) so that t e J5(a;, ri+1) implies that | [*{(«)](*) | > 1/2 and
both

\\Ψί+1{x) - ??"ί+1(ί)ll ^ 4"'-2 (1/(Λ + 2))

(***) and

If now y e 5(«, ri+ 1), ί ί B(y, (1 - 2-ί"1) (1/k)) then

d(a?, ί) ^ d(y, t) -

Hence for such ?/, ί we have

^ | [Φί(χ)]( ί ) | -

g (1 - 2/(k +

= (1 - 2/(fc +

+• 4

2))

2))

)
i=l

3 + 1

+ Έ'

L/(* + 2))

2-« (l/(fc 4

r * (1/(Λ -\

-2))-

- 2 ) ) .

2))

Choose a locally finite refinement <%fj+1 = {ί/ΐ+1}ωeΰi+1 of the covering
{£(a, rί+1)}.β u) of ^ ( A ) . Let {xω}ωeΩj+i be chosen so that U3

ω

+1 £
B(a?ω, rί+OsBi+S each ω 6 fli+1. We may assume that ϊ7i+1£JBί+1. Let
{%£+1} be a continuous partition of unity subordinate to ^ i + 1 . Define

_ V ΎJ

It follows as in the case i = 1 that (i), (ii), (iii), and (iv) hold. To
verify (v) fix xe^(A). Let ωu ---,ωm satisfy the property that
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XJx) Φ 0 iff ω 6 {ft)1; , o)m}. Let xt denote xωi, i = 1,

| |Φί+ 1(a0-Φ{(x)| |^

, m. Then

+

2) + 0

The induction is complete.

LEMMA 5. For k e {1,

( i )
(ϋ)
(iii)
(iv)

t
\\Φk{x)\\ = 1 for
[Φk(x)](x) = 1;
Φk is continuous
| [Φk(x)](t) 1 ^ 1 —

2, ••

Φr c

JL/yfC

•} ί/iere

6 ^ (A),

+ 2) /orαiί x 6

functions

t eX~B(x,

Proof. Let Φi be as in Lemma 4 and define Φfc = lim .̂.toa Φ
j

k. That
the limit exists follows from (v) of Lemma 4. The conclusions (i)-(iv)
of the present lemma now follow from the corresponding parts of
Lemma 4.

By the discussion preceding Lemma 1, the proof of the theorem
is complete.

REMARK. Our proof yields something more general. Indeed,
instead of assuming X to be metric, one need only assume that the
relative topology on ^ has a σ-locally finite base. By [5], p. 128,
this is equivalent to assuming that & is metric, hence paracompact,
and the proof goes through as before.

The referee has kindly observed that given our Lemma 3, one
can use Theorem 3.1" of [6] to prove that if X is compact Hausdorflf
and A is separable then the theorem holds. This is a weaker result
than the one outlined in the preceding paragraph. Moreover, the
proof using [6] is not essentially shorter than the elementary one
presented here, and the construction of Φ as the unifiorm limit of
discontinuous functions has intrinsic interest.

REMARK. It would be interesting to know whether, in the
presence of differentiable structure in X and A, the peaking func-
tions may be chosen to vary differentiably.
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LONG WALKS IN THE PLANE WITH FEW
COLLINEAR POINTS

JOSEPH L. GERVER

Let S be a set of vectors in Rn. An S-walk is any
(finite or infinite) sequence {zt) of vectors in Rn such that
Zi+i—Zi 6 S for all i. We will show that if the elements of
S do not all lie on the same line through the origin, then
for each integer K7z29 there exists an S-walk Wκ={zt}?J*>
such that no K+l elements of Wκ are collinear and N(K)
grows faster than any polynomial function of K.

Specifically, we will prove that

logMK) > hlog2K - I)2 - -ί(loft K - 1) .

We will then show that if the elements of S lie on at least L
distinct lines through the origin, then there exists an S-walk of
length iV(jKΓ, L) with no K+l elements collinear, such that N(K, L)^
(X/4)L*N(K - 1), where L - 2 ^ L* ^ L + 1 and L* = 0 mod 4. In
[3] it was shown that if SaZ2, and for all seS we have ||β||<£Λf,
then there does not exist an S-walk W = {zz)flftM) such that no
K+l elements of W are collinear and

log2 N(K, M) > 2ί*M4Ki + \og2K .

Before proving these theorems we introduce some notation. If
A = (alf , an) and B = (bt, , 6 J are ordered sets of vectors, we
let RA = (an, , αx) and we let (A, B) = (au , an,blf , bm). We
let 2A = {A, A) and, for every positive integer k, we let (k+l)A —
(JcA, A). If J is a vector operator, we let JA = (Jalf , Jan).

THEOREM 1. Let S contain two vectors independent over R,
and let K be an integer greater than or exual to 2. There exists
an S-walk Wκ = {zp}ξL*} such that no K+l elements of Wκ are
collinear and such that

log2 N(K) > ±(log2K - If - i-(log2 K - 1) .

Proof. If we_let (log2 K - l)2/9 - ( l o g ^ - l)/6 - log2 K, then
log2 K = (25 + 3i/65)/4 > 12 or (25 - 3l/65)/4 < 1. Therefore if
1 ^ log2 K ^ 12, and 2 ^ K ^ 4096, then
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-ί(log2 K - I)2 - l ( lo& K - 1)< log2 if .

Since Wκ cannot have more than N(K) collinear points, we need
only consider K > 4096.

We may let S = {ί, j} without loss of generality, where i and j
are orthonormal unit vectors.

For every positive integer m and nonnegative integer n, let
A™ = i, and let

where Ji = j and Jj — i. Let V = {tfJJLi = j&A?, where μ is the
greatest integer less than or equal to ((7/9)iΓ)1/3, and v is the least
integer greater than or equal to log2μ — 3/2. Note that since K>
4096, we have μ ^ 14, and v ^ 3. Let 2rp = Σ?=i Γ<z f° r e a c ^ P> a n d
let PΓ = {zp}ζ=1. We maintain that T7 has no more than K collinear
points and that log2 N > (log2 K - l)2/9 - (log2 K - l)/6.

Let bQ = 1 and let δn+1 = (μ + 2n)bn. Then &„ is the cardinality
of ii£, and i\Γ = μbv. Clearly bn^μn, so N ^ μv+1 and log2iV

r^
(y + 1) loga JM ̂  (log2 ^ — 1/2) log2 jM. Since μ is the greatest integer
less than or equal to ((7/9)Z")1/3, and ((7/9)iO1/3 > 14, we have μ >
(14/15)((7/9)iί:)1/3>((l/2)ί:)1/3. It follows that log2iV>l/9[log2((l/2)if)]2-
log2 ((1/2) JΓ)/6 = (loR K - l)2/9 - (log2 if - l)/6.

We now prove that W has no more than K collinear points.
Let C; = {zp: abn <> p ^ (a + l)bn}. For each n, all C%

α are
congruent; specifically one can get from any one to any other by
a translation plus, possibly, a reflection about the major diagonal
(i.e., a reflection about the line passing through the vector i + jf

which interchanges i and j), followed by a rotation about the origin
of 180°. This reflection plus rotation is equivalent to a reflection
about the line perpendicular to the major diagonal (i.e., the line
passing through the vector i — j). We will refer to this latter
line as the minor diagonal. Let

Ui = {C:: β(μ + 2n)^a<(β
if n Φ v and Ul - {C?: 0 ^ a ^ μ) .

Note that C£+1 = {zp: β{μ + 2n)bn ^ p S (β + l)(β + 2n)bn), so U£ is
a partition of Ci+1 and J7y

0 is a partition of TΓ. We now consider
a line with slope m and determine for each n, the maximum number
of elements of Ui which the line can intersect (the maximum number
cannot depend on β, since all C£+1 are congruent). Let rn be this
maximum number. Then the line cannot intersect more than r =
ΠίUo^ points of W.
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Let sn be the slope of zκ; i.e., sn = yjxn where zbn = xj + ynj.
The slope of z{a+1)K — zabn is then either sn or β;1, depending on
whether CZ is a simple translation of Ci9 or a translation of the
reflection of Ci about the minor diagonal. We wish to find a lower
bound on snlsn_γ.

Now xQ = 1, 1/0 = 0, α?Λ+1 = 'μxn + 2Λi/n, and yn+ί = μyn + 2*an. It
follows that xn, yn, and sn are strictly positive for all n ^ 1. We
now prove by induction that sn < 2Ύμ. Clearly s0 = 0 < 2°/^ a n d
sx = 1/^ < 2'/μ. Suppose sn < 2W/^. Let tn = 2n/snμ. Then tn > 1.
Now

Thus

tn+1 - 2n+1/sn+1μ = 2sJJsn+1

= 2sJn(l + «iί»)/(β + «•*•)

- 2ίw(l + βiί»)/(ί + 1) .

We now view tn+1 as a function of the real variables tn and sn9 and
compute its partial derivatives:

dtn+1/dtn = 2{sltl + 2sltn + l)/(ίH + 1) > 0

and

3t +i/d* = 4ίi« /(* + 1) > 0 .

Since tn+ι has the value 1 when sn = 0 and £„ = 1, it follows that
tn+ι > 1 when sn ^ 0 and £„ > 1, as is the case here. Therefore

Sn+1 < 2^/μ.
Next, recall that v — 1 < log2 μ — 3/2, so if w ̂  v — 1, then

2n ^ 2y~1 < 2~3/2μ. Since 2n > sΛ^, it follows firstly that sn < 2"3/2,
and secondly that

+ 2nsl)

> 2μsJ(μsn + 2~^μsl)

= 2/(1 + 2"3X) >

It follows that, given m, there is at most one n such that
(3/4)«Λ ^ m ̂  (4/3)«ft. Suppose there exists λ such that (3/4)8* 5£m^
(4/3)8*. Then m < (3/4)sί+1 and m > (4/3)8;^. Moreover, for all n>
X + 1, we have m < (27/64)sw < (l/2)s%, and for all n < λ — 1, we
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have m > (64/27)$* > 2sn. All of the above also holds if we replace
s* by sή\ except that some of the inequalities are reversed and
constants replaced by their reciprocals in the obvious way.

We now calculate for each of the five cases, n = λ, n = λ + 1,
n — λ — 1, w > λ + 1, and n < λ — 1, the maximum number rn of
elements of U£ which a line of slope m can intersect. We can
assume without loss of generality that CJ?+ί is a simple translation
of Cn+u if G?+i is a translation of the reflection of C»+1 about the
minor diagonal, then we can apply the same argument, replacing
sn by s~ι. Then C£ is a simple translation of C£ for β(μ + 2") ^
oί < β(μ + 2") + μf and a translation of the reflection of Cl for
β(μ + 2W) + μ ^ α < (/S + l)(μ + 2n). For each a, the first point of
Cn+ί coincides with the last point of C£. It is easy to prove by
induction on n that C£ (and therefore Cί for all a) lies entirely
within a right triangle, with sides xn and yn adjacent to the right
angle, and with the first and last points of C« at opposite ends of
the hypotenuse. Therefore the sets C%: β{μ + 2n) ^ a < β(μ + 2n) +
μ lie within congruent right triangles, whose hypotenuses are
adjacent segments of a line with slope sn (see Fig. 1). It follows

FIGURE 1

that a line with slope m > snq/(q — l) or m < sn(q — l)/q can intersect
at most q of the sets C£: /3(μ 4- 2n) ^ α < /3(μ + 2n) + μ at distinct
points (i.e., assign the last point of each set C£ to the set C£+1,
and do not count the line as intersecting C£ if it only intersects
this last point). Suppose m ^ 1. Then m < (l/2)s7x, and a line of
slope m can intersect no more than two of the sets C£: β(μ + 2n) +
μ ^ a < 03 + l)(jM + 2*). If w = λ, then a line of slope m can
intersect all μ of the sets CΛ

α: β(μ + 2n) ^ a < β(μ + 2n) + μ for a
total o f μ + 2. If w = λ + 1 or λ - 1, the line can intersect at
most 4 of the sets C£: β(μ + 2n) <* a < ^ ( ^ + 2*) + ju, for a total
of 6, while if w > λ + l or ^ < λ — 1, the line can intersect at
most two of the sets C£: β(μ + 2Λ) ^ a < β(μ + 2W) + μ for a total
of 4. If m > 1, then we obtain essentially the same results by
redefining λ so that (S/tysj1 ^ m ^ (4/3)s7x, the only difference being
that μ is replaced by 2*, which in any case is less than μ. There-
fore we have rn ^ μ + 2 if w = λ, rn ^ 6 if n = λ — 1 or λ + 1 , and
rΛ ^ 4 for all other w. Finally, we have
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r = lίrn^(μ + 2) 62 4
* = 0

V~2

If λ does not exist, then there are at most two values of n for
which (27/64)sΛ <̂  m ^ (64/27)sΛ, and these two values can take the
place of λ — 1 and λ + 1 in our argument.

REMARK. We can use this method to get slightly better results
as follows: The method works by partitioning W into a heiarchy
of sets, each set of order n + 1 being partitioned into μ + 2n sets
of order n, and showing that for almost all n, a given line can
intersect at most four sets of order n within a given set of order
n + 1. Suppose that instead of using the partition based on the
sets Cn, we modify this partition slightly by splitting each C£ into
two sets of order n, namely {zp: abn <: p <; abn + μbn_ύ and {zp:abn +
μbn-! <ίp^(a + 1)6Λ}. Then each set of order n + 1 would have
either 2μ or 2*+1 sets of order n, and it should not be hard to show
that for almost all n, a given line can intersect at most three sets
of order n within a given set of order n + 1. We would then have
γ = cμ-Zv = cμ1+1O82S, where c is a constant which does not depend
on K, and finally

log2 N = (1 + log2 3Γ2(log2 Kf + O(log2 K) .

However, it seems impossible to push this method any further.

THEOREM 2. Suppose that S contains L elements which are
pair wise independent over R. Then there exists an S-walk Ω —
{wJίLi containing no set ofK+1 collinear points, such that

log2 N > i - [log, (K-D- I]2 - l [ log t (K - 1) - 1] + log2 L* - 2 ,
" to

where L - 2 ^ I / * ^ L + 1 and L * Ξ O m o d 4 .

Proof. The L elements of S with distinct arguments must
include L/2 elements (if L is even) or (L + l)/2 elements (if L is
odd) in the same half-plane. Label these elements su s2, s3, in
order of their arguments. For 1 ^ n ^ (1/4)L*, let Wn = φnW
where W is defined as in the proof of Theorem 1, and φn is the
linear vector operator which maps i to 82n^ and j to s2n. Let JVJ,
be the cardinality of W and let ιυn = fts^.i + 2/s2Λ be the final
element of Wn. For 1 ^ i ^ JVO, let zt be defined as in the proof
of Theorem 1, and let ut = ^ z ^ Let uNon+i = Σ*=i ^i + 9> +i*
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1 ^ n ^ (1/4)L* - 1. Finally, let N = (1/4)L* 2V0 and let β = {αjf=1.
Note that 42 is constructed by placing the Wn end to end in
sequence.

By Theorem 1,

log2 N > —(log2 K - I)2 - -ί(log2 JΓ - 1) + log2 L* - 2 .

We will now prove that no K + 2 points of i2 are collinear. Sub-
stituting K — 1 for the bound variable ϋΓ then gives us Theorem
2 for the case K ^ 3. For the case if = 2, we simply let u{ =
Σ* =i*/ The resulting set {wj, which contains at least (1/2)L*
elements, is the set of vertices of a convex polygon; hence no three
elements are collinear.

Let Tn = {wj&vou_i)+i and let tn = Σ*=i "-V s o t i i a t ^ i s the
final element of Tn. Let f0 = 0 and let rn — tn_x + xs2n_1 for w ^ 1.
Note that tn = rΛ + #s2w. Note also that from results proved previ-
ously, the set Tn must lie entirely on or in the interior of the
triangle Δn with vertices tn_u rn9 and tn. Consequently any line
which intersects Tn must intersect Jn. Now consider the polygon
P with vertices t0, rlf tu r2, t2, , rL*u, tL*u in that order. The
(directed) edges of this polygon are the vectors xsu ys2, xsd, ,
y8L*/2, and — &Σ£='ίβ2»-i — 2/Σί=ί*2» Since the vectors βlf *2, s3, •••
are listed in order of increasing argument, and the range of all
their arguments is less than 180°, it follows that the interior angles
of P are all less than 180°, so P is convex. Now any line intersect-
ing Δn9 and in particular any line intersecting .Tn9 must intersect at
least two sides of Δn (including each vertex in its two adjacent
sides), and therefore must intersect P. Since P is convex, a line can
only intersect P at one or two points, or along an edge. Therefore
no line can intersect more than two of the Tn. Unless the slope
of a line is between that of s^^ and s2n inclusive, it can only in-
tersect one point of Tn. By Theorem 1, no line can intersect more
than K points of Tn. Therefore, no line can contain more than
K + 1 points of Ω.

REMARK. In order to compare these results with the upper
bound in [3], we can consider the case where S = {seZ2: \\s\\<LM}.
Since the number of lattice points in a disc of radius R is πR2 +
O(R) [2], we know that the number of lattice points with both
coordinates divisible by q, in a disc of radius M, is πM2/q2 + O(M/q).
Therefore the number L of lattice points with relatively prime
coordinates is

έ ( - i r Σ Q~2-
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where Q is the set of square free positive integers less than or
equal to M, and Qn is the set of integers in Q with n distinct
prime factors. It follows [1] that

L = 6M2/π + O(MlogM) .

Finally, if we let N(K, M) be the length of the longest S-walk
with no more than K collinear points, and we choose any constants
c, < (91og2)~1 and c2 > 213log2, then we have

M2 exp [φog Kf] < N(K, M) < exp [c2M
4K']

for all M and all but a finite number of K.
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ON CERTAIN SEQUENCES OF LATTICE POINTS

JOSEPH L. GERVER and L. THOMAS RAMSEY

Let S be a finite subset of Rn. A sequence {zx} is an
S-walk if and only if zi+ι—zt is an element of S for all i.
In an effective manner it is shown that long S-walks in Z2

must have an increasing number of collinear points. In Z\
however, an infinite S-walk may have a bounded number
of collinear points.

1* Introduction. Let S be a finite subset of Rn.

DEFINITION. An S-walk is any (finite or infinite) sequence of
vectors in Rn, say {̂ }, such that zi+ί -- z^eS, for all i.

Given S, let M be the maximum of the Euclidean norms of the
vectors in S. In [5] the following theorem is proved (see also [3]
for the case M — Λ/~2):

THEOREM. Let S c Z2, and let K be any positive integer. There
exists N = N(K, M) such that any S-walk of length at least N must
have K collinear points.

With Theorem 1 of this paper we provide an effective bound
on N(K, M). With Theorem 2 we show that the situation of SaZz

is quite different, i.e., an infinite S-walk in Zz may have a bounded
number of collinear points. In Theorem 3 we show that there are
still some restrictions in Zz, namely that if S has only three
elements, then a sufficiently long S-walk must have three collinear
points.

2* The Planar case*

THEOREM 1. Let SaZ2, let K be any positive integer, and let
N be a positive integer such that

log2 N ^ 21ZM\K - iγ + \og2(K - 1) .

Then, for every S-walk {2rĴ L0, there is some line L, and K choices
for i, such that zte L.

Proof. We suppose that the theorem is false for some K and
derive a contradiction. Let Q = 8 21/2>M(K - 1). Let T denote the
set of (positive and negative) Farey fractions of order no greater
than Q. Let A be the set of all lines through the origin with
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slopes in T. Let B be the mirror image of A reflected through
the line y = x. Enumerate the lines in the two sets A and B in
order of increasing slope: Llf L2, L3, ? Let {zt) be a counterexample
to the theorem for K. We may assume that' z0 is the origin.

Let Zj be an arbitrary point of the counterexample sequence.
There are lines in the set A U B, Ln and Ln+19 such that Zj is on or
between these lines; that is, the slope of the line through the origin
and Zj is between or equal to the slopes of Ln and Ln+ί, respectively
a and b.

Dirichlet's theorem [2, page 1] gives us for x = (α + δ)/2, inte-
gers p and g, 0 < q < Q, such that

\qx-p\ ^Q'1

We have either p/q >̂ 6 ^ α, or b ^ a ^ p/g. Note that α6 ̂ 0 . We
may therefore choose p/q to be the same sign as a and b. Let IΓ0

be the line through the origin with slope p/q and let U be the
larger of the two angles between Ho and L% and between HQ and
Ln+1. Clearly, since α, b, and p/g have the same sign (viewing zero
as positive and negative), the tangent of U is at most 2Q~1q~~\

Enumerate the lines parallel to HQ through points of Z2 as
• iϊ_2, H_u Ho, Hlf H2, so that the distance from Ho to Ht is

where d is the minimum distance between such translates of

We now return to Zj. Among zJf zJ+1, , 2rJ+(2P_1)(2Σ:_1) at least
one point is on some H^ with | i | > P — 1 . Otherwise one of the
Hif with \ί\ S P — If would contain if points of our S-walk,
contrary to hypothesis. Let 27 be on a line Ht, with | ΐ | > P — 1,
and J ^ / ^ J + (2P - l)(iΓ - 1). This point zf is at least distance
Pd from JH"0. The component of zf parallel to HQ is at most fM.
Thus, if V is the angle between zf and iί0, we have

I tan V\ ^ Pd/fM .

By taking P so that (2P - l)(iί - 1) ^ J, we can write that

I tan V I ̂  Pd/M[J + (2P - l)(if - 1)]

^ Pd/2M(2P - 1)(K - 1)

> d/AM(K - 1) .

We now estimate d. We may assume that both Ln and Ln+1

are in A, since otherwise they are both in B and the mirror image
of the forthcoming analysis applies. With this assumption both a
and b are in T. We may also assume that p/q is in Γ, for if not
either p/q ^ 1 or p/q ^ — 1. In the first case 1/1 will play the role
of p/q and in the second, —1/1. Thus
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d ^ (p2 + qTι/2 ^ (2ί/2q)~ι .

Thus

I tan V I > [4'21/2Mq(K - I)]"1 .

It is now clear that the choice of Q as 8-21/2M(K — 1) gives us

I tan V\ > |tan 171 .

It is clear that the broken line path from zδ to zf has crossed
either Ln or Ln+1. In summary, given Zj on or between Ln and
Ln+1, there is some integer t such that 0 < t ^ (2P — 1)(JSΓ — 1) and

( i ) P is the first integer such that (2P - 1)(K - 1) ^ J and
(ii) zJ+t is within Λf of either Ln or Lw+1.

By induction we choose a subsequence {zt.} of {*,} such that
( i ) each zt. is within M of some line in A U B and
(ii) ί, < ί<+1* ^ t, + (2P - 1)(K - 1), where P is the first integer

such that (2P - 1)(JSΓ - 1) ^ tt.
Note that we may choose t0 — 0 and tλ = 1. In general, if £* ^

1), then the P for ti+1 satisfies

2P - 1 ^ j \ + 1 .

Thus, ί<+1 ^ (2i, + 1)(K - 1). Thus, if j t ^ 2έ - 1, we have i<+1 ^
2i+1 - 1.

We now count the number of lines in A{J B. It is less than
2Q2. For any given line in A U JB, the number of translates of it
through points of Z2 which are within distance M of it is at most
2M/d, where d is the minimum distance between such translates.
If their common slope is p/q in Γ, we have

d ^ (p2 + <f )~1/2 ^ (21/2Q)"1 .

If their common slope with respect to the τ/-axis is in T, the mirror
image analysis applies. Thus, in all cases, 2Mjd <> 2 21/2MQ. Finally,
(2Q2)(2-21/2MQ) = 4 21/2MQ3 is an upper bound on the number of
lines which the subsequence {zt.} can occupy. If the index i on tt

is at least (K — l)(4 21/2JίQ3), one of these lines will have K points
of {zt.}. All that is required is that t^N. Since i i^(if~l)(2 i - 1 ) ,
it suffices to have

log2 (K - 1) + 4 2ι/2MQ\K - 1) ^ log2iV .

Since Q = 8-2ί/2M(K - 1), we have 4 2ι/2MQ\K - 1) = 213M\K - I)4.
By our choice of N this is satisfied. This contradiction establishes
the theorem.

REMARK 1. Theorem 1 remains true in %-dimensional space
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with the same relations between N, M and K if we use n — 1
dimensional hyperplanes for L instead of lines. The proof consists
of projecting the S-walk onto Z2, finding a line there and taking
its pre-image under the projection.

REMARK 2. Professor Carl Pomerance of the University of
Georgia [4] has extended this theorem by considering walks whose
average step size is bounded. His theorem is stated below. Let
d(V) = ΣSΓoMISi+i ~*ill for a finite sequece V = {*<},%<= Z1.

THEOREM. For every positive integer K and every positive real
number M, there exists m0 = mQ(M, K) such that if m > m0 and
d(V)/m <; M, then there are K points of V which are collinear.

An effective bound on m0 is not known for Pomerance's theorem.

Ill* Three dimensional case*

THEOREM 2. If S is a set of vectors which do not all lie in
the same plane, then there exists an infinite S-walk in which no
511 + 1 vectors are collinear.

NOTATION. If A = (alf , α j and B = (bu , 6 J are ordered
sets of vectors, and β is a vector operator, we let RA = (α», , αj,
(A, B) = (a19 '- ,an,bu , δm), and βA = (/Sα̂  , /3αJ. Let /, j ,
and k be the three orthonormal unit vectors. For a vector z=zιi +
zj + z3fe, let ||2r||M = Si + s2 + s8 and H*!!-1 = O' + ^ + 3̂ — ^2—^3—
Jδŝ i)1/2 Note that ||2r||N and H^H1 are proportional to the components
of z parallel and perpendicular respectively to the vector i + j + k.
Let 7 be the length of the component of i, J, or k perpendicular to
i + j + k. Then 7 = (2/3)1/2 and in general the perpendicular com-
ponent of z has length 7 | |^ | | 1 .

Proof. It suffices to prove Theorem 2 for the case where S =
{ί, j , k). Let α and β be vector operators such that ai = j , α j = i,
αί: = A:, βi — i, βj — k, and βk = j . We define inductively ordered
sets of vectors An. Let Ao = (i), and let iln+1=(AΛ, αAΛ, RβAn, An,
RβaAn, RβAn, An). Note that A» has T elements and that the
sequence An+ι begins with An. It follows that there exists a unique
infinite sequence of vectors {vp} such that (ΌU , v7n) = An for all
n. Let *p = Σj=i^? f° r all positive integers p. Then TF ί̂Zp} is an
S-walk. We claim that no 511 + 1 elements of W are collinear.

For convenience of notation we let zQ be the zero vector. Let
C« = {zQ, zί9 •••, z7n}. We prove by induction that the projection of



ON CERTAIN SEQUENCES OF LATTICE POINTS 361

C» onto the plane perpendicular to i + j + k lies within a trapezoid
with base 4"7, base angles 60°, and adjacent sides 4*7/3, with z0

and z7n lying at extreme ends of the base. We will refer to such
a trapezoid as a trapezoid of order n. The case n = 0 is trivial
Assume it is true for n. Note that An, aAn, RβAn, and RβaAn

are all mirror images of each other, either in space or in time (i.e.,
one can get from one to the others by permuting the unit vectors'
by reversing the order of the sequence, or both). It follows that
the set C"n = {z7*v, ••, zr»(]/+1)} is congruent to C°, or its mirror image
for 0 ^ v ^ 6. Therefore the projection of C* lies within a trapezoid
of order n, with z7nu and z7*(v+1) lying at extreme ends of the base.
From the definition of An+ι, it follows that the seven trapezoids of
order n fit together within a trapezoid of order n + 1, as illustrated
in Figure 1.

It is straightforward to prove, by induction on n, that for
any positive integer v, the projections of Cί+1 and Cζ%\ can fit
together in one of only three possible configurations (ignoring
rotations, reflections, and reversals of the sequence), namely those
illustrated in Figure 2.

It follows that the distance between two points lying in non-
adjacent trapezoids of order n must be at least 3-ι/ϊ 4"γ, and that
the distance between two points lying in adjacent trapezoids, or

FIGURE 1

FIGURE 2
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the same trapezoid, of order n can be at most 2-4*7.
Now let p and q be positive integers such that 7* ̂  | p — q | <

7n+ί. Then, if n ^ 1, zp and zq cannot lie in adjacent trapezoids of
order n — 1, so \\zp — zq\\L ̂  β"172^*""1; if w = 0, this inequality is
trivially satisfied. Likewise, zp and zg must lie in adjacent trapezoids,
or the same trapezoid, of order n + 1, so \\zp—zq\\L <^2 4W+1. Since
\\Zp - *JIM = \P - Q\> we have

Now let r and s be positive integers such that 7W <; | r — s| < 7W+1,
with m ^> n, so that

3 - 1 / 2 . 4 » - i . 7 - ( » + i ) < | | ^ __ Z β \ \ ± / ι \ Z r - ^ i j i i ^ 2 4 W + 1 7 - W .

If zP, zg, 2rr, and zs are collinear, then

\\zp - z J I V I I * , - ^ | | » = \\zr - z . | | V I | 2 r r - z . | | »

so 3-1/2.4--i.7-(-+D < 2 .4^ + 1 7"m. I t f o l l o w s t h a t (γ/4)*- < 224i/T,

and m - n < (log 224 vΊΓ)/(log 7/4) < 11, i.e., m - w ̂  10. Therefore
I ̂  — 8 I/I i? — q I < 711, and there are at most 711 collinear points in W.

Furthermore, if X is a set of collinear points in W which all
lie within the same trapezoid of order n, but not within the same
trapezoid of order n — 1, then no two points of X can lie within
the same trapezoid of order n — 11. However, no line can intersect
more than five trapezoids of order n — 1 within a trapezoid of order
n. For suppose a line intersected six of the trapezoids C£, Q, , C£
in Figure 1. If Cί where excluded, then the line would have to
intersect C» and C£, in which case Q would be missed. If Cl were
excluded, then the line would intersect Cl and Cl, missing Cl. But
a line intersecting Cl and Cl would miss Cl. Therefore, there are
at most 511 collinear points in W, and the theorem is proved.

It is obvious that this result can be sharpened considerably
without changing the method of proof. For example it is not hard
to convince oneself, by studying Figure 2, that in fact 41t~1 ^ \\zp —
zq\\L ^ 4*+1 if T S \p - q\ < 7n+1. Also, there is no need to lump
together all values of \p — q\ between T and 7*+1. By using a finer
partition it ought to be possible to show that for a given value of
\p — q\, the possible values of \\zp — zq\\Ll\\zp — zq\\ϊι range over a
factor no greater than 4. Since 4 < (7/4)3, this would imply that
W can have no more than 73 collinear points, all lying in the same
trapezoid of order n, and no two lying in the same trapezoid of
order n — 4. Finally, one could examine the 74 trapezoids of order
n — 4 within a trapezoid of order n, preferably with the aid of a
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computer, and find an upper bound on the number which can be
collinear, not only in the plane, but in 3-space. To clinch the
argument, it might be necessary to descend to order n — 5.

One would hope that by this method a sufficiently clever and
persistent mathematician could determine the true maximum number
of collinear points in W, which undoubtedly is three. However,
there is no hope of sharpening Theorem 2 further than this, for we
have the following theorem:

THEOREM 3. // S has exactly three elements, then every S-walk
of length nine has three collinear vectors; in fact three equally
spaced collinear vectors.

Proof. This result follows from the theorem of T. C. Brown
[1] that any sequence of length nine on three symbols contains two
adjacent segments which are permutations of each other. Brown's
theorem can be verified in about one hour by direct computation.

An S-walk of length eight with no three collinear points is
obtained by summing the sequence i, j , i, k, iy j , i.

REMARK 3. Theorem 2 also holds in the case where SaR2,
provided that there are three elements eu e>, and eΛ of S, such that
ei x e2> e2 x e-d> and ed x ex are linearly independent over the rationals.
In other words, the condition that the elements of £ be lattice
points is necessary for Theorem 1.

The above theorems leave unanswered the question of whether
it is possible to have an infinite S-walk with no three collinear
points for some SaZn (in particular, can n = 3?).
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ON THE NONOSCILLATION OF PERTURBED FUNCTIONAL
DIFFERENTIAL EQUATIONS

JOHN R. GRAEF, YUICHI KITAMURA, TAKASI KUSANO,

HIROSHI ONOSE, AND P A U L W. SPIKES

We study the behavior of the solutions of the second
order nonlinear functional differential equation

(1) (a(t)xΎ=Λt,x(t),x(g(t)))

where α, g: [t0, oo)->R and /: [t0, oo)χR2-+R are continuous,
a(t) > 0, and g{t) —> oo as t —> oo. We are primarily interested
in obtaining conditions which ensure that certain types of
solutions of (1) are nonoscillatory. Conditions which guar-
antee that oscillatory solutions of (1) converge to zero as
t -» oo are also given. We apply these results to the equation

(2) (a(t)x'Y + q(t)r(x(g(t))) = e(t, x)

where q: [t0, oo) —> Rf γ\ R —> Rf e: [t0, oo) x R —> R are continuous
and a and g are as above. We compare our results to
those obtained by others. Specific examples are included.

In the case of nonlinear ordinary equations, the search for
sufficient conditions for all solutions to be nonoscillatory has been
successful; see, for example, the papers of Graef and Spikes [4-7],
Singh [11], Staikos and Philos [14], and the references contained
therein. The only such results known for functional equations to
date are due to Graef [3], Kusano and Onose [9], and Singh [13].
Moreover, none of the results in [3], [9], or [13] apply to equation
(2) if e(t, x) Ξ 0 or if r is superlinear, e.g., r(x) = xr, 7 > 1. We refer
the reader to the recent paper of Kartsatos [8] for a survey of
known results on the oscillatory and asymptotic behavior of solutions
of (1) and (2).

In view of a recent paper by Brands [1], it does not appear to
be possible to obtain integral conditions on q(t) which will guarantee
that all solutions of (2) with e(ί, x) = 0 are nonoscillatory and which
are similar to those usually encountered in the study of ordinary
equations. (We will return to this point again in §2.) So too our
main results in this direction when applied to equation (2) require
that e(t, x) Ξ£ 0 (cf. conditions (27) and (28)). Although all the results
presented here hold if r(x) is sublinear, we are especially interested
in the superlinear case.

2* Main results* The results in this paper pertain only to the
continuable solutions of (1). A solution x(t) of (1) will be called

365
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oscillatory if its set of zeros is unbounded, and it will be called
nonoscillatory otherwise. Some of the results which follow concern
solutions of (1) which satisfy growth estimates of the form

( 3) I x(t) I = 0{m(t)) as t —> oo ,

where m: [t0, oo)-^ R is continuous and positive. Other authors, for
example Staikos and Sficas [15], have studied the asymptotic behavior
of nonoscillatory solutions which satisfy estimates of this type with
ra(ί) = t\

We will assume in the remainder of this paper that the function
/ satisfies an estimate of the form

(4) \f(t,x,y)\£F(jb,\x\,\v\)

where F: [tQ, oo) x ]J2

+-> R+ is continuous and such that

F(t, u, v) ^ Fit, u', v') for 0 ^ u ^ u\ 0 ^ v ^ v' .

THEOREM 1. Suppose that

S oo ί oo

[l/a(s)] \ F(u, cm(u), cm(g(u)))duds

< oo

for all c > 0. // x(t) is an oscillatory solution of (1) satisfying (3),
then x(t) —> 0 as t —> oo.

Proof. Let x(t) be an oscillatory solution of (1) satisfying (3);
then ix(t)I ^ cm(t), \x(g(t))| ^ cm(g(t)) for all t^t^U and some c > 0.
Suppose that lim s u p ^ | x(t) \ > 2M for some M > 0. Then there
exist sequences {an} and {bn} of zeros of x(t) such that an < bn, an, bn ->
oo as n —• oo J a (ί) I > 0 on (αΛ, &J, and Mn = max{| a?(t) |: α» <£ ΐ <; 6%} >
ilί for w = 1, 2, . Now choose tn in (α», bn) so that | »(*») | = Mn

for ^ = 1, 2, . Integrating equation (1) from t in [an, tn] to £„,
we have

a{t)x\t) = -]t f(s, x(8), x(g(s)))ds .

A second integration yields

x(tn) = -\tn[l/a(s)] [tnf(u, x(u), x{g{u)))duds .

Thus

Mn = \χ(tn)\ ^ Γ*[l/α(«)] (*>(%, cmW, cm(g(u)))duds .

Condition (5) implies that the ri ghthand side of the above inequality
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converges to zero as n —> oo. This contradicts | x(tn) \ = Mn > M for
n = 1, 2, and completes the proof of the theorem.

The following corollary is an immediate consequence.

COROLLARY 2. // condition (5) holds with m{t) = K for every
constant K > 0, then all bounded oscillatory solutions of (1) converge
to zero as ί —> oo.

In our next theorem the following sublinearity type condition
will be used. There exists a continuous function H: [t0, oo) —»i?such
that

( 6 ) lim sup F(t, v, v)/v ^ H(t) .

THEOREM 3. In addition to (6) assume that condition (5) holds
with m(t) = K for any constant K > 0,

( 7 ) g(t) ^ t

and

( 8 ) Γ[1AΦ)] \°°H(u)duds < oo .

Then every oscillatory solution of (1) converges to zero as t —> oo.

Proof. We will first show that all oscillatory solutions are
bounded. Suppose that «(t) is an oscillatory solution of (1) and
lim supί >oo I x(t) I = oo. Then there exists a sequence of intervals
{(α , K)} such that l i m ^ o u = l i m ^ δ , = oo, x(an) = xφn) = 0, \x(t)\ >
0 on (αH, δ j , and Mw = max{|α?(t)|: ί ^ δ j = max{|α?(ί)|: an ^ ί <; δ j
and Mw increases to infinity as n -+ oo with Λfj. ^ ίΓ. As in the proof
of Theorem 1 we obtain

Mn = \x(tn)\ £ \n[l/a(s)] \%F(u, Mn, Mn)duds

where tn e (αΛ, δ j . Hence

which contradicts (8) as n --> oo.
Since aj(<) is bounded the conclusion of the theorem then follows

from Corollary 2.

THEOREM 4. Suppose that there exist continuous functions
G: [t0, oo) x R2

+ —> E+ and h: [t0, °°) ~> J
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{ 9) G(t, uy v) ^ G(t, u\ v') for 0 ̂ u^u', 0 ̂  v £ v',

(10) \f(fi,xfy)-h(fi)\£G(fi,\x\,\v\) for x,yeR,

(11) ("[1M*)] ^\h(u)\duds < oo ,

and

(12) I [l/α(s)] 1 (?(^, cm(u), cm(g(u)))duds < oo
J Js

for all c > 0. J/ ίfeβrβ exists c0 > 0 sm?/& ίftαί either

(13) lim Γ[l/α(s)] Γ{fc(w) + G(w, c0,

or

(14) lim Γ[l/α(s)] Γ{fe(%) ~ ^ ( ^ co, cQ)}duds =

/or αZΪ Zαr^β T, tfcew α^?/ solwtίon x{t) of (1) satisfying (3) is
oseΐίίαίor?/.

Proof. Let sc(t) be an oscillatory solution of (1) satisfying (3).
In view of (11) and (12) all the hypotheses of Theorem 1 are satisfied
with F(t, u,v) = \ h(t) I + G{t, u, v) and so x(t) -> 0 as t -> oo. Thus
there exists T ̂  tQ such that x\T) = 0, \x{t)\ ^ c0, and \x(g(t))\ ^ c0

for ί ^ Γ. Hence

(15) h(t) - G(t, c0, c0) ^ /(ί, a?(ί), x(g(t))) ^ h(t) + G(t, c0, c0)

for t ^> T. Integrating twice we have

G(u, c0, co)

G(u, c0, co)}duds .

If either (13) or (14) holds, then x(t) cannot have arbitrarily large
zeros.

REMARK. An alternate form of Theorem 4 can be obtained by
replacing conditions (13) and (14) by

(16) lim sup [*{h(u) + G(u, c0, co)}<Ẑ  < 0

and
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(17) lim inf [* {h(u) - G(u, cQ, co)}du > 0

respectively. The proof in this case would follow from inequality
(15) by noting that (16) or (17) implies that x\t) would have fixed
sign. Condition (16) or (17) may be satisfied when (13) and (14) are

S oo

[l/a(s)]ds < oo. Similarly (13) or (14) may
ί0 Coo

hold with neither (16) nor (17) being satisfied when \ [l/α(s)]ds = oo.

THEOREM 5. Assume that (7) and (9)-(ll) hold, G is sublinear
in the sense of condition (6), i.e., there exists HG:[t0, oo)-+R such
that lim s u p ^ G(t, v, v)Jv <; HG(t),

(18) pl/αOO] ^HG(u)duds

and condition (12) holds with m(t) == K for any constant K > 0. //
either (13) or (14) holds, then all solutions of (1) are nonoscillatory.

Proof. Let x(t) be an oscillatory solution of (1). If we let
F(t, u, v) — G{t, uf v) + \h(t)\, then clearly (6) holds and moreover (11)
and (18) imply that (8) holds with H(t) = HG{t) + \h(t)\. Hence x{t) ->
0 as t —> co by Theorem 3. Proceeding exactly as in the proof of
Theorem 4 we again obtain a contradiction.

REMARK. Once again an alternate version of Theorem 5 can be
obtained by replacing conditions (13)-(14) by (16)-(17).

3* Applications and discussion* We will now apply the results
in the previous section to equation (4):

+ q(t)r(x(g(t))) = e(t, x) .

Assume that

(19) \e(t,u)\£\e(t,v)\ if \u\ £ \v\ ,

and there are nonnegative constants A, B and p such that

(20) \r(x)\ ^A\x\p + B .

If for some k ^ 0

(21) ΓίVαOO] \°[Q(u)Yv I Q(u) I duds < oo

and
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(22) Γ[l/α(β)] Γ|β(«, cuk)\duds < - for all c 2: 0 ,

then the hypotheses of Theorem 1 are satisfied with m(t) = ίfc. Hence
any oscillatory solution x(t) of (2) satisfying

(23) \x(t)\ = 0(tk) as t > oo ,

will converge to zero as t —> oo. If k = 0 in conditions (21) and (22)
then we obtain the conclusion of Corollary 2 for equation (2). In
this case we obtain Theorem 4 of Kusano and Onose [10] as a special
case. They required that r(x) be nondecreasing, xr(x) > 0 if x Φ 0,
and e(t, x) = e(ί); moreover if & = 0, conditions (13) and (14) of [10]
imply conditions (21) and (22) above.

Now assume that there exist w > 0 and continuous functions
hu h2: [t0, oo) —> J? such that

S oo Λoo

[l/α(s)] I \hx(u)\duds < ©o ,
and

(26) Γ[l/α(s)] [°ukwh2(u)duds < oo .

If (7), (19)-(21) and (24)-(26) hold with p£l,w£l, and k = 0,
then all oscillatory solutions of (2) converge to zero by Theorem 3.
Theorem 5 of [10] is a special case of this result. There the
authors show that when r(x) is sublinear, i.e., lim sup^^^ r(x)/x < oo,
then the hypotheses of their Theorem 4 insure that all oscillatory
solutions are bounded and hence converge to zero. In so doing they
generalized Theorems 1, 2, and 3 of Singh [12] who, among other
assumptions, required a bounded delay. Under a more restrictive
condition on τ(x), namely, 0 < r(x)/x ^ m for all x, Singh [13] gives
sufficient conditions for all oscillatory solutions of a special case of
(2) to bounded above. Under a different set of hypotheses, Kusano
and Onose [9] obtained exactly the opposite result. The point to be
made here is that while we are primarily interested in the case
where r(x) is superlinear, (cf. Theorems 1 and 4 and Corollary 2)
i.e., lim sup^^^ r(x)/x — + oo, our condition (20) includes the sublinear
forms of Kusano and Onose [9, 10] and Singh [12, 13] as special cases
and, moreover, our integral conditions are similar in form and at
times reduce exactly to those used in [9, 10, 12, and 13].

Relative to Theorem 4, if in addition to conditions (19)-(21) and
(24)-(26), we ask that r(0) = 0 and there exists N > 0 such that either
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(27) lim Γ[l/α(β)] ['{h^u) + N[h2(u) + \q(u)\]}duds = ~oo

or,

(28) lim Γ[l/α(s)] Γ{W^) - N[h2(u) + \q(u)\]}duds = +oo[

for all large Γ, then any solution x(t) of (1) satisfying (23) is non-
oscillatory. The alternate forms of (27) and (28) corresponding to
(16) and (17) are respectively

(29) lim sup Γ{h^u) + N[h2(u) + \q(u)\]}du < 0

and

(30) lim inf [{h^u) - N[h2(u) + \q(u)\]]du > 0 .

We will now give some examples to illustrate our results.

EXAMPLE 1. The equation

x" + χ/t2 = [sin (In t)]/t\ t ^ 1

fails to satisfy condition (21) for k = 0 or condition (22). Here x(t) =
cos (In ί) is a bounded oscillatory solution which does not converge
to zero.

EXAMPLE 2. The equation

x" + x\t1/2)/f = hx{t)9 t ^ 1

where hx{t) = [sin(ln t) - 3 cos(ln t)]/f + [sin3(ln ί1/2)]/ί9/2 satisfies condition
(20) with p = 3, condition (21) with & = 0, and (25). Here neither
(27) nor (28) holds and we see that x(t) = Γ 1 sin(ln t) is a bounded
oscillatory solution.

EXAMPLE 3. Consider the equation

(Fx'Y + t~axp(tβ) = λx(ί), ί ^ 1

where ft^t) = [4 + 2 cos(6 In t) + 6 sin(6 In t)]/tf + l/tβ, α > 3 and σ > -1.
Conditions (20), (21) and (25) are satisfied provided that βkp — α < - 1
and /9&p — a — σ < — 2. I f σ ^ l , then (28) is satisfied while if σ > 1,
then (30) is satisfied. Thus, in either case, if x(t) is a solution such
that

as t ><>o
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with k < {a + σ — 2)1 βv, then x(t) is nonoscillatory. Notice that
here the forcing term hx(t) changes signs.

The best nonoscillation theorem known to date for sublinear delay
equations is the theorem of Kusano and Onose in [9]; it includes as
a special case the nonoscillation criteria of Singh [13; Theorem 4.1].
There are several similarities between the conditions imposed in [9]
and those used here. For example, when k = 0 conditions (6)-(7) of
[9] imply condition (21) above. In addition, conditions (2)-(3) and
(4)-(5) of [9] imply conditions (29)-(30) and (27)-(28) above respectively.
On the other hand, even when p <; 1 our condition (20) on r{x) is
less restrictive than those used in [9] or [13]. Nor do we require
g(t)>0 as was needed in [9] and [13]. In both [9] and [13] the authors
required that their forcing term e(t, x) = e(t) be either nonnegative
or nonpositive; this was not done here. Other related results for
sublinear equations have been obtained by Staikos and Philos [14]
who studied nth order equations. They proved that for unforced
advanced equations all bounded solutions are nonoscillatory and for
forced delay equations all unbounded solutions are nonoscillatory.
When n = 2, their integral conditions on a(t), q(t) and e(t) are similar
to those used in [9-13] and this paper.

Brands [1] constructed an example of an equations of the type
(2) with a(t) = 1, g(t) = ί — 1, and e(t, x) == 0 such that q(t) satisfied

(31) [°eatZq(t)dt < oo, a < 2

and yet the equation possessed an oscillatory solution. This is
semewhat of a surprise since many sufficient conditions for oscillation
of ordinary equations have analogous counterparts (or may even be
special cases of those) for functional equations (see Kartsatos [8]).
Condition (31) is a far cry from the well known nonoscillation criteria
of Hille

[°tq(t)dt < co

for linear ordinary equations.
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ANNIHILATION OF IDEALS IN COMMUTATIVE RINGS

JAMES A. HUCKABA AND JAMES M. KELLER

Four theorem are proved concerning the annihilation of
finitely generated ideals contained in the set of zero divisors
of a commutative ring.

1* Introduction* An important theorem in commutative ring
theory is that if / is an ideal in a Noetherian ring and if / consists
entirely of zero divisors, then the annihilator of I is nonzero. This
result fails for some non-Noetherian rings, even if the ideal / is
finitely generated. We say that a commutative ring R has Property
(A) if every finitely generated ideal of R consisting entirely of zero
divisors has nonzero annihilator. Property (A) was originally studied
by Y. Quentel in [7]. (Our Property (A) is QuenteΓs Condition (C).)
Theorem 1 shows that all nontrivial graded rings have Property (A).
(For our purposes a nontrivial graded ring is a ring R graded over
the integers such that R contains an element x, not a zero divisor,
of positive homogenous degree.) Theorem 2 completely characterizes
those reduced rings with Property (A).

Property (A) is closely connected with two other conditions on
a reduced ring. One is the annihilator condition (a.c): If (a, b) is
an ideal of R, then there exists ceR such that Ann(α, b) — Ann(c).
The other condition is that MIN(iί), the space of minimal prime
ideals of R, is compact. Our Theorem 3 shows that for a reduced
coherent ring R Property (A), (a.c), and the total quotient ring of
R being a von Neumann regular ring are equivalent conditions; and
that each (and hence all) of these conditions imply that MIN(Λ) is
compact. Finally, in Theorem 4, we prove that every reduced non-
trivial graded ring satisfies (a.c).

We assume that all rings are commutative with identity. If R
is such a ring, let T(R) be the total quotient ring of R, let Z(R) be
the set of zero divisors of R, and let Q(R) denote the complete ring
of quotients of R as defined in [5]. Elements of R that are not zero
divisors are called regular elements.

2* Graded rings*. Y. Quentel, [7, p. 269], proved that if R is
a reduced ring, then the polynomial ring R[X] satisfies Property (A).
We generalize this to arbitrary nontrivial graded rings, and hence
to polynomial rings that are not necessarily reduced.

THEOREM 1. // R is nontrivial graded ring, then R satisfies
Property (A).

375
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Proof, Let / = (aί9 , ap) be an ideal of R contained in Z(R).
For i — 1, , p, let at = Σfcί^ &?} be the homogeneous decomposi-
tion of aif where deg b{

k

i] = fc. Let x be a regular homogeneous element
in R of degree t > 0. Construct an element α as follows:

where the s< are integers such that ts2 + m2 > n19 and *«< + mt >
Ui-ί + ίs^ij i — 3, , p. There exists a nonzero homogeneous element
c such that ca = 0. (The proof of this is identical to the proof of
McCoy's Theorem: If / is a zero divisor in R[X], then there is a
nonzero 6el2 such that bf = 0.)

Since dê &ĵ αf*] ^ deg[&i% '̂] unless i = j" and A; = h, the homo-
geneous compontets of a are {δ^α *}*™*.;,**". Thus, by the unique
representation in terms of the homogeneous components cb^x8* = 0
for all i, k. Since x $ Z(R), cb? = 0 for all i, k. Therefore, c e Ann(I).

COROLLARY 1. If R is any ring, then the polynomial ring R[X]
satisfies Property (A).

3* Reduced rings. In this section all rings are assumed to be
reduced.

THEOREM 2. For a reduced ring R, the following statements are
equivalent:

(1) R has Property (A);
(2) T(R) has property (A);
(3) If I is a finitely generated ideal of R contained in Z(R),

then I is contained in a minimal prime ideal of R;
(4) Every finitely generated ideal of R contained in Z(R),

extends to a proper ideal in Q(R).

Proof. (1) — (2) is clear.
(1) —> (3): Assume that I is a finitely generated ideal contained

in Z(R)f but not contained in a minimal prime ideal of R. Then
cl = 0 implies that c is in every minimal prime ideal of R; i.e., c = Q.

(3) —• (1): Let I = (xlf •• , a ; J c P , P a minimal prime ideal of R.
By [2, p. I l l ] , choose zt e Annfo), zt £ P. Then z = z±z2 zn Φ 0 and
z e ΓU=i Ann(X) = Ann(J).

(1) —* (4): If I is a finitely generated ideal contained in Z(R),
then IQ(R) has nonzero annihilator in Q(R). Hence, IQ(R) S Q(R).
has nonzero annihilator in Q(R). Hence, IQ(i2)SQ(i2).

(4) —> (1): Assume that I is a finitely generated dense ideal of
R such that IaZ(R). (A subgroup H of a ring R is dense, if
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Anniϊ = 0.) Then I is dense in Q(R), [5, p. 41], and whence IQ(R)
is dense in Q(R). But Q(R) is a von Neumann regular ring, [5, p. 42];
and von Neumann regular rings have Property (A), [3, p. 30]. By
the equivalence of (1) and (3) of this theorem, IQ(R) is not contained
in any minimal prime ideal of Q(R). But in Q(R), minimal prime
ideals are maximal. Therefore, IQ{R) = Q(R), a contradiction.

The results about the compactness of MIN(i2) that we need are
summarized in Theorems A and B.

THEOREM A. The following conditions on a reduced ring R are
equivalent:

(1) Q(R) is a flat R-module;
(2) MIN(ϋJ) is compact;
( 3 ) {M Π R: M e Spec Q(R)} = MIN(Λ);
(4) If aeR and if U = {MeSpecQ(R): a<£ M Π R}, then there

exists a finitely generated ideal I such that

Spec Q(R)\U ={Me Spec Q(R): I <£ M f) R}

( 5 ) If X is an indeterminate, then T(R[X]) is a von Neumann
regular ring.

Proof. A. C. Mewburn, in [6], proved the equivalence of (1)
through (4). Quentel proved that (2) and (5) are equivalent, [7].

THEOREM B. The following conditions on a reduced ring R are
equivalent:

(1) T(R) is a von Neumann regular ring;
(2) R satisfies Property (A) and MIN(JZ) is compact;
(3) R satisfies (a.c.) and MIN(ϋJ) is compact.

Proof. In [7], Quentel proved the equivalence of (1) and (2);
while M. Henriksen and M. Jerison, [2], showed that (1) and (3) are
the same.

A ring R is coherent in case I is a finitely generated ideal of R
implies there is an exact sequence Rm —> Rn —> I —> 0.

THEOREM 3. For a reduced coherent ring R, the following con-
ditions are equivalent:

(1) R has Property (A);
(2 ) R has (a.c);
( 3) T(R) is a von Neumann regular ring.

Proof. (1) -> (3): In view of Theorem B(2) we must show that
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MIN(iί) is compact. Let x e R. Since R is a coherent ring, Ann(#) = I
is a finitely generated ideal of R, [1, p. 462]. Let U = {Me SpecQ(Λ):
x £ M n R}. Assume that IaMnR for some Me Spec Q(R)\U, then
the ideal (/, x) c M Π R. It is clear that M Π T{R) is a proper ideal
of T(R) and that Mf]R = ΛfΠ T(R)Γ)R. Hence, (/, αO<=Λfni2cZ(i2).
By Property (A), Ann(/, #) =£ 0. But this contradicts the fact that
the ideal (/, x) = xR + Ann(cc) is dense, [5, p. 42]. By Theorem A(4),
MIN(ί2) is compact.

(2) —> (3): Let x e R, then Ann(x) = (zlf , zn) and Ann{Ann(x)} =
Annfo, , zn) = Ann(2). This last condition, given in [2], implies
that MIN(JB) is compact (even if R does not have a unit).

(3) -> (1) and (3) -> (2) are clear.

COROLLARY 2. Let R be a reduced coherent ring.
( 1 ) If R satisfies any {and hence all) of the conditions of

Theorem 3, the MIN(i?) is compact.
(2) If R is a nontrivial graded ring, then T(R) is a von

Neumann regular ring.

THEOREM 4. If R is a reduced nontrivial graded ring, then R
satisfies (a.c).

Proof. Let (α, b) be an ideal in R. If (α, 6) ςt Z(R), then Ann(α, 6) =
Ann(l). Assume that (α, b) c Z(R), and write a and 6 in terms of
their homogeneous components; say, a — am Λ- + an and b = bh +
• + 6fc. Let x be a homogeneous element of R, x £ Z{R), of degree
t > 0. Choose an integer s satisfying h + st > n and let c = am +
• + αn + bhx

s + + bkx
s.

Since R in a reduced, Ann(c) = f)P, where P varies over the
minimal prime ideals of R not containing c. By Lemma 3 of [8,
p. 153], each P is a homogeneous ideal. Hence, Γ\P = Ann(c) is also
homogeneous.

Let d be a homogeneous element in Ann(c). Then dat = 0 and
dbjX8 = 0 for all i, j. Then, da = 0 = db and we have Ann(c)c
Ann(α, b). The other inclusion is obvious.

Let R be a graded ring which contains a regular homogeneous
element. Define Tq = {α/δ: α and δ are homogeneous, 6 is regular,
and g = degree a — degree b). Just as in the integral domain case,
[8, p. 157], ΣTq is a graded ring containing R as a graded subring.

COROLLARY 3. Let R be a reduced nontrivial graded ring. The
following statements are equivalent:

( 1 ) MIN(JR) is compact)
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( 2 ) MIN(Γ0) is compact;
( 3 ) T(R) is a von Neumann regular ring.

Proof. (1) <- (3) by Theorem B.
(1) <-> (2): If S is the set of regular homogeneous elements of R,

then Rs = ΣTq and MIN(Λ) is homeomorphic to MIN(RS). By [4,
Lemma 1], there is a one-to-one order preserving correspondence
between the graded prime ideals of Rs and the graded prime ideals
of TQ. It follows from [8, p. 153] that the minimal prime ideals of
a graded ring are graded. Thus, MΪN(RS) is homeomorphic to MIN(Γ0)

REMARKS. (1) MINOR) compact -»Property A or (a.c). This
follows from an example in [6]. (2) Property (A) -*-> MIN(iZ) compact.
By [6. p. 427], there is a ring R for which MIN(i2) is not compact.
Applying Theorem B(5), T(R[X]) is not von Neumann regular. But
R[X] has Property (A), [7, p. 269]. Thus, MIN(i2[X|) cannot be
compact.
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NORM ATTAINING OPERATORS ON LEBESGUE SPACES

ANZELM IWANIK

Let X and Y be Lebesgue spaces (AL-spaces). Then the
norm attaining operators mapping X to Y are dense in the
space of all linear bounded operators from X to Y.

For any two real Banach spaces X and Y by B(X, Y) we denote
the Banach space of all bounded linear operators from X to Y. In
[7] Uhl proved that for any strictly convex Banach space Y the
norm attaining operators are (norm) dense in B(Lι[Q, 1], Y) if and
only if Y has the Radon-Nikodym property. The question of
whether the norm attaining operators are dense in i3(Z/[0, 1], Z/[0,
1]) has remained unsolved (cf. [7], p. 299). Here we answer this
question in the affirmative. In fact we prove a slightly more
general result.

First we introduce some notations. Let I stand for the unit
interval. For any function μ defined on the product algebra in
/ x / by μ*(ί = 1, 2) we denote the corresponding marginal functions
defined on the Borel subsets of I:

μ\A) = μ(A X I) ,

μ\B) = μ(I X B) .

The vector lattice of all finite signed Borel measures on I x I will
be denoted by M. Given any two finite positive Borel measures
mlf m2 on I we write M{mu m2) for the set of all measures μ in M
such that \μ\ι is absolutely continuous with respect to mt(i = 1, 2)
and

The measures m1 and m2 will be fixed throughout the rest of the
paper.

Let us recall that B{L\mύ, L\m2)) is a Banach lattice under its
canonical order (see [5], IV Theorem 1.5 (ii)).

The forthcoming theorem establishes an isomorphism between
M{mu m2) and B{L\m^9 L\m2)), and extends a corresponding result
of J. R. Brown on doubly stochastic operators ([1], p. 18). As
was kindly indicated by the referee, our Theorem 1 is also related

381
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to N. J. Kalton's representation of the endomorphisms from Lp to
Lp for 0 < p ^ 1 ([3], Theorem 3.1).

By < , •> we denote the canonical bilinear form on Z/°°(m2)* x
L°°(m2).

THEOREM 1. The space M(mlf m2) is a vector lattice ideal in
M and to each μ e M(mlf m2) there corresponds a unique operator
Tμ e BiL'im,), L\m2)) such that

(Tμf, h) = \f(xMy)dμ(x, y)

for all feL\mύ and feeL°°(m2). Moreover, the mapping μ-^Tμ is
a vector lattice isomorphism of M(mίf m2) onto B{U(m^), L\m2)) and

\\Tμ\\ =
dmι

for every μ e M(m19 m2).

Proof. First we note that M(mlf m2) is a vector subspace of
M. Since v e M(mlf m2) whenever 0 <; v e M and v ^ μ e M(mu m2),
we observe that M(mu m2) is a lattice ideal (and clearly a sublattice)
in M. If μ e M(mίf m2) then it is easy to see that the bilinear form

[/, h] = \f{x)h{y)dμ{x, y)

is well-defined and continuous on L\m^) x L°°(m2). Therefore there
exists a unique operator TμeB{U{m^, L°°(m2)*) such that

(see e.g., [5], IV §2). Clearly the mapping μ-+Tμ is one-to-one
and μ ^ 0 if and only if Tμ is a positive operator in the Banach
lattice sense. Moreover, for an arbitrary v ^ O in M(mί9 m2) and

for any heL°°(m2) we have <TU, h) = \hdv2, so

dm2

whence TJeL\m2) for any fe U°{m^. Consequently,
L\m2)) by continuity. Since every μ e M(mlf m2) is a difference of
two positive measures in M(m19 m2) and μ —> Tμ is a linear map,
we have TμeB(Σϊ(m^, L\m2)) for all μeM(mlf m2).

We now show that μ —> Tμ is an "onto" mapping. Since
O, L\m2)) is a Banach lattice, it suffices to prove that every
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positive operator T^B{U{m^)9 L\m2)) is of the form Tμ. Given any
such T we define a set function

μ(A x J5) = (TXA9 XB)

on all Borel rectangles in I x I. Evidently μ extends uniquely to
a finitely additive positive measure (denoted also by μ) on the

product algebra. The marginal measures μ\A) — \ T^ldm1 and

S JA

Tldm2 are finite, positive, and countably additive, so they
B

are compact by the classical result of Ulam. Since μ is a nondirect
product of μ1 and μ2

9 it is countably additive by Theorem 1 (i) in
[4] The unique extension of μ to a finite positive (countably
additive) Borel measure on I x I is again denoted by μ. By a
standard approximation argument,

\f(xMy)dμ(x, y) = (Tf, h)

for all feL'im,) and heL~(m2). Therefore T = Tμ. Finally, we
note that for every μ e M(m19 m2)

Tfl\\ = || Tm II = sup || Tmf\l = sup {Tmf, 1>

= sup \f(x)d\μ\\x) = sup \f(χ)^M-(χ)dmί(x)
J J dmι

d\μ\ι

dmι

where the suprema are taken over all nonnegative functions fe
Uimd with

COROLLARY 1. Let ve M(ml9 m2). If there exists a function
g e L°°(m2) with \ g \ = 1 such that the Radon-Nikodym derivative of
the marginal measure (g(y)dv(x9 y))1 with respect to mλ equals

dm1

on a set B of positive mγ measure, then the operator Tv attains its
norm on the unit ball in U{m^.

Proof. We put dx(x, y) = g{y)dv{x, y). Then

) ,0> = \xB(x)dX(x, y)
J

[ dX1 -,
1 dmγ —
JB dmγ

d\v
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implying || T^/m^B))]], = \\TU\\ by Theorem 1.

The algebra of sets generated by all dyadic-rational rectangles
in / x I will be denoted by J ^ . The σ-algebra generated by j y
coincides with the Borel algebra in / x /.

THEOREM 2. The norm attaining operators are dense in

Proof. Let T e B(L\m,), L\m2)). By Theorem 1 we have T=Tμ

for some measure μ in M(m19 m2). Without any loss of generality
we may assume

dm1

-j

Given 0 < ε < 1, the set

eI:P(x)>l
dm1

is of positive mι measure, say, m^D) = δ > 0. Now let P, (Ix/) —
P be the Hahn decomposition for μ with μ+ concentrated on P (see
[2], §29 Theorem A). Since P is a Borel set, there exists P e j /
such that \μ\(PΔP) < δε/4 ([2], § 13 Theorem D). We define a new
measure μ by

dμ — Xpdμ+ — X(Iy,n-pdμ~

Evidently P, (I x I) — P is the Hahn decomposition for μ and
d\μ - μ\ = XP^d\μ\. Since |^-/Z|(IxI)<δε/4, the Radon-Nikodym
derivative of \μ — μ\ι with respect to mλ must be less than ε/4 on
some set CczD of positive m1 measure. As PeJϊf, there exists a
natural number n such that P is a union of finitely many squares
corresponding to the dyadic partition of I into 2n subintervals of
equal length. Let Io be any such open subinterval intersecting C
on a set B — C Π Io of positive mx measure. We let

(x, y) + Xj-B(χ)dμ(x, y)

Note first that

d\v — μ\ = XB(ρ){ ) (%)\d(fi — μ)(x, y)

( s ) d (

dm1 /
——a i μ i \x9 yj .
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Therefore

4 2< 2 +
dm, 4 2

whence \\TP — Tμ\\ = \\ Tu_μ\\ ^ ε. Moreover,

= 1 on β and ^ 1 elsewhere.

The set (/0 x I) Π P is a finite union of squares of the form
Io x Ik(k = 1, « ,m), where each Ifc is an element of the dyadic
partition of / into 2n subintervals of equal length. Therefore
(B x I) n P is the finite union of the Borel rectangles B x Ik. We
define a function g e L°°(m2) as follows

/ χ { l i t ye \Jlkf

( — 1 otherwise.

Clearly the Radon-Nikodym derivative of the marginal measure
(g(y)dv(x, y))1 coincides with

d\v\ι _χ

dm,

on B. Therefore, by Corollary 1, Tv attains its norm and the proof
is completed.

By the known representation theorems for Lebesgue spaces (see
e.g., [5], II 8.5 Corollary and [2], §41 Theorem C, or [6], 26.4.9
Exercise (C)), every separable Lebesgue space (i.e., separable AL-
space in terms of [5]) is Banach lattice isomorphic with L\m) for
some finite positive Borel measure m on /. Therefore we obtain
the following corollary to our result:

COROLLARY 2. Let X and Y be separable Lebesgue spaces.
Then the norm attaining operators are dense in B(X, Y).

After the paper was accepted for publication, the last corollary
has been generalized to arbitrary (nonseparable) Lebesgue spaces as
a result of the author's conversations with Professors J. Bourgain
and H. P. Lotz. The proof is outlined below:

Theorem 1 remains true if we replace (I, m<) by (Ji9 mt) with
Ji compact Hausdorff and mt a finite regular (compact) positive
measure on the Borel α -algebra . ^ , and with M being the space of
all finite signed measures on the product σ-alglebra ^ x ,^>.

Indeed, the marginal measures I T*ldmlf \ Tldm2 are compact since

the measures m* are regular, and so Theorem 1 (i) of [4] is still
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applicable. The rest of the proof remains unchanged.
Theorem 2 is valid for the general spaces L\JU mt) with

essentially the same proof as before, Szf being replaced now by
the algebra of all finite unions of Borel rectangles in Jx x J2.

Now if Xίf X2 are arbitrary Lebesgue spaces then every Te
B(Xlf X2) can be approximated by norm attaining operators. Indeed,
let (xn) be a sequence in Xx such that \\xn\\ 5^1 and lim||Tα?J| =
| |Γ | | . The Banach lattice ideal Y1 spanned by (xn) is a Lebesgue
subspace with a weak order unit. Also the image TYλ is contained
in a Lebesgue subspace Y2aX2 with a weak order unit. By the
Kakutani representation theorem there exist compact spaces Ĵ  with
finite regular positive measures mf such that Yt = L\Jit m,). By
the above, the restriction 2\ of T to Yx can be approximated within
a given ε > 0 by a norm attaining operator To e B{ Ylf Y2) satisfying
|| τo\\ = || T||. If P denotes the canonical band projection of Xλ onto
Yi then it is easy to see that TQP + T(I - P) has norm | |Γ0 | | , is
norm attaining, and approximates T within ε.
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POINTWISE COMPACTNESS AND MEASURABILITY

SURJIT SINGH KHURANA

Among other results it is proved that if (X,%μ) is a
probability space, E a Hausdorff locally convex space such
that (Ef, σ(E\ E)) contains an increasing sequence of abso-
lutely convex compact sets with dense union, and f: X-> E
weakly measurable with f(X) c K> a weakly compact convex
subset of E, then / is weakly equivalent to g:X->E with
g{X) contained in a separable subset of K.

In [8] and [9] some remarkable results are obtained for the
pointwise compact subsets of measurable real-valued functions and
some interesting applications to strongly measurable Banach space-
valued functions are established. In this paper we continue those
ideas a little further. We first give a somewhat different proof of
([9], Theorem 1) and then apply it to give a generalization of
classical Phillip's theorem ([5]). Also some result about equicontinu-
ous subsets of C(X), the space of all continuous real-valued functions
on (X, τp) (τp is the lifting topology, [10], p. 59; in [8] this topology
is denoted by Tp) are obtained.

All locally convex spaces are taken over reals and notations of
[6] are used. For a topological space Y, C{Y) (resp. Cb(Y)) will
denote the set of all (resp. all bounded) real-valued continuous
functions of Y. N will denote the set of natural numbers.

In this paper (X, 9ί, μ) is a complete probability measure space.
Let £f be the set of all real-valued Sί-measurable functions on X,
Jίf™, the essentially bounded elements of £f, and AT00, the bounded
elements of &. We fix a lifting, [10], p: £f°° -+ M°° and on X we
always take the lifting topology τp ([10], p. 59). For fe^f,ge<£f,
we write / = g if f(x) = g(x), VxeX, and / = g if fix) = g(x), a.e
[μ]. For a Hausdorff locally convex space E, a function /: X-* E
is said to be weakly measurable if h<>f is Sί-measurable, Vfee£",
the topological dual of E. Two weakly measurable functions
/,: X-^E, ί = 1, 2, are said to be weakly equivalent if hofλ = h<>f2,
VheE'. The space ^ and norms || -||x and 1HU have the usual
meanings. We shall call a topological space, countably compact if
every sequence in it has a cluster point, and sequentially compact
if every sequence has a convergent subsequence.

We start with a different proof of the following result of [9].
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THEOREM 1 ([9], Theorem 1). Let H be a subset of &> such that
for any hλ eH, h2e H, hx Φ h2 implies hλ φ. h2. Then, with the
pointwise topology on H, the following are equivalent:

( i ) H is sequentially compact;
(ii) H is compact and metrizable.

If H is convex, then each of (i) and (ii) is also equivalent to:
(iii) H is compact;
(iv) H is countably compact.

Proof. By ([6], Theorem 11.2, p. 187) each of (i), (ii), (iii), (iv)
implies that H is relatively compact in Rx', with product topology.
Thus each of these conditions implies that H is pointwise bounded.
Denote by φ the homeomorphism, [0, oo]~> [0, 1], x —> x/(l -f x). For
any a e I, the directed net of all finite subsets of H, let ha —
sup {|fe|: h ea}, and pa ~ p(φ°ha). {pa} is a monotone bounded net
in Ch(X), which is boundedly complete. Let sup pa = P$ Cb(X). This
means there is an increasing sequence {a(n)} c / such that p —
sup paln) (this follows from the fact that μ(p) = sup μ(pa)). Since
pa = φoha, we get Pa^l} is μ-null, Va. From this it follows that
K — p~ι{l) is /i-null. Thus q — (φ~lop)Xχ/κ is a measurable function
such that \h\<Lq a.e. [μ], VheH.

(i) <=> (ii) is simple ([8], Prop. 1, p. 197), the metric d of (ii)
being defined by d(f, g) - || (/ - g)/l + g||lβ (ii) =- (iii) and (iii) => (iv)
are trivial. Now we come to the proof of (iv) => (i). Take a sequence
{f'n}czH. Since 1/(1 + q)H is relatively weakly compact in (£?u 11 | |x)
there exists a subsequence {/J of {f'n} and an / o e ^ ϊ such that
1/(1 + q)fn -> f0 weakly. Thus there exists a sequence {gn} in the
convex hull of {fn: 1 <> n < ô} (note {gn}aH) such that
1/(1 + q)gn-^f0 a.e. M (because a convergent sequence in (£?ίt || lU)
has a subsequence converging a.e. [μ]). Taking / to be a cluster
point of {gn} in H, we get 1/(1 + q)f = fQ(μ). We claim fn -> / in Jϊ.
If fn-+* f there exists an a; 6 X, an ε > 0, and a subsequence {/»} of
{/J such that one of the two following conditions are satisfied:

( i ) f':(x)>f(x) + e, Vn;
(ii) f':(x)<f(x)-6, Vn.

Since 1/(1 + q)f'ή —• 1/(1 + ϊ)/ weakly, proceeding as before we get
a sequence {gZ} in the convex hull of {/«: 1 ̂  ^ < °o} such that
1/(1 + q)gf: -> 1/(1 + q)f a.e. [μ]. If / " is a cluster point of foC'} in
H we get / " Ξ /(j«) but because of (i) or (ii), /"(cc) ^ f(x), a con-
tradiction. This proves that H is sequentially compact.

This result is also proved in [11] by a different method.
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By a classical theorem of Phillips [5], if f:X->Ef E being a
Banach space, is weakly measurable and f(X) is relatively weakly
compact in E, then / is weakly equivalent to a strongly measurable
function ([8], Theorem 3, p. 200). What one really needs to do is
to find a weakly equivalent function g such that g(X) is separable.
The next theorem is a generalization of Phillips' theorem.

THEOREM 2. Let (E, J^~) be a Hausdorff locally convex space
such that there exists an increasing sequence {An} of absolutely con-
vex compact subsets of (E\ σ{E\ E)) whose union is dense in
(E\ σ(E\ E)). Suppose f:X->Eis weakly measurable and f(X) c K,
for some weakly compact convex subset of E. Then there exists a
weakly measurable function g:X->E, g = f{w) and g(X)aK0, a
separable closed convex subset of K.

Proof. Since (E, σ(E, Ef)) can be considered as a subspace of RF\
with product topology, / can be considered as/: X—> RE\ For each
heE\ define g(h) = p(h<>f) and let g:X->RE', (g)h = g(h), VheE'.
g is evidently continuous. If g(xo)gK for some x0 e X, there exists,
by separation theorem ([6], p. 65), an heE' such that h°g{xo)>
sup (if). This is a contradiction since h o f <* sup h(K) implies
p(h o f) ^ sup h(K). Evidently g = f(w). Fix n e N. By Theorem 1,
Bn — {hog: h e An), with the topology of pointwise convergence on
X, is a compact metric space. We metrize E by the seminorms p%,
pn(x) = &xιp{\h(x)\:heAn}. We denote this metric topology by J7^.
For each n, En = (C(BJ, || ||) is a separable Banach space (here || ||
is sup norm), and so F = Πϊ=i En is a separable Frechet space. Let
XQ be the quotient space obtained from X by the equivalent relation,
x ΞΞ y <=> g(x) = g{y). Each xeX0 gives rise to xeC(Bn), x(t) — t{x)
for each teBn, for every n. Thus Xo can be embedded in F, xQ —>
(xOt xQf - ) e F. Taking, on XOf the topology induced by F, we easily
verify that g: Xo -> (E, S"^) is continuous and so (g(X)f J?l) is separa-
ble. Let Ko = the closed convex hull, in (E9 ^~)9 of a countable
dense subset of (g(X), J^l)- If g(X) <£ KQf by separation theorem,
there exists an h e E' and x0 e X such that h ° g(x0) > sup h(K0). Since
{E, ^ ς y z> Uϊ=i Λ>> ? o ^(^0) ^ sup q(K0), Vq e Uϊ=i -A»- Now there ex-
ists a net {fcj c JJ?=i^» s u c ^ that ha->h uniformly on each compact
convex subset of (E,σ(E,Er)). From this it follows h ° flr(α?0) ̂  sup h(K0),
a contradiction. This proves the result.

REMARK 3. If E is metrizable then {E'f σ{E\ E)) contains a
sequence of compact absolutely convex sets whose union is E'. If
Y is a completely regular Hausdorff space containing a <τ-compact
dense set and E — Cb( Y) with strict topology βQ, βlt then it is
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proved in ([3], Theorem 3) that (Ef, σ(E', E)) has an increasing
sequence of absolutely convex compact sets with dense union — here
E is not metrizable.

REMARK 4. The function g: X -> (E, σ(E, Ef)), obtained in this
theorem, is measurable in the sense of ([2], Def. 4, p. 89).

The next theorem, in some sense, is a generalization of ([9],
Theorem 3).

THEOREM 5. Let E be a Hausdorff locally convex space such
that there exist, in (E\ o(E\ E)), an increasing sequence {AJ of
absolutely convex compact sets whose union is Er. Suppose g: X —> E
is weakly measurable such that g ° f Φ 0 implies g ° f ^ 0, for every
feE'. Then g(X) is contained in a separable subspace of E.

Proof. In the notations of Theorem 2, Bn = {hog: he AJ are
compact and metrizable, with the topology of point wise convergence,
and J^l is the metric topology, on E, of uniform convergence on An.
Proceeding exactly as in Theorem 2, we prove that g{X) is a separa-
ble subset of (E, J^l). Let F = (E, ̂ )' and Eo = the closed separa-
ble subspace, in (E, ̂ ~), generated by a countable dense subset of
(g(X), J^l). If g(xo)0Eo for some xoeX there exists, by separation
theorem, an heEf such that h°g(x0) > 0 and h = 0 on EQ. Since
E' = U^=i AnczF, hog(x0) <; sup (h°g(X)) ^ sup h(EQ) = 0, a contradic-
tion. This proves the result.

In the next theorem we do not assume H to be uniformly
bounded ([8], Theorem 4, p. 203).

THEOREM 6. Let H be a pointwise bounded subset of C(X). If
H is equicontinuous then, with the topology of pointwise convergence
on X, its closure in C(X) is compact and metrizable. Conversely
if H is sequentially compact then there is a μ-null set A such that
H is equicontinuous at each point of the open set X\A of (X, τp).

Proof. If H is equicontinuous then its pointwise closed convex
hull Ho, in Rx, lies in C(X) and is compact and convex, and so the
result follows from Theorem 1.

Conversely suppose H is sequentially compact. Then, by
Theorem 1, H is compact and metrizable. By the generalized
Egoroff's theorem ([4], p. 198) there exists a Sί-partition of X =
UΓ=o-2Γ<, with μ(X0) = 0 and μ(Xt) > 0, Vi ^ 1 such that H\x. is
compact in the topology of uniform convergence on Xi9 Vi ^ 1.
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γt = X. π p(Xt), i ^ 1, are nonvoid, disjoint, open subsets of {X, τp)
and μ(A) = 0, where A = X\U?°=i Yf By the Ascoli Theorem ([1],
Ch. X, §2.5), H\Yχ are equicontinuous for each i. The result follows
now.
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COMMUTATION WITH SKEW ELEMENTS IN
RINGS WITH INVOLUTION

CHARLES LANSKI

This paper describes the structure of additive subgroups
and of subrings which are invariant under Lie commutation
with higher commutators of the skew-symmetric elements in
2-torsion free rings with involution. Except for cases arising
when the subring is central, or when the ring satisfies a
polynomial identity of small degree, the invariant subring
must contain an ideal of the ring. With the same exceptions,
the invariant subgroup must contain either the derived Lie
ring of the set of skew-symmetric elements in some ideal,
or the Lie product of the set of skew-symmetric elements
in the ideal with the set of symmetric elements in the ideal.
Furthermore, the appropriate one of these Lie products is
not Lie solvable.

The first general results of this kind were obtained for simple
rings by Her stein [4], who characterized the Lie ideals of K, the
set of skew-symmetric elements, and then by Baxter [2], who did
the same for the Lie ideals of [K, K], the derived ring of K. Their
work has been extended in several ways. For prime rings, the Lie
ideals of both K and [K, JKΓ] were studied by Erickson [3], and an
investigation of additive subgroups of K invariant under commutation
with [K, K] in semi-prime rings was made in [7]. This was followed
by a description of arbitrary additive subgroups invariant under
commutation with [Kf K] [9], and of subgroups of K invariant under
commutation with higher commutators of K [10]. Returning to
simple rings, Herstein [5] showed that no noncentral proper subring
could be invariant under commutation with K, except in certain
small dimensional cases. This work was extended to semi-prime rings
and commutation with [K, K] in [8]. Our purpose here is to complete
this chain of results by describing the structure of additive subgroups
and of subrings invariant under commutation with higher commutators
of K.

Throughout the paper, R will denote a 2-torsion free ring with
involution, *; S(R) = S = {r e jffjr* — r}, the symmetric elements of
R; K(R) = K = {r e R\r* = —r}, the skew-symmetric elements of R;
and Z{R) = Z, the center of R. The Lie product [A, B] of subsets
A and B of R is the additive subgroup generated by all commutators
[α, 6] = ab — ba for a 6 A and 6 6 B. A higher commutator of K is
a Lie product of K with itself, some fixed number of times in a
given association. For example, [[K, K], K] = V is a higher commu-
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tator of K, as is Ka) = [K, K] or [V, K{1)]. In general, write Kιi+1) =

The goal of the theorems mentioned above is to show that
Lie invariant additive subgroups of K contain [K(J), K] for J a
nonzero *-ideal of R, and that invariant subrings contain a nonzero
*-ideal. Even for simple rings, one encounters two exceptions; when
the invariant object is central, and when R is no more than sixteen
dimensional over its center. These exceptions exist for R a prime
ring also, and the second must include the possibility that R is an
order in such a simple ring, in which case we say that R satisfies
S8. As one would expect for semi-prime rings, one of the three
possibilities should hold in each prime image. In fact, a stronger
result can be proved. In [10] it is shown that an invariant subgroup
of K contains [K(J), K], which is "very" noncommutative or R de-
composes as a direct product of the two kinds of exceptions. To
make these notions precise, we recall two definitions from [10].

DEFINITION. Let R be a 2-torsion free semi-prime ring and set
X = {P\P is a *-prime ideal of R with 2R <£ P). Let

Q1 = n {PeX\R/P does not satisfy Ss}

and Q2= f] {PeX\R/P satisfies S8}. If for some subset TaR, T +
Q, c Z{RIQX)9 then (Qu Q2) is called a splitting of R for T.

When A is an additive subgroup of K invariant under commutation
with some higher commutator of K, then to say that there is a
splitting of R for A is clearly the same as being able to "construct"
R from the two kinds of exceptions discussed above. If no such
splitting exists, one associates to A a *-ideal of R with the property
described in our next definition.

DEFINITION. Let R be a 2-torsion free semi-prime ring, A a sub-
set of R, and J a *-ideal of R. Then J is called a controlling ideal
for A if for each PeX satisfying K(ί)(J)aP, either R/P satisfies S8

or A + PaZ(R/P).
The existence of a controlling ideal for A gives information about

A with respect to every PeX. For example, if there were no
splitting of R for A, but Az)K{1)(T) for some *-ideal T of R with
K{i)(T)Φθ, one might have TaP for some PeX with neither
A + Pa Z(R/P) nor R/P satisfying SB. Even if KW(I + P) c A + P
for a *-ideal I + P of R/P, there is no obvious way to lift this ideal
back to some /in R with Kw(I)aA, or to do this simultaneously for
many primes. However, an ideal J controlling A with A D K{1\J),
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uniformly satisfies A + Pz>K{ι)(J+P) for every P e X and K(i)(J+P) Φ
0 unless RjP is one of the two exceptional cases.

Next we make two easy observations to which we shall refer
several times. Henceforth, we assume that for PeX, the involution
on R/P is given by(r + P)* = r* + P.

LEMMA 1. Let R be a semi-prime ring and A an additive sub-
group of R satisfying [A, K(ί)] c A. Then for each PeX, K{1)(R/P) c
K(R) + P, and so, [A + P, K{i+l\R/P)]dA + P.

Proof Clearly, it suffices to show that Ka)(R/P)czK(R) + P. But
if χ + p9y+ PeK(R/P), then (xy - yx) + P = (xy - y*x*) + Pe
K(R) + P.

LEMMA 2. Let R be a semi-prime ring and J a "-ideal of R.
If for some PeX, K{ί)(J)aP, then either JaP or R/P satisfies S8.

Proof If J qL P, J + P is a nonzero *-ideal of R/P with
K{i)(J + P) = 0. It can be shown that this condition forces J + P
to satisfy S4, although one can get directly that J + P satisfies S8

by using Lemma 1, applying [10; Lemma 3], and then applying [7;
Lemma 2, p. 735]. It follows that R/P must satisfy S8 since it has
an ideal which does.

Before our first main result, which extends [9; Theorem 1, p.
77] to higher commutators, note that if V is any higher commutator
of K, then VaK and [ V, K] c V. An essential ingredient in our
arguments is [10; Theorem 1] applied to higher commutators of K,
which we state as

THEOREM A. Let R be a semi-prime ring and V a higher com-
mutator of K. There exists an ideal I* = I of R which is a controlling
ideal for V, and which satisfies VZD[K(I), K] and VZDI, where V is
the subring generated by V.

With the preliminaries done, we can now prove our first main
result, about invariant additive subgroups of S.

THEOREM 1. Let R be a semi-prime ring, A an additive subgroup
of S, and V a higher commutator of K so that [A, V] c A. Then
either there is a splitting of R for A, or there exists a *-ideal I of
R controlling A with A z> [K(I), S(I)] = Y and Y(i) Φ 0 for any i.

Proof By Theorem A, Vz> [K(J), K] for J* - J, an ideal of R
controlling V. Let B = J f] A, and observe that [B, K{ι)(J)]aB, and
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that J is a semi-prime ring. Using [9; Theorem 1, p. 77] we may-
conclude that either there is a splitting of J for JB, or that there
exists an ideal T* = ToΐJ with Bz>[S(T), K(T)]. The last paragraph
of the proof of [9; Theorem 1, p. 81] shows that for any PeX(J)
with TcP, either J/P satisfies S8 or B + PaZ{J/P). This together
with Lemma 2, shows that T is a controlling ideal for B.

Assume first that there is a splitting of J for B. It follows
that there is a splitting of R for B [10; Theorem 2]. Hence, for
each PeX either R/P satisfies S8 or (A Π J) + Pa Z(R/P). Since
[A, K{1)(J)]aAf)J, one obtains [A, iΓ2 )(J)]cP, if #/P does not satisfy
S8. Should K{i)(J)aP, then because J is a controlling ideal for
V, V + P c Z(R/P). An easy induction argument shows that i f ω c F
for some i, so that Kij+1)aP. The fact that P is a proper ideal of
R and Lemma 2 give that R/P must satisfy S8. On the other hand,
if K(ί){J) <£ P, then Km(J) + P is not commutative and [K\J) + P,
K{1)(R/P)]aK^(J) + P by Lemma 1, so [8; Theorem 2, p. 90] may
be used to conclude that the subring generated by K{2)(J) + P contains
a nonzero *-ideal of R/P, unless R/P satisfies S8. Thus the condition
[A, K\J)]aP forces either R/P to satisfy S8 or A + PaZ(R/P).
Consequently, a splitting of J for B gives rise to a splitting of R
for A.

Next, assume that A z> Bz) [S(T), K(T)], for T an ideal of J
controlling B. Set / = JTJ, a *-ideal of R. Clearly, A =) [S(J), ίΓ(J)]
and we claim that J is a controlling ideal for A. Let PeX and
suppose that Kίi](I)c:P. By Lemma 2, either ϋί/P satisfies S8 or
Id P. Assuming that R/P does not satisfy <S8, the *-primeness of
P, together with the facts that J is a *-ideal of R, and T* = Γ c J,
gives Γ c P n / . li JςLP then P n J e X ( J ) , so T c P n J means
that J/P Π J satisfies S8 or 5 + (P n J) c ^(J/P Π J), since Γ is a
controlling ideal for B. The first possibility is equivalent to the
nonzero ideal J + P of i?/P satisfying S8, which would force R/P to
satisfy S8. In the second case, (A Π J) + Pa Z{R/P) and our argument
in the last paragraph shows that A + Pa Z(R/P) if R/P does not
satisfy S8. The same argument shows that R/P must satisfy S8

when JaP. By definition, / is a controlling ideal for A.

Finally, assume that Γ(ί) = 0 for Y = [S(I), K(I)]. We claim that
this gives a splitting of R for A. Let PeX and note that Γ(ΐ) + P c P ,
Y(1)+PaK(R/P), and by Lemma 2 [Γ ( 1 )+P, ίC(1)(i?/P)]c Γ ( 1 )+P. From
[10; Lemma 3] we have either Γ(1) + PaZ(R/P) or that R/P satisfies
S8. In the first case, a result of Amitsur [1; Theorem 1, p. 63] shows
that (I + P)/P satisfies a polynomial identity, and so, R/P satisfies
the same identity. Of course, if laP we would be finished by our
earlier arguments. Consequently, localizing R/P at its central sym-
metric elements gives a semi-simple finite dimensional algebra Q [6].
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Since in this localization, I + P becomes Q, S(I) + P localizes to S(Q),
and K(I) + P localizes to K(Q), it follows that in Q, [[S, K], [S, K]] c
Z(Q). A consideration of the possible cases shows that Q is at most
four dimensional over its center. Very briefly, if Q is not simple,
or has an involution of the second kind, then Ql3) = 0, and otherwise
one can split Q to obtain matrices over a field, where straightforward
computations give the result. Consequently, R/P must satisfy S8 (in
fact, SA) so Y{ί) = 0 forces a splitting of R for A, completing the
proof of the theorem.

Combining Theorem 1 with [10; Theorem 4] gives the version
of [9; Theorem 2, p. 82] for higher commutators of K.

THEOREM 2. Let R be a semi-prime ring, V a higher commutator
of K, and A an additive subgroup of R satisfying [A, V]a A. Then
one of the following holds:

( i ) 4 D [K(I), K] = L for I* = I an ideal of R controlling
AΠK, and L( i) Φ 0;

(ii) Ai)[K(I), S(I)] =Y for I* — I an ideal of R controlling
AΠS, and Y{i) Φ 0;

(iii) there is a splitting of R for A f] S + A Π K.
If in addition, A* — A, then (iii) can be replaced by: (iii)' there is
a splitting of R for A.

In trying to improve Theorem 2 (iii) to (iii)', the same counter-
example and considerations as in [9] show that some additional
assumption is required. Before discussing the nature of the involution
on Rf we point out that if in Theorem 2 (iii), for each PeX with R/P
not satisfying S89 P is not a prime ideal of R, then in fact A + Pa
Z(R/P). To prove this, note first that if P is not a prime ideal of
R, then P - Q f] Q* for a Q prime ideal of R. Now Q + Q* is a
nonzero ideal of i2/Q* and q + Q* - (q - q*) + Q*, so Q + Q* c K + Q*.
If the higher commutator V in Theorem 2 contains K(i), then [A, Q{ί)] +
Q* c [A, K{ί)] + Q* c A + Q*, so [A, Q{ί)] + <3* c (A n Q) + Q* c
(A Π if) + Q* c Z(R/Q*). Since Q(ΐ) + Q* is a Lie ideal in R/Q*, it
follows that either A + Q*aZ(R/Q*), or Q(ί) + Q*c^(i2/Q*), unless Λ/Q*
satisfies S4 [11; Lemma 8, p. 120]. The possibility Q{i) + Q* c Z(R/Q*)
and repeated use of [11; Lemma 7, p. 120] force Q + Q* c Z(R/Q*),
which in turn means that R/Q* is commutative. Repeating the
whole argument with Q and Q* interchanged shows that A + Pa
Z(R/P) unless R/P satisfies S4. We isolate one special case of Theorem
2 to which our observation applies.

COROLLARY. // in Theorem 2, R is a ""-prime ring which is
not prime, then ApiS + AΓ\KczZ forces A c Z unless R satisfies S8.
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As in [9], the obstruction to showing that a splitting of R for
A Π S + A Π K forces a splitting of R for A occurs in prime rings
whose extended centroid has an induced involution of the second
kind [13; Theorem 4.1, p. 511]. When this involution is of the first
kind, we can prove the result corresponding to [9; Theorem 7, p. 93]
for higher commutators.

THEOREM 3. Let R be a prime ring with extended centroid C,
and assume that the involution induced on C is the identity map.
If V is a higher commutator of K and A is an additive subgroup
of R satisfying [A, F] c A, then Af)S + AΓ\K(zZ implies that
either A c Z or R satisfies S8.

Proof, Let / be the controlling ideal for V given by Theorem
A. Then /is a prime ring and Ka)(I) c Vimplies that [An/, Kw(I)]a
AΠ/. We wish to apply [9; Theorem 7, p. 93] to / and A n / , but
first we must verify that the involution on CI9 the extended centroid
of /, is the identity map. This follows from work of Martindale
since the extended centroid is the center of a certain quotient ring
and these quotient rings coincide for R and for / [12; Theorem 1,
p. 440]. A proof of this result, using the definitions in [13] follows
easily from the fact that any ideal T of / contains the ideal ITI of
R and an ideal N of R contains the ideal NI of /. This observation
and [13; proof of Theorem 4.1, p. 511-512] show that C and Cz have
the same kind of involution. Applying [9; Theorem 7, p. 93] gives
either A fϊ la Z(I) or / satisfies S8. Since / satisfying S8 forces R
to satisfy S8, assume that i f i ί c Z(I). Thus A f i ί c Z{R), and in
particular [A, K{ι\I)]<zZ, forcing [A, K{2)(I)] = 0. As in the first
part of the proof of Theorem 1, we must have A a Z unless R
satisfies S8t completing the proof of the theorem.

Using the same ideas as above, we can obtain the higher com-
mutator version of [8; Theorem 3, p. 92] for invariant subrings.
Note that for subrings, the nature of the involution is immaterial.

THEOREM 4. Let R be a semi-prime ring, V a higher commutator
of K, and A a subring of R satisfying [A, V]aA. Then either
A ZD M* = M, a noncommutative ideal of R controlling A, or there
is a splitting of R for A.

Proof. By Theorem A, Vz>[K(J), K] for I* = J an ideal of R
controlling V. Clearly, B = A{M satisfies [B, K[ι) (/)] a B, so [8;
Theorem 3, p. 92] applies to the subring B of / to yield a splitting
of / for B, or that B D Γ = T, a noncommutative ideal of /. We
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observe that the proof of [8; Theorem 3, p. 92] actually shows that
T is a controlling ideal for B, since T can be chosen to be a con-
trolling ideal for B f] K by [10; Theorem 1], which is all that is
necessary. If BZDT holds, then AZDBZDITI = M. The fact that
M is a controlling ideal for A follows exactly as in the proof of
Theorem 1. Should M be commutative, the semi-primeness of R
would force MaZ(R). In particular, TaZ(T) and Z(T)2TaZ(T).
Thus 0 - [Z(T)2T, T] = Z{Tf[T, Γ], so Z(T)[1, Γ] = 0 from the fact
that T is a semi-prime ring. But now T[T, T] = 0 so that (Γ[Γ, T])2 =
0. forcing T[T, T] = 0. Hence [T, T] c T n Ann(T) - 0, contradicting
the assumption that T is not commutative. To complete the proof
of the theorem, it suffices to treat the case when there is splitting
of I for B. As in the proof of Theorem 1, such a splitting gives
a splitting of R for B [10; Theorem 2], and the fact that Bz)
[A, K{1\I)] for I a controlling ideal of R for V yields a splitting of
R for A.
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A RADON-NIKODYM THEOREM FOR FINITELY
ADDITIVE BOUNDED MEASURES

HUGH B. MAYNARD

An exact Radon-Nikodym theorem is obtained for finitely
additive bounded scalar measures defined on a field, the
additional condition being a local condition on the dominant
average range. The traditional technique of transferring the
problem to the Stone space, which results in approximate
Radon-Nikodym derivatives, is circumvented by isolating an
Exhaustion principal for finitely additive measures which
is then utilized to obtain the necessary decompositions.

Examples are given to illustrate the basic difficulties which arise
in differentiating with respect to signed finitely additive measures
and it is demonstrated that one difficulty arises from a lack of a
suitable Hahn decomposition of the differentiating measures. The
concept of an exhaustive Hahn decomposition is defined for finitely
additive measures and is compared to the related concepts of an
approximate Hahn decomposition as well as the standard Hahn
decomposition. It is shown that μ having an exhaustive Hahn
decomposition is equivalent to | μ | having a Radon-Nikodym derivative
with respect to μ and this result is then applied, in this situation,
to obtain a simplified Radon-Nikodym theorem.

The question of characterizing indefinite integrals of finitely
additive measures has been under consideration for a number of
years. There have been two basic approaches to this problem, both
seemingly arising from a desire to characterize the absolutely con-
tinuous bounded measures. The first was to enlarge the class of
integrable functions to include objects other than point functions
and to then obtain an equivalence between absolute continuity and
integral representation. Rickart [10] obtained such an equivalence
by including the multi-valued contractive set functions, while Tucker
and Wayment [12], in the setting of finitely additive operator-valued
measures, obtained a similar equivalence between an enlarged class
of integrable objects and a generalized definition of absolute con-
tinuity. The second approach is that of the Radon-Nikodym Bochner
theorem [3, p. 315, Theorem 14] which utilized the Stone space to
characterize the absolutely continuous, bounded variation measures
as those which can be approximated arbitrarily close in variation
by integrals of integrable simple functions. There does not seem
to be any characterization of indefinite integrals of point functions
with respect to a finitely additive bounded scalar measure prior to
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this paper.
The method of proof is interesting in that it is shown that if

m is representable as an integral with respect to μ, then there exists
certain "nice" decompositions of X such that both μ and m satisfy
a restricted form of countable additivity with respect to these de-
compositions. This is sufficient to allow arguments similar to those
used in the Bochner integral case [Maynard, 8, Theorem 2.1]. In
fact the lack of various decompositions seems to be the key to the
difficulties which arise in the finitely additive situation.

2 An exhaustion principle* The notation and definitions
employed in this paper will be the same as those of Dunford and
Schwartz [3, Cnapter III] which is an equivalent development, in our
setting, to that of Gould [7]. Let X be a set, Σ a, field of subsets
of X, and μ: Σ —>R a finitely additive bounded measure ( Ξ set function).
As usual \μ\ will denote the total variation of μ and is a positive
finitely additive measure and Σ+ will denote the subset of Σ consisting
of sets with positive μ-variation. In addition we will use the notation
δ(A) to denote the diameter of a set AαR.

DEFINITION 2.1. A set property P is said to be locally exhausting
in (X, Σ, μ) if there exists an α, 0 < a <̂  1, such that for each EeΣ+

there exists FaE,FeΣ+, such that \μ\(F) ^ a\μ\(E) and F has
property P.

DEFINITION 2.2. A countable (possibly finite) disjoint collection
{Xi}ieIdΣ+ is said to be exhausting in X if, given any ε > 0, there
exists N > 0 such that

< < £

LEMMA 2.3 (Exhaustion principle). If P is a locally exhausting
set property in (X, Σ, μ), then there exists a countable (possibly finite)
set of disjoint subsets, {Xi}i6Ic:Σ+, such that each Xi has property
P and {XJίe/ is exhausting in X.

Proof. Since P is locally exhausting, there exists X1 c X, X1 e Σ+,
such that Xx has P and \μ\(X^ ^a\μ\(X). Proceed by induction.
If I μ I (X — U?=i %i) = ° > t l i e n t h L e Process terminates and {Xt}?=1 satisfies
the conclusions of the lemma. If \μ\(X~ U?=i %i) > 0, choose Xn+1 c
X ~ U?=i X<> Xn+ιe Σ+> s u c h t h a t -X»+i has property P and \μ\(Xn+1) ^
a\μ\(X ~ \Ji=1Xt). If the process never terminates we obtain a
disjoint sequence {XJΓ=i c Σ+ such that each Xt has property P.
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If limΛ>oo \μ\(X~ U?=i-3Γ<) ̂  0, then there exists a β > 0 such that
> β, for 1 ^ n < co. Thus

•~ JJ-^i) > α/β > 0

for every n, and since {-3ΓJΓ=i is disjoint, this violates the boundedness
of μ.

DEFINITION 2.4. A set property P is said to be a null difference
property if whenever EeΣ+ has property P and FeΣ+ such that

= 0, then F has property P.

LEMMA 2.5. P is a locally exhausting null difference property
in a complete bounded finitely additive measure space (X, Σ, μ), then
there exists a countable (possibly finite) set of disjoint subsets, {Xτ)ieI(z
Σ+, such that X— \JίeiXi, each Xt has property P, and {XJiei is
exhausting in X.

Proof. By the Exhaustion principle there exists a set {Xt}ieI

satisfying all conclusions except that X need not equal \JieIXi. But
since {XJie7 is exhausting in X we have that X ~ \JieIXi is a μ-null
set and hence is measurable by completeness of (X, Σ, μ). Thus since
P is a null difference property, X— Uie/ ^i may be adjoined to Xι

without altering any of the desired properties.

3. A Radon-Nikodym theorem* The approach to be used in
obtaining a Radon-Nikodym theorem for bounded finitely additive
measure is similar to the locally small average range approach for
the Bochner integral. The major difficulty in this approach lies in a
possible instability of the average range due to locally large values
\μ\(E)l\μ(E)\ of the integrating measure. This is due to the lack
of a Hahn decomposition for bounded finitely additive measures. A
secondary problem is that while a local property will yield a countable
maximal decomposition of the space, the measures need not be coun-
tably additive with respect to this decomposition. It is easy to
construct examples on the field of finite and cofinite subsets of the
integers with locally small average range but without locally
exhausting small average range.

We consider first the various types of average ranges which
are useful in Radon-Nikodym theorems for the Bochner integral,
operator-valued measures, and finitely additive measures. Suppose
m: Σ —> R is another finitely additive measure. The standard average
range which occurs in the Radon-Nikodym theorem for the Bochner
integral [Rieffel [11], Maynard [8]] has the following definition.
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DEFINITION 3.1. For each EeΣ+, the average range of m with
respect to μ over E is: Am(E) = {m(F)/μ(F): FaE, μ(F) Φ 0}.

However without a Hahn decomposition the local structure of
Am{E) may always be poorly behaved when the ratios, \μ\(F)/\μ(F)\,
are large and hence to avoid this problem we consider, with finitely
additive measures, the dominant average range.

DEFINITION 3.2. For each EeΣ+, the dominant average range
of m with respect to μ over E is

A*(E) = \m(F)/μ(F): FczE, Fe Σ+ , and \μ(F)\ > hμ\(F)

The third average range we will consider is the ε-approximate
average range which is useful for operator-valued measures, Maynard
[7], but is primarily used here for convienence and to illustrate the
connections between the various average ranges.

DEFINITION 3.3. For each EeΣ+, the ε-approximate average
range of m with respect to μ over E is

A(E,έ) = {xeR: \m(F) - xμ(F)\ ̂ ε\μ\(F), VF(zE,FeΣ} .

The following two properties are the key properties involved in
the Radon-Nikodym theorem for finitely additive measures.

DEFINITION 3.4. m is said to have locally exhausting small domi-
nant average range iff for each ε > 0 there exists α(ε) > 0 such that
for EeΣ+ there exists F(zE, FeΣ+, with \μ\{F) > a(e)\μ\(E) and
δ(A*(F)) < ε.

DEFINITION 3.5. m is said to have locally exhausting approximate
average range iff for each ε > 0 there exists α(ε) > 0 such that for
EeΣ+ there exists F<zE, Fe Σ+, with \μ\(F) > a{e)\μ\{E) and
A{F, έ)Φ 0 .

DEFINITION 3.6. If m, μ\ Σ —> JB are finitely additive measures,
then m is ^-continuous iff for every ε > 0 there exists 3 > 0 such
that \μ\(E) <d implies that \m\(E) < ε.

It should be emphasized that the definitions of ^-continuity in
[5] and [8], requiring only that |m(JS7)| < ε, are too restrictive as
noted in [4] and should be the above definition.

LEMMA 3.7. Let (X, Σ, μ) be a bounded finitely additive measure
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space and m: Σ —» R be a μ-continuous finitely additive measure.
Then m has locally exhausting small dominant average range iff m
has locally exhausting approximate average range.

Proof. Suppose m has locally exhausting approximate average
range, and let ε > 0 be given and a(ε) the guaranteed constant
corresponding to e/4. Then if EeΣ+, there exists FaE, FeΣ+,
\μ\(F) > a(s)\μ\(E) such that A(F, e/4) Φ 0 .

Choose x 6 A(F, e/4). Then if F1 czF, F1eΣ+

9 such that |μ{Fx) \ >
1/21/ίKFO we have

— x
T

ε
2

Thus δ(A£(F)) < ε and m has locally exhausting small dominant
average range.

Suppose that m has locally exhausting small dominant average
range. Let ε > 0 be given and α(e) the constant corresponding to
ε. Then given E e Σ+, there exists FcE, FeΣ+, such that δ(Aί(F)) <
ε. Choose F1aF such that \μ{F\)\ > 1/21^1(2 )̂. Then it suffices to
show that miF^/μiF^eAiF.ε).

Let CdF,CeΣ+. If \μ\(C) = 0 then by /^-continuity, m(C) = 0
and we have the desired inequality. If \μ\(C) Φto9 then let 3 =
min(u+(C), μ~~{C)) where μ+(C) = suvDclc μ(D) and μ~{C) = —iτdD^ΰμ(D).
If δ = 0 the argument is trivial so suppose δ > 0. Then by Darst
[5] there exist disjoint sets A, B such that C = AU B with property
that μ+(B) < δ/4 < \μ\(B)/4 and μ~(A) < δ/4 < \μ\(A)β. Then

= \μ+(A) - μ~(A)\ >\μ\(A)~ 2μ~(A) >

and similarily \μ(B)\ > \μ\(B)/2. Thus

m(C)- m{AUB)- U B)

m(B) -

m(A) m(j?\)
μ{A)

m(B)
μ(B)

= s\μ\(C).

\μ{A)\

\μ{B)\<e\μ\{A) +

Thus m(F^lμ(Fi) e A(F, ε) Φ 0 and hence m has locally exhausting
approximate average range. As the third example in §4 demonstrates,
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it is not true that either of these two conditions imply that m has
locally exhausting small average range, even if m is an indefinite
integral. We are now prepared to prove our main theorem after
we point out a restricted form of countable additivity which will
enable us to mimic proofs in the countably additive case.

LEMMA 3.8. Let m and μ be two R-valued measures in (X, Σ), Σ
a field, such that m is μ-continuous. Then μ is uniformly countably
additive with respect to a disjoint sequence {Ei}T=ιC:Σ(i.e.,VF eΣ+,
KF) — ΣΠ=i KF Π Et) where convergence is uniform in F) iff {Ei}T=i
is exhausting in X. In addition if {E^i&1 is exhausting in X with
respect to μ, then m is also uniformly countably additive with respect
to

The following bound on the ε-approximate average range can
easily be calculated.

LEMMA 3.9. Let m and μ be two R-valued measures in (X, Σ).
Then for ε > 0, δ(A(E, ε)) ^ 2e, Ee Σ+.

THEOREM 3.10 [Radon-Nikodym theorem]. Let {X, Σ, μ) be a
bounded finitely additive measure space, Σ a field of subsets of X
and μ a signed measure. If m is a finitely additive R-valued
measure, then there exists a μ-integrable function f:X—*R such

that m(E) = \ fdμ, VEeΣ iff

(a) m is bounded, μ-continupus and
(b) for all δ > 0 there exists Fδ c X, Fδ e Σ such that

( i ) μ(X~F9)<δ
(ii) A%(Fδ) is bounded and
(iii) m has locally exhausting small dominated average range

in Fδ.

Proof. We may assume throughout the proof that {X, Σ, μ) is
complete since a function integrable with respect to the completion
is integrable with respect to (X, Σf μ) and has the same integral
values.

(=>) Suppose m(E) = \ fdμ. Then (a) is well known [Dunford
and Schwartz, 3, III 2.18 and 20]. Let δ > 0 be given. Then there
exists a simple function fn such that μ*{x: \f(x) — fn(x)\ > 1} < δ.
Choose AeΣ such that A z> {x: \ f(x) - fn(x) | > 1} and μ(A) < δ and
let Fδ = X~ A. Hence Fδ satisfies (i). Let JV=sup {\fn(x)\: xeFδ} + l.
Thus I f(x)\^Nΐor all xeFδ. Now if EaFδf \μ(E)\> 1/21μ\(E), then

\m(E)\=\ fdμ\^2N\μ\(E)^4N\μ(E)\ and hence A*(Fδ) is bounded.
JE
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Let ε > 0 be given and let α(ε) = min {1/16, ε/8N} and suppose
EeΣ+, Ed Fδ. Since / is totally measurable on Fδ9 there exists a
measurable partition {XJ?=0 of E such that |μ|(X0) < \μ\(E)/A and
δ(f(Xt)) < ε/2, 1 <; i ^ n. Now by Lemma 3.7 it suffices to show the
equivalence with locally exhausting approximate average range.

Claim 1. f{X,) c A(Xif ε/2), 1 ̂  i ^ n.

Proof. Let r e f(Xt) and let i*7 c Xif F e ^+. Then

\m{F) - rμ(F)\ = | j / ~ rdμ\ £ ±

since \f(x) - r\ ^ ε/2 for all α? eX,. Thus /(X,) c A(Xif ε/2).
We now cover the interval [—N,N] with the disjoint intervals

Ek = [-N + Jte/2, -iV + (fc + l)ε/2), 0 ^ A; ̂  [4ΛΓ/εJ = Q where [ ]
is the greatest integer function.

For each k, 0 ^ k <Ξ Q, we define the following set of indices:

Ik = {i: A(Xί9 ε/2) Π Ek Φ 0 } .

Now A(XU ε/2) must intersect at least one Ek since f(Xi) c
[ — iV, iV] and can intersect no more than two since δ(A(Xif ε/2)) <̂  ε.

Claim 2. There exists k ^ 0 such that

Proof. Suppose not. We already know that

\μ\(\jx) ^ \μ\(E) - \μ\(X0) >

but on the other hand

ΰ ^ ) = \μ\(i) I U*«l) ^ Σ li"l( U

<; (Q

Thus there exists Ifc such that |j"|(Uίeifc-X"t) > a(ε)\μ\(E). Let
UielkXi-

Claim 3. A(i^, ε) Φ 0 .
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Proof. Let r= —M+((k + l)/2)e and suppose F' c F, Ff e Σ+.
Now for each Xif i e Ik, choose r< e A(X*, e/2) n Eh.
Then I r — r, | ^ e/2 since r, r, e i?fe. Now

m(F') - r M n I 2* Σ I m(Ff Π X,) - r^(F' n X*) I

Thus r 6 A(F, ε) Φ 0.
Hence since \μ\(F) > a(s)\μ\(E) we have finished demonstrating

the necessity of our conditions.

(<=) Suppose m satisfies (a) and (b) and hence has locally ex-
hausting approximate range.

We will use the following notation. If z = (zu , zn) eNn, then
p(z) = (zlf , ^_0, q(z) = zn, and («, i) = (^, •••,«*, i) e^ Λ + 1 , where the
dependence on n is suppressed in an effort for notational simplicity.

Now there exists a disjoint sequence of sets {FN}aΣ+, which of
exhausting in X, guaranteed by conditions (a) and (b). We will
obtain a density for m on each FN and then sum to obtain the entire
density. Fix N.

Now the set property, A(F, 1/2) Φ 0, is a locally exhausting
null difference property in FN and hence there exists a disjoint
countable set {Yϊ}zeAιaΣ+, A1aN, with {Yl} exhausting in X, FN =
U.β^Γ.1, and A(Yi, 1/2) Φ 0 .

Since A{F, 1/22) Φ 0 is a locally exhausting null difference property
in each Yl we may decompose each in an exhausting manner, Y\ —
Ui^JLiu where A{YlΛ), 1/22) Φ 0 .

Let A2 = {z e N2: p(z) e Alf q(z) e A%{z)). Thus FN = \JZ,AJ
2

Z and
this decomposition is exhausting.

In general if {Γβ*}β6^ is exhausting in FNt An c iVw, F^ = \JzeAnYΐ,
we may decompose each Yf in an exhausting manner and obtain the
decomposition {Yΐ+ι}ZeA%+ι where

γ,% - u YUiu A:+I(ZN, A(γrz

+i)f i/2n+i) Φ 0

^ = U Γ, +1, AΛ+1 - {̂  e JV -1: p(«) 6 An, q(z) 6 AJJ}} .
zeAn+1

We now define a sequence of functions, fn: FN -> R, in the fol-
lowing manner. For each w and each zeAn choose x*eA(Y*f 1/2W)
and let fn = Σ . e ^ ^ r -

Claim 1. /» is totally measurable, bounded, and hence integrable
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and \ fndμ = Σ x:μ(Ef)Y?).
JE z£An

Proof. Since {Y?}zeAn is exhausting in FN, the finite sums con-
verge in measure to fn and hence fn is totally measurable. fn is
bounded since the dominated average ranges are bounded and hence
the 1-approximate average ranges are bounded in FN.

Claim 2. {/»(ί)}ϊ=i is uniformly Cauchy for t e FN.

Proof. Let e > 0 be given and choose M such that 1/(2M) < e.

If t e FN, there exists a sequence {zj, 2W e An, such that £ 6 Y£.
Thus if w, m > M with m > n we have that

= ^ 6 A(Γ , l/2 ) c A(Γβ», l/2 ) and

- α;?m e A(YΓm, 1/2W) c i i(Γ , l/2 ) .

But δ(A(YZ, 1I2*))^1I2*-X and hence |/ ί l (ί)-
for any ί 6 FN.

We thus can define gN(t) = limw.„/„(«): ̂  -> Λ.

Claim 3. gf̂  is totally measurable, bounded and hence integrable.

Proof. fn —> gN uniformly and hence in measure which implies
that gN is totally measurable. gN is bounded since the functions {/J
are uniformly bounded.

Claimim 4. 1 gNdμ = lim„_«, \ /ftd/ ,̂ VEeΣ, EaFN.
JE JE

Proof. The functions {/n}ϊU are uniformly bounded and converge
uniformly, and hence in measure, to gN on FN. Thus by the Dominated

Convergence theorem we obtain that gN is integrable and \ gNdμ =

l i ί fndμ,VEeΣ.

Claimim 5. \ gNdμ = m{E), VEeΣ,Ea FN.
JE

Proof. Let e > 0 be given. Then there exists n such that

I ( gNdμ - \ fndμ\ < e/2 and such that l/2% < ε/8\μ\(E). Now choose
I JE JE

K > 0 such that

( i ) \\fndμ-
\ JE z \{K . . . K)

ze Am

<f
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(ii) \m\(E~ U

Then

m(E) -

m

χ:μ(E n YT)

')

(E~ U (EΓίY?))
\ z^(K ... A) /

+ \
K)

\m(EnY,n)-x:μ(EΓlY?)\

^ — + Σ —IJHI ( # Γl I ? ) since ^Γ 6 A( Γ2

W, l/2%)
8 z^(A, . ,AΊ 2n

^ -|- + - ί- | μ I (£7) , since {17} is exhausting ,
σ Δ

Thus

8 8 4

\ sr^d^ - m(E)
JE

IS.
. -\f.dμ

E JE

Ldμ - Σ

Σ x7μ(E Π Y?) - m(E)

Since ε > 0 is arbitrary, I gNdμ =

If we extend each gN to be zero off FN and let hk = Σ Λ = I 0Λ~ and
/ = \ϊm.k^aohh = Σ5?=i^f it suffices [Dunford and Schwartz, III, 3.6]
to show the following three conditions are satisfied.

( i ) hk —> / in measure,
(ii) for each ε > 0 there is a EεeΣ such that

ι\ < ε, k = 1, 2, , and

(iii) lim^K^).^ \ Ihk\d\μ\ = 0, uniformly in fc.

The first two conditions follow easily from the exhaustive nature
of {FN}. If ε > 0 is given, choose δ > 0 such that | μ \{E) < δ implies
\m\(E)<ε.

Then for any k and any Ee Σ, \μ\(E) < δ, we have

\hk\d\μ\ = ^
k Λ
L̂  FN)

< ε .
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Thus for EeΣ,

\ fdμ = Σ ( 9Ndμ = Σ ™>(E Π FN) = m(E)
JE A'=l JE N = l

since {FN} is exhausting in X.

COROLLARY 3.11. Let {X, Σ, μ) be a positive bounded finitely
additive measure space. If m is a finitely additive R-valued
measure, then there exists a μ-integrable function f: X —> R such that

m(E)= \ fdμ, VEeΣ, iff
JE

(a) m is bounded, μ-continuous, and
(b) for all 8 > 0 there exists Fδ c X, Fδ e Σ such that
( i ) μ(X~Fδ)<δ,
(ii) Am(Fδ) is bounded and
(iii) m has locally exhausting small average range in Fδ.

Proof If μ is positive then μ = \μ\ and hence AJJE) = A*(E).

4* Examples* The failure of absolute continuity and boundedness
to imply the existence of a density arises, it appears, from the lack
of appropriate decompositions of the space which are obtainable in
the countably additive case on a σ-algebra.

When the domain is a σ-algebra, it is impossible to suitably
separate the support of countably additive measures and finitely
additive measures which yields the failure. If m is Lebesgue mea-
sures on [0, 1] and Σ the Lebesgue measurable subsets of [0, 1], we
have, for any nonzero μe[L°°(m)]* = ba(Σ, m) such that μ ^ 0 and
μ is purely finitely additive, that m is (m + ^-continuous. However

there exists no density / such that m(E) = I fd(m + μ) = \ fdm +
fdμ since I fdμ must be identically zero, (otherwise it is purely

E J E

finitely additive) and hence / = 1 a.e. Thus JMΞOOΠ Σ which yields
the desired contradiction.

If the doman is a field, not a tf-field, then we can illustrate the
failure utilizing countably additive measures since we do not have
a Hahn decomposition. Let X = [0, 1), Σ the field generated by the
half open intervals, [α, b). Let m represent Lebesgue measure on
[0, 1) and choose a Lebesgue measurable set A c [0, 1) which intersects
every interval in a set with positive Lebesgue measure. Define
m(E) = μ(E f] A) - μ(E Π Ac), E e Σ. Of course A £ Σ. Then m is
^-continuous and m is bounded, in fact \m\ — μ. Now m cannot be
an indefinite integral with respect to \m\ since for EeΣ+, δ(Am(E)) = 2
and hence m does not even have locally small average range.
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A similar example can be used to show that while indefinite
integrals need have locally small dominated average range they need
not have even locally bounded average range. Let X, Σ, A, and m

be as above and v(E) — I xdm.

Then if EeΣ+, there ̂ exists a subset FeΣ+, FaE, such that
m(F) — 0 and yet v(F) Φ 0. Then by m-continuity of v there are
sets, {B}, BczF such that the values {m(B)} are arbitrarily small and
yet Mi?)} are uniformly bounded away from zero and hence the
average range is never bounded.

The above examples depend upon a lack of suitable decompositions
of the underlying space. The effect of appropriate Hahn decomposi-
tions is to eliminate many of the difficulties.

DEFINITION 4.1. Let μ: Σ —>R be a bounded finitely additive
measure. Then μ has a Hahn decomposition iff there exist disjoint
sets A, B 6 Σ, X = A U B, such that μ+(B) = μ~(A) = 0.

μ has an approximate Hahn decomposition iff for each ε > 0
there exists disjoint sets Aε, Bε e Σ, X = Aε U Bε, such that μ+(Bε) < ε
and μ~(Aε) < ε.

μ has an exhaustive Hahn decomposition iff there exist two
increasing sequences {An}, {Bn} c Σ such that μ+(Bn) — μ~(An) = 0 and
| / ί | ( I - ( A . U B . ) ) - * 0 as n-> <«.

An exhaustive Hahn decomposition is equivalent to the countably
additive extension on the Stone space having a Hahn decomposition
where each set is, within a null set, a countable union of images
from Σ+. The second example in this section shows that finitely
additive bounded measures need not have exhaustive Hahn decomposi-
tions. Darst [3, Lemma 2.1] has shown, however, that every finitely
additive measure has an approximate Hahn decomposition and, of
course, every countably additive measure on a α-field has a Hahn
decomposition.

The Radon-Nikodym theorem simplifies when the integrating
measure has an exhausting Hahn decomposition as the following
simple lemmas demonstrate.

LEMMA 4.2. If μ is a bounded finitely additive measure on
(X, Σ)9 Σ a field, then there exists a μ-integrable f such that \μ\(E) —

S fdμ, iff μ has an exhaustive Hahn decomposition. If Σ is a a-
E f

field then \ μ \ (E) = \ fdμ iff μ has a Hahn decomposition.E

LEMMA 4.3. If μ is a bounded finitely additive measure with
an exhaustive Hahn decomposition, then any bounded finitely additive
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measure has locally exhaustive small dominated average range with
respect to μ iff it has locally exhaustive small average range.

These lemmas yield the following theorem.

THEOREM 4.4. Let (X, Σ, μ) be a bounded finitely additive measure
space with an exhaustive Hahn decomposition. If m is a finitely
additive R-valued measure, then there exists a μ-integrable function

f:X->R such that m(E) = \ fdμ, VEeΣ iff

(a) m is bounded, μ-continuous, and
(b) for all δ > 0 there exists Fδ c X, Fδ e Σ, such that

( i ) μ(X~F,)<δ
(ii) Am(Fδ) is bounded and
(iii) m has locally exhausting small average range in Fδ.
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PEIRCE IDEALS IN JORDAN TRIPLE SYSTEMS

KEVIN MCCRIMMON

We show that an ideal in a Peirce space Jt(i — 1,1/2,0)
of a Jordan triple system / is the Peirce {-component of a
global ideal precisely when it is invariant under the multi-
plications L(J1/2, J1/2), P{Jί/2)P(Jι/2) (for i = l ) ; under L(J1/2, Jι/2),
P(Jv*)P(Ji/t), P(Ji/2)P(β)P(Ji/i), L(J1/2ί e)P(J0,J1/2) (for i = 0);
under LίJj, L(J0), L(J1/t, e)L(e, J1/2), L(J1/2, e)P(e, J1/2) (for
i = 1/2). We use this to show that the sub triple systems
Jx and Jo are simple when J is. The method of proof closely
follows that for Jordan algebras, but requires a detailed
development of Peirce relations in Jordan triple systems.

Throughout we consider Jordan triple systems (henceforth abbre-
viated JTS) with basic product P(x)y linear in y and quadratic in
x, with derived trilinear product {xyz} = P(x, z)y = L{x, y)z, over an
arbitrary ring Φ of scalars. Because we are already overburdened
with subscripts and indices, we prefer not to treat the general case
of Jordan pairs directly, but rather derive it via hermitian JTS.
For basic facts about JTS and Jordan pairs we refer to [1], [3], [6].
Our analysis of Peirce ideals will closely follow that for Jordan
algebras; although the basic lines of our treatment are the same as
in [4], the triple system case requires such horrible computations
that we do not carry out so fine an analysis, but concentrate just
on the main simplicity theorem.

1Φ Peirce relations in Jordan triple systems* Any Jordan triple
system satisfies the general identities

(JTl) L(x, y)P(x) = P(x)L(y, x)

(JT2) L(x, P{y)x) = L(P{x)y, y)

(JT3) P(P(x)y) = P(x)P{y)P{x)

and the linearization

(JT3') P({xyz}) + P(P(x)y, P(z)y) = P(x)P(y)P(z) + P(z)P(y)P(χ)

+ P(x, z)P(y)P(x, z) .

A more useful version of this is the identity

(JT4) P({xyz}) = P{x)P{y)P{z) + P(z)P(y)P(x) + L(x, y)P(z)L(y, x)

- P(P(x)P(y)z, z) .

Other basic identities we require are

415
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(JT5) L(x, y)P(z) + P(z)L(y, x) = P(L(x, y)z, z)

(JT6) P(x)P(y, z) = L(x, y)L(x, z) - L{P{x)y9 z)

(JT7) P(y, z)P(x) = L(z, x)L(y, x) - L(z, P(x)y)

(JT8) 2P(x)P(y) = L(x, yf - L(P(x)y, y)

(JT9) [L(x, y), Liz, w)\ = L(L(x, y)z9 w) - L(z, L(y, x)w) .

(See for example JP1-3, 20, 21,12-13, 9 in [1, pp. 13, 14, 19, 20J.)

PEIRCE DECOMPOSITIONS. NOW let e be a tripotent, P{e)e = e.
Then J decomposes into a direct sum of Peirce spaces

** — «/ 1 \X? *J 1/2 \X/ *J 0

relative to β, where the Peirce projections are

E1/2 = L(e, e) - 2P(e)P(e) ,

J5Ό B( ) = I - L(fi, e) + P(e)P(e) .

We have

(1.2) L(β, e) = 2ί/ on J, , P(e) = 0 on J1/2 + Jo

Note that P(e) is not the identity on Jίf though Jγ = P(e)J: it induces
a map of period 2 which is an involution of the triple structure and
is denoted by x—> x*(xe Jx). For reasons of symmetry we introduce
a trivial involution x —> x on Jo, so * is defined on Jγ + Jo

(1.3) atf - P(e)x, , α;0* = α;0 .

Note that if J is a Jordan algebra and e is actually an idempotent,
then Xι = a?! too.

The Peirce relations describe how the Peirce spaces multiply.
Let i be either 1 or 0, and j — 1 — i its complement. Then just as
in Jordan algebras we have

(PD1) PWJtCLJt, P{J%)Jj = PWJ1/2 - 0

(PD2)

(1.4) (PD3)

(PD4)

(PD5) {J,JyJ} = 0 .

(For all this see [6] and [1, p. 44].) These show that the Peirce
spaces are invariant under the multiplications mentioned in the
introduction.

PEIRCE IDENTITIES. For a finer description of multiplication
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between Peirce spaces it is useful to reduce Jordan triple products
to bilinear products whenever possible. We introduce a dot operation
x>y (corresponding to χoy in Jordan algebras) for elements ak in
Peirce spaces Jk, and a component product Ei(x1/2, yι/2) (corresponding
to the ^-component of x1/2°y1/2) as follows:

(Bl) xrVi/2 = 2/1/2 #i = {x&yl/2} Lfa) = L(x19 e): J1/2 > J1/2

(B2) a?0 3/1/2 = 2/1/2 Bo = {XoVi/2e} L(x0) = P(x0, e): J1/2 > J1/2

(B3) x\ = P(xγ)e, xί-Vi = {^eyL} L{xλ) = L(xlf e): Jx > Jx

(B4) E^x^, yι/2) = {x1/2yι/2e} J1/2 x J 1 / 2 > J,

(B5) EQ(x1/2, 2/1/2) = {£1/2^1/2}, -̂ 0(̂ 1/2) = Pfrxώe: Ji/zXJ^ > Jo

(B6) Afe/2) = ^(^i/2, β), LO(B1 / 2) = L(e, a?1/2) so t h a t

Liix^di = αi ajχ/2, Lt(x1/2)a,j = 0, L^x^y^ = ^(2/ 1 / 2, xi/2) .

It turns out that the only Jordan products #2 or #07/ which are not
expressible in triple terms are

The need to avoid these products causes many complications when
passing from Jordan algebra results to triple system results.

For example, let e be an ordinary symmetric idempotent in an
associative algebra A with involution, made into a triple system
J = JT(A, *) via P(x)y = xy*x. Then the Peirce spaces are the usual
ones, JΊ — An, J1/2 = A10 + A01, Jo = Λ)0 The bilinear products we have
introduced take the form

Bo 2/1/2 = B0?/ί2

-Ei(Bi/2, 2/1/2) = £Ί(B1 / 22/ί;2 + 2/ί2Bi/2)

JSΌ(Bl/2, 2/l/2) = E0(xl/2y1/2 + l/x/^/a) .

This suggests tha t because of the * the products αv2/i/2 and £Ί(x1/2, 2/1/2)
are going to behave anomalously.

1.6. PROPOSITION. Tfce triple products of Peirce elements are
expressed in terms of bilinear products by

( P I ) P(x1/2)y1/2 = B1/2 .Ei(ίc1/2,3/1/2) - y1/2 EQ(xί/2)

(P2) {B!/^!/^^} = x1/2-Et(zι/2, yι/2) + zι/z-E&M, yι/2)

(P3) {xιl2a%yll2} = Ej(xί/2, af-y1/2) •=• E3 (yί/2, a*-x1/2)

(P4) {x1/2τ/1/2αj = ^(aJi/2, a? y1/2)

(P5) { α Λ W = αi (6t* «i/2)



418 KEVIN McCRIMMON

(P6) {atZyJbj} = at (z1/2. bf) = (α? z1/2) δ y

(P7) e s1/2 = 21/2

(P8) ^ ( z 1 / 2 , 2/1/2)* = EάVrt, x1/2)

and we can write

(P9) I/(^/2, α<) = Liiput-aϊ), L{aif x1/2) = L,iaf-x1/2) .

product of elements x = xγ + α?1/2 + x09 V = Vι + 2/i/2 + 2/o
mα|/ ί>£ written as

P(x)y = PixdVi + P(θ2/o

+ ί»i2/i«i/2} + {̂ 02/0̂ 1/2} + {̂ 1̂ 1/2̂ 1/2} +

(1.7) = P(x1)y1 + P(Xfl)ι/fl + {x1/2-E&M, y1/2) - y1/2-Eo(x1/2)}

+ Pfo/sXi/! + 1/0) + a?i (Xo Vi/*) + »i

+ JSί(α?1/2f xf 2/1/2) + #0(^1/2, «o 2/1/2)

Proof. Most of these product rules can be established either by
using JT5 to move L(x, y) inside a triple product P(z)w, or by using
the linearization of JT2 to interchange x and z in a product {x(P(y)z)w}.
Thus (PI) is P(aθy = P(x){yee} (by 1.2)) = {{eyx}ex} - {e7/(P(^)e)} (by
JT5) = E^x, y)-x — y E0(x), and (P2) is its linearization. (P7) follows
from PD2, {eez1/2} — z1/2, and (P8) is vacuous for ί — 0 by triviality
of * and symmetry of Eo, while for i = 1 P(e){xye} = P(e)L(e, y)x —
-L(y, e)P(e)x + P«2/eβ}, β)α? = - 0 + {yxe} by JT5. For (P3)-(P6) we
will need (P9),

L(x1/2, a,) = L(x1/2 aΐ, e) L(aί9 x1/2) = L{e, α ί a;1/2)

2, α0) = L(e, a?1/2 α0) L(a0, xί/2) = L(ao x1/2, e) .

To establish this for αL we note I/(&1/2> α j = L(x1/if P(e)at) =
— LίαfjP^XiJ + ̂ ί^/gβαf}, e) (linearized JT2) = L(a51/2 α*, β) and dually
for L(aί9 x1/2); for α0 we have L(a?1/2, ao) = L({x1/2ee}, ao) = —L({x1/2aoe}, e) +
L(a?1/2, {eea0}) + L(e, {e 1̂/2α0}) = — 0 + 0 + L(e, αj1/2 α0) and dually for
(̂̂ o> 1̂/2)- By B6 w e c a n write these in the uniform manner (P9).

Applying these to x1/2 yields (P3) and (P4) respectively, and applying
them to aiy bό respectively yields (P5) and (P6). Π

Even in a Jordan algebra the products P{x^yt and P(Xjj2)yt cannot
be reduced to bilinear products if there is no scalar 1/2 6 Φ (though
2P(xί/2)yi9 and more generally P(sc1/2, y^2)ai9 can be reduced by (P3)).

It will be convenient to introduce the abbreviation

P*fe/2) = *°Pfe/2K (i.e., P^x^a, = P(xί/2)a* ,
P * ( £ K (P(a?/8)α0)*, so
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We now list the basic Peirce identities. Many of these have
appeared in [6], or in [1], [2] disguised as alternative triple identities.

1.9. PEIRCE IDENTITIES. The following identities hold for ele-
ments au bu βi 6 Ji(i = 1, 0, j = 1 — i) and x,y,ze J1/2:

(PI1) we have a Peirce specialization α, -> L{aτ) of J% in End (J1/2):

( i ) P(α<)6<^ = α<.(δ<*.(αi.«)) L{P{ax)bf) =
(ii) e z = z L(e) — Id
(iii) af-z = a^iβ^z) L(af) — L(αx)

2

(iv) (a^b^-z = αi Cδj js) + i>r(a!-^)
+

(PI2) P(at)Et{x, y)* = Et(άt x, aΐ • y)

(PI3) L(ai, bt)Et(x, y) = Et(a< (6? x), y) + Et(x, a* -(b<• y))

(PI4) aιΈι{x, y) = Efa-x, y) + E,{x, a? y)

(PI5) P(z)Eί(x, y) = E,(z, E^y, z) x) - Ej(P(z)x, y)

(PI6) P(E{(x, y))at = P(x)P*(y)ai + P\y)P(x)ai + Et{x, P{y){aϊ-x))

(PI7) {P(as)α,} y + P(x)(a( • y) = E,{x, y) • (a* x)

(PI8) {P* (x)a,} y + a,r P{x)y = Et(a, x,y) x

(PI9) Pix^a.xb,} = P(x)a1 • (b0 • x) = P(x)b0 • (aΐ • x)

(PI10) P(o4 aj)δy = P(α,)P (s)δy, P^-x)^ = P*(x)P(ai)bi

(Pill) P(α,)P(α>)δ, = P*(af • x)bh P(x)P{aι)bi = P*(af • x)b(

(PI12) Uflt, bdP{x)Ci = P(ai • (6* x), x)c3- = Et{at • (bf • x), ef • x)

(PI13) Uβu WP*(ίκK = P*(aί (bt-x), x)cj = Et(crx, α« (δ? •*))

(PI14) PtxMαAe,} = P(α, 6, (of x))C< = ^ ( » , c? (δ4 (α* »)))

(PI15) £Ό(αo a;) = P(ao)Eo(x), E^-x) = P*{x)a\

(PI16) P(αέ »)!/ = α, P(»)(of y)

(PI17) P(a, • x, x)y = a, • P(x)y + P(x)(a* • y) .

Proof. The Peirce specialization relation PΙl(i) follows from JT5,
using B6: P(at)b, z = Lt(z)P(a,)bt = {-P{at)L^z) + P(Lt(z)at, a()}bz =
- 0 + {(z cOM.Kby PDl) = Hi•(&*•(«< •«)) by P5. We have already
noted e «1/2 = z1/2, whence (ii). Setting b1 = e in (i) yields (iii), and
linearization yields (iv).

The identities involving the E{ follow from JT5 and JT4. For
PI2 and PI5 we have B6 P(u)Ei(x, y) = P(u)Lj{y)x = - Z/ί(y)P(%)x +
{{Li(y)u)xu} (by JT5); when u = a( we get —0 + {(af y)xat} =
Et(μt y, a* *)(by P4) as in PI2, and when u = z we get —E3{P(z)x, y) +
E3{z, x E3-{z, y)*) (by P4) = E,{z, E3-(y, z) x) - E3(P(z)x, y) (by P8) as in
PI5. For PI3, L(air bt)Et(x, y) = L{aif 6t)L3 (i/)x = L}(y)L(ai, b()x -
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[Ls(y\ L(ai9 bt)]x = Et(L(aif bt)x, y) - L(Ld(y)ai9 bτ)x + L(aif Lt(y)bt)x (by
JT9) = Et(at-(bf -x),y)-Q + {<*,(&, y)x) = Et(at-(bf -x),y) + Et(x, at (δ4 y))
(by P4). PI4 is the special case b, = β of PI3. For PI6 we use JT3'
for i = 1: P({^β})αx = {P(x)P(y)P(e) + P(e)P(y)P(x) - P(P(α;)y, P(β)») +
P(e, x)P(y)P(e9 x)}ax = P(x)P(y)at + (P(y)P(x)aιγ - 0+ #,(&, P(y)(af x))9

while for i = 0 we use JT4: P({a?β2/})α0 = {P(aj)P(e)P(2/) + P(y)P(e)P(x) +
L(a?, e)P(y)L(e9 x) - P(P(x)P(e)yf y)}aQ = P(x)(P(y)a0)* + P(y)(P(x)a0)*)*

The identities involving P(o5)α< are established in the same ways.
For (PI7), P{x)a, y + P(x) (a, - y) = {^(y) P(x) + P ^ L ^ T / ) } ^ =
P{Lά{y)x, χ)at - P(^(x, y), x)a< (by JT5) = Et(x, y) (αf α?) (by P5). For
(PI8) we use linearized JT1: for i = 1, {(P(̂ )αf)?/e} + {(P(x)y)a?e\ =
{a fαffl yje}, for i = 0 {(τ/P(̂ )αo)e} + {ao(P(x)y)e} = {{aoxy}xe}, and we use
P8. For (PI9), Pix^a.xaj) = P(x)L{au x)aό = I/(a?, ai)P(x)aj (by JT1) =
{α α.P^α,} = P(x)ar(at x). For (PI10) with i == 1 we have by JT4
that P({α1ex})6, = {P(α1)P(β)P(a?) + P(x)P(e)P(aι) - P(P(aι)P(e)x9 x) +
L(αlf e)P(x)L(e, a^b, - {P^P^POε) + Pί^P^PίαJJδ^. If k = 0 this
becomes P{aι)P{e)P{x)b, = P(aJ(P(x)b0)* = P(α1)P*(^)δ0, while for fc = l
becomes P(x)P(e)P(aί)bί = P(x)(P(aί)b1)* = P* (α?) P(αx) 6t by (1.8).
Similarly if ΐ = 0 we have P({aoxe})bk = {P(ao)P(x)P(e) + P(e)P(x)P(a0) -
P(P(ao)P(x)e, e) + L(αo,x)P(e)L(x,αo)}6, = {P(αo)P(^)P(β) + P(e)P(x)P(ao)}bk,
reducing if & = 0 to P{e)P(x)P(ao)bo = P*(ίc)P(αo)6o and if k = 1 to
P(ao)P(x)P(e)b1 = P(ao)P*(x)b1. Since * is an involution on Ĵ , J, ,
(Pill) follows by applying * to (PI10) (with aif bk replaced by α*, 6ί).
Similarly (PI13) follows by applying * to (PI12) (with ai9 bt replaced by
α*, bΐ), where (PI12) follows from JT5: L(aif bt)P{x)cό = {-P{x)L{bu a%) +
P({aAx}, x))cά = PiarΦί x), x)cά (by P5) - EfarW-x), cf-x) (by P3).
For (PI14), PWiaM = -L(bίy a^P^c, + P({M^}, x)c, (by JT5) -
- 0 + {(6, {at - x))ctx) - Es(x, ct (6, (at a?))) (by P3). (PI15) is just the
particular case b = e of (PI10). For (PI16) with i = 0, P(aQ-x)y =
2?i(αo α; 2/) (αo α0 — E0(a0-x) y = αo {£Ί(αo x, !/)*•«} — P(ao)Eo(x)-y (by
PI15) = α0 {^(i/, α0 a?) #} — α0 {JE?0(«) (α0 2/)} (by Plli) = α0 {£Ί( ,̂ ao-y)-x-
E0(x)'(a0-y)} (by symmetry of P3) = αo {P(x)(αo τ/)}. For i = 1,
P(a1-x)y = Eάa^x, y) (^ a;) - ^ ( ^ . x). y = {~aι ( ^ ( ^ a, !/)•»)} +

^ ^ + ̂ α ^ ^ α r ^J flJ-P^αϊ-y (by (Plliv),
^ ( α . x, y) a?) + P^E^x, y)* x + E1(al x,y)
, y) x] (by (PI2), (PI8)) = a^{-Ex(a^x9 y) x

x, v)-x- E0{x)-y}} (by Plli, iii) = ^-{E^x, af y) - E0(x) (at »)}
(by (PI4), (P6)) = α1 P(a?)(α1* 2/). (PI17) is just the linearization αL->
αlt β of PI16, or it follows from JT5. •

Observe that the proof of PI16 depended only on PIl, 2, 4, 8, 15.
Note also that there is no analogue of Plliv for J09 so we cannot
commute an L(a0) past an L(b0) at the expense of an L(αo 6o), which
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means that if Ko is an ideal in Jo we do not have L(J0)L(K0) cz
L(K0)N(JQ) as we do for an ideal Kx in Jt. Similarly there is no
analogue of PI4 or PI17 for i = 0,

THE BRACKET PRODUCT ON J1/2. Even more basic than the in-
herited triple product P(x)y on J1/2 are the bracket products

(1.10) {xyz>i = Et(x, y) z, O; z\ = EQ(x)-z .

This gives two trilinear compositions on J1/2, the one for i = 0 being
symmetric in the first two variables

(xyz\ = (yxz)0 .

Formulas PI, P2 show

P(χ)y = (%yχ>i - O; y\
{xyz} = (xyz\ + <zyx\ - (xzy)0 .

In the special case of a maximal idempotent where Jo = 0 we see
P(x)y = (xyx)ly so the bracket product coincides with the triple
product; Loos [1, 2] has abstractly characterized such products <, ,)
on such J1/2 as alternative triple systems. We will show that in
general even if Jo Φ 0 the product (xyz)λ still behaves somewhat like
an alternative triple product.

The interaction of the bracket with multiplications from the
diagonal Peirce spaces is given by

L{aif btKxyzϊi = (L(ai9 bt)x, y, z)t + (x, L(aΐ, bf)y, z),
(1 14) z τ/-L* * w

- <a?, y, L(bΐ, at)),
(1.13) aι-{xyz)1 = (α^a, y, ^X + <aj, αf y, ^>! - <a?, y, aι-z)1

(1.14) L(α,, 64)<«^>y = <*, », ^(^ι*, &**)«>/

(1.15) LiaXxyz), = <y, a?, L{at)z)ό

(1.16) aι-(xyx}ι - <ara;, #, a?>x - E0(x) (a? y) - P(x)a? y .

Unfortunately (1.13) with 1 replaced by 0 is false (even in triple
systems JT(A, *) derived from associative algebras), and there does
not seem to be any analogous identity for the interaction of < , , >p

with Jo

To verify these identities, note for (1.12) L(ai9 bι)Ei{x, y) z —
α, •(&?•(#*(&, »)•*)) (by P5) = {a&Eάx, y)} z - Et(x, y) (bf (ar«)) (by
linearized Plli) = {E^a, (bf -»), ») + J^(α, αf (δ, y))} 2 - ^(a?, 2/) {Wαfs}
(by PI3, P5) - (L(aif bt)x, y, z\ + (x, L{af, bϊ)y, z\ - (x, y, L{bf, af)z\
(by P5). We obtain (1.13) by setting 6X = e in (1.12). For (1.14),
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L{au bx)Eό(x, y)-z = L(ai)L(bf)L(Ej(x, y))z = L{E,{x, y))L(aΐ)L(bf)z (using
P6 twice) = (x, y, L(af, bt)z)ό (using P8). When i = 1 (1.15) follows
from (1.14) by setting bt = e; in general we argue as before
HaάUEAx, y))z = L(Ej(x, y)*)L{aΐ)z = (y, x, a?-z}j. For (1.16),
a, • (xyx) = a, • {P(x)y + E0,(x) y) (by (1.10), PI) = {-P*(x)ar V +
E^arx, y)-x} + E0(x) (a? y) (by PI8, P6) = E0(x)-(a?-y) - P(x)aΐ y +
(a. x, y,x>!.

Next we have some intrinsic bracket relations for the more
important bracket (x, y, z} = (x, y, z)^

(1.17) (uv(xyz)) + (xy(uvz)) = ζuvx)yz) + (x(vuy)z)

(uv(xyx)) — ((uvx)yx) = (x(vuy)x) — (xy(uvx))

(1.18) = E0(x) • (vuy) - E^E^x) v,u)-y

+ E0(x, [E.ix, v) n - E0(x, u) v]) y

(1.19) (xyx)yw) - (xy(xyw)) = {P(e)P(y)P(x) - P(x)P(y)}e-w

(1.20) (x(yxy)w} - (xy(xyw)) = {P(x)P(y) - P(e)P(y)P(x)}e-w

(1.21) ((xyx)vw) - (x(vxy)w) = {P(e)P(y, v)P(x) - P(x)P(y, v)}e w

(1.22) {(xyz}yw) - (x(yzy)w) = {P(e)P(y)P(x, z) - P(x, z)P(y)}e w

(1.23) iuvx)yw) + (x(vuy)w) = ((xyu)vw) + (u(yxv)w} .

Here (1.17) is jus t (1.13) for a, = E^u, v), af = Ex{v, u), while (1.23)
is a consequence of the s y m m e t r y in uv, xy on t h e left side of (1.17).
Set t ing a1 = E1(u, v) in (1.16) yields (uv(xyx} — ({uvxyyxy( = (x(vuy)x) —
(xy(uvx)) by (1.17)) = E0(x) • (E^v, u) • y) - P(x)E1(v, u) • y = E0(x) •
(E&, u) y) - E0(x, E0(u, x) • v) • y + E0(P(x)v, u) • y (by PI5) = E0(x) •
(E^v, u) y)- E0(x, E0(u, x)• v)• y + E^EJjt, v) x,u) y-E0(E0(x) v,u) y
(by PI) = E0(x) • (E^v, u) y)- E0(Eΰ(x) • v, u) • y + E0(x, [E^x, v)-u-
E0(x,u) v]) y (by P3 and symmetry of Eo), which is (1.18). The
formulas (1.19), (1.20), (1.21), (1.22) are respectively

(1.19') E^xyx), y) - E&, yf = {P(e)P(y)P(x) - P(x)P(y)}e

(1.20') ES.x, <yxy» - E&, yf = {P(x)P(y) - P(e)P(y)P(x)}e

(1.21') E^xyx), v) - E&, (vxy)) = {P(e)P(y, v)P(x) - P{x)P{y, v)}e

(1.22') E^xyz), y) - E^x, (yzy}) = {P(e)P(y)P(x, z) - P(x, z)P(y))e .

Here (1.19') will follow by setting v = y in (1.21') (or z = x in (1.22'))
and using (1.20'). For (1.20') note Et{x, yf=P(E1(x, y))e = P(x)P*(y)e +
P*{y)P(x)e + E^x, P(y)(x-e)) (by PI6) = P{x)P(y)e + (P(y)P(x)e)* +
E&, P(y)x) = E,(x, <yxy> - P(y)e-x) + P(x)P(y)e + P(e)P(y) P(x)e =
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Ex(x, (yxy)) - {x(P(y)e)x} + P(x)P(y)e + P(e)P{y)P(x)e = Ex(x, (yxy)) +
P(e)P(y)P(x)e-P(x)P(y)e. For (1.21') note that E1(P(x)y + E0(x)-y9 v) -
E,(xf E,(vf x) y) = {(P(x)y)ve} + {yE0(x)v}*-{xyEι(v,xy} (by PI, P3, P 4 ) -
{L(P(x)y, v) + P(e)P(y, v)P(x) - L(x, y)L(x, v)}e = {P(e)P(y, v)P(x) -
P(x)P(y, v)}e by JT6. Finally, for (1.22') we have E,(y, Ex(x, y) z)*-
Ex(xf Ex{y, z) y) = {yzEt(x, y)ψ - {xyE^y, z)*} = P(e)L(y, z)L(y, x)e -
L{x,y)L{z,y)e - P(e) {L(P(y)z,x) + P(y)P(x,z)}e - {L(x,P(y)z) + P{x,z)P(y)}e
(by JT6, JT7) = E1(P(y)z9 x)* - E^x, P(y)z) + {P(e)P(y)P(x, z) -
P(x, z)P(y)}e = {P(e)P(y)P(x, z) - P(x, z)P(y))e (by P8).

In the special case that Jo = 0 we obtain the easy half of Loos'
characterization [1, p. 76] of alternative triple systems.

1.24. PROPOSITION. If K1/2aJι/2 is a bracket subalgebra
((K1/2Kί/2Kί/2) c K1/2) with E0(K1/2) = P(Kί/2)e = 0 (for example, K1/2 =
Ji/2 if Jo = 0, or Kί/2 = P(x)J1/2 or Kί/2 — P(x)J1/2 + Φx principal inner
ideals determined by an xe Jί/2 with P(x)e = 0), then Kί/2 becomes an
alternative triple system under the bracket

(xyz) = E,(x, y) z = {{xye}ez} (x, y, zeKί/2) .

The Jordan triple product on Kι/2 is then P(x)y = (xyx}.

Proof. The axioms for an alternative triple system are

(ATI) (uv(xyz)) + (xy(uvz)) = ((uvx)yz) + (x(vuy)z)

(AT2) (uv(xyx)) = ((uvx)yx)

(AT3) (xy(xyz)) = ((xyx)yz) .

Here (ATI) follows from (1.17), and (AT2), (AT3) from (1.18), (1.19)
s i n c e EQ(K1/2) = P(K1/2)e = 0 . B y ( P I ) w e h a v e P(x)y = E,{xy y ) - x =
{xyx} in this case.

If x has P(x)e = 0 then the inner ideals K1/2 = P(x)J1/2 a P(x)Jί/2 +
φx = K[/2 kill e, P(Kι/2)e = P{K[/2)e = 0. Indeed, by JT3 we have
P(Kι/2) = P(x)P(J1/2)P(χ), and by JT1 P(K'U2) = P(P(x)Jί/2) + P(P(x)J1/2,x) +
ΦP(x) = {P(x)P(J1/2) + L(x, J1/2) + Φ}P(x). To see next that these inner
ideals are bracket-closed subalgebras, first note that since P(K[/2)J1/2 c
Kι/2dK[/2 by innerness we have (xyx) = P(x)yeK1/2, hence by
linearization (xyz) + (zyx) e Kι/2, for any x, z e K[/2 and any y e J1/2.
Next we show (K1/2J1/2x) and (xJυ>2Kι/2) are contained in K1/2; by
skewness it suffices to prove the latter, where (xJι/2K1/2) =
Ex{x9 Jι/2) - P(x)J«% c -PixXEfa, J1/2r ' J1/2) + PiE^x, J1/2) x, x)J1/2 (by
PI17) aP(x)J1/2 + P((xJ1/2x), x)Jι/2 aP(K[/2)J1/2 cKi/2. Final-
ly, (K1/2J1/2K1/2) = E^K^ Jί/2) K1/2 (Z-P(x)(E1(K1/2ί Jί/2T - J1/2) +

J1/2) x, x)J1/2 aP(x)Jι/2 + P((Kι/2J1/2x), x)J1/2 aP(K[/2)Jι/2 (by
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the previous case) aK1/2. Thus in fact we have the stronger closure
(K.lf2Jλ/2Kxl2) C Kx/2. O

In any alternative triple system we obtain an ordinary bilinear
alternative multiplication by fixing the middle factor: the homotopes
A{u) with products x uy = (xuy) are alternative.

1.25. PROPOSITION. // K1/2 is a bracket-closed subspace of J1/2

with P(Kι/2)e = 0, then for any u e Kιί2 the homotope K$ with product

x ' u y = (xuy)

is an alternative algebra. If iι is a tripotent with P(u)e = 0
then we have an involutory map x —> P(u)x — x on K1/2 = Jγι2{e) Π
Ji(w) = P(u)J1/2(e), and the bracket can be recovered as

(1.26) <xvz> = (x uV)'uZ.

If in addition E^u, u) = {uue} = e then u acts as unit for P(u)J1/2(e),
and x -^ x is an involution of the multiplicative structure.

Proof. By 1.24 we know Kί/2 is an alternative triple system under
the bracket, hence the homotope K$ is an alternative algebra [1, p.
64]. When u is tripotent P{uf — P(u), so P(u) is involutory on
P(u)J19 and furthermore for x, y, ze P(u)J1/2 we have (# M2/) W2 —
(xyz) = ({xuy)uz} — (x(uyu}z) = {P(e)P(u)P(x, y) — P(x, y)P(u)}e-z
(by 1.22) = 0 since P{Kι/2)e = P(u)P{J1/2)P(u)e = 0. Thus we re-
cover the bracket on P(u)J1/2 from the bilinear product and the
involution.

When {uue} = Ex{u, u) = e in addition then u is a left unit,
u -%y = Eγ(u, u) y = e-y = y. If we knew x —> x reversed multiplica-
tion this would imply ΰ = u was also a right unit; we can also argue
directly, x -uu = (xuu) = Ex(x, u) u = {xu^ — E^u, u) x + E0(x, u)-u =
L(u, u){P(ufx) - e x + 0 (since E0(K1/2) = 0) = P(P{u)uf u)P(u)x -
x (using JT1) = 2P(u)?x - x = x.

To see x->x is indeed an involution, first use the right unit to
s e e x-uy = (x-uy) uu = (xyu)9

(1.27) x uy — (xuy) = (xyu) (when {uue} = e) .

Then

x uy = (u(xuy)u}

= {{uxu)yu) - {P(fi)P(x, y)P{u) - P(u)P(x, y)}e u (by 1.27)

= (xyu) - 0 (again P(K1/2)e = 0)

— X'uy (above) .



PEIRCE IDEALS IN JORDAN TRIPLE SYSTEMS 425

Thus the involution condition is precisely (1.27).
The condition E1(u,u)-y = y is necessary well as sufficient for

(1.27) to hold. Indeed, using (1.21), (1.18) and P(Kι/2)e = 0 one
can show in general that P(u){(xuy) — (xyu)} — (u(xuy)u) —
(u(xyu)u) = {(uyu)xu) — (uu(yxu)) — {Id — LίE^u, u))}(yxu)> which
again establishes sufficiency; for necessity set x = u, so (uuy) —
(uyu) = E^u, u)-y - P(u)y = E^u, u)-y — y. •

These alternative structures on the subsystems P(u)J1/2 are
important for the study of collinear idempotents [5]. These are
families of tripotents {eL, , en} with P(et)ej — 0, {e^e^ = eό for i Φ j ,
and the P(e/) Ji/2fe) = Jχ/ziβi) Π Jiiβj) carry isomorphic alternative
structures. (The motivating example is the collinear matrix units
{ell9 eί2, , eίn] in Mn{Φ) under xy*x.)

2. Ideal-building. A subspace Kd J is an ideal if it is both
an outer ideal

(2.1)

(2.2)

and an inner ideal

(2.3)

P(J)K(zK

L{J,J)KcK

P(K)JdK.

If K is already an outer ideal, the inner condition (2.3) reduces to

(2.3') P(ki)J(zK for some spanning set {fcj for K.

Note that the operators L(y9 z) cannot be derived from the P(x)'s.
From now on we fix a tripotent e with corresponding Peirce

decomposition

Since the Peirce projections (1.1) are multiplication operators, any
ideal K <| J breaks into Peirce pieces

K= K,φ Kί/2 0 Ko (K< = KΓ)J<).

Using the expression (1.7) for the product P{x)y in terms of bilinear
products, we obtain a componentwise criterion for K to be an ideal
(exactly like that in Jordan algebras).

2.4. IDEAL CRITERION. A subspace K = iζ. φ Kι/2 0 Ko is an
ideal in the JTS J — Jx 0 J1/2 0 Jo iff for i — 1, 0 ami j = 1 — i we
have
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(Cl) Ki is an ideal in Jt

(C2) EAJ^K^cKt
(C3) Jt K1/2 c K1/2

(C4) K{-J1/2^Kl/2

(C5) PiJ^K.czK,
(C6) P(k1/2)Ji c ϋΓj /or some spanning set {k1/2} for K1/2 .

If 1/2 e Φ ί/ιe% (C5) and (C6) are superfluous.

Proof. Clearly the conditions are necessary, since any product
with a factor in K must fall back in K. Just as in the Jordan
algebra case, they also suffice. Outerness (2.1) P(J)K(zK follows by
(1.7) since PiJJK^K, (by (Cl)), P^^K^K, (by (C5)), J1/2 ^(J 1 / 2 , iΓ 1 / 2 )c
K1/2 (by (C2), (C4)), ϋΓ1/2 J 0 cϋΓ 1 / 2 (by (C3)), J, • (Jo K1/2) c tfι/2 (by (C3)),
Jr(Kf-J1/2)czKι/% (by (C4), (C3) - note that ϋΓf = K, for any ideal
Ki <\ J( since the involution is given by a multiplication), and
Wi/ 2 , Jt-KUi)^Kt (by (C3), (C2)).

Outerness (2.2) L(J, J)K = P(J, K)J(Z K follows by the lineariza-
tion of (1.7). First note

(C2') E<(KUt, Jιh) c Kt

since ElKυt, J1/2) = Et(J1/t, Ku%)* c Kf c ίΓ,. We have {JJ&} c JSΓ4

(by (Cl)), {J^^K^dEjiJ^, Jt Kιh)dK} (by P3, (C3), (C2)),
KUt Eι(Jι/,M <= iΓ1/2 (by (C3)), JVt • E^Ky,, J1/2) + J1 / 2 ^ ( J 1 / 2 , iΓ1/2) c iί1/2 (by
(C2')( (C2), (C4)), J1 / 2 P(J1/2, ΛΓ1/2)e = J1/2 ^ 0(J 1 / 2, ϋΓ1/2) c iίΓ1/2 (by (C2), (C4)),
Jt • (Kf • Jn) + K< • (Jf • J1/2) c Kυt (by (C4), (C3)), Et(KUtt J* • Jι/2) c
^ ( ί ^ J J c X a b y (C2'», and ^ ( J 1 / 2 , ^ * J1/2) - ^ ( J 1 / 2 X, J1/2) c ^
(by (C4), (C2)).

Once ίΓ is outer we can apply (2.3') to obtain innerness: for the
spanning elements kr e Kr we have P(h)J = P(kι)Ji c ! £ by (Cl) if
i = 1, 0, while P(&1/2)j; c K, by (C6) and P(kί/2)Jι/2 = kι/2 E^k^, J1/2) -
Jυ* P(kί/2)e c ίΓ1/2 J, - J1/2 ίΓ0 c ίΓ1/2 by PI, (C5), (C3), (C4). Thus JBΓ is
an ideal.

When 1/2 6 Φ, (C5) and (C6) follow from (C2-C4) since P(x) =
l/2P(x, x) where P(Jι/2, J1/t)K< = E,(JUt,Kt 'J^aK, by (C4), (C2), and
P(J1/2, KM c ^ ( J 1 / 2 , Jf K1/2) + Ei(K1/2, Jf J^cK, by (C3), (C2), (C2')

D

An ideal ^ in a diagonal Peirce space Jt is invariant if it is
both L-invariant

(2.5) L(J1/2, J l Λ ) £ i = ^ ( J 1 / 2 , ίΓf J1/2) c

and if i = 0, also



PEIRCE IDEALS IN JORDAN TRIPLE SYSTEMS 427

(2.6) L(J1/2, e)P(J09 Jι/2)K0 = E0(J1/2, J0-(KQ-J1/2)) c Ko ,

and P-ίnvariant

(2.7) PiJ^PiJ^K, c Kt

and again if i = 0 also

(2.8) P*(J1/2)P(J1/2)K0 = P(J1/2)P*(J1/2)K0 = P(J1/2)P(e)P(J1/2)K0 c ϋΓ0 .

Note that the maps L(Jυ29 J1/2) and P(J1/2)P(J1/2) automatically send
Ji into itself (and L(J1/2, e)P(JQ, J1/2) and P(Jί/2)P(e)P(J1/2) send Jo into
itself).

An ideal if1/2 <] J1/2 in the off-diagonal Peirce space is invariant if

(2.9)

K1/2 = L(J1/2, e)L(e, Jι/z)Kι/2 = (K1/2J1/2J1/2) c

L(J)L(K)J1/2 = L(J1/2, e)P(e,

Note that these maps do send J1/2 back into itself.
An alternate characterization of in variance in terms of the bracket

products is that if1/2 be a subspace satisfying

(2.9') J^K1/2c:K1/2

(2.10 ) \e/i/2e/l/2^M/2/l Ί~ W1/2-̂ 1/2^1/2/ 1 + \^-l/2^l/2^ 1/2/ 1 ^ -̂ 1/2

(2.10") (^1/2^1/2^1/2)0 + {Kl/2) e71/2)0 C iΓi/2 ,

i.e., that iΓ1/2 be an ideal of the bracket algebra J1 / 2. Clearly any
invariant bracket ideal (2.9')-(2.10") is invariant in the sense of
(2.9)-(2.10) and is an ordinary ideal by (1.11). Conversely, if Kιί2 is
an invariant ordinary ideal it must be a bracket ideal: (K1/2J1/2J1/2)1 +
(J1/2K12J1/2)1 is contained in K1/2 by invariance (2.10), (Jί/2Ji/2K1/2)ι c
J.'K^czK^ by invariance (2.9), similarly <J1/2J1/2K1/2)0 c Jo iζ / 2 c K1/2

by (2.9), while (J1/2K1/2J1/2)0=(K1/2J1/2J1/2)0(Z -{/1 / 2J1 / 2i: i / 2} + (J1/J1/*Ki/%\ +
(K^J^J^)^ K1/2 by ordinary idealness and closure under < , , X, also
<JSL"I/2; e/i/2>o= {Kι/2J1/2K1/2}1 — P(Kι/2)J1/2aKι/2 for the same reason, with
<J1/2; £i/2>o c J o . ίΓ1/a c iΓ1/2 by (2.9).

If 1/2 e Φ then L-invariance (2.5) of Kt <\ Jt implies P-invariance
(2.7) in view of JT8. It is not clear whether (2.5), (2.6) imply (2.8)
when 1/2 e Φ.

An important tool is the ability to flip an ideal from one diagonal
Peirce space to another.

2.11. FLIPPING LEMMA. // Kx is an ideal in Jx then

KQ -
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is an ideal in Jo, which is invariant if Kt is. If Ko is an ideal
in Jo then

)K0 + P*(Jι/2)K0

is an ideal in Ju which again is invariant if Ko is.

Proof. We handle both cases at once by proving

K3 =

is an ideal inheriting in variance from Kt. Note again that K* = Kt

for any ideal Kt<] Jt.
Outerness (2.1) follows from (Pill, 10):

P{a3)P{xι/2)kτ = P^at xώheP iJ^Kt

Outerness (2.2) follows from (PI12, 13):

L(aj9 b^Pfaώki = P(α r(6* ίc1/2), x1/2)ki e P(J1/2)Kt

L(ah bJP^x^kt = P(af-(bj-x^), x1/2)he P*(J 1 / 2 )^ .

To see that K5 is inner (2.3'), for the spanning elements P(x1/2)ki
and P*(#1/2)fc, we have

fe/2)fcJJi = P*(xlf%)P{kt)P*{xUt)Jj c P*(x1/2)P(fc,)Jt c P^x^Kt

using (1.8) and innerness of Kt in J*. Thus K3 is inner as well as
outer, hence is an ideal in J3.

If Ki is I/-invariant (2.5) to begin with, then Kά will be L-
invariant too:

- P(zί/2)L(y1/2, x^k, (by JT5)

6 P{JUt)Kt + P(J1/2)L(J1/2, J1/2)Kt c PiJ^Kt

(by L-invariance)

£(#1/2, Vu*)P*(Zi/*)kQ = L(x1/2, y1/2)P(e)P(z1/2)k0

= {P({Xi/2Vi/*e}, e) - P(e)L(y1/2, xί/2)}P(z1/2)k0 (by JT5)

e PWPiJ^Ko - (L(J1/2, J1/2)P(J1/2)Kor

c P*(J1/2)iΓo (by Pill, above, and L-invariance).

L-invariance (2.6) only applies when i = 1. In this case it follows
from L-invariance (2.5) of Kx: we have E0(J1/2f K1-J1/2) = {J1/2KιJ1/2}c:K0

by definition, and JQ - (Ko J1/2) c iί^ J1/2 because {J^PiJ
Xi} (by



PEIRCE IDEALS IN JORDAN TRIPLE SYSTEMS 429

ance of iQ = iζ (/„ J1/2) c f , J1/z.
If in addition Kt is P-invariant (2.7) the same is true of K3:

6

= P(xi/2)P(y1/2)P(e)P(zι/2)k0

e}) + P(P(x1/2)P(2/1/2)e, e) - P(e)P(i/1/2)P(a;1/2)

yι/2)P(e)L(y1/2, xίl2)}P(zι/2)k, (by JT4)

- P(e)P(J1/2)P(J1/2) - L(J1/2, J1/2)P(e)L(J1/2,

c P*(Jι/2)K0 - L ^ * J1/2)P*{J1/2)K0 (by P, L-invariance of iΓ0)

c P*(J1/2)K0 (by above L-invariance of K,) .

P-invariance (2.8) applies only when ΐ = l. In this case it follows from
P-invariance (2.7) for K,: P*(J1/2)P(J1/2)ίΓ0 = P(J1/2)P(e)P(J1/2){P(J1/2)iΓ1}c=
P(J1/2)P(e)ίΓ1 (by P-invariance of JQ = PiJ^K, = Ko.

It is not clear whether P(J1/2)K0 inherits P-invariance when Ko

is merely P-invariant (not also L-invariant). •

We can now obtain the main result on Peirce ideals. Notice
how much messier the formulation becomes for triple systems.

2.12. PROPOSITION THEOREM. An ideal Kt in a Peirce subsystem
Ji is the •projection of a global ideal K in J iff K( is invariant. In
this case the ideal generated by K{ takes the form

(< = l) κ=κ1®κ1- J1/2
(i = 0) K = Ko φ {Ko • J1/2 + Jo • (Ko • J1/z) + P(J1/Z)KO • Jιlt)

i = ψjK^

© K1/

// 1/2eΦ we have PiJ^K, = Ej(J1/2> Kt J1/2), P{K1/2)JS + P*{Kιh)Js<z
TΠ ί ΊZ" TΓ \ Of T \ ~D( TΓ \ T _l_ P * ( T \ T>( TΓ \ J e— TΓ ( T TΓ \ _L TP ( T ΊΓ ^

Jj/i\I\.ί/2f J\.ι/2jf ίydi/zjJΓyiΛ-ilΊjOi "T" JL \d \li)± yΆ-il^)^ % { -"iVe^l/2> -^-1/2/ ' -^iKy l/29 **-\l%)

so the expressions for K reduce to

(i = 1) K=K1®Kί J1/2 0 EQ(Jί/2, K, J1/2)
/ Λ\ TZ τr Π\ ί TZ T _L T (TΓ T _i_ TΓ ( T TΓ T \ T \\

\% — \J) Λ. — Λ θ Φ l Λ O % t ' l / 2 ~Γ Jo'V^θ'^l/2 "I M/ι\Ji/2f J±o% J ι/2)
 %J 1/2JJ

φ {E1\J1/2J KQ%J1/2) + Eι\K0

Λ JJ./2J J1/2)}

l i = z — j K = EQ(JX/2, JΪ1/2) Φ -KΊ/2 Φ {Eχ(J 1/2, -K3./2) + E1{K1/2, J1/2)}

Proof. We have already noted that a Peirce component Z* must
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be invariant under global multiplications sending Jt into itself.
Certainly the ideal generated by Kt contains all the above products;
it remains only to show in each case K forms an ideal.

We begin with the easier diagonal cases i — 1, 0, where K —
κt θ κι/2 e κ3 = κt@ {Kt. j 1 / 2 + j t . (κ< J1/2) + P(J^κt J1/2} φ {P( j^Kt +
P*(J1/2)ίΓi} (note for i = 1 that some of these products simplify:
Jx (£i J1/2) c (J, • iΓJ J1/2 - Kx (J, J1/2) c i ζ J1 / 2 by Pliv, P\J^KX =
P(J1/2) K, since ΛΓ* = Klf and P(J1 / 2) l ζ J1/2 c J1 / 2 L (J1/2, J1/2) i ξ -
i f* .P(J 1 / 2 )J 1 / 2 c J1/a Zi by JT2).

We verify that the ifr satisfy the conditions (C1)-(C6) of (1.4).
For (Cl), Kt is an invariant ideal in Jt by hypothesis and Kβ =
P(J1/2)Ki + P*(J1/2)Ki is an invariant ideal in J^ by the Flipping
Lemma 2.11. For (C5) we have P(J1/2)Ki a Kβ by construction, and
P(J1/2)K3- = P(J1/2)P(/1/2)if ί + PV^P^J^Kt c Kt by P-invariance (2.7),
(2.8). For (C2) we have ^ ( J ^ , iΓ1/2) the sum of ElJγl2, JBΓΓ J1/2) and
#iGΛ/2, Ji^KrJ1/2)) and ^ ( J ^ , P(J1/2)Kt Ji/i) (the latter two only when
i = 0). The first of these has E^J^, K^J1/2) = L(J1/2, J1/2)JS? c K, by
(P4) and the L-invariance (2.5) of K, = Kf. For i = 0 the second
term E0(J1/2, J0-(KQ'J1/2)) falls in if0 by the hypothesis of L-in variance
(2.6). For i = 0 the third term becomes E0(J1/2, P(J1/2)K0 J1/2) =
{J1/2(P(J1/2)ίΓ0)*J1/2} (by P3)cP(J1/2)P*(/1/2)ίΓo, which falls in Ko by the
hypothesis of P-invariance (2.8). Continuing with (C2), we examine
E5(J1/2y K1/2). By (P3) Eό(J1/2, K. J^) - {J1/2K?J1/2} c P ( J 1 / 2 ) ^ c i ^ by
(C5). When i = 0 we must examine two other terms: Ex{Jlί2, JQ

(2ζ) Ji/2)) — E^KQ JΊ/2, e/0 * e/i/a) C E^KQ J"^, e/^) = Er(Jx/2, Ko ' Jx/2) * C ίC* = iζ.

as above, and ^ ( J 1 / 2 , P(J1/2)K0-J1/2) = L(J1/2, J1/2)(P(J1/2)KQ)* =
L(J1/2, J1/2)P(e)P(J1/2)K0 where L(s, y)P(e)P(z)k0 = P(e)P(z)L(x, y)k0 +

)&0 - P(e)P({yxz], z)k0 e P(e)P(J1/2)L(J1/2, Jι/2)K0 +
- P(e)P(Jί/2)K0dP(e)P(J1/2)K0 + P*(J1/2)K0 (by P i l l and

L-invariance (2.5)) c i ^ . This completes the verification of (C2).
We have (C4) because Kt - Jί/2 a Kι/2 by construction and Ko Jί/2 =
(P(e71/2) i Q J1 / 2 + (P(J1/2) Ktγ /1/2 (the two differing only when
i = 0) where the latter is by PI8 contained in Et(J1/2, K* - J^)* J1/2 —
Kf-P(J1/2)J1/2c:Kΐ-Jιl2 - Kt Jv* (by L-invariance (2.5))dKi'Jί/2dK1/2

and when i = 0 the former (P(J1/2) Ko) J1 / 2 is contained in JSΓ1/2 by
construction. (There does not seem to be any way to show it falls
into K0'J1/2 + Jo (K0 J1/2).) For (C3) note that Jt (K, J1/2) c K1/2 by
construction, JjΓ (Z^ J1/2) = iΓf (J^ Jι/2) c ϋΓ^ by P6, and for i = 0
Ji [Jo (Ko' J1/2)] c: Jo (Xo (Ji' J1/2)) ^ -KΊ/2 using P6 twice, and J o [Jo

CKo J1/2)] c {JoJoiΓo} - J1/2 - Ko (Jo - (Jo - J1/2)) (by Plli) c iΓ0 J1/2 c iΓ1/2, and
finally Jr-(P(J1/2)K0- J1/2) c J . CZξ J1/2) CJBΓ1/2 by the above. For the
last criterion (C6) we consider the spanning elements kt α?1/2 (and,
when i = 0, α0 (&o &1/2) a n ( i P(%i/i)K Vi/i a s well). We observe by
PI10, (C5), (Cl) that
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+ Ki, also P(αβ.(fcβ ίBι/1))(J1 + J . ) = P(ao)P*(ko

)Jo = P(ao)P(k<>)P(xι/2)Jί + P(xί/2)P(k0)P(ai))J0cz
P(J0)K0 + P(Jι/2)K0 c Zo + -KΊ, and also P(P(x1/2)k0 yll2){Ji + Jt) =

P(x1/2) P(h) P ( * I Λ ) P * (VI/,)./. c P* (J1/2) K, + P(/„,) X, c Ko + K,. Thus
(C1)-(C6) hold, and K is an ideal.

The case % — 1/2 is even more tiresome. We must again verify
(C1)-(C6). (C3) follows from invariance (2.9), and (C2) and (C6) follow-
by our construction of Klt Ko. For the sake of symmetry we write
the diagonal Peirce pieces as

K1/2r + P(K1/2)Jj + P*(Ki/2)Jj

As we remarked after (2.10), an invariant ideal is closed under
all brackets:

f * Λ ί TΓ (Tf T \ _i_ TF ( 1 TΓ \\ T t— TΓ
^ j 1 J2/^yJL\.^/2j 1/^2/ "i -t-^i\ί' l/2> -* ^Ί/2/) ** l/2 *^~1

1/2

We can now establish the rest of (C4), Kt J1/2aK1/2. Since Ei(J1/2, K1/2)* —
Eτ(K1/2, J1/2) by P8, we have so far that {Et + Ef} J1/2c:Kι/2. Next,
we observe {P(iΓ1/2) Js + P* (K1/2) Jά) - J1/2 c E3 (Kι/2, J1/2) (Jf - K1/2) -
P{K1/2){Jό J1 / 2) + JS?y(J1/8, J ; iΓ1/2)* . iί 1 / 2 - Jf P(K1/2)J1/2 (by PI7, 8) c

Jr(JrK1/2) - P(K1/2)J1/2 + Jf K1/2 - JrP{Kι/2)Jι/2(zKι/2 by invariance
(2.9) and inner idealness P(iΓ1/2)/1/2 c J1/2. Finally,

J1/2] + EjiPiKM • J1/2, J1/2) J1 / 2 - P(#1/2)J<. P(J1/2)J1/2 (by PI7, 8 again) c
J r JK:I/2 - P(J1/2)K1/2 + jErXXi/a, J1/2) Ji/2 - î i/2 (by the previous case) c
JKΊ/2 by invariance, outer idealness, and (*). Thus all 6 pieces of if,
send Jι/2 into JBΓ^, completing (C4).

Next we check (C5), PiJ^K, c Kό. We have P(J1/2){£r

i(J1/2, ϋΓ1/2) +
H*i(Ji/2f -KΊ/2)*} = P(Jι/2){Ei(J1/29 Ky2) + EiiKχ/2, J1/2)} a Ej(JΊ/29 (K\/29 Jί/29

Jl/z)j) ~ Ej(P(Jl/2)Jl/2y K1/2) + Ej{J1/2y (Jι/29 Jl/2y ̂ 1/2)5) ~ ^^{P^J^K^^ Jt/2)

(by PI5) c Ej(J1/2, K1/2) + Eά{K.ι/2, J1/2) c iζ,- by invariance and outer
idealness. We have P(Jι/2) [P (K1/2) J J c Kx and P(J1 / 2)[P(ϋ: i / 2) J o +
(P(K1/2)J0y](zP(J1/2)P(Kί/2)J0 + P*(J1/2)P(K1/2)J0ciK0 by construction.
For P(J1/2)[P(J1/2){P{K1/2)J%) + P ^ J ^ P C ί ^ J J we first have
PiJ^PiJ^PiKM = {P({J1/2J1/2K1/2}) - P(K1/2)P(J1/2)P(J1/2) + P(P(J1/2)
P(J1/2)K1/2, Kι/2) - L(J1/2, J1/2)P{K1/2)L{Jι/2, J1/2)}Jt (by JT4) c P(K1/2)J, -
L(J1/2, Jl/2)P(Kl/2)JiciP(K1/2)Ji+{P(Kl/2)L(J1/2, Jι/2) — P{{Jι/zJiiiKtiϊl> K%/z))Jt
(by JT5)cP(ίΓ 1 / 2 )J j ciΓ ί . With the *'s we consider the cases i = 1,
i = 0 separately. For % = 1, PiJ^P^J^PiKM = P(J1/z)P(e)P(Jι/2)

e, J1/2)P(Kι/2)L(Jί/2, eVJidPiJ^PiEάK^, J1/2)Λ + P(Jί/2)P(K1/2)J0 +
0 - P{Jm)L{e, J^PiKMnCP^J^ EάK^, Jιl2)*)J^ P(J1/2)P(K1/2)J0 -
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, J1/2) (by Pi l l , since Km 0 J1/2) c P*(KM + P(Jι/2)
P(Kι/2)J0 - PiJ^E^Kyi, J1/2) (by invariance (2.10)) c K , (using the
above relation PiJ^E.czEj). For i = 0 we haveP(/1/2)P*(J1/2)P(ίΓ1/2)J0 =
P{Jί/2)P{J1/2)P(e)P{Kι/2) J o c {P({/1/2J1/2e}) - P(e)P(/1/2)P(J1/2) + P(P(e)P(J1/2)
J1/2, J1/2) - L{e, J1/2)P(J1/2)L(J1/2,e)}P(K1/2)J0 (by JT4) c PiJJPiKM -
P(e)[P(J1/2)P(J1/2)P(K1/2)J0] + 0 - L(e, J1/2)P(J1/2)(J1/2 P(iΓ1/2)J0) c P*(J*
iζ / 2)J0 - P(<0iζ - L(e, J1/2)P(J1/2)K1/2 (by P i l l , the above, and (C4)) c
P*(if1/2)/0 - K* - L(ef /1/2)Λ:i/2 C ϋΓ* - ^(ίΓ l Λ > JI/2) c i ζ . Finally, we
check (Cl): K{ <1 J,. By PI2, 3 and invariance (2.9) we have
Ei(Jι/2, Kί/%) + Ei(K1/2, J1/2) is an outer ideal in Jt. P(K1/2)Jj +
P*(Kι/2)Jj is also an outer ideal by invariance and PI10,11, 12, 13. In
the same way P(Jι/2)P(K1/2)J{ + P*(Jι/2)P(Kι/2)Jτ is outer, since

P(J i)[P(/1/2)P(ϋ: i/2)/1] c P*(Jΐ -/1/2)P(ίΓ1/2)J-λ (by Pi l l) c P*(J1/t)P(Kι/t)Jt

and PipP^J^PiKM c P(Jt J^)P(Kύt)Jt (by PI10) c P(JxώP(Kut)J<,
establishing P-outerness (2.1), while L-outerness (2.2) follows from
UJ« Jι)[P{Jίn)P{Kll2)Ji] c P{Jt • (Jf • J1/2), J^PiKM (by PI12) c
P(J1/2)P(K1/2)Jit and L(Jit J%){P*{J1/2)P{K1/2)Jt] - P*(Jf • {Jt • Jι/2), J1/2)
PiKM (by PI13)cP^iJ^P^K^J^ Thus Kt is an outer ideal in Jt.
For innerness (2.3') we need only check the generators Ei{x1/2, kι/2),
Ei{xm, &1/2)*, P(k1/2)aίt P*{ki.,2)aj, Pix^Pik^a, and P*(x1/2)P(A;1/2)αi.
Using (1.8) we have P(P(k1/^ai)Jt = PφuύPia

P*(klΛ)Ji c P*(Kι/2)Jjt

c P(J 1

P*(x1/2)P(fc1/2)P(α i)P(A;1/2)P*(£ t ; i/2)cP*(J1/2)P(ί: i/2)J i, while by PI6,
P(E((K1/2, J 1 / 2))J ίcP(ίΓ 1 / 2)P*(J 1/ 2)/ i + P*(J^P(K^Jt + ElKίl2, Kι/2)<z
Kt and therefore P(E((K1/2, J1/2)*)Jf = {P(Eί(K1/2, Jι/2))Jτ)*^K* = Kt as
well. Thus Ki <\ Jt, all conditions (C1)-(C6) are met, and K <\ J.

If 1/2 e Φ the cases i = 1, 0 are simplified since P(J1/2) Kt =
2P(Jι/2)Ki=P(Jι/2,J1/2)Ki = Ej(Jι/2,Ki Jι/2) (by P3 since KT = Kt). The
case % = 1/2 is simplified by P{K^JS = P(Kι/2, Kί/2)Jό = ^(i^/,, Jf K^a
Ei(K1/2, Kin) by invariance, hence by P8 (P(ir i / 2)J i)*cE r

i(1 / 2, 2f1/2) too,
and so PiJ^iPiK^Ji) + P*(JJPtW^c P(J1/2)Eό{Kι/2, K1/2)+
(P(Jι/2)Es(K1/2, Kίl2)Y c ^ ( J ^ , J r ϋΓ1/2) - E((P(J1/2)K1/2, Kι/2) + {ElJίl2> Jr

Kι/2) - EtiPiJ^Km, K1/2)}* (by PI5) c

We can easily describe the global ideal generated by a Peirce space.

2.13. COROLLARY. The ideal in J generated by a Peirce Jt(e) is

= J, e J1/2

a = o) /(/„) = J0 e {/O

i = i Λ /(J1/2) = P{Jι/2)J, 0 J 1 / 2 0 {E,(J1/2, J1/2) + P(J1/2)Jo + P*(/1/2
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Proof. In each case Kt = Jt is trivially invariant, so we have
the explicit expressions for K given by the Projection Theorem. In
case i — 1 the J1/2-component simplifies by Kγ Jm — e-J1/2 = Ji/2. In
case i = 0 we have J0 (J0 J1/2)c:J0'J1/2 f ° r the /^-component. In
case i — 1/2 we have for the /0-component EQ(J1/2, J1/2) = P(«7i/2, J ^ e c:
P(J1/2)J19 P(J1/2)[P(J1/2)J0 + P*(J1/2)Jo]^ί>(Λ/2)Λ and for the ^-component

+ P^J^PiJM c P(J1/2)/o + P*(JM. D

When J is simple and /, ̂  0 the ideal /(JJ must be all of J,
leading to

2.14. PROPOSITION. // J is simple and e a proper tripotent
(nonzero and noninvertible) then

( i ) P(JM = j 0 ,

(ii) P(J l / 2)J 0 + P*(J l/2)Jθ + Wl/2, Λ/2) = J,.
If J*Φ 0 £&ew

(ϋi) P(J l / 2 )J 0 + P*{J1/2)J*
I?t characteristic Φ 2 we have

( v ) J x = E^Jyzt Ji/z), Jo —

Proof, e Φ 0 implies J x ^ 0, so /(JJ = J, yielding (i). If J1 / 2 = 0
then J — J x ffl J o forces either J = J1 (e invertible) or J = J0(e = 0)
by primeness, so we must have J1 / 2 ̂  0, and I(J1/2) = J yields (ii).
We may well have JQ = 0 with J19 J1/2 Φ 0, but if J0φ0 then 7(Jo) =
J yields (iii), (iv). For characteristic Φ 2, note 2P(Jί/2)Jj = P(J1/2, Ji/2)Jj —

Jj'Ji/z) CI Ei(Jl/2, Jl/2)

In case Jo = 0 we can also recover some ideal-building lemmas
of Loos.

2.15. COROLLARY [1, pp. 131-132]. Let e be a tripotent in a
Jordan triple system with J0(e) = 0. (i) // K1/2 is an invariant
bracket ideal of J1/2 such that

Jl' K-l/2 ^ -̂ M/2 \K1/2J1/2J1/2/ι + \J1/2Kί/2J1/2)1 C Kί/2

then the ideal in J generated by K1/2 is K — K1/2 φ [E^K^, Jι/2) +

(ii) // Kx is an ideal of J1 such that L(J1/2, J^K^d Kγ then
the ideal in J generated by Kγ is l£i ® K^J^.

Proof, (i) Note that K1/2 is an ideal in J1/2: Since P(x1/2)y1/2 =
£Ί(^i/2, 3/1/2) #1/2 = <#i/22/i/2#i/2> by P I when J o = 0, t h e above conditions

guarantees a bracket (hence a product P(x1/2)y1/2 or P(sc1/2, z1/2)y1/2) falls
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in K1/2 as soon as one factor does. This K1/2 is invariant in the sense
of (2.9), (2.10) by hypothesis, so by the Projection Theorem K =
Kγ+Kll2 whereP(Kί/2)J0= P*{J^)J«=P{J^)P{J^)J, = P*(J1/2)P(J1/2)J1 =
0 when Jo = 0, so K, reduces to Eγ(Jll2, K1/2) + Eγ(Kll2, J1/2).

(ii) Kx is invariant since P{Jll2)P{Jγl2)Kx — 0, so by the Projection
Theorem K = Kλ 0 Kγ J1/2. •

Since invariant Peirce ideals correspond to global ideals and
simple JTS contain no proper global ideals, the Peirce subsystems
contain no proper invariant ideals.

2.16. PROPOSITION. If e is a tripotent in a simple Jordan triple
system J, then then Peirce subsystems Jlf J1/2, Jo contain no proper
invariant ideals. •

We can also recover a result of Loos [1] on alternative triple
systems.

2.17. COROLLARY. // e is an ίdempotent in a simple Jordan
triple system J with J0(e) = 0, then J1/2(e) is simple as an alternative
triple system under the bracket.

Proof. By (2.15) J1/2 contains no proper invariant ideals K1/2,
where the invariant ideal conditions (2.9'-2.10") reduce to

-KΊ/2 (̂ 1/2^1/2-^1/2)1 + ζJl/2 K1/2Jι/2)ι + (Kι/2Jι/2J1/2/ι C Kl
l/2

We may as well assume J1/2 Φ 0, so by (2.14) J1 — Ei(Ji/2, Jm)- Thus
J^Kγ/2 = (̂eTi/a, J1/2) Kί/2 = <«/i/2«7i/2.Ki/2>i» and in variance under Jγ is a
consequence of bracket-in variance. Therefore the nonexistence of
proper invariant ideals means nonexistence of proper bracket ideals,
that is, simplicity as an alternative triple system (note J1/2 is not
trivial under brackets since 0 Φ J1/2 = e J1/2 c E1 (J1/2, J1/2) Jι/2 =

3* Simplicity theorem* As in the Jordan algebra case, we will
quickly find Jί inherits simplicity from J, then will use a flipping
argument to establish simplicity of Jo. Before flipping we need to
consider the case when the flipping process annihilates an ideal Ko <| Jo.

3.1. KERNEL LEMMA. The maximal ideal of JQ annihilated by
P(J1/2) is Ker P(/1/2) = {20e/0 |P(J1/2K = P(Jιί2)P(zQ)J0 = 0}. It is an
invariant ideal.
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Proof. Clearly any ideal Ko annihilated by P(J1/2) lies in Ker P(J1/?)
since P(K0)J0 c Iζ,. I t remains to show Ko = Ker P(/1/2) is actually
an invariant ideal.

Ko is a linear subspace: it is clearly closed under scalars, and for
sums z0 + w0 note

P(J1/2)P(z0 + wo)Jo = P(Jι/2)P(z0, wo)Jo = P{Jm)L{w0, J0)z0

= {-L(Jΰ, wo)P(J1/2) + P({J0wJ1/2}, J 1 / 2)K (by JT5)

c -L(J0, J0)P(Jι/2)z0 + P(J1/2)z0 = 0 .

Ko is P-outer, P{Jo)Koci K0) since P(J1/2)[P(αo)Zo] = P*(Ji/2 α0)z0 (by
Pill) c P*(J1/2)z0 = 0 and P(Jll2)[P{P(aa)z,)Ja] = PiJ^Pia^P^Pia^a
P*(J1 / 2 α0)P(20)J0cP(e)P(J1 / 2)P(2o)/o = 0. It is L-outer, L{Jΰt J«)KoaK»,
since PίJ^ILίo, , 6 0)z 0]cP(J 1 / 2K = 0 by PI14 and P(J1/2)[P(L(a0, bo)zo)Jo](Z
P(J1 / 2){P(α0)P(δ0)P(z0) + P(zo)P(bo)P(ao) + L(α 0, bo)P(zo)L(bo, o , ) -
P(P(ao)P(bo)zo, zo)}Jo (by JT4) c P * ( J 1 / 2 ao)P(bo)P(zo)Jo + P(J1 / 2)P(20)/0 +
P{Jll2)L{a0, b0)P(z0)J0 - P(JU2)L(JO, J0)z0 (by Pi l l ) c P((J l Λ α0) δo)P(«,μ. +
0 + P ( J l Λ f Jm)P(z0)Jo - P(JIΛ, ^iΛ)«o (by PI10 and PI14) c P(J1/2)P(z0)J0 +
0 - 0 = 0.

JBΓo is inner, P(K0)J0 c ϋΓ0, since P(/1/2)[P(2o)αo] = 0 by hypothesis
and P ^ T O ί . K V , ] - P(Jί/2)P(z0)P(a0)P(z0)J0czP(Jι/2)P(z0)J<> = 0.

ίΓ0 is trivially P-invariant (2.7) and (2.8), P(J1 / 2)P(J1 / 2)iΓ0 =
P(J1/2)P(e)P(Jι/2)K0 = 0. It is L-invariant (2.5), L(Jι/2, Jin)KoaKo,
since P(J1/2)[L(x1/2,2/1/2)z0] = {P({yι/2a;1/2J1/2}, J1/2) - L(y1/2, a;1/2)P(J1/2)}«0 (by
JT5) = 0 and

P(J1/2)[P({x1/22/1/220})J0] cP(J1/2){P(a;1/2)P(ί/1/2)P(z0) + P(zo)P(y1/2)P(xί/2)

+ L(xm, y1/2)P(z0)L(yιn, xι/2) - P(P(xm)P(y1/2)z0, 20)}J0 (by JT4)

c P(/1/2)P(/1/2)(P(2/1/2)P(«0) Jo) + P(J1/2)P(20) J o

+ P(J1/2)L(J1/2, Jι/2)P(z0)Jo - P(J1/2)L(J0, J0)z0 = 0

as above. The trickiest part is L-invariance (2.6), E0(Ji/2, J 0 (ϋΓ0 J 1 / 2 ))c
ίΓ0. We first show this is killed by P(Jι/2). We have

= P(J1/2){J1/2(£o J 1 / 2)JJ (by P4) = P(J1/2)L(J0, Ko- J1 / 2)J1 / 2

c{-L( ίΓ 0 J1/2, Jo^iJ^ + P({(K0-J1/2)J0J1/2}, Jι/2))Jm (by JT5)

2, J1/2){(K0-

where {(K0 Jί/2)J0J1/2} = E^Ko J^, J0 J1/2) (by P3)cJ5 1 (^ 0 . J1/2, J1/2) =
^ ( J 1 / 2 , iΓ0.J1/2)* (by P8) - { J ^ o W * (by P3) c (P(J1/2)iΓ0)* - 0.

To see P(/1/2) also kills P(E0)J0 we use PI6 to write P(E0(x1/2,
a0 - (so 2/i/2)))e/o c: P(^ 1 / 2 )P*(α 0 (s0 2/1/2))Jo + P*(^o (s0 Vi/*))P(Xi/2)Jo + -#0(̂ 1/2,

•P(αo («o 2/1/2))^ «i/2)) Here P*(α o ( ô 1/1/2)̂ 0 = P(^o yi/2)P(ao)Jo (by
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Pi l l ) - P*(y1/t)P(zύ)P(a0)Jo c P*(J1/2)P(z0)Jo = 0 by PI10, and P*(aQ-
(to Vυ,))J, = P(ao)P(zo y^) J x = P(ao)P(zo)P* (yM (by PI10, 11) c
P(ao)P(zo)Jo c ϋΓ0 since iΓ0 < Jo, also P(α0 (z0 y1/2))(Jo' #1/2) = α0 * ί v
P(yi/2)(Zo'(a>o'Ji/z))} (using PI16 twice) c Jo (z0 J1/2) so that E0(x1/2,P)c:
E0(J1/2, J0 (zQ'J1/2)) is killed by P(J1 / 2) by the above. Thus P(J1/2)
does kill all three pieces of P(E0)JQ, Eo is contained in Ko, and iΓ0 is
an invariant ideal. •

Next we establish that L(JU2, J1/2) and P(J1/2)P(J1/2) and P*(J1/2)P(J1/2)
send an ideal into its "square root" or "fourth root".

3.2. LEMMA. For any ideal Kt <\ Jt{i = 1, 0) we have

(3.3) LiJ^J^PiK^czKt

(3.4) PiJ^PiJ^PiPίKtWJt c Kt

(3.5) if i = 0, P%Jί/2)P(J1/2)P(J0)P(P(K0)J0)J0 c iΓ0 .

Proo/. (3.3) L(x1/2, ^/1/2)P(^)αi = -P{zτ)L{y1/2, x1/2)at

^ ) ^ (by J T 5 ) G -PiKJJt + P(J,, K^JidKi since if, is an ideal.
(3.4) For wt ePiKJJt we have P(aj1/2)P(i/1/

P(w%)P(yι/2)P(xι/2) - L(xι/2, yιn)P(wx)L(yι/2, xί/2)
(by JT4) c PdQJ; - POζμ, - L(J1/2, J^PiKdJi + P(J<, ΛΓ,)̂  (using
(3.3) for w^dK,.

(3.5) P(x1/2)P(e)P(y1/2)P(a0)L0 c P(x1/2) [P({^1/2α0}) - P(ao)P(y1/2)P(e) -
L(e,y1/2)P(a0)L(yί/2,e) + P(P(e)P(yy2)a0,a0)]L0 (by JT4)cP(J 1 / 2 )P(J 1 / 2 )L 0 -
0 - L(e, 2/1/2)P(αo){J1/2eί/o} + ( W o ) = P(Ji/*)P(Ji/*)L0, so if Lo =
P(P(K0)J0)J0 we have P(/1 / 2)P(J1 / 2)L0 c Ko by (3.4). Π

It is not clear whether (3.5) can be improved to assert
P*(J1/2)P(J1/2)P(P(K0)J0)JQ c Ko.

Now we can describe a class of ideals which is guaranteed to be
invariant.

3.6 PROPOSITION. Any strongly semiprime ideal Kγ <\ Jγ is
invariant.

Proof. We first prove that Kx is L-invariant, i.e., w1 =
L(x1/2, 2/i/2)Si e ifi for all z1 e Kx. By strong semiprimeness we will
have w1 e Kx if we can show P{w^)J1 c iίi. But

2, x1/2) - P(P(x1/2)P(yί/2)zlf z^Ji (by JT4)
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+ L(xί/2,

, + Kx (using (3.3)) ,

so it suffices if all ux = P{xι/2)P{yU2)P{z^)aι fall in Kt. Here again it
suffices if P{uι)Jι c Kί9 and for this

K, by (3.4) .

Next we prove i ^ is P-in variant. Let wx — P(x1/2)P(yi/2)Zι'y to
show wx falls in Kγ it again suffices by strong semiprimeness if it
pushes Jx into Klf i.e., if P ( ^ J J x = P(^1/2)P(7/1/2)P(^)P(7/1/2)P(^1/2)Jx c
P(%i/2)P(Vi/2)P(Zi)Ji falls into iίi. But again this is in Kγ since it
pushes Jx into if,, P(P(x1/2)P(τ/1/2)P(^1)α1) J, c P(x1/2)P(i/1/2)P(P(^1)α1) J, c
i ξ by (3.4). •

Because it is such a nuisance to verify the extra invariance
needed when i = 0, and since we will not need the result, we do not
establish the analogous result for Ko <\ JQ.

3.7. COROLLARY. Any maxinal ideal Mι <\ Jt is invariant.

Proof. If M1 is maximal then Jγ = JJMX is simple with invertible
element e, hence the Jacobson and small radicals are zero and Jt is
strongly semiprime (see [1, p. 38]), so Mι is strongly semiprime in Jt.

D

We now have the tools to establish our main result.

3.8. SIMPLICITY THEOREM. If e is a tripotent in a simple
Jordan triple system J, then the Peirce subsystems Jx(e) and J0(e)
are simple.

Proof. We may as well assume e is proper, else the result is
trivial. Then Jx contains a nonzero tripotent and consequently is not
trivial, and it has no proper ideals since any such could be enlarged
to a maximal proper ideal 0 < M1 < J1 (Zornifying and avoiding e),
which would be invariant by 3.7, whereas by 2.15 J έ contains no
proper invariant ideals.

Thus Ji is simple. We may easily have Jo = 0; we will show
that if Jo is nonzero then it must be simple. First, it is strongly
semiprime: any element trivial in Jo would be trivial in J (P(zQ)J0 = 0
implies P(zo)J = 0), whereas by simplicity and non-quasi-invertibility
(thanks to e Φ 0) the system J is strongly semiprime (see [1, p. 38]
again). In particular, JQ is not trivial, and we need only show it
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contains no proper ideals 0 < Ko < Jo. Suppose on the contrary that
such a Ko exists. By (ordinary) semiprimeness we have successively
K[ = P(KQ)K0 Φ 0, K[f = P(K'Q)KΌ Φ 0, KT - P(K[')KΪ Φ 0. By the
Flipping Lemma 2.11 K[" = P(J1/2)KΌ" + P*(Ji/2)iC is an ideal in Jlf

so by simplicity of J1 we have either K[" = 0 or iΓί" — Jt. In the
first case K'o" is an ideal annihilated by P(J1/2), hence is contained
in the invariant ideal Ker P(J1/2) by 3.1; by (2.15) we know Jo contains
no proper invariant ideals, so Ker P(J1/2) ^ K'o" > 0 forces Ker P(J1/2) =
Jo, hence P(J1/2)J0 = 0, contrary to (2.14iii) (assuming Jo ^ 0). Thus
the first case K[" = 0 is impossible.

On the other hand, consider the case K[" = Jx. Here (by (2.14i))
Jo = P(J1/2)Λ = P(Jm)K[" = P(Jί/2)P(J1/2)K'Q" + P*(/1 / 2)P(J1 / 2)iC is
contained in iζ, by (3.4) and (3.5) (noting K'J = P(P(K0)K0)KΌ c
P(P(K0)J0)J0 and i C = P ( ϊ ί W C P(J 0 )(W)i f ί ) c P(Jo)P(P(Zi)Jo)Jo

as required by (3.4) and (3.5)). But Jo = iΓ0 contradicts propriety
of Ko.

In either case the existence of a proper ϋΓ0 leads to a contradiction
so no Ko exists and JQ too is simple. •

This settles a question raised by Loos [1, p. 133] whether Jx is
simple in case J is simple and Jo = 0. The result was known when
J had d.c.c. on principal inner ideals. Of course, for the case Jo = 0
we would not need the elaborate machinery of Peirce decompositions,
since the Peirce relations and invariance are vastly simplified (for
example P(Ji/2)P(Ji/2)Ji = 0, so P-invariance is automatic).

The analogous simplicity result fails for J1/2: J1/2 need not inherit
simplicity from J, since when J = Mp,q(D) is the space of pxg matrices
over D relative to P(x)y = xy*x (y* = ιy), then the diagonal idempotent
e = en + + err (1 ^ r < p <̂  q) has J1/2 = /10 ES J01. In the simplest
case p — q = 2fr = lwe have J1/2 = De12 EB -Dβ2i. Note, however, that
these proper ideals K1/2 = J10, L1/2 = J01 are invariant under Jx and J(

but not under brackets. It is still an open question whether J1/2 is
simple as a bracket algebra (it is if Jo = 0), or whether it is always
simple or a direct sum of two ideals as a triple system.
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HYPERSPACES OF COMPACT CONVEX SETS

SAM B. NADLER, JR., J. QUINN, AND NICK M. STAVRAKAS

The purpose of this paper is to develop in detail certain
aspects of the space of nonempty compact convex subsets of
a subset X (denoted cc(X)) of a metric locally convex T V.S.
It is shown that if X is compact and dim (X)^2then cc(X)
is homeomorphic with the Hubert cube (denoted o,c{X)~IJ).
It is shown that if w^2, then cc(Rn) is homeomorphic to 1^
with a point removed. More specialized results are that if
XaR2 is such that c c C X ) ^ then X is a two cell; and that
if XczRz is such that ccCX)^/^ and X is not contained in a
hyperplane then X must contain a three cell.

For the most part we will be restricting ourselves to
compact spaces X although in the last section of the paper,
§ 7, we consider some fundamental noncompact spaces.

We will be using the following definitions and notation. For
each n = 1,2, , En will denote Euclidean w-space, Sn~ι =
{xeRn: \\x\\ = 1}, Bn = {xeRn: \\x\\ ^ 1}, a n d °Bn = {xeRn: \\x\\<l}.

A continuum is a nonempty, compact, connected metric space. An
n-cell is a continuum homeomorphic to Bn. The symbol 1^ denotes
the Hilbert cube, i.e., /«, = ΠΓ=i[-l/2*, 1/2*]. By II we will denote
the pseudo interior of the Hilbert cube, II = Π£=i( —1/2*, 1/2*). We
let I+ denote the set of natural numbers. We use cl and co, re-
spectively, to denote closure and closed convex hull. If Y is a
subset of a space Z, then int[F] means the union of all open sub-
sets of Z which are contained in Y. The notation X ~ Y will
mean that the space X is homeomorphic to the space Y.

All spaces are considered in this paper to be subsets of a real
topological vector space. Since we are restricting our attention in
this paper to separable metric spaces this is no restriction topolog-
ically or geometrically (cf. Vol. I of [14, p. 242]). If X is a space,
by cc(X) we will mean the hyperspace of all nonempty compact
convex subsets of X (with the Hausdorff metric). We will call
cc{X) the cc-hy'perspace of X.

If x and y are points in a real topological vector space V,
then xy or [x, y] denotes the convex segment or point (if x — y)
determined by x and y, i.e., xy — {tx + (1 — t)y: 0 ^ t ^ 1} = [x, y].
Let X(zV. If xeX, we let S(x) denote {yeX: xyczX}9 and we let
Ker(X) denote Γ\χeχS(x); the set Ker(X) is called the kernel of X.
We say X is star shaped if and only if Ker(X) Φ 0 . For A c Γ , a
point p in A is called an extreme point of A if and only if no
convex segment lying in A has p in its (relative) interior. The
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symbol e#£[A] denotes the set of all extreme points of A. If X is
a subset of Rn, for some n, a point peX is said to be a point of
local nonconvexity of X if every neighborhood of p in X fails to
be convex. We will denote the set of all points of local nonconvex-
ity of a set X by LN(X). For spaces X and Y with I c Y the
boundary of X, denoted Fr(X), is defined by Fr(X)=cl(X)n
cl(F — X). A closed subset A of a metric space X is a Z-set
in X if for any nonnull and homotopically trivial open set U a X
it is true that U — A is nonnull and homotopically trivial (see
[1]).

The paper is organized as follows: In § 2 we give some general
results which are closely related to early work of Klee. One of the
results of this section establishes that if K is a compact convex
subset of a metrizable locally convex topological vector space and
dim[i£] ;> 2, then cc(K) = 1^. This sets the stage for the remainder
of the paper, as one of our major concerns becomes obtaining ans-
wers to the following question:

(1.1) For what continua K is cc(ϋΓ) = IJ! In § 3, we show
that if KczR2 is as in (1.1), then K is a 2-cell. Thus, for R\ a
complete answer to (1.1) becomes a matter of determining which
2-cells K in R2 have their cc-hy per space homeomorphic to 1^. Re-
sults about this are in § 5, where we show that there is a 2-cell in
R2 whose cc-hyperspace is not homeomorphic to 1^ and we obtain
some geometric results which give sufficient conditions on a continu-
um X in order that cc(X) = 1^. Many of the results in § 5 are for
continua more general than 2-cells in the plane.

Though KaR2 as in (1.1) must be a 2-cell, KczR" as in (1.1)
need not be a 2-cell or 3-cell (see (4.7)). However, in § 4, we show
that if KczR3 is as in (1.1) and K is not contained in a 2-dim hy-
perplane in iϋ3, then K must contain a 3-cell (see (4.1)). Some
lemmas about arcs of convex arcs in R2 and arcs of convex 2-cells
in J?3, which we use to prove (4.1), seem to be of interest in them-
selves.

In § 6 we give some examples and state some problems. Many
of these help to delineate the status of the problem of which 2-cells
in R2 have their cc-hyperspace homeomorphic to /«,. The technique
used in (6.4) is particularly noteworthy since using it in combina-
tion with suitable results for 2-cells with polygonal boundary can,
perhaps, lead to a satisfactory solution of (1.1).

The final section, § 7, begins to touch on the problems connected
with determining the topological type of the cc-hyperspace of some
noncompact subsets of topological vector spaces. The main result
of this section is that, for n ^ 2, cc(iϋ%) = /«, — {p} for p e 1^.
Several open questions are also posed in this section.
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2 Some basic results*

(2.1) LEMMA. Let K be a compact convex subset of a metriz-
able locally convex real topologίcal vector space L, dimfiΓ] ^ 2. Then
there exists a countable family {ζ*: i = 1, 2, •} of continuous linear
functionals ζ, such that given A e cc(ϋΓ) and xe[K — A], ί/̂ erβ ex-
ists a j e I+ such that ζ3 (x) & ζj(A).

Proof. The compact metric space K in the relative topology
has a countable base of convex sets Q = {FJΓ=i Define a family
F byF = {(Vlf Vt, •••, Vn)\nel+, V, e Q and cSdJίi1 ^ )Πcl [7J = 0}.
Given any (1^, V2, , VJ e F, by a (well known) separation theorem
there exists a continuous linear functional strictly separating
cόdJΓ^i1 Vt) and cl[VJ. For each member of F, select one such
functional thus obtaining a countable family {ζjΓ=i of functionals.
The proof is completed by noting that for x e K and A e cc(K) with
x £ A there exists a (VΊ, F2, , Vn) e F with A c cδίUtVi1 F<) and

(2.2) THEOREM. Lβί K be a compact convex subset of a metriz-
able locally convex real topological vector space L, dim[K] ^ 2. Then
cc(JSΓ) = Joo.

Proof. For each Aecc(iί), let ζt(A) = [aifbi\ where the ζt are
as in (2.1) such that, without loss of generality, sup{|ζ€(α?)|: x eK}<^l
for each i. Let F: cc(K) —> 1^ be defined by

F(A) = (aJ2, bJ2\ aJ2\ bJ2\ , α J 2 2 ^ , 6n/2» , - •) .

Since {ζ2}Γ=i is a separating family, JP is one-to-one. Furthermore,
for each j , the co-ordinate functions F2j_1 = a^5'1 and F2j = 6j /22i

are continuous since ζ, is continuous. Thus, F is continuous (we
are mapping into IJ). Let A1, A2 e CC(JBΓ), λe [0, 1], and jel+; then,
using the linearity of ζ i ?

1 + (1 - λ)A2) = λζ^A1) + (1 - λ)ζ,(A2)

- λ[αj, 6J] + (1 - λ)[α2-, δj]

= [λαj + (1 - λ)α), λ6} + (1 - λ)6J] ,

where [αj, 6J] = ζ, (A&) for A? = 1 and 2. Thus, ^(λA1 + (1 - λ)A2) =
XFtiA1) + (1 - λ)F,(A2) where ί = 1, 2, , . This says that the set
F(cc(K)) is convex. Now, since dim[iΓ] ^ 2 K contains a convex
2-cell, say D. Thus, for each n, K contains a regular w-sided
polygon Pn with sides sίf s2, •• ,sΛ which lies in the "interior" of
the 2-cell D. For each ί, let At be a convex arc which lies in the
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exterior of Pn along the perpendicular bisector of Si in D. For
each w-tuple (tl9 t2, , tn) in ΠΓ=i At let G((tlf t2, , tn)) = coίfo,
£2, ••*, *»})• It is clear that the mapping G is a homeomorphism of
the w-cell ΠΓ=i -A< into cc(JSΓ). Thus, cc(J5Γ) contains an w-cell for
every n and, tnerefore, is infinite dimensional. Thus, F(ce(K)) is a
compact and infinite dimensional convex subset of l2. Hence, by
Keller's theorem [10], F(cc(K)) ^ /«,. Therefore, cc(iΓ) = /„,.

We point out that the proof of Theorem 2.2 is a slight modi-
fication of a proof used by Klee [12] to generalize Keller's theorem.
Also Klee, in a conversation with the authors, has pointed out a
different proof of Theorem 2.2 in the case when L is a normed
linear space. This consists of using a theorem in [17] to embed
the compact convex subsets of a normed linear space into a normed
linear space, noting that for a fixed KaL,cc(K) is embedded
convexly, and then using Klee's generalization [12] of Keller's
theorem.

Let L be as in (2.2) and let F ccc(L). We say that the family
F is convex if and only if for all A,BeF and λ, 0 ^ X <Ξ 1,
(XA + (1 — X)B)eF (where XA means {λ α: αe A}).

(2.3) THEOREM. Let L be as in (2.2) and let Fczcc(L) he such
that F is compact, convex, and infinite dimensional. Then, F = 1^.

Proof. By (2.2) cc(L) and hence F can be affinely embedded
into ϊ2. But then F is a compact, convex, infinite dimensional subset
of l2 and Keller's theorem applies to give F = 1^ (see [10]).

As a consequence of (2.3) and the part of the proof of (2.2)
showing that cc(K) is infinite dimensional, we have the following
two corollaries.

(2.4) COROLLARY. Let K and L be as in (2.2). Let Q be a
given compact subset of K such that cδ[Q] Φ K. Then, {A 6 cc(K):
Q(zA} = I^

(2.5) COROLLARY. Let K and L be as in (2.2). Let Ko be a
given nonempty compact convex subset of K. Then {Aecc(iίΓ):
Af]KQΦ 0} ^ JTO.

It follows, in particular, from (2.3) or (2.4) that the space of
compact convex subsets of the unit disc in R2 which contain the
origin is homeomorphic to 1^.

3* A topological converse to (2*2) for the plane* In the
plane, (2.2) says that the cc-hyperspace of a convex 2-cell is homeo-
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morphic to the Hubert cube. The question arises as to which sub-
sets of the plane have their cc-hyperspaces homeomorphic to 7 .̂ A
complete answer to this problem will involve both topological and
geometric considerations. The topological considerations are the
subject of this section. Our result is

(3.1) THEOREM. If X is a continuum in R2 such that
cc(X) = Zoo, then X is a two cell.

To prove (3.1) we will make use of the following lemmas. The
first three lemmas are stated in more generality than explicitly
needed for proving (3.1).

(3.2) LEMMA. Let E be a Banach space which admits a topo-
logically equivalent norm that is strictly convex. Then there is a
continuous selection from cc(E) to E. Thus, for any separable
Banach space, there is such a selection.

Proof. Let || || denote a strictly convex norm on E and let
peE. Define η: cc(E) —> E by letting η(A) denote the unique point
aoeA such that inf{||p — α|| αe A} — \\p — aQ\\ (see [3, p. 19]). It is
easy to see that rj is continuous and is a selection. The second
part of (3.2) follows from the fact that any separable Banach space
admits an equivalent strictly convex norm [3, p. 18].

(3.3) LEMMA. Let X be a dendrίte. Then dim[cc(X)] ^ 2.

Proof. Let X be a dendrite (in some real topological vector
space) and note that any member of cc(X) is either a (convex) arc
or a singleton. Hence, the barycenter map g: cc(X) —> X is contin-
uous where g is defined by: if a and b are the endpoints of a con-
vex arc A in X or if a = b, in which case let A = {a}, then
g(A) — (a + 6)/2. Let pe X. Since p belongs to arbitrarily small
open subsets of X with finite boundaries [21, p. 99], there are at
most countably many convex arcs A* = [aiy δt], ΐ = 1, 2, , maximal
with respect to the property that g(At) = p. For each p let
Di = {[su tilaAi'. g([sif tt]) = p}. Since the map 8t —> [sif fcj is a home-
omorphism of [ai9 p] onto Di9 Di ̂  [ait p] (note: Dt could be just {p})<
Also, it is clear that g~\p) = U?°=i A Hence, by III 2 of [9],
dim[g~\p)] <: 1. Therefore, from the statement on p. 92 of [9]
which is verified in order to prove VI 7 of [9], dim[cc(X)] ^ 1 +
dim[X] - 2.

(3.4) LEMMA. Let X be a continuum lying in a Banach space
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E. If cc(X) = 1^, then X is an absolute retract and dim[X] ^ 2.

Proof. Let F denote the closed linear span of X. Since X is
separable, F is a separable subspace of E. Hence, by (3.2), we
have a continuous selection η\ cc(F) —> ί7. Since the restriction of
?7 to cc(X) is a retraction of cc(X) onto X, the fact that X is an
AR now follows from the well known fact that [14, Vol. II, Th. 7,
p. 341] a retract of /«, is an AR. For the remainder of the proof,
suppose dim[X] <J 1. If dim[X] = 0, in which case X consists of
only one point, then cc(X) = X. So, for the purpose of proof, as-
sume dim[X] = 1. Then X is a one-dimensional AR and, hence, a
dendrite (cf. Brosuk's "Theory of Retracts" p. 138). By (3.3) this
implies dim[cc(X)] ^ 2 which contradicts the assumption that
cc(X) = 1^.

(3.5) Conjecture. If A is a dendrite, then cc(A) is embeddable
in the plane.

(3.6) LEMMA. The space of singletons and convex arcs in
Rn(n^2) denoted AS(Rn), is homeomorphic to J2nx([0, oo)χP»-γ
0xPn~x). In the special case that n = 2, AS(R2) = R\

Proof. We note that the space of lines through the origin in
Rn is homeomorphic to protective n — 1 space P*"1. For each con-
vex arc or point ab in Rn define F{ab) in Rnx([0, oo)χpn~1/θxpn'ί)
by F{ab) = (α + 6)/2, [(||6 - α||, s)] where s is the point of pn~ι de-
termined by the line parallel to ab if ab is nondegenerate and s is
the point of pn~x determined by the first axis if ab is a singleton.
In this proof we have used |>] to denote "equivalence class." It is
a straightforward matter to check that F is a homeomorphism. If
n = 2,then#2x([0, oo)χp'/0χpί)^R2χ([09 oo)xS

1/0xS1) = -B2xi22--β4.
The lemma is proved.

(3.7) LEMMA. If X is a continuum in R2 such that cc(X) = 1^
then int[X] Φ 0 and X = cl(int[X]).

Proof. Suppose there is a point p in X — cl(int(X)). Clearly,
we may then choose a neighborhood N in cc(X) about {p} such that
N consists only of singletons and convex arcs. Hence, N is embedd-
able in R* (by (3.6)) and, therefore, finite dimensional. This con-
tradicts the assumption that cc(X) ~ 1^.

(3.8) LEMMA. If X is a continuum in R2 such that cc(X) = /oo,
then int[X] is connected.
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Proof. Let p and q be distinct points of int[X]. We show
that there is an arc in int[X] from p to q. Let A = {A e cc(X) | A
is a singleton or a convex arc}. By virtue of (3.6), A is finite
dimensional. Therefore, since cc(X) ~ /TO and A is compact, cc(X) — A
is arcwise connected (that no finite dimensional continuum can
separate IJ) (arc separate is equivalent to separate for locally con-
nected continua) follows from the fact that, for each n9 In is a
Cantor manifold (see Corollary 2 on p. 48 of [9]) and the set of all
points of the form U»=i ί i * s dense in /„ (here I ί = Π?=i£x(l/2,
1/2, ...))• Let K,L 6 cc(X) be 2-cells with [K U L]czint[X] and
β(K) = p and /3(L) = # (where /9: cc(X) —> X is the barycenter map).
Now, let a be an arc in cc(X) — A with endpoints K and L. Since
<xc[cc(X) — A] each point of a is a 2-cell and thus, the restriction
of β to a is continuous. Thus, β(a) is a locally connected continu-
um and hence β(a) is arcwise connected. Since XaR2 and each
member M of a is a 2-cell, it follows that β(M) eint(Λf) czint[X].
Therefore, we now have that β(a) is arcwise connected and p, q e
/3(α:) c int[X]. The lemma follows.

Proof of Theorem 3.1. By (3.4), X is an absolute retract and
therefore R2 — X is connected [7, p. 364]. Therefore, (since X is
a locally connected continuum in R2)f Bd[J?2 — X] is a locally con-
nected continuum (see 2.2 of [21, p. 106]). Let N denote Bά[R2 - X].
Direct computation using only definitions yields

(*) R2 - N = [R2 - X] U int X .

Thus we have that N is a locally connected continuum and, by
(3.9), and (*) E2 - X and int[X] are the components of E2 - N. It
now follows from 2.51 of [21, p. 107] that there is a simple closed
curve JaN. Let G denote the bounded component of E2 — J. By
(3.8), int[X]cG, and hence, cl(int[X])c [GU J]. Therefore, by (3.7),
I c [ G U J ] . However, since E2 — X is connected and JaX, we
have G c X, i.e., [G U J ] c X . This proves X = G U J and, thus, X
is a 2-cell. This proves (3.1).

REMARK. The part of the proof of Theorem 3.1 which follows
the lemmas is devoted entirely to showing that if Z is a planar
compact absolute retract such that Z = cl(int[Z]) and int[Z] is con-
nected, then Z is a 2-cell. This characterization of 2-cells among
continua in the plane does not seem to be explicitly stated in the
literature.

4* Analogue to the 2-cell theorem for 3-sρace* In this section
we will establish
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(4.1) THEOREM. If X is a continuum in Rz such that cc(X) = /TO

and X is not contained in any 2-dimensional hyperplane, then
int[X] Φ 0 .

We use the following lemmas to prove (4.1).

(4.2) LEMMA. Let σ: [0, 1] —> cc(R2) be an arc of convex arcs in
R2. Suppose that L is a straight line in R2 such that, for 0 ̂  t ^ s
where s > 0, L Π σ(t) consists of only one point. Then the convex
segment with noncut points σ(0) Π L and σ(s) Π L is contained in
Uo^s σ(t).

(4.3) REMARK. It is easy using (4.2) to prove that if σ[0, 1] —>
cc(R2) is a one-to-one continuous mapping such that, for each x e
[0, 1], σ(s) is a convex arc and such that there exist sx and s2 such
that σ(sλ) and σ(s2) are not co-linear, then Use[0,i]

σ(s) contains a
2-cell.

Proof. Consider the mapping σ: [0, s] -> L defined by σ(t) =
σ(t)f)L. Using the single valuedness of σ, it is easy to show that
σ is continuous. Thus, σ([0, s]) is connected in L and the result
follows.

(4.4) LEMMA. Let σ: [0, 1] —> cc(i23) be an arc of convex 2-cells
in i?3 such that there is a sequence sr —> 0 such that σ(sr) and σ(0)
are not co-planar. Then, U«e[o,i] σ(s) contains a Z-cell.

Proof. Let Hi(i = 1,2, 3) be the standard projection onto the
ith factor of R3. Since σ(Q) is nondegenerate, there exist iι and i2

such that neither ILJ^CO)] nor Πi2[^(0)] is a single point. Without
loss of generality, we will assume that it = 1 and i2 = 2. Let
[a19 α2]cint[Πi(^(0))] Note that, for x e [a19 α2], ΠΓ1^) Π O(0) is a
nondegenerate arc. Let c be chosen so that ϊlϊXc) Π IlϊKi^ + αa)/2)Π
σ(0) is an interior point of the arc σ(0) Π ΠΓXC^I + α2)/2). Let
αx ^ α( < (^ — αa)/2 < a'z ^ α2 be chosen so that, for each x e [a[, ar

2],
Π2~1(c) Π ΐlϊKx) Π (7(0) is an interior point of the arc ΐ[r\x) Π (7(0).
Let ct < c < c2 be chosen so that, for y e [cίf c2] and x e [a[f a'2] it is
true that J\^\y) ΓΊ TίϊX%) Π (7(0) is an interior point of the arc
ILϊKx) Π (7(0). Let ί > 0 be chosen so that:

(1) f or s e [0, ί] and x e [a[, α2], Πf 1^) Π (7(S) cuts α(s), and
( 2 ) for 8 6 [0, t], a; e [a[, a2] and y e [cίf c2], UΛv) Π Πrι(a?) Π (7(«)

is an interior point of the arc Π Γ 1 ^ ) Γ) (7(S).

Let 0 < t' < t be chosen so that σ(0) and σ(t') arc not co-planar.
Note, since there can be at most one x in [a[, α'] for which α (O) Π
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ΐlϊL(x) and σ(t') ΓΊ Hz\x) are co-linear, we may assume without loss
of generality that, for x e [a[, a'2], ΠΓ1^) Π σ(0) and ΐlτ\x) Ω o(tr) are
not co-linear. Since, for each xe[a[, a'2], there can be at most one
y e [c19 c2] such that Π Γ W Π UzKx) Π σ(0) Π σ-(ί') Φ 0 , we may now
choose αί <£ αί' < a2 <; αg and cx <; cί < ^ 5£ c2 so that, for x e [αί', α^]
and 2/ 6 [d, c'2], (*) Π2~

1(l/) Π ϊlΓ1^) Π σ(0) Π σ(t') = 0 . Consider now the
set of points D - {Πί'teOΩ Uϊ\aϊ) Γi σ(z): i9 j = 1, 2, z - 0 or z = t'}.
We claim that cδ(D) d\Jse[Oy^σ(s). To see this, note first that if
A = {Π2-

1fe) ΓΊ TlϊKaϊ) n *(θj} where i, j = 1, 2} and Ό%, = {Π2-
1fe)n

Πr ι(»i) n σ(ί'): i, i = 1, 2} then co(Dz) c σ(2) c [U.β[o,i3 (̂β)] where « e
{0, t'}. Now, if peco(Z)) then, for some xe[aϊ, a/], we have that
P e IΪΓ1^)- Also, for some 7/ e [cί, Cg] we have that p e Jί^iy).
Since p e cό(D) we have that p is on the convex segment in J\j\y) Π
τiϊ\x) which joins Π 2"W Π Uϊ\x) Π σ(0) and Π Γ W Π Π Γ 1 ^ ) Π σ(ί').
This is true because co(D0) Π co(Dt) = 0 (otherwise we would con-
tradict (*)). Now, the mapping σx: [0, t'] —> ccdlΓ1^)) defined by
σx(s) = σ(s) Π ΠΓ1^) is easily seen to be continuous. Also, ^(0) and
σx(tr) are not co-linear and the line ΐli\y) Π IίT\x) in Hτ\x) cuts
each of the arcs σx(s) for s e [0, £']. It now follows from (4.2) that

p e U e[o,t']0"*(β). T h e l e m m a i s proved.

The following lemma is a simple consequence of (4.4).

(4.5) LEMMA. Let σ: [0, 1] —» cc(i?3) 6e α one-to-one continuous
mapping of [0, 1] mίo cc(Rz) such that σ(s) is a (convex) 2-cell for
each s and such that there exist sλ and s2 such that σ(sj and σ(s2)
are not co-planar. Then, U e[0,i]

 σ(s) contains a 3-cell. We are now
ready to establish (4.1).

Proof of (4.1). It can be seen that the space of convex arcs
and points in a compact subset of Rz is of dimension less than or
equal to 6 (see (3.6)). If X satisfies the conditions of (4.1) and
AS(X) denotes the space of arcs and singletons in cc(JC) then
cc(X) — AS(X) must be arcwise connected (see the remark in the
proof of (3.8)). Let p1 and p2 be points in X which lie in the
interior of two cells Px and P2, respectively, such that Px and P2

are not co-planar. Now, [cc(X) — AS(X)]ΊD{Plf P2) and, hence, there
is a one-to-one continuous mapping σ: [0, 1] —> [cc(X) — AS(X)] such
that σ(0) = Pt and σ(l) = P2. If σ(s) is not a 2-cell for some s, then
σ(s) is a 3-cell and we are done. Hence, without loss of generality,
we may assume σ(s) is a 2-cell for each s e [0, 1]. Thus, by virtue
of (4.5), Xz)\Jse[0Λlσ(s) contains a 3-cell. The theorem is proved.

(4.6) EXAMPLE. We show that the natural analogue to (4.1)
does not hold in Rn, n > 3. Let Y be the continuum in R* defined
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b y Γ = Y 1 \ J Y Λ w h e r e Y, = { ( x , y , z , w ) : \x\ ^ 1 , \y\ ^ 1 , \z\ ^ 1 , w = 0 }
and Γ2 - {(», 2/, 2, w): M ^ 1, | » | ^ 1, z = 0, |w | ^ 1}. Now, cc(Γ) =
cc( YJ U cc(Γ2) and cc(Y; n Γa) - cc( TO Π cc(Γ2) ^ /„. A theorem of
Anderson [20] asserts that the union of two Hubert cubes which
intersect in a Hubert cube is a Hubert cube provided the intersection
has property Z in each. We thus want to see that cc( Yx Π Y2) has
property Z in cc(Γi) and cc(F2).

To this end, let U be a homotopically trivial subset of cc(F1).
Let g: S^1 —> U — cc(i r

1Π F2) and let g: Bk —> U be an extension of g.
For each p e U let d(p) = inf{d(p, q):qecc(Yι) — U). For each
t e [0, 1] and each b in the sphere of radius t in I?/c, let G(b)~
co(ΛΓ((l - t)(d(gφ)))/2f g(h)))(N(ε, g(b))) = {x: for some α s ^(6), ||a? - a ||
<ε}). Clearly G(6) e Z7 for each beBk and, even more, since G(ί>) is
a 3-cell for each 6, we have G(6) 6 U - cc(Xn Γ2). Also GIS*"1 = gr.
We have established that cc( Yx) Π cc( Y2) has property Z in cc(Fi).
The proof for cc(F2) is the same. It now follows that cc(F) = /w .
This shows that the analogue to (4.1) does not hold in R\ Actu-
ally, it is clear that similar examples exist in dimensions n > 4 as
well.

This next example is of a 3-dimensional continuum in Rz which
is not a 3-cell but whose cc-hyperspace is homeomorphic to JTO.

(4.7) EXAMPLE. Let X be the continuum in R3 defined by
X = Xx U X2 where

Xι = {(x,V,z): \\(x,y,z)\\ ^ 1}

and

X* = {(x,V,0Y max{|x|

Now, cc(X) = cc(XJ U cc(X2) is a union of two convex Hubert cubes.
Also, CC(JSLΊ) Π CC(X2) = cc(Xi Π X2) is a convex Hubert cube. Using
the same techniques as were used in Example (4.6) one can easily
show that cc(XJ Π cc(X2) is a Z-set in cc(XJ. By Handel's result
[8], it follows that cc(Xx) Π cc(X2) = cc(X) is a Hubert cube.

5* Some geometric considerations. In view of Theorem (3.1),
it is natural to ask the question:

Which 2-cells X in R2 have the property that cc(X) = IJ
The following example shows that not every 2-cell in R2 has

this property.

(5.1) EXAMPLE. Let X be the 2-cell in R2 pictured below.
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:V Λ ' r
The three points α, b and c of local nonconvexity of X all lie

on the convex arc de. It is clear that any compact convex subset

of X which is within ε of the arc de (in the Hausdorff metric)

must be a subarc of de. Hence, it follows that de has small 2-cell

neighborhoods in cc(X). Therefore, cc(X) is 2-dimensional at de

and, thus, cc(X) g 1^.
The remainder of this section is devoted to proving two results

which can be used to establish that some rather wide classes of
2-cells do have the property that their hyperspaces of nonempty
compact convex subsets are topologically ITO. We begin with some
definitions.

(5.2) DEFINITION. Let K be a starshaphed subset of I2 and let
p6 Ker(iΓ). The point xeK will be called a p-relative interior
point of K if there exists an x*eK such that, for some λe(0, 1),
λ#* + (1 — X)p = x. A point in K which is not a p-relative interior
point will be called a p-relative extreme point of K.

(5.3) DEFINITION. Let K^K2 be two starshaped subsets of l2

such that KerίlQ n Ker(ίQ Φ ®. Let p e [Ker(^) n Ker(ίΓ2)]. Then
p is called a K2 inside point of Kt if, for every xeK2, {Xp + (1—X)x:
λe(0, l^nK.Φ 0 .

(5.4) THEOREM. Let Kλ Q K2 be two compact, starshaped sub-
sets of l2 and suppose that there exists a point p^Kγ such that:

( i ) p e KeτiKJ Π Ker(JBΓ8),

(ii) p is a K2-inside point of Klf

(iii) the set of all p-relative interior points of Kt (resp.f K2)
is an open subset of Kx (resp.f K2). Then, Kλ and K2 are homeo-
morphic.

Proof. Let the hypothesis of the theorem be satisfied. We
will assume without loss of generality that p = (0,0,0, •••)• For
each point x e K2 — {p} (clearly, the theorem is valid if K2 — {p} — 0 )
let x be that p-relative extreme point of K2 defined by x = axx
where ax = sup{αe (0, oo): ax eK2}. To each p-relative extreme
point y of K2, let Xy = sup{λ e [0, 1]: Xy e i Q . Let / : K2 -> K, be the
function defined by
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X2x, if xeK2- {p}

p, if x = p .

It is easy to see that / is one-to-one. We wish now to show that
/ is onto and continuous. To see that / is onto, let x e Kλ. If
x = p, we are done since f{p) = p. If x Φ p, then l/λ2 <̂  ax.
Hence, y = x/X2eK2 and, clearly, f(y) = x. We have seen that / is
onto. To see that / is continuous, let {OJJΠ=I be a sequence in K2 such
that \imi->GoXi = xeK2. If x = p, it is clear that \imz_OQf(xί) = f(p) — p.
So, assume that x φ p. We may then assume that xiφ p for all ί.
We will first show that lim<_>0O^ί = ̂ . Since K2 is compact, we must
have that some subsequence {xιj}J=1 of the sequence {#JΓ=i converges
to an x0 6 if2. Without loss of generality, we may assume that the
sequence {xί}?=1 converges to xQ. Now, it follows from condition
(iii) that xQ must be a p-relative extreme point of K2. To see that
x0 = χf we need now only show that, for some λ > 0, Xx0 = x. Let
λ< be such that λ ^ = x% and consider xtx. Now, the λ/s are boun-
ded and since | | λ ^ — λ ^ H = jλ,J \\x — x j | we have that lim^.^ λ ^ = ̂ 0.
It is now not difficult to see that, for some λ0 > 0, lim,-^ X{ = λ0 and
χox = χ0 = x. To establish the continuity of /, we need now only
show that lim^ooλ^. —λ .̂ First consider {λ^xjΓ-i Since, for each ί,
Xx.Xi is a p-relative extreme point of K19 we have that some sub-
sequence converges to a p-relative extreme point of Kx. Without
loss of generality, we will assume that lim^co λ .̂x^ — xf where xr is a
p-relative extreme point of Kγ. But, ||λ^ά; — λ~.x|| = |λ^J ||x — xι\\^
| |x — xt\\. Hence, lim^coλ^^ = xf. But, the fact that the sequence
{λί.xK°=1 is Cauchy implies that {λj.}Γ=i is Cauchy and, hence, that
there exists a λ' such that lim* ̂ λ;.. = λ'. Thus, X'x = x' which says
that λ' = λ^. We have now established the continuity of /. Since
Kλ and K2 are compact, it follows that / is a homeomorphism.

(5.5) COROLLARY. Let X be a compact star shaped subset of Rn

such that int[Ker(X)] Φ 0 . Then, cc(X) ~ i^.

Proof. For simplicity, we will assume that the origin 0 e
int[Ker(X)J. Let ε > 0 be such that Bc = {xeRn: \\x\\ <> ε} is con-
tained in Ker(X). Since X is compact, there exists an r > 0 such
that X c Br. Let F be an affine embedding of cc(Br) into l2 such
that F(0) = 0 (as in the proof of (2.2)). Let K, = F(cc(Bs)) and let
K2 = F(ec(X)). Then, Kγ Q K2. Since we have already seen that
cc(Bc) = 1^ (Theorem (2.2)), the result will now follow provided
conditions (i), (ii) and (iii) of (4.4) are shown to be satisfied for
p — 0. It is easy to see that conditions (i) and (ii) are satisfied.
That condition (iii) is satisfied will follow if we can show that the
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p-relative extreme points of Kx (resp , K2) are precisely those ele-
ments of the form F(G) where Gf]Fi(Bε) Φ 0 (resp., GiΊFr(X) Φ 0 ) .
We will show this only for K2 since it is obvious for Kt. It is
clear that if Gecc(X) is such that GnFr(X) = 0 then F(G) is not
a ^-relative extreme point of K2. It remains only to show that if
Gecc(X) is such that GnFr(X) φ 0 then F(G) is a p-relative ex-
treme point of K2. Suppose not, then there exists a λ > 1 such
that XF(G) e K2. Let Gf e cc(X) be such that F(G') = XF(G). By
the one-to-oneness and the convexity of F, it follows that XG = G'.
If c e G n F r ( I ) , then XceX. But co(λc, Bε)dX and contains c as
an interior point. This contradicts the fact that c e Fr(X). The
corollary now follows. T. A. Chapman showed (see Theorem 10 of
[5]) that a compact Hubert cube manifold is homeomorphic to the
Hubert cube if and only if it is homotopically trivial. This enables
one to "localize" the problem of showing the cc-hyperspace of a
given 2-cell is homeomorphic to 1^.

(5.6) THEOREM. (1) If X is a contractible continuum lying
in a Banach space, then cc(X) is contractible.

(2) Thus, in particular, if X is a 2-cell {or n-cell), c^X)^/^
if and only if cc(X) is a Hίlbert cube manifold.

Proof. The closed linear span L of X is a separable Banach
space. By (3.2), there is a continuous selection η from cc(X) to X.
Define g: cc(X) x [0, 1] -• cc(X) by g(A, t) = t{η(A)} + (1 - t)A. It
follows using g and the contractibility of X that cc(X) is con-
tractible. This proves (1). The proof of (2) uses (1) and Theorem 10
of [5].

These next results will show that a fairly large class of 2-cells
have the property that their hyperspaces of compact convex subsets
are homeomorphic to 1^. We begin with a notational agreement
and a definition.

If A is a nondegenerate, convex arc in the plane then by A"
we will denote the unique line in R2 which contains A. If p e Rn

a n d ε > 0 t h e n B ( ε , p) = {x eRn: \\x - p\\ < ε}.

(5.7) DEFINITION. Let X be a 2-cell in R2 and let Aecc(X)
be an arc. Suppose that one complementary domain of A" has been
designated the right side of AT and the other the left side of AT.
A point p e LN(X) Π A will be said to lie on the left side (right
side) of A if, for every ε > 0, J5(ε, p) — X contains points on the
left side (right side) of A\ If for some ε > 0, B(ε, p) — X contains
no points on the right side (left side) of A~ then p will be said to
lie strictly on the left side (right side) of A.
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(5.8) LEMMA. Let X be an n-cell. If Aecc(X) is an n-cell
then A is contained in a closed starshaped subset N of X with
int[Ker(iSO] Φ 0 such that cc(i\Γ) is a neighborhood of A in cc(X).

Proof. Let A e cc(X) be an n-cell and let q e int[A]. Let ε > 0
be chosen so that cl(B(s, q))aint[A]. Let Γ = {Kecc(X): cl(5(ε, q))aK}
and let D = U Γ. It is not difficult to see that JO is a closed
starshaped subset of X and that Ker(D) 2 cl(i?(ε, q)). It is also not
difficult to see that CC(JD) is a neighborhood of A in cc(X). The
lemma is proved.

(5.9) LEMMA. If X is an n-cell in Rn then the following are
equivalent:

( i ) Every A e cc(X) lies in a starshaped subset of X whose
kernel has nonvoid interior.

(ii) Every maximal convex subset of X is an n-cell.

Proof. Suppose (i) is satisfied. Let A e cc(X) be maximal. By
(i) there exists an n-ball BczX such that cδ{B, A) c X. But, by
maximality of A, co{ί?, A] — A. Hence A is an ^-dimensional com-
pact convex subset of Rn and thus must be an n-cell. We have
that (i) implies (ii). Now, if (ii) holds and A e cc(X), then let M(A)
be a maximal convex subset of X which contains A. As M(A) is a
starshaped set whose kernel has nonvoid interior, we are done.

(5.10) LEMMA. Let X be a 2-cell in R2. Let Aecc(X) be an
arc with noncut points p and q. Suppose there exists a closed ball
DdX and neighborhoods P of p and Q of q in X such that for
each de D we have P U Q c S(d). Then A is contained in a closed
starshaped subset Y of X with int[Ker(Y)] Φ 0 such that cc(Y) is
a neighborhood of A in cc(X).

Proof. We can assume that D lies in the interior of a convex
2-cell BCLX such that A is on the boundary of B. We may also
assume that A — (P U Q) Φ 0 (we would be done in this case any-
way as will become evident at the end of the proof). Let P' and
Qf be balls in R2 centered at p and q, respectively, which satisfy

(a) the radii of Pr and Q' are less than 1/2 min {radius of P,
radius of Q}, and

(b) for each a e [A - (P U Q)], r e cl(P'), s e cl(Q') and d e D, the

ray through a from d must intersect the segment rs in a cut point.

Now, for each ae A — (P U Q), choose a ball Ba about a such that

(**) if r 6 cl(P'), s 6 cl(Q'), t e Ba and deD, then the ray from
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d through t must intersect the segment rs in a cut point.

Let Σ be the collection of all convex sets C in X such that C inter
sects both P ' and Q' and is contained in the union of P, Q and the
balls Ba for a e A — (P U Q). It is clear that Σ is a neighborhood
of A in cc(X). We wish to show now that if de D, then d sees
each point of any C in Σ So, let C e Σ and let r e [ P ' n C ] and
s e [Q' n C]. Let a e C - ( P u Q ) (note, if α e [P U Q] we are done)
and let α e i - ( P u Q ) be such that aeBa. Since aeBa, by (**)
we have that the ray from d through a(d e D) must intersect rs.
By simple connectivity of X, it follows that the 2-cell (rds) and
(rsa)((rsa) may be an arc) lie in X. If the segment da intersects
rs then da = [da Π (rseZ)] U [da n (rsα)] c X. If the segment cto does
not intersect rs, then cte c (rsd) c X. Thus, da c X and we have
the desired conclusion. Now, let Γ = {Kecc(X): KZDD}. Let
7 = UΓ. We have just seen that the starshaped set Y has the
property that cc(F)z>Σ Also, we have that Ker[F] D int[D] and
hence int[Ker(F)] φ 0 . The lemma is proved.

(5.11) LEMMA. Let X be a polygonal 2-cell in R2 and let
A e cc(X) be an arc such that no two points in LN(X) Π A lie
strictly on opposite sides of A. Then there exists a closed starshap-
ed subset N of X with int[Ker(JV)] Φ 0 such that cc(ΛΓ) is a neigh-
borhood of A in cc(X).

Proof. Let A be an arc in cc(X) such that no two points of
LN(X) n A lie strictly on opposite sides of A. Consider the noncut
points, say p and q, of A. If at least one of p and q is not a
point in LN(X) which lies strictly on one side of A then it can be
seen that there is a closed ball D in X and neighborhoods
B(a, p)f]Xand B(Ύ, g ) ί l l such that, for any d eD, (B(a, p)UB(r, q))Π
XaS(d). The result now follows from (5.10). Suppose now that
both p and q are points in LN(X) which lie strictly on one side of
A. It is geometrically clear that, in this event, ono can obtain balls
P, Q and M such that

(a) peP,qeQ and cl(Λf) c int[X],
(b) cl(Λf) Π 4 = 0 , and
(c) if C is a convex set in X such that C Π P Φ 0 and

C n Q Φ 0 then C n (P U Q) c S(m) for every m e cl(Λf).
The proof from here proceeds as it did in the proof of (5.10).

(5.12) THEOREM. Let X be a polygonal 2-cell in R2. Then the
following are equivalent:
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( i ) Every maximal convex subset of X is a 2-cell.
(ii) Each Aecc(X) is contained in a closed starshaped subset

N of X for which int[Ker(i\O] Φ 0 and cc(N) is a neighborhood of
A in cc(JC).

Furthermore, if (i) or (ii) holds then cc(X) = 1 .̂

Proof. That condition (ii) implies condition (i) follows from
(5.9). Now, assume that (i) holds. If Aecc(X) is a singleton then
it is easy to see that A is contained in a closed starshaped neigh-
borhood N in X. But then CC(JV) is a neighborhood of A in cc(X)
and we are done in this case. If A e cc(X) is a 2-cell, then we are
done by virtue of (5.8). If A is an arc, then by (5.11) we will be
done if we can show that no two points in LN(X) Π A lie strictly
on opposite sides of A. Let p19 p2 e LN(X) Π A lie strictly on op-
posite sides of A. If both p1 and p2 are cut points of A then it is
clear that no convex 2-cell in X can contain A and this contradicts
(i). If one or more of px and p2 are noncut points of A then one
can obtain an arc A! z> A with A! e cc(X) for which both p1 and p2

are cut points. This again leads to a contradiction of condition (i).
Thus, no two points of LN(X) Π A can lie strictly on opposite sides
of A and we have the desired result. We have now established the
equivalence of (i) and (ii).

To complete the proof we need only see that if (ii) holds then
cc(X) = loo. So, suppose that (ii) holds. Let A e cc(X) by virtue
of (ii) there exists a closed starshaped subset N of X with
int[Ker(iV)] Φ 0 for which cc(N) is a neighborhood of A in cc(X).
But, cc(iV) = ITO by (5.5). Thus, cc(X) is homeomorphic to /«, by
virtue of (5.6). The theorem is proved.

(5.13) THEOREM. Let X be a 2-cell in R2 such that (*) when-
ever p, q e X are such that p e S(q) and N is a neighborhood of p in
X, then there exists an open set MaN and a neighborhood Q of q
such that for each point m in M we have S(m) Z) Q.

The following are equivalent:
( i ) Every maximal convex subset of X is a 2-cell.
(ii) Each Aecc(X) is contained in a starshaped subset N of

X for which int[Ker(jV)] Φ 0 and cc(iV) is a neighborhood of A in
cc(X).

Furthermore, if (i) or (ii) holds then cc(X) = I^.

Proof. All aspects of the proof for this result are the same as
the proof of (5.12) with the exception of showing that condition (i)
implies condition (ii). So, suppose that condition (i) holds and let
Aecc(X). If A is a singleton, it is easy to use (*) to obtain the
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desired set N. If A is a 2-cell we are again done by virtue of (5.8).
Suppose, that A = [p, q] is an arc. Let B be a 2-cell in cc(X) which
contains A (condition (i) implies B exists). Let b e int(J3). Since
peS(b) there is by (*) a ball C c ΰ a n d a neighborhood P of p such
that for each meC we have S(m)i)P. Let m^C. Since mteB
we have S(m1)i)q. Thus, by (*), there exists a closed ball DaC
and a neighborhood Q of q such that, for any d eD. S(d)Z)Q. Now
application of (5.10) gives the existence of the star shaped subset N
of X with the desired properties. The result is established.

6* Some problems and examples* While at present we have
some large classes of nonconvex 2-cells whose cc-hyperspaces are
homeomorphic to !«,, we still do not know exactly which 2-cells
have their cc-hyperspaces homeomorphic to 1^. The following pro-
blems are connected with this.

(6.1) Problem. Let X be a 2-cell in R2. If every point of
cc(X) has arbitrarily small infinite dimensional neighborhoods, is it
true that cc(X) = IJ

(6.2) Problem. Let X be a 2-cell in R2. If every maximal
convex subset of X is either a point or a 2-cell, is it true that
cc(X) = IJ

(6.3) Problem. Let X be a 2-cell in R2. If every maximal
convex subset of X is a 2-cell, is it true that cc(X) = IJ

An affirmative answer to (6.1) would provide a satisfactory
characterization. This is true since it would then follow that
Example 5.1 is, in a sense, canonical. An affirmative answer to
(6.1) would imply an affirmative answer to (6.2) and an affirmative
answer to (6.2) would imply an affirmative answer to (6.3).

The following two examples give a bit more insight into the
above problems. The technique used in this next example is one
which has become standard in infinite dimensional topology. It was
first used by Schori and West in [18]. For the difinition of shape
see [4]. An onto map /: X—> Y where X and Y are homeomorphic
metric spaces, is a near homeomorphism if / can be uniformly ap-
proximated by homeomorphisms. For terminology related to inverse
limits it is suggested that the reader see [13] or [18]. In the dis-
cussion of the example we use a characterization by T. A. Chapman
of near homeomorphisms between Hubert cubes as being those con-
tinuous surjections for which point inverses have trivial shape.

(6.4) EXAMPLE. Consider the planar 2-cell X formed by inter-
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secting the planar regions A, B and C where A = {(a?, y): £^1/2, i/^0},
5 = {(«, 2/): (x + 1/2)2 + i/2 ̂  1/4} and C = {(a?, y): a;9 + ?/2 ̂  1} (see Fig.
6.6 below).

(-1,0) .1/2

FIGURE 6.6

FIGURE 6.7

Note that the point ( — 1, 0) is a maximal convex subset of X. Now,
for each 3τr/4 ^ Θ ̂  TΓ let I ^ I n {(r, <?): π/2 ^ φ ^ 5}. For each
pair (θ19 θ2) with ττ/2 ^θ^θ^π, let the mapping # M l : Xθ% -+ Xh

be defined by gh$ι(r, φ) = (r, ̂ ) for θx^φ^ θ2, and 0 V l ( r , ^) = (r, φ)
if π/2 ̂ φ ^ θx. Define, for (θlf θ2) as above, the retraction rθiθι:
ccίX^) -> cc(X^) by Tθ2θl(A) = co(flrtf2^(A)). Also, for a compact convex
subset A of X^ which intersects {(r, 0): r ^ 0} define p^A, θ) =
inf{r: (r, 0) e A}. For each n = 1, 2, . . , let θn = π - π/2n+1 and let
rn = r ^ + Λ and Xw = Xθ%. For A e c c ( X J , let YerΰXA) and define
0F - sup{0: rn(rθn+lθ(Y)) - A}. For each θ e [θnf θn+ι], let

θ) = if Θτ£θ£

if θ £ θγ

It is geometrically clear that H: r~\A) x [θn, θn+1] -• r~XA) is a
homotopy of the identity on r~\A) to a constant map. Thus, for
each A e cc(XJ, r-χ(A) is contractible and, hence [4, (5.5) p. 28], of
trivial shape. It now follows that rn is a near homeomorphism and,
hence, (since each Xn satisfies the conditions of Theorem 5.13) that
lim(cc(XJ, rn) = cc(Xx) = J^. Furthermore, the inverse sequence
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{(cc(XJ, rn)} also satisfies the conditions that
(a) cc(XJccc(X%+1) and U.cc(XJ - cc(X),
(b) Σ?=i d(rΛ, idcc(zn+1)) < °°,
(c) for each j , {rό ° o Ti: cc(Xi+1) —> cc(X, ) | ΐ ^ i}

is an equi-uniformly continuous family of functions.
That condition (a) holds is immediate. The fact that condition

(b) holds rests on the fact that if d(A, B) < ε and B is convex then
rf(co(il)f A) ^ ε.

To see that (c) holds, let, for each n, rn: X-* Xn be the retrac-
t ion gπθn.

Let j e I+ be given and let ε > 0. Choose j0 so that if
A ί cc(int[Xio+1]) then A Π Xj = 0. Choose δ1 > 0 so that if d(A, B)<δ,
then d(r\A), rn(B))<ε. Let <52>0 be chosen so that, if d(A, B)<δ2 and
A, Becc(Xio+1), then d ( r y o . . . oτh{A), rόo... o^(B)) < β. Let δ3 be
chosen so that, if A $ cc(int[X, 0+1]) and d(A, B)<δ3, then 5 f l l i = 0 .
Now, if δ = min{^, <52, δ3} and ώ(A, J?) < <5 then, either A, B e cc(XJQ+1)
in which case d(rό o. . . o rfe(A), r ^ - . o rfc(JB)) ^ d(r3- o.. . o r3 0(A),

r . o. . . o rSo(B)) <ε or A ίl I i = 0 and ΰ ί l l i = 0 in which case
ryo .o r*(A) = ry(A) and r, © © rA;(JB) = ry(J5) and, hence,
d(Tj ©. . o r*(il), r^ © o rΛ(jB)) < ε. We have established that condi-
tion (c) holds. Thus, by [13, Lemma B], cc(X) ^ lim^ccζ-X,), r<) and
thus cc(X) = /«,.

(6.5) EXAMPLE. Consider the 2-cell X in R2 which is the
closure of the bounded complementary domain of \Ji=1 Cif where

Ct = {(x, y): (x-1)2 + (2/-1)2 ^ 1} , C2 = {(», 2/): (a - I)2 + (2/ + I)2 ^ 1}

C3 = {(x, y): (x + iy + (y + lT^l} and C4 = {(x, y):

(Fig. 6.7.) Note, the convex segment with noncut points (0, —1)
and (0, 1) is a maximal convex subset of X and the kernel of X
consists only of the origin (0, 0). In spite of this, if one takes
Y = {(a?, y): x2 + y2 ^ 1/4} and sets Kx = cc(Γ), K2 - cc(X) and
p = (0, 0) then all the conditions of Theorem 4.4 are satisfied. It
follows that cc(X) = cc(F) = 1^.

The 2-cell of Example (6.4) illustrates the validity of (6.1) and
(6.2) for a specific 2-cell. The 2-cell of Example (6.5) illustrates
that though the hypotheses in (6.2) and (6.3) may be sufficient, they
are definitely not necessary.

7. The cc-hyperspaces of °Bn and Rn, n ^ 2. In this section
we show that cc(°Bn) and cc(J?%), n ^ 2, are homeomorphic to the
Hubert cube with a point removed. We also state some problems.

Let U be a nonempty proper open subset of cc(Bn). For each
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AeU let An = inf{d(A, D) \De [ec(X) - U]}, where d denotes the

Hausdorff metric. Note that 0 < An ^ 2.

(7.1) LEMMA. Let U be a proper open subset of cc(Bn). Let
AeU and let a be real, 0 < a ^ 1. Then (1 - aAu/2)A e [Uf] cc(°Bn)].

Proof. For any aeA and β > 0, β Φ 1, note that \\a — βa\\ =
\1 - β\\\a\\ ^\1 - β\ < 2 11 - £ | . Thus, setting β = 1 - aAu/2, it
follows that

d(A, (l- = aAu<ίAu,

which implies (1 - aAu/2)A e U. Note that (1 - aAu/2)A e cc(°Bn)
since (1 — aAu/2) < 1.

(7.2) THEOREM. If n ^ 2, ίftew cc(°J5") ^ /«, ~ {p} for p e 1^.

Proof. Let iΓ = {A ecc(Bn)\ A n S^"1 ̂  0}. We show ίΓ has
property Z in CC(JB%). Let U be a nonempty homotopically trivial
open subset of cc(I^). Let /: Sfc-1 -> U — K be continuous, and let
F: Bk —• ί7 be a continuous extension of /. Let h: [0, 1] —> [0, 1] be
a homeomorphism such that h(0) = 1 and fe(l) = 0. Define a func-
tion ί7* on Bfc by F*(x) = (l-[h(\\x\\F(x)uf2)])F(x). Note F * is
continuous and F * extends / since if | |g| | = 1, F*(x) = JP(^) = fix).
If | |g| | < 1 note that F*(x) e [ί7ncc(°JB%)] by (7.1), and hence JF*(aO 6
[ J 7 - U L ] . Thus, K has property Z in co,(Bn). Hence, by (2.2)
above and a theorem of Anderson [1], we assume without loss of
generality that Kail. For each te[O, 2] and AeK let #(A, ί) =
cl(JV(ί, A)nBn)(N(t, A) = Uαe^ί^lll^ — α|| < ί}). Note g is continuous
and that g(A, 0) = A and g(A, 2) = Bn. (See Borsuk [4].) By a re-
sult of Chapman [6] it follows that cc(Bn) - K = cc(.B%) - {M} for
Mecc(jB%). Hence, by (2.2) above, cc(°Bn) = !«, — {p}, and this com-
pletes the proof.

(7.3) THEOREM. If n ^ 2, cc(JBw) ^ !«, - {̂ } /or p 6ITO.

Proof. Using the proof of (5.4), it is easy to see that cc(iϋw) =
cc(°Bn). Therefore, by (7.2) cc(Rn) ^ /«, - {p}. Theorem 7.3 sug-
gests the following.

(7.4) Problem. If H is a separable Hubert space, is cc(iϊ) = fί?
We will now discuss and state two problems which arise out of

our previous work. Problem 7.5 is motivated in part by the result
of Schori and West [16] that 2τ ^ /„.
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Let D be the semidisc in R2 given by {(x, y)\x2 + y2 ^ 1, y ^ 0}
and let K be the semicircle D Π S1. Let R = {Aecc(D)\ext[A]aK}.
The mapping f:2K -^ R given by f(E) = cδ(2£) is a homeomorphism.
Let JB* = cc(D) — R. Note that R* is an open convex subset of
cc(Z>) and that 1^ ~ R = cc(D) - B*. This suggests the following
problem:

(7.5) Problem. Let Af be an open convex subset of a convex
Hubert cube Q. What are necessary and sufficient conditions on M
in order that !„ ^ Q - MΊ

Several times in our work we encountered infinite dimensional
compact convex subsets P of /«, such that P = ext[P] ^ /«,. The
countable product of semidiscs is such an example. This suggests
the following problem.

(7.6) Let Q be a convex Hubert cube. What are necessary and
sufficient conditions for Q to be homeomorphic with ext[Q]?

We remark that a theorem answering the above question may
by considered as a compact analogue of the theorem of Klee [11]
that in separable Hubert space the unit sphere is homeomorphic
with the closed unit ball.

REMARK. After this paper was written, certain developments
occurred which may be of interest to the reader. D. W. Curtis in
a forthcoming paper entitled "Growth hyperspaces" investigates,
among other things, subspaces G of the cc-hyperspace having the
property that if AeG and AaB then BeG. D. W. Curtis, J.
Quinn and R. M. Schori in a forthcoming paper entitled "On the
cc-hyperspace of a polyhedral two-cell" show that the cc-hyperspace
of a polyhedral two cell in R2 is /«, with perhaps a finite number
of two cell flanges. J. Quinn and R. Y. T. Wong in a forthcoming
paper entitled "Unions of convex Hubert cubes" show that the
union of finitely many convex Hubert cube manifolds each sub-
collection of which intersects vacuously or in a Hubert cube is a
Hubert cube manifold, and, as a corollary, obtain the result that
if A and B are infinite dimensional compact convex sets in l2 such
that Af] B is infinite dimensional then A U B ^ 2^. Reiter and
Stavrakas in a forthcoming paper entitled "On the compactness of
the hyperspace of faces" and Quinn and Stavrakas in a forthcoming
paper "Selections in the hyperspace of faces" investigate certain
topological aspects of the hyperspace of faces of a compact convex
set.
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AN EXPLICIT FORMULA FOR THE FUNDAMENTAL
UNITS OF A REAL PURE SEXTIC NUMBER

FIELD AND ITS GALOIS CLOSURE

KEN NAKAMULA

The object of this paper is to give a set of fundamental
units of a real pure sextic number field K~Q( VaQ — 1),
where a is a special type of natural number and αβ — 1 is
not necessarily 6th power free. It is also shown that a set
of fundamental units of the galois closure L = K{ V — 3) of
K is formed by a real unit and its conjugates.

Let d be a 6th power free natural number which is not a perfect
square or a perfect cube in the rational number field Q. Put θ— Vd\
then K = Q{β) is a real pure sextic number field. We investigate
the group of units of K for a special type of d as follows. Let d
be given by

( 1 ) d = c(¥c ± 2)(b12c2±b6c + l)(6V±8δβc + 3)

with natural numbers b and c. Put

( 2 ) a = b6c ± 1 .

(The ± signs correspond respectively throughout this paper.) Then

(3 ) b6d = α6 - 1

and K=Q( VaΓ^ΐ).

THEOREM 1. The notation being as above, we assume that d > 1
and d is square free. Then

( 4 ) ζι = a - bθ , ξ2 = a + bθ , ξ8 = a2 + α&0 + &202

/orm α se£ o/ fundamental units of K.

As to explicit formulas for the fundamental units of number
fields, G. Degert [2] has given one for certain real quadratic fields.
As an application of the Jacobi-Perron algorithm (J.P.A.), L.
Bernstein, H.-J. Stender and R. J. Rudman has extended Degert's
result to certain real pure cubic, quartic and sextic fields (see [9]
and [10]). On the other hand, H. Yokoi has given a different
formula for the fundamental units of real quadratic and pure cubic
number fields in [11], [12] and [13]. Theorem 1 is an extension of
Yokoi's result to real pure sextic fields. A similar formula can be
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464 KEN NAKAMULA

obtained for the fundamental units of real pure quartic fields (see
[7]). Theorem 1 is not included in Stender's result when b > 1 (see
Remark 4).

THEOREM 2. Under the same assumption as in Theorem 1,
any 5 of 6 conjugates of ^ form a set of fundamental units of

Theorem 2 gives an example of a real Minkowski unit of a
non-abelian galois extension K(τ/~^S)/Q (see [1]).

To prove Theorem 1, we use the same method as in Stender [8].
Let K2 and K3 be the quadratic Jand Vubic subfields of K respec-
tively, and let E be the group of units of K. Define the group H
of positive relative units of K with respect to K2 and K3 by

(5) H={ξeE\N2(ζ) = N3(ζ) = l},

where N2 and N3 denote the relative norm maps from K to K2 and
K3 respectively. Then H is a free abelian group of rank 1. The
fundamental units of the subfields will be determined in §1. A
generator of H will be determined in §2. In §3, we shall prove
Theorem 1 and show the existence of infinitely many fields which
satisfy the condition of Theorem 1. In §4, we shall prove Theorem 2.

The author wishes to thank Prof. H. Yokoi for his advice during
the preparation of the manuscript, and Prof. H.-J. Stender for sending
a copy of his paper [10] in manuscript.

1* Fundamental units of the subfields* Let i be a natural
number given by (1) with natural numbers b and c, and define a as
in (2). Assume that d is neither a perfect square nor a perfect cube
in Q. Then K = Q(θ), where θ = fy~d~, is of degree 6 over Q, and
it contains the quadratic subfield K2 = Q{ΘZ) and the cubic subfield K3 —
Q(θ2). Denote respectively by η2 and rj3 the fundamental units of K2

and Kz which are larger than 1. Define the algebraic integers ζίf ξ2, ξ3

as in (4). Then it immediately follows from (3) that their absolute
norms are all equal to 1; hence they belong to the group E of units
of K. We also see that 1/&& = α3 + bΨ belongs to E Π K2, and that
1/Sifs = α4 + α W + bΨ belongs to E n K3.

PROPOSITION 1. If d > 1 and is square free, then η2 = l/fif3 =

Proof. Since 1/&& > 1, we have rjζ = α3 + 6303 with a natural
number n. Let us assume n ^ 2. We can write η2 = (f + uθ*)/2



FUNDAMENTAL UNITS OF CERTAIN NUMBER FIELDS 465

with nonzero rational integers t and u, because d is square free.
Then u = (η2 — η'2)jθz

9 where η[ = (ί — uθ*)j2. Taking into account
that uΦQ,\η'2\ = l/^2 < 1, w ^ 2 and α3 + 6303 > 1, we see that

1 ^ N ^ (% + l^l)/03 < l/(α3 + bΨ)/d +

From (3), bθ < a and 1/d - 66/(α6 - 1). Therefore

1 < τ/2α366/(α6 - 1) + l/66/(α6 - 1) .

From (2), bG ̂  a + 1. Then

τ/2α3(α + l)/(α6 - 1) + V(a

However, the right side of the last inequality is smaller than 1
for a ^ 3, which is a contradiction. When a = 2, we see from (3)
that 6 = 1, and then d = 63 is not square free. Since a ^ 2 by (3),
w = 1 under our assumption, and the proposition follows.

REMARK 1. When d has a square factor, the conclusion of
Proposition 1 does not necessarily hold. For example, set b = 1 and
e = 22 in (1) and (2) for the plus case, i.e.,

d = 22(22 + 2)(222 + 22 + 1)(222 + 3-22 + 3) , a = 22 + 1 .

Then d = 24 32 7 11 132 79, α = 23, and

τ)2 = 2-3-13 + 1/7-11-79, $ = α3 + 6808 .

When the square factor of d is small, Proposition 1 is also true as
is seen from the proof.

PROPOSITION 2. If d > 1 and is cube free, then ηs = 1/&& =
α4 + α W + δ4tf4.

Proof. It follows from T. Nagell [5] (see also [13]), that the
binomial unit ££2 = a2 — b2θ2 is either fundamental unit of K3 or its
square, and the latter occurs only for d = 20, 50 and a finite number
of i = ±l(mod9). Now we assume 1/ηl = a2 - 6202. Let d = fg2

with relatively prime natural numbers / and g, and write 1/% =
{x + 2/#2 + {zjg)θ*}l% with rational integers α?, y and 2. Then

follows similarly as in [5]. Note J, 1. Here

l/(α2 - b2θ2) = α4 + αW2 + δ4tf4 < 3α4

and
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are obtained as before, and hence

\y\< V(a + l)/(α6 - 1) + 2 V 3 Va\a + 1)1 (a6 - 1) .

When a ^ 6, the right side of the last inequality is smaller than 1.
Therefore y = 0 and 1/% = {x + (z/g)θ4}/3. This is a contradiction,
because the square of a binomial unit cannot be binomial. When
a — 2, 3, 4 or 5, α6 — 1 is 6th power free, and, by (3), 6 = 1 and
d = α6 - 1. For α = 2, 4 or 5, we have d ^ O ί ±l(mod 9). For

α = 3, we see that d is not cube free. This completes the proof.

REMARK 2. By the same method as in the proof of Proposition
2, we can verify that the exceptional case of Theorem 6(iii) of [10]
occurs only when (u, n) — (1, 4), i.e., d — 28.

REMARK 3. As we have seen in the end of the proof of Proposi-
tion 2, we have a ^ 6 when 6 ^ 2 . This fact will be used in the
next section.

2* Relative fundamental unit* Let d, a and K be as in §1.
We keep the notation as before. Let H be the group of positive
relative units of K with respect to K2 and K3 which is defined by
(5). Then, as in [8], §1, II, 8, the group His a free abelian group of
rank 1. We denote by ε1 the generator of H which is larger than 1.

Suppose d>l and is square free. Then, by Propositions 1 and 2,

( 6 ) η2 = 1/ςA = α3 + bΨ , ηz = 1/&& = α4 + α W + 6404 .

The field belongs to Klasse I of [8], because

(7) N2(llξι) = y2, ^.(1/^) = % .

Put now ε = llξ%η\η\9 then ε e H and

e = ξlξl/ξ, = (α + bθ)\a2 + abθ + bΨ)\aδ + a'bθ + + 6505)

by (3) and (6).

PROPOSITION 3. If d> 1 and is square free, then ε, = ε = £2£|/£1.

Proof. When δ = 1, d = α6 — 1 by (3), and then Stender has
shown that εx = e in [8], Hilfssatz 7. Let 6 ^ 2 . Since ε > 1 and
ε 6 H, εl = ε with a natural number w. Assume w ^ 2. The relative
unit ε = l\&]\r]\ can be neither a square nor a cube in K by [8],
Hilfssatz 1. Therefore n ^ 5. Now we can write ex = 1/6 Σ?=o a ^ " 1
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with rational integers xd(j = 0,1, •••, 5) according to [8], Hilfssatz
2. Note that d divides x0 and that either x0 or xδ is distinct from
zero by [9], Hilfssatz 3. On the other hand, by [8], (1.6),

\xό\ < θι-*A(j = 0, 1, , 5) with A = VΓ+ 2 ^ Γ + 3 ,

since n ^ 5 and ε > 1. Hence either

d = θ6^ \xo\ <ΘA

or

should hold. From the fact that θ > 1, we obtain

1 < A/θ4 = A

Taking into account that bθ < a and 1/d = 66/(α6 - 1) ^ (α + l)/(α6 - 1 )
as before, we can derive

10

1 < V(a + l)2/(α6 - 1)2( ^24 3V2 + 2 V24 33α12 + 3) .

However, since a ^ 6 as we have mentioned in Remark 3, the right
side of the last inequality is smaller than 1. This is a contradiction.
Thus εx = ε for b ^ 2, too.

3. Fundamental units of K. For natural numbers b and c,
let d and α be given by (1) and (2). Let K = Q(0), where θ = VcL
Further let &, f2, f3 be given by (4).

THEOREM 1. (i) If d > 1 αmϊ is square free, then ξιy ξ2f ξ3form
a set of fundamental units of K.

(ii) For a fixed natural number b, there are infinitely many
values of c which make d square free.

Proof, (i) Recall that K belongs to Klasse I of [8] by (7). It
follows from Propositions 1, 2 and 3 that

These three units form a set of fundamental units of K by [8], Satz
1'. Hence the assertion is obvious.

(ii) Let

f{X) = X(b6X ± 2)(δ12X2 ± bβX + 1)(612X2 ± 366X + 3) .

We shall find infinitely many square free natural numbers in the
sequence {/(c)}Γ=i by the help of Nagell [2], §2. Evidently, (I) the
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degrees of the irreducible factors of f(X) are at most 2; (II) the
discriminant of f{X) is not zero. For a prime number p, there is
a natural number e such that 66/(e) = (We ± I)6 - 1 =£ 0(mod p2) if
b •=£ O(modp), and there is a c' such that f(c') = 6c' Ξ£ 0(modp2) if
6 = 0(mod p). This implies that (IV) there is no prime number p
such that f(c) = 0(mod p2) for all natural numbers c = 1, 2, . Now
let us assume that b is prime to 6. Then (III) the polynomial f(X)
is primitive. From (I), (II), (III) and (IV), we can apply [2], §2, I,
and find infinitely many square free natural numbers in {/(e)}Γ=i.
When b is not prime to 6, we apply NagelΓs result to (l/2)/(2X + 1),
(l/3)/(3X+l) or l/6/(6X+l) in a similar but slightly different manner
from the above in order to prove the assertion.

REMARK 4. Stender has given in [10] an explicit formula for
the fundamental units of Q( VM), where M — N6 ± n(>l) with natural
numbers N and n such that n is 6th power free and divides N5,
assuming that (N6/n) ± 1 or N6/n is square free. We will see that
Theorem 1 is contained in his result only if & = 1. Let n = pi1

pls{vό = 1, 2, , 5) with distinct prime numbers plf , ps. Write
(N6/n) ± 1 — mx6 with natural numbers m and x, where m is 6th
power free. Put m' = (p1 psf/n; then mr is also 6th power free.
When M — N6 + n, the diophantine equation mX6 — m'Y6 = 1 belongs
to the field Q( VM) in the sense of [10], Definition 1, and has a
solution (X, Y) = (x, N/p1 p,)(see also [10], Satz 10). On the other
hand, the equation X6 — dYQ — 1 belongs to K and has a solution
(X, Γ) = (α, 6). Suppose if = Q( \/If); then it follows from [10],
Satz 7 that

m = 1 , m' = d , $ — α , Λ7ί>i - pβ = 6 .

Then (NQ/n) + 1 = #6 cannot be square free. If iSP/^ is square free,
n = N5 and i\Γ is square free. Therefore N = p1 p8, i.e., 6 = 1.
When M = Nβ — n, we similarly obtain

m = d , mf — 1 , x — b , jV/px p. = α ,

if ίΓ = Q( ̂ M). If (N6/n) - 1 is square free, then a? = δ = 1. If
N6/n is square free, then n = Nδ = 1, and this is a contradiction.
Thus, we have seen that Theorem 1 is not contained in Satz 22 of
Stender [10] if b > 1.

4. Real Minkowski unit* Let K = Q(θ)(θ = ^5) be a real pure
sextic field, and L = K(ζ) its galois closure, where ζ = exp(2τn/^:T/3).
According to A. Brumer [1], we say a unit f of L is a Minkowski
unit of L if we can take 4 conjugates ξ{1), * ,£ (4) of £ such that
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ζf f(1)> "' '$ f(4) form a set of fundamental units of L. The galois group
of L over Q is generated by the two automorphisms σ and τ which
satisfy

β° = -ζθ , θr = 0; ζσ = ζ, ζτ = ζ - 1 .

The defining relations of σ and τ are σ6 = τ2 = (oτ)2 = 1. We will
give an example of a real Minkowski unit of the non-abelian, galois,
totally imaginary field L. Since if is a maximal real subfield of L,
it suffices to find a unit f of K such that ξ, ξσ, , ζ°A form a set of
fundamental units of L. Now let d, a and if be as in §3. Assume
d > 1 and is square free. Using the same notation as before, we
first study the subfields of L.

PROPOSITION 4. The assumptions being as above, (i) ξ\+a2+σ* is a
fundamental unit of K2(ζ), (ii) ξ[+σd, ξ[1+σZ)σ form a set of fundamental
units of iζ}(ζ), (iii) fί+σ2, ξ?+σδ form a set of fundamental units of
the fixed field F = Q( ^^27d) of σ3τ.

Proof, (i) On acconut of (6), vj2 = l/f^ = α3 + δ3^3 is a funda-
mental unit of iΓ2. Suppose that rj2 is not a fundamental unit of
iΓ2(ζ). Then since d Φ 3, it follows from S.-K. Kuroda [4], Satz 14,
that Zη2 = a2 with an integer a of K2 Since d φ l(mod 4), we have
a = x + yθ3 with rational integers x and y. Therefore

3(α3 + δ3^3) = {x + 7/̂ 3)2 .

Comparing the coefficients and taking the norms of both sides of
this equation, we see

3α3 = x2 + dy2 , 9 = (x2 - dy2)2 .

This leads us to a contradiction after an easy calculation using the
fact that d is square free. Hence η2 = 1/ξ^ = fr(1+σ2+σ4) is a funda-
mental unit of jBΓ2(ζ). (ii) On account of (6), ψ1 = ζxξ2 = α2 - δ2^2 is
a fundamental unit of iΓ3. Suppose that ηϊ1 and ̂ 3~

σ does not form
a set of fundamental units of Kz{ζ). Then we have

( 8 ) βι+τ = Tr£»(l + VB1 + %) - 3(α4 + α2 + 1)

with an integer /3 of Q(ζ) such that (τ//S) + (7//5)r, where 7 = 1 +
^s"1 + V3{1+σ)> is a n integer of if3 (see K. Iimura [3], Theorem 1 and
Proposition). Put β = x + yζ with rational integers x and y; then
we can compute (y/β) + (τ//3)r by (8), and see that the coefficient of
θi is equal to (x + τ/)δ4/3(α4 + a4 + 1). Since d is square free, it follows
that (x + y)b4/(a4 + α2 + 1) is a rational integer. By (2), δ and α4 +
a2 + 1 have no common divisor except 3. Moreover, since (x + y)2 —
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Zxy = 3(α4 + α2 + 1) by (8), x + y and α4 + α2 + 1 have no common
divisor except 3, because α4 + a2 + 1 is square free as a divisor of
d. Therefore α4 + α2 + 1 = 3, i.e., a — 1 follows. This is a contradic-
tion. Hence ηt = ζ,ξ2 == f }+*8 and ̂  = £1+σ3>* form a set of fundamental
units of iJL3(ζ). (iii) Let Hr be the subgroup of the group EF of units
of F given by

Then H' is generated by a unit ε2 and the roots of unity in F (see
[10], §4, II). It is easy to see that £1<*+ 1><1+« > = ξΓ*+* = ηZ9 and
that ξi°+°2nι-o*)(i+r) == l β Therefore ^+^<i-^) = ωe» w j t h a rational
integer n and a root of unity ω. Applying σ + σ2 to both sides, we
Obta in ζ-l+*σ*+2iσ*+o*) = α ) ^+^ s «(α+^) β g i n c e jp i g t h e fiχe(J fiel(J o f Λ f εσ+σ2

is a unit of i£, and hence ωa+°2 also belongs to ϋΓ. Recall that ζίf ζf,
ξl2+σ* form a set of fundamental units of K by Theorem 1. Conse-
quently n = ± 1 , and ^σ+σ2^1-σ3) and the roots of unity of ί 7 generate
JET. As we have seen above, ξ^2^^^ = ^3. According to [10], Satz
24, f ί"+*2><i-"8> and ίίσ+σ2)' form a set of fundamental units of F. This
completes the proof of (iii).

THEOREM 2. Under the same assumptions as in Theorem 1, the
galois closure L = K(ζ) of K has a real Minkowski unit ξ 1 = a — bθ.

Proof. Let E' be the subgroup of the group of units of L which
is generated by all the units of K9 K°2, Kσi and K2(ζ). Then for every
unit ξ of L, ί3 = ζi+*ςi+*2*ξi+°*τξ-r<1+σ2+σi) belongs to E'. On t h e other

hand, by Proposition 4(i) and Theorem 1, JE" is generated by the roots
of unity in L and ξ19 ξ

σ

u , £ί4. Hence

where ω is a root of unity and n0, nlf , n± are rational integers.
By applying 1 + τ, 1 + σ3τ and 1 + σz to both sides, we get

where ω' and ω" are roots of unity. By Theorem 1 and Proposition
4(ii) and (iii), we see that n0 Ξ nx= = n± = 0(mod 3). This implies
that f3 is already a cube in Ef modulo the roots of unity, and hence
ξ belongs to Ef. This shows that E' is the group of all units of L,
and that & is a real Minkowski unit of L.

CONCLUDING REMARK. Stender's method is based on the group
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of relative units of a non-galois number field which has proper
subfields. We can generalize this to a field whose galois closure is
a dihedral extension over Q (see [7]).
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INNER FUNCTIONS INVARIANT CONNECTED
COMPONENTS

V. NESTORIDIS

The inner functions d — exp {(z + l)l(z — 1)} and zd belong
to the same connected component in the space of inner
functions under uniform topology. Therefore, simplification
is not possible in general but it is always possible to
simplify by a finite Blaschke product.

0. Introduction. This work deals with the inner functions of
one variable. A complex, holomorphic function /, bounded on the
open unit disk D of the complex plane is called inner if \f(eίθ)\ = 1
a.e.; where f(etθ) = limp^f(ρeίθ).

In the set F of the inner functions we consider the topology
induced by the Banach space iϊ00; that is, we consider F with the
topology of uniform convergence.

In this work, related to a publication of D. Herrero [2], we are
interested in the connected components of the space F, mainly with
respect to multiplication of inner functions.

Let us denote by / ~ g the fact that the inner functions / and
g belong to the same connected component. The questions that
motivate this work are the following:

(a) For the identity function z, is there an inner function /
such that / ~ zfΊ

(b) Is simplification permitted? That is, does relation fω ~ gω
imply f ~ g for any three inner functions /, g, α>?

The results of this work can be summarized as follow:
(1) "Simplification" by a finite Blaschke product is always

possible.
(2) "Simplification" is not possible in general.
(3 ) If the singular measure μ associated with a singular func-

tion S contains at least one atom, then relation S ~ zS holds.
(4) For any nonconstant inner function g, the inner functions

exp {(g + ϊ)/(g — 1)} and g exp {(g + l)j{g — 1)} belong to the same
connected component.

(5) For any nonconstant singular function S, there exists a
nonconstant inner function g such that: S ~ gS.

In order to prove that simplification by a finite Blaschke product
is possible, we first show that the set zF = {zh: he F] = {xe F:
x(0) = 0} is a retract of F.

In order to give an example of an inner function / such that
/ ~ zf9 we shift the zeros of an infinite Blaschke product in such

473
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a way that the Blaschke product moves continuously with respect
to the uniform topology.

The following problems seem to be open:
(1) Does relation S ~ zS hold for any singular function?
(2) Find all inner functions such that / ~ zf.
(3) Characterize the inner functions ω such that ωf ~ ωg ==»

f~g tor all f,geF.
(4) Find a necessary and sufficient condition for two inner

functions / and g to belong to the same connected component.

1* Preliminaries. A complex, holomorphic function /, bounded
on the open unit disk D of the complex plane is called inner if its
boundary values have almost everywhere absolute volue one; that is,
relation |/(e")| = l holds almost everywhere (withf(etθ) = limP^f(peiθ)).

It is well-known that a function / is inner if and only if / is
of the form:

f(z) = cz> Π ̂ ^ 4 - exp
\a\ 1 az
^ ^ 4 p \
\at\ 1 — atz ( Jo e%9 —

where c is a complex constant of modulus one (\c\ = 1), k is a non-
negative integer, μ is a positive singular measure on the unit circle
and the points ateD are such that Σie/1 — \at\ < oo.

If μ — 0, then / is a Blaschke product, finite if the set / is finite
or infinite if the set I is infinite (countable).

In the case 1=0 and k = 0, the function / is called singular.
The topology of the uniform convergence on the set F of the

inner functions is induced by the following metric:

d(f, 9) = \\f - g\L = sup \f{z) - g{z)\ - sup ess |/(β") - g{eiθ)\ .
D θeR

Let us denote by / — g the fact that the inner functions / and
g belong to the same connected component in the space F.

In what follows we make use of the well-known facts below:
(1) For any three inner functions /, g and ω the relation

/ — g implies ωf ~ ωg. This is due to the continuity of the multi-
plication of inner functions.

(2) For any inner function / and any complex number a, with
|α| < 1, we have the relation:

f f

for the mapping Dsa—>faeF is continuous.
(3) For every nonnegative integer n, the set of all finite

Blaschke products with exactly n zeros forms a connected component
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and an open and closed subset of F. In particular the set of the
constant inner functions is connected and open and closed in F.

This fact is an easy application of Rouche's theorem.

2* Simplification by £• Let us begin with the question, does
the relation ωf ~ ωg implies f ~ g. This is the problem of "Simpli-
fication". In the case of a finite Blaschke product ω, the answer
to this question is affirmative.

PROPOSITION 1. Let ω be a finite Blaschke product. Then for
any two inner functions f and g, the relation oof ~ ωg implies

f~g.

Proof. The general case easily follows from the case ω — z, to
which we will limit ourselves from now on.

Let us consider the set:

zF = {zh: heF} = {xeF: x(0) = 0} .

The maps z^__zF~> F and Φ: F~->zF, where z*(x) = x/z, Φ(f) =
(/ ~ /(0))/(l - 7(0)/) for feF nonconstant and Φ(J) = z f or / 6 F
constant, are both continuous. (The set of the constant inner func-
tions is, both, open and closed!).

Therefore the mapping z*oφ;F—>F is continuous and the
relation zf ~ zg implies: f — z* ° Φ(zf) ~ z* ° Φ(zg) — g, as Φ{x) = x
for any xezF; that is, Φ is a retraction map and zF is a retract
of F. The proof is complete now.

3. The main result. The following theorem implies in parti-
cular that we cannot "simplify" by any inner function.

THEOREM 1. For any nonconstant inner function g, the inner
functions exp {(g + ΐ)/(g — 1)} and g exp {(g + ΐ)/(g — 1)} belong to the
same connected component.

This theorem applied for the identity function g = z(z(a) — a
for all ae D) implies the following:

PROPOSITION 2. The inner functions d = exp {(z + l)/(z — 1)} and
zd belong to the same connected component (that is: d ~ zd).

Proposition 2 is equivalent to Theorem 1; for Proposition 2
implies also Theorem 1. The point is that the range of the continu-
ous map Tg:F-+H°°, Tg(f) = f °g is contained in F; that is, the
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composition of two inner functions is an inner function ([6] or [8]).
Therefore relation d ~ zd implies:

exp g + = Tg(d) ~ Tg(zd) = g exp g

 H .
g - 1 g - 1

Hence, it remains to prove Proposition 2, which will be a conse-
quence of the following lemma, which is of a concrete geometric
nature on the half-plane:

LEMMA 1. Let

- z

\an\ 1 -
and K2 = Π ^ ^ i — z

1 - β«z

Be two infinite Blaschke products such that K^O) > 0 and K2(0) > 0.
// we denote φ(z) = (1 + z)/(l — z) then we have the following ine-
quality:

^ Σ

2 sup ess
yeR

a rg

Proof of Lemma 1. The pointwise convergence /Λ—>/ implies
trivially the inequality:

We have therefore:

Π ^ ^ ^ - Π ^ ^ .
- β.z

= lim inf

N

U^-,

.) + φ{z)

We notice that |α| = \β\ = |α'| = \β'\ = l= \aβ- a'β'\ £ \a - a'\ +
|/3 — /3'|. Consequently, for almost every z, with \z\ — 1, we have:

π an 1 -
an\ 1 - an φ(an)

% = 1 | α n | \βn

N

+ Σ

.) - ψ{z)
Λi \βn\ 1 - β, φ{βn) + φ(z)

+ | , 1 ^ L α n _ 1 - βn

1 - α, 1 - /9B

<P(z)
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N

n-l

0 0

n-l

a

a

rg

rg

On

βn

On

βn

+ 2

+ 2

N

Σ
oo

Σ

rg
1 - / S . + rg

a ig
- βn

+ 2 sup ess

?>(&.) - φ(z)

arg

The required inequality is now implied.

Proof of Proposition 2. Let ajjb) be the unique point of D such
that φ(an(t)) = 1 + i(n + t)π, where t e [0,1], w e JV* = {1, 2, •} and
φ(z) - (1 + 2)/(l - z).

One, then, verifies easily that:

e_ . J!L α,(0)
I = / • 1 1 I,,. /ΛNI

It is enough to prove that

1 /Λ |αn(0)| 1 — an(O)z

for, then we have

1 - α
...

> W l t h

_ fi α.(0) α.(0) - g .

d = /B, ^ /Bo = fBx
\a,(0)\ 1 - ^ 3

z~dz,

and we obtain the result.
In order to prove Bx ~ BQ> it is sufficient to prove the continuity

of the following map:

that is, limt. t̂o IIB* — iϊjloo = 0 for all tQe[Q, 1]. Using Lemma 1
we essentially have to prove the following fact:

lim sup arg = 0 .
?>(α*(*o)) - i3/

This relation follows immediately from the observation that:

Σ arg
φ(an(t)) - i

arg
3)

0 .
2iπ(n + t0 — \t — to\) — 2iπ(tQ + 3)

k Consequences* Theorem 1 yields trivially the following:
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COROLLARY 1. For any inner function g, there exists an inner
function f such that f ~ gf.

Proposition 2 implies the following more general result:

COROLLARY 2. Let f be an inner function whose singular mea-
sure μ contains at least one atom. Then f ~ zf.

Proof of Corollary 2. We have f — fx exp K(z + a)/(z — a), with
f e F, \a\ = 1 and K > 0. Thus, it is enough to establish the rela-
tion exp K(z + a)\{z — a) ~ z exp K(z + a)/(z — a). By a rotation
this becomes:

exp Kz-±± ~ z exp
z 1

z exp K .
z — 1 z — 1

If K ^ 1, using the known relation d ~ zd (Proposition 2) we
have

exp j £ ^ ± i = d exp (K - l)5-±-i - ^ exp (JKΓ - ± i
2; 1 2; 1

d exp (K l ) ^ exp (JKΓ l )
— 1 2; — 1 z — 1

— 1

If 0 < JBΓ < 1, let us consider the transformation1:

1 - K

1
7Z

1 + K

Evidently w e F and w ~ z. From the known relation d ~ zd we
obtain:

exp K——— = dow ~ (zd)ow = w (d<>w) ~ z (dow) = zexipK—i— .
» — 1 z — 1

REMARK. Corollary 2 implies that if the singular measure μ
associated with a singular function S contains some atoms, then the
relation S ~ zS holds. If the measure μ Φ 0 does not contain any
atoms, then we do not know if the relation S ~ zS is true. It seems
that this problem (probably not difficult) is still open and we offer
the following conjecture:

"Every nonconstant singular inner function S belongs to the
same connected component as zS".

This trick is found in [2].
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In this direction we have the following proposition, which
follows from Theorem 1 combined with a remark suggested to the
author by K. Stephenson.

PROPOSITION 3. For any nonconstant singular inner function
S9 there exists a nonconstant inner function g such that S ~ gS.

Proof. The point is that any singular inner function S is of
the form S = exp (g + l)/(g — 1), with g e F. Theorem 1 gives, then,
the result.

In an obvious manner Proposition 3 implies the following:

COROLLARY 3. ( i ) For every nonconstant singular inner func-
tion S, there exist inner functions f and g such that fS ~ gS but

(ii) Let a) be an inner function such that the relation fa) ~
f2ω implies f ~ f2 for every couple (fu f2) of inner functions f and
f2. Then the connected component of a) contains only Blaschke
products. In particular a) is a Blaschke product.

(iii) If the connected component of an inner function f does
not contain any proper multiple of f, then this component contains
only Blaschke products. In particular f is a Blaschke product.

The existence of infinite Blaschke products satisfying the hypo-
thesis of Corollary 3 (iii) follows from the proof of a theorem of
D. Herrero ([3], Theorem 1.1). Later, the present author proved in
[6] that if the zeros an9 n = 1, 2, of a Blaschke product B satisfy
the condition

lim Π 0Cn — <Λm. = i

then, the connected component for B does not contain any proper
multiple of B.

ACKNOWLEDGMENT. I wish to express my gratitude to A. Bernard
for the direction and help he gave me.
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ON COMPACT SUBMANIFOLDS WITH NONDEGENERATE
PARALLEL NORMAL VECTOR FIELDS

V. I. OLIKER

In this paper we obtain characterizations of spherical
submanifolds in Euclidean space of codimension ^ 1 . Such
characterizations are given here in terms of certain rela-
tionships involving the elementary symmetric functions of
principal radii of curvature and the support function of a
submanifold.

1. Introduction* For hypersurfaces similar characterizations
are well known. For example, let M be a closed convex hyper sur-
face in Euclidean space, h the support function of M, and Si the
elementary symmetric function of order I of principal curvatures.
It has been proved by several authors (see Simon [8], and further
references given there) that if for some integer 1(1 <£ I <; dim M)
everywhere on M hιSι = const, then M is a hypersphere. Other
results of this type are also known [8], [9].

Our proofs are based on a differential analogue of the Min-
kowski-Hsiung formulas, relating the support function and elemen-
tary symmetric functions of various orders of the principal radii of
curvature. Those formulas are obtained for submanifolds which
possess a nondegenerate normal vector field parallel in the normal
bundle.

Finally, we note that characterizations of spherical submanifolds
in terms of the elementary symmetric functions of principal curva-
tures are obtained by Chen [2] and Chen and Yano [4] (see also Chen
[3], Chapter 6).

The author wishes to thank the referee for useful comments.

2* Preliminaries* In this section we shall present local formulas
relating the second fundamental form and the support function of a
submanifold in Euclidean space. We shall use the following conven-
tion on the ranges of indices:

1 ^ i, j9 k, I, r <i m , 1 ^ a ^ n ,

and as usual, it is agreed that repeated lower and upper indices are
summed over the respective ranges. We denote by E the Euclidean
space of dimension m + n, and we fix the origin at some point 0.
Consider a smooth, orientable submanifold M of dimension
immersed in E, and represented by the position vector field

481
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X = X(u\ - - - , u m ) ,

where {u1} are the local coordinates on M. Let a; be a point of M.
We denote by TJJd) a n ( i NJM) the restrictions of the tangent
bundle T(M) and normal bundle N(M) at x.

Put

x, = d,x, 3, = d/du*.

The metric I, or the first fundamental form induced on M from
E via X, is Gti = (Xif Xj), where <,> denotes the inner product in
E. Let ζ be an arbitrary unit normal vector field defined in a
neighborhood U of xeM. The second fundamental form at x with
respect to £ is II(ξ) = buffidufdu3', where δ<y(£) = — <X*, £y>. Let ^ be
a unit normal vector field in U not necessarily different from £.
The mixed third fundamental form is ΠI(ξ, TJ) = gtj(ξ, ifidvfdu*, where
βaiξf V) = <&, 7i> We write ///(£) = ///(ί, f), and Λ j(f) = Λy(ff f).
Evidently, ^ 3 (f, 7̂) = ^(17, £), but, in general, no other symmetries
exist. For a unit normal vector field ζ e N(M), h(ξ) denotes the sup-
port function of M with respect to ξ, that is, h(ξ)=—(X, £>.

Recall that a nondegenerate normal vector field on M is a unit
normal vector field ξ such that άet(btj(ξ)) Φ 0 everywhere on M (see
[2], and also [3], p. 59).

Vectors {X%) form a basis in TX(M), xeM, and we denote by
{N{a)} a field of orthonormal frames in N(M). Put

Xti = d^-X", 3<y = d'/du'd^ .

At first we note that &4i(£) = (Xίj9 ξ>, and 64i(f) = bjt(ξ) for a
unit normal vector field ξ. Also, fty(f) = — <f*y, f > = £#(£). Suppose
that ί is parallel in N(M), that is, &e Γ(Λf), ΐ = 1, •••, m, every-
where on ikf, and let η be an arbitrary unit normal vector field on
M. Then giS(ξ9 η) = - <fiy, )?> - gJt(ξ, η).

In the frame Xu •••, XTO, i\Γ(l), •••, N(ri) we have for an arbit-
rary unit vector field ζeN(M):

( 1 ) & = - W(£)X, + Σ <&, N(a))N(a) ,

where 6{(f) = bu(ξ)Glύ, and GIy being the inverse of G z i. From here,
for two unit normal vector fields £ and η, we find

(2 ) fty(£, 17) - bmKAV) + Σ <£„ NWyfyj, N(a)) .

If £ or Ύ] is parallel, then

(3) Λ i (£, 7) - 6ί(£)δri(7) .

Note that when ilί, £ and η are such that //(£) and II(rj) are positive
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definite then so is III(ζ, rj). However, the form IΠ{ξ) is nonnegative
definite for an arbitrary II(ζ). If ξ is nondegenerate everywhere on
M, then IΠ(ξ) induces a Riemannian metric on M. We denote by
dθ(ξ) the corresponding volume-element. From formula (1) it fol-
lows that if ξ is nondegenerate and parallel, then vectors {fj form a
basis in TX(M), xeM, and according to the Gauss equation we have:

(4 ) ξti = n (ί)f* - Σ Λi(& N(a))N(a) ,
a

where Γϊs(ξ) denote the Cristoffel symbols of the second kind with
respect to III(ζ).

When ξ is nondegenerate, then translating it parallel to itself
in E to the origin 0 we can define an immersion yξ:M->Σ, where
Σ is a unit hyper sphere in E centered at 0. In codimension one Ύζ

is the standard Gauss map.

PROPOSITION 2.1. Let M be a submanifold of E and ξ a non-
degenerate parallel normal vector field on M. Then yξ is an iso-
metric immersion of M with the metric III{ξ) into Σ.

Proof. Let the symbol ^ denote an immersion, and —> a pull-
back of the mertic from the ambient space. Then the following
diagram is commutative in ^ and ->.

where σ is the standard imbedding of Σ in E, and g is the metric
induced on Σ from E. The Proposition is proved.

For convenience we write h(a) = h(N(a)). The position vector
field X of a submanifold M can be decomposed into two parts:

(5) X=XT + XN,

where Xτ e T(M), XN e N(M). In the frame Σlf X2, , Xm9 JV(1), ,
N(n) we have
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If ξ is nondegenerate and parallel, then from (1) we see that

(7) X r = - *

where gi3\ζ) are the elements of (g(j(ξ))~\ and /&,(£) = dth(i)-
Put

hti(ξ) =

Under the above assumptions on ξ we obtain with the use of (4)

(8) b(i(ξ) = Fτjh(ξ) + Σ gti(ξ, N(a))h(a) .
a

3* The elementary symmetric functions of principal radii of
curvature and the associated differential equations* Let ξ be a
unit normal vector at a point xeM. The principal radii of curva-
ture associated with ξ are denoted by Rξl, -—,Rξm and defined as
the roots of the determinantal equation

det(6<y(ί) - Rgi5{ξ)) = 0 .

If ζ is a restriction to x of a nondegenerate vector field, then III(ξ)
is positive definite, and in this case the RH are well defined. More-
over, in this case they do not vanish. Let g(ξ) = det(fjr<y(f)). The
elementary symmetric function of order k in RH (nonnormed)

= Σ

and it is the coefficient at { — R)m~k of the polynomial

( 9 ) detfojte) -Rgi3{ξ)) = ^ R ) m + Sξί(Rχ-R)»-i + ... + Sξm(R) .
(ξ)

Set atj(ξ) = δij Cf) — ̂ gij(ξ), where λ is real. Consider a poly-
nomial in λ defined by the equation

(10)

where α̂ X J) is the cofactor of the element <%(£).

PROPOSITION 3.1. Lei M be a submanifold of E and ξ is a paral-
lel unit normal vector field defined in a neighborhood of xeM and
such that II(ξ)>0 at x. Then the quadratic forms SYkvtvjf k=2, , m,
are positive definite at x. Here vu

 # ,vm are arbitrary real para-
meters, v2 = v\ + v\+ +i4 Φ 0. If M is compact, ξ is defined on
M, parallel, and II(ζ) Φ 0 everywhere on M, then those quadratic
forms are definite everywhere and by selecting a proper orientation
of M and E, they can be made positive definite. When k — 1 this
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assertion is true under the only assumption that ξ is parallel and
nondegenerate.

The proof of this Proposition is standard and we omit it here.

Suppose now that £ is a nondegenerate parallel vector field.
Then in view of (8), (9), and (10) we put

Qn = 4 τ Σ S*igt&, N(a))h(a) ,

(11) Mξk{h) = Pξk(h) + Q ί fc .

It is not difficult to see that

(12) Mξk(h) = kSξk(R) .

PROPOSITION 3.2. Let M be a submanifold of E and ξ a non-
degenerate parallel normal vector field defined in a neighborhood of
xeM. Then

(13) Qn = (m-k + l)Sξk^(RMξ) + (Hξk, X) , (Sξ0 = 1) ,

where Hξk is a uniquely defined vector in N'X(M) = NX(M) Q ς in-
dependent on the choice of basis in NXM). If k — 1, then —Hξl is
the m times mean curvature vector of the submanifold Ίξ{M)c:Σ.

Proof. Since ξeNx(M), we can select an orthonormal basis in
NX(M) so that 5 is one of the vectors in this basis. Let us preserve
the old notation for the new basis, and let ζ = N(l). Then

Q;-k = ψrg^ζMζ) + Σ -ψ-gi3iζ, N(a))h(a)

= (m - fc + l)S,URMζ) - ( Σ -%Λi(£ N(a))N(a), X
\ ^ g(ξ)

The form —(Sii/giξ^g^ζ, η), where ηeNx(M), is linear in η. There-
fore, there exists a unique element Hζk in NX(M) such that

flr(ί)

for any ηeNx(M). (Strictly speaking, the inner product in the last
formula should be taken in NX(M). But it is induced in NX(M)
from E, and, therefore, it is the same in either sense.) Thus, we
conclude that
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- ( Σ -^-Λifo N(a))N(a), x) = <Hζk, X) .

The rest of the Proposition follows from Proposition 2.1 and
the fact that

This completes the proof.

COROLLARY 3.1. Let M be a submanifold of E and ξ a non-
degenerate parallel vector field on M. Then (13) holds everywhere
on M and

Mξk = Pξk{h) + (m - ft + l)Sn^(EMS) + (Hζk, X)
(14)

for all x e M .

REMARK 1. The functions (Hζkf X) are similar to the functions
Fk(ξ) constructed in [4]. However, the latter are related to principal
curvatures and depend on the first and the second fundamental
forms, while (Hξk, X) depend on the second and the third funda-
mental forms in the direction ξ. It is not difficult to point out
situations where Hξk or {Hξk, X) vanish. For example, if dim E—
dim M = 1, then Hζk = 0 for all k. Another example is when the
normal component of X has the direction ξ. Then h(a) = — (X, N(a)) Ξ= 0
for a = 2, •••, m. In these examples the functions Fk(ξ) introduced
in [4] also vanish. One more example is given by the case where
ΠI(ζ, N(a)) ΞE 0 for a = 2, . . . , m, (N(ΐ) - ς).

REMARK 2. Let ikί be a submanifold of E and ξ a nondegenerate
parallel normal field on M. Let / and / ' be two smooth functions
defined on M, Put

f, N(a)KX, N(a)) .
a

Similarly to (9), (10), construct S?k(f) and consider

, f) = -j-r StMFvf + { m - k + 1] MζkM, f)Γ
g(ξ) fc -1

for k>l,

Mζι{f, f) = g«{ξ)ΓtJf' + mf + (Hu{f), X) , for k - 1 .

These differential operators proved to be useful in the study of
uniqueness Theorems for convex hypersurfaces in Euclidean space
[7]. (In this case they are elliptic, and the last term in the right-
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hand side vanishes.) It is plausible that they have applications in
establishing uniqueness Theorems for submanifolds of E in codi-
mension > 1 . We hope that we come back to it again elsewhere.

4* Applications* We begin with a slight generalization of the
formula (14), which leads to an integral formula relating the ele-
mentary symmetric functions of arbitrary order. This formula is
of Minkowski-Hsiung type, and in the form involving two consecu-
tive elementary symmetric functions of principal curvatures it was
derived and studied by many authors (see Chen and Yano [4], and
also [3], Chapter 6; in both sources further references can be found).
However, the methods of those authors do not seem to generalize
so as to obtain the following formulas (16) and (17).

In what follows, unless stated otherwise, it is assumed that M
is a compact submanifold without boundary.

The following Lemma is a version of E. Hopf's Lemma on
Laplace-Beltrami operator.

LEMMA. Suppose that M is a submanifold of E, ξ is a non-
degenerate parallel normal vector field on M, and hf is a smooth
function on M. Put

•Lζk\h ) Ξ —•—&ξkFijh ,

where the coefficients SH are the same as in (11). Then

(15) Pα(fc') =

If k — 1 and, in addition, we assume that Pςk(hf) does not change
its sign on M, then hf is a constant function on M. The same is
true when k>l provided there exists at least one point on M where
Π(ξ) Φ 0.

Proof. It is easy to see, with the use of formula (4), that biS(ξ)
is a Codazzi tensor with respect to Γ •>(£). Therefore, Pξk(h') can be
written in the divergence form (15) (see [5, 7]). When k > 1 and
II(ξ) Φ 0 at some point of M then II(ξ) Φ 0 everywhere on M because
ξ is nondegenerate. By Proposition 3.1 the operator Pζk(h') is uni-
formly elliptic. Now the rest of the proof runs similarly to the
standard proof of E. Hopf 's Lemma on the Laplace-Beltrami operator
on a compact Riemannian submanifold ([6], p. 338). The Lemma is
proved.

THEOREM 4.1. Let M be a submanifold of E and ζ a nonde-
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generate parallel normal vector field on M. Then for arbitrary ft
and s, ft = 1, , m, s = 1, %,--,k,

(16) kSξk(R) = g (m -fc + 0! ( f c - l - l ) ! [ p ( f c ) + <H

ι=o (m — k)\ (ft — 1)!

, (m- k + s)\ (k
"Γ ;(m — ft)! (ft — 1)!

ft( Sξh(B)dO(ξ)

l:S7\ <
! (ft — 1)! J^

)! J^

(m — ft)! (ft —

where h = h(ξ) is the support function of M with respect to ξ.

Proof. Formula (16) follows from the formulas (12) and (14);
and (17) is obtained from (16) by integrating, applying Green's
formula, and the preceding Lemma.

COROLLARY 4.1. // in Theorem 4.1 s = ft, then

(18) k\ Sξk(R)dO(ξ) = (m - ft + 1) ί Sn^(B)h(ξ)dO(ξ)

+ \ (Hm X}dO(ξ) .
JM

This formula is an analogue of an integral formula due to Chen
and Yano [4].

We recall that if a submanifold M (not necessarily compact) of
E is contained in a hypersphere of E centered at the origin, then
it is called a spherical submanifold (see [2]).

In the following we often make use of a Theorem due to Chen
[2].

THEOREM A. Let M be a submanifold {not necessarily compact)
of E. If there exists a nondegenerate parallel normal vector field
ζ such that h(ξ) = const everywhere on M, then M is a spherical
submanifold of Έ.

From now on always when ft > 1 it is assumed that there
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exists a point on M where II(ζ) Φ 0, and the orientation is such
that II(ξ) > 0.

Examples of submanifolds with this property can be constructed
as follows. Let Mx and M2 be two strictly convex hyper surf aces.
Then the natural imbedding of Mί x M2 in Euclidean space of di-
mension = dim Mx + dim M2 + 2 gives such example.

The next Theorem is an immediate consequence of formulas (12),
(14), the Lemma, and Theorem A.

THEOREM 4.2. Let M be a submanίfold in E and ξ is a non-
degenerate parallel normal vector field on M. Assume further that
for some k, k = 1,2, , m, at every point of M

(19) cSξ1c(R) = SnΛRMξ) (Sξ0 = 1) ,

where c is a constant such that the expression

[k-c(m-k + l)]Sn(R) - (HζkfX)

is either nonnegative or nonpositive. Then M is a spherical sub-
manifold.

Proof. In the formula (16) set 8 = 1. Then by (19)

[fc - c(m - fc + ΐ)]SM - (Hζk, X) = Pn(h) ,

and the Theorem follows from the Lemma and Theorem A.
In case i = l a result similar to this Theorem has been given

by Wegner [9], Satz 2. His result can be also obtained by our
method, and furthermore, it can be generalized for k > 1.

Let M = Sm, where Sm is a standard m-sphere lying in
m + 1-dimensional Euclidean space Em+1aE. Then, evidently, Hζk^0
for all k, and ξ is the unit normal vector field on Sm in Em+1. With
this fact in mind we state the following

COROLLARY 4.2. Let M be a submanifold of E and ξ a non-
degenerate parallel normal vector field on M. If for some
k, k = 2, , m, at every point of M

(Hζk, X) - 0 ,

and

cSξk(R) = S

where c is a constant Φΰ, then M is a spherical submanifold. Fur-
thermore, in this case it is necessary that c = kf(m — k + 1). The
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assertion is also true when k = 1, provided II(ζ) Φ 0 at some point
of M.

Proof. We show at first that the function Sξk(R) does not
change its sign on ikf. Let A be a point on ikf where II(ξ) is definite.
Then the principal radii of curvature Rξi9 i = 1, •••, n, must all be
of the same sign at A. Since ξ is nondegenerate Rζί will all have
the same sign everywhere on ikf. Hence, the function Sξk(R) can
not change its sign on ikf, and moreover it does not vanish on ikf.

Now it is clear that the expression

[k - c{m - k + ΐ)]Sξk(R)

is either nonnegative or nonpositive and therefore by Theorem 4.2.
M is a spherical submanifold. On the other hand,

ί Sξk{R)dO(ξ) Φ 0

hence, the formula (18) implies that c = k/(m — k + 1). The Corol-
lary is proved.

A Theorem similar to Theorem 4.2 can be stated with the use
of Theorem 4.1.

We point out only a particular case of it.

THEOREM 4.3. Let M be a submanifold in E and ζ a nonde-
generate parallel normal vector field on M. Suppose that for some
k and s, k — 1, , m, s = 1, , k, the following conditions are
satisfied'.

(a) kSίk(R) 2> (TO ~ k + f} {k f)!f;7 f S
(m — k)\ (k — 1)!

(b) ( <£Γ«_lf X}hι(ξ)dO(ξ) ^ 0 for I = 0, - , s - 1

(c) h(ξ) > 0 .

Then M is a spherical submanifold.

Proof. The conditions (a), (b), (c) and Proposition 3.1 imply that
all integrals in formula (17) must vanish. Hence h(ζ) = const, that
is, ikf is a spherical submanifold.

THEOREM 4.4. Let M be a submanifold in E and ξ a nonde-
generate parallel normal vector field on M. Suppose that for some
k and s, k = 1, , m, s — 1, •••,&, the following conditions are
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satisfied:
(a) cSζk(R) = Sζk__s(R)hs(ζ) everywhere on M, where c is a con-

stant Φ 0;
(b) (Ha_lf X) - 0 for I = 0, ., s - 1;
(c) h(ζ)>0.

In case ft = 1 assume also that Π(ξ) Φ 0 at some point of M.
Then M is a spherical submanίfold and c = (m—fc)!fc!/(m—fc + β)!

(ft - s ) ! .

Proof. At first we show that c can have only the value indicat-
ed in the assertion. In showing that we follow Blaschke [1], p. 233.
Let A be a point on M where h(ζ) ( = h) attains its maximum. Then
at A,

V^h ^ 0 .

By Proposition 3.1 the forms Sγkvtvif k = 1, •••, m, are definite, and
therefore at the point A the expressions

± ftjh I = 0, 1, . , k - 1 ,

are all of the same sign, and namely nonpositive. On the other
hand, by Theorem 4.1 (formula (16)) in view of the conditions (a)
and (b), we obtain

Γ * -
(m - ft)! (ft - 1)!

— v" ( m ~~ ̂  + I)! (k — I — 1)1
ι=o (m — ft)! (ft — 1)!

The right-hand side is nonpositive at A, and similar to the proof
of Corollary 4.2 one shows that Sζk(R) > 0 everywhere on M.
Therefore,

('/yy* _ L I Λ ^ t / Jj» Λ N I

(m -ft) ! (ft - 1 ) ! ~

Considering the point where h attains its minimum we arrive at
the opposite inequality. Thus, c = (m — ft)! ft!/(m — ft + s)\ (ft — s)!.

Now, making use of the second part of Theorem 4.1 (formula
17)) and the conditions (a), (b), (c) with constant c taken as above,
we obtain

(m — ft)! (ft — 1)!
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From here, it follows that h = const. Hence, M i s a spherical sub-
manifold. The Theorem is proved.

COROLLARY 4.3. Let M be a closed strictly convex hyper surf ace
in Euclidean space E and ξ is the unit normal vector field on M.
Suppose that for some k and s, k = 1, , m, s = 1, •••,&,

cSk(R) = Sk_s(R)hs(ξ)

everywhere on M, where c is a constantΦθ. Then M is a hyper-
sphere, and c is as in Theorem 4.4. (In the last equality the sub-
script ξ is omitted for the obvious reason.)

Proof. For a hypersurface in E, ξ is always parallel, and since
M is strictly convex, ξ is nondegenerate. Also Hζι ΞΞ 0 for
I = 1, , k. The support function h(ζ) can always be made strictly
positive by placing the origin of the coordinate system in E inside
M. Now the Corollary follows from Theorem 4.4.

REMARK 1. As was mentioned in the introduction, this Corol-
lary is known. In particular, the condition quoted earlier can be ex-
pressed in terms of the elementary symmetric functions of principal
radii of curvature as follows:

cSm(R) - Sm_s(R)hs(ξ) .

If in Corollary 4.3 we take k — m, then we obtain the above result.
It is due to Suss; see [8], Korollar 6.3, and other references there.

REMARK 2. Theorem 4.4 does not contain Corollary 4.2, since
in the latter it is not required that h(ξ) > 0.
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FANS AND EMBEDDINGS IN THE PLANE

LEX G. OVERSTEEGEN

We prove that every fan which is locally connected at
its vertex can be embedded in the plane. This gives a
solution to a problem raised by J. J. Charatonik and Z. Rudy.

!• Introduction and definitions* In 1963, K. Borsuk [4] con-
structed a fan which is not embeddable in the plane. Hence, the
question arises to characterize those fans which are embeddable in
the plane. In particular, in [5] it was asked whether each contractible
fan is embeddable in the plane. In an attempt to solve this problem
in the negative, J. J. Charatonik and Z. Rudy constructed a contrac-
tible fan which is locally connected at its vertex. They conjectured
([6], p. 215) that this fan is not embeddable in the plane. We show
in this paper that each fan, which is locally connected at its vertex,
is embeddable in the plane (see Theorem 5.2). We will also establish,
for fans, several equivalences between the local connectedness at the
vertex and other conditions. In a forthcoming paper [11] the author
has shown that each contractible fan is locally connected at its vertex,
and hence embeddable in the plane.

By a continuum we mean a compact connected metric space. A
dendroid is an arc-wise connected and hereditarily unicoherent con-
tinuum. By a fan we understand a dendroid which has exactly one
branch-point, and we call this branch-point the vertex of the fan.
If x, y are points in a dendroid X, then we denote by [x, y] the
unique arc in X having x and y as end-points. The weak-cut order
^ , with respect to a point p, in a dendroid X is given by

x <; y if and only if [p, x] c [p, y] .

We denote by / the unit closed interval [0, 1] of reals, and the
symbol B(x, ε) denotes the open ball of radius ε about the point x.
We use the symbol ~ to denote that two spaces are homeomorphic.
The symbol R, as used in Lemma 3.1, denotes a set of indices.

2* Embeddings in the plane* A cover U ={UU U2, •••, Un) of
a space is called an ε-chain if the nerve (see [8], p. 318) of U is an
arc and diam( [/*) < ε for i = 1, 2, , n. A continuum X is said to
be arc-like if for each ε > 0 there exists an ε-chain covering X. A
point e of an arc-like continuum X is called an end-point provided
for each ε > 0 there exists an ε-chain Ulf U2, , Un covering X such
that

495
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(1) eel

It is known (see [9], p. 148) that every O-dimensional compact
metric space K is homeomorphic to a subset of the Cantor ternary
set Cd [0,1], and hence K possesses a natural order ^ . We will
call this ordering the induced ordering on K. The main result of
this section is Theorem 2.2. We start with the following lemma.

LEMMA 2.1. Let X be a compact metric space and let {Ja}, ae A,
be the decomposition of X into components. Let ε > 0 and let K be
a O-dimensional compact set in X, with induced ordering ^ such
that:

(2 ) Ja is an arc-like continuum for each ae A,
( 3 ) Ja Π K = {ea}f where ea is an end-point of Ja for each aeA.

Then there exists an open cover U of X such that U is a finite union
of disjoint ε-chain Vt(i = 1, 2, •••,£), where Vt = {U(i, j)}(j = 1, 2, ,
k(i)) such that:

(4) Kd \JU U(i, 1)\UU UJiS U(i, j),
( 5) all nonadjacent elements of U have positive distance,
(6) for each i, 1 <i i ^ ί, there exist aif bteK such that:

KrιU(i,l) = {xeK\ai^x^bi} .

Proof. Denote by 0 the minimal and by 1 the maximum element
of K. Let g:X-^K be defined by g(x) = ea if xeJaf then g is a
monotone retraction. Let

(7) x0 = sup {eeK\for each ef <* e there exists an open cover

of g~\[0, e']) satisfying the conclusion of Lemma 2.1},
then xo^O. By (2) and (3) there exists an ε-chain Uu U2, U39 , Uk

in X covering g~\x0) such that

ϊπfc= 0 -
i=2

Since g"\x0) c Uy=i ϋy and i£ is O-dimensional there exists a closed and
open set HaK such that g~\H) c Ui=i^ Moreover, we can choose
H such that

for some a and δ in K. If α > 0, define xt = sup {# eUL|CC < α}, then
«! g ETΊ and α̂  < α. By (7) there exists a cover U of flΓι([0, scj) satisfy-
ing the conclusions of the lemma (if a = 0, take 17= 0) . Since
flΓ^IO, scj) is open in X we may assume that U ί7cg"1([0, scj). Hence
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is a cover of g~X[0, b]) satisfying the conclusion of the lemma. It
follows the definition of xQ that x0 = b.

If x0 = b = 1, we are done, whence suppose x0 < 1 and let x2 =
inf {x eK\ x > xQ}. By repeating the argument above, replacing x0

by x2, one can show that g~~\[0, x2]) can be covered with a cover
satisfying the conclusion of the lemma, contrary to (7), since x2>x0.

We will call a cover U that satisfies the conclusion of Lemma
2.1 an ε-cover of X.

THEOREM 2.2. Let X be a compact metric space and K a closed
subset of X. Let {Ja}, ae A, be the decomposition of X into com-
ponents such that:

( 8 ) Ja Π K = {e}, where e is an end-point of Ja for each ae A,
( 9) Ja is an arc-like continuum for each ae A. Then there

exists an embedding h: X—> P such that h(K) = h(X) Π I, where I =
{(x, y)eP\y = 0}.

Proof. Notice that by (8) K is O-dimensional. By Lemma 2.1,
there exists for each ε > 0 an ε-cover of X. Let U1 be a 1/2-cover
of X and rj > 0 such that ΎJ is the minimum distance between two
nonintersecting elements of Ux. By induction we construct a sequence
of covers Uu U2, of X such that Un refines Un_lf Un is a (l/2)%-
cover, no sub-chain of less than nine links of Un connects two non-
intersecting elements of Un^ι.

Given a cover U of X, satisfying the conclusion of Lemma 2.1,
we label the chains Vu V2, , Vt of U such that inf {x | x e K Π Ff} <
inf {x\xeKC\ F J if i < j , and the links of the chain F^ = {U(i, 1),
U(i,2), •••, U(i,k{i))} such that K f) V, c J7(i, 1). If 17 and £7* are
both covers of X, satisfying the conclusion of Lemma 2.1, then we
say that U follows the pattern {(alf 6J, (a19 δ2), ••-, (a19 bkω), •••,
(«ί, &&(«))} ίn t^* if the i t h link of the ith chain of Z7 is contained in
the bjth. link of the α^th chain of Ϊ7*(i.e., U(ί, j)dU7)"{aί, bd).

There exist in P a sequence of open sets D19 D2, such that
Dn is a finite union of (l/2)w-chains whose elements are interiors of
rectangles, and such that Dn follows a pattern in Dn_x that Un follows
in Z7Λ_!, each element of Dn^ contains the closure of an element of
Dn, while the closure of each element of Dn lies in an element of
DΛ_! and the first link of each chain of Dn intersects I in a non-
degenerate interval, while the closure of all other elements of Dn

are contained in P\l(n = 1, 2 •)•
The existence of the open sets Dn satisfying the above follows

from an argument similar to one used by R. H. Bing (see [3], p. 654),



498 LEX G. OVERSTEEGEN

the only difference being that in each cover Dn^ we insert, in the
next step, finitely many, instead of one, new chains and we require
the first link of each chain of Dn to intersect I in a nondegenerate
interval, while the closures of all other elements of Dn are contained
in Γ\l.

The latter facts can be established by dividing each chain of
JD%_! into finitely many "strips" in each of which we insert, in the
next step, a new chain in such a way that we always insert new
links on a predescribed "side" of already chosen previous links.

It follows from Theorem 11 of [2] that X is homeomorphic with
the continuum Y — Dΐ Π Df Π , where D% denotes the union of
the elements of Dn and moreover it follows from the choice of Dn

that Y satisfies the conclusion of Theorem 2.2, and the proof is
complete.

3* Fans locally connected at the vertex* A fan X has prop-
erty P1, if for each sequence of points {#J in X (i — 1, 2, ) con-
verging to the vertex v of X we have

(1) Ls[v, x,] = M .

THEOREM 3.1. Let X be a fan with vertex v and

(2) X= \JreR{Jr\Jr = [0, 1] for each reR and Jrιf\Jr2 = M if
r, Φ r2eR},
then the following are equivalent:

( 3 ) X has property P,
(4) for each ε > 0, there exists a connected open neighborhood

U of v such that diam( U) ^ ε and Bd( U) Π Jr is connected for every
reR,

( 5 ) X is locally connected at v.

Proof. (3) —> (4). Let ε > 0 be given and let ^ be the weak-
cut order of X with respect to v. Define V — B(v, e),

x{r) = inf {xeX\xeJrΠBd(V)} if J r n B d ( F ) ^ 0 ,

{y e Jr\y ^ x(r)} if Jr Π Bd(F) Φ 0
(0 otherwise

and Q — \JrQB Qr It follows that vtQ, since if {vj is a sequence
in Q converging to v, then vt ^ xir^ for some rt e R, and hence
Ls[v, Vi] Π Bd(F) Φ 0 , contrary to (3).

Let U — X\Q, then U is an open neighborhood of v and diam(Z7) ^

1 It follows from the definition that property P is related to the notion of a Q-
point or a P-point (cf. [1] and [7], respectively).



FANS AND EMBEDDINGS IN THE PLANE 499

diam(F) = e. We will show that U satisfies all conditions of (4).
We claim that

(7) if z 6 U and x < z, then xeU, or, equivalently, if x e Q and
z ^ x, then zeQ.

To this end, suppose that (7) is false. Hence xeQ, let {xt} be
a sequence in Q converging to x. Then xt >̂ &(?•<) eBd(F) for some
r iei2(i = l, 2, •••)• We may assume that the sequence {x(rt)} con-
verges to a point x0 e Jro Π Bd( V) for some roeR.

By ([9], p. 171), Z/sfcî , x(rt)] is a continuum and since [xi9 x(rt)] c
<3(i = 1, 2, •) we have £*[#<, a?(rt)]cQcJC\{v}. Moreover, since Xis
hereditarily unicoherent, it follows that [x, x0] c Ls[xί} x(rt)] c Q c
X\{v} and we consider two cases as follows:

Case 1. ze[x,x0]. Then zeQ.

Case 2. z ί [x, x0]. Then, since z > x, z > max {x, x0} and conse-
quently z > x0 ^ x(rQ). Hence z e Q by (6) and the definition of Q.

In both case we conclude that zeQ, contrary to the assumptions
in (7) and the proof of (7) is complete. It follows from (7) that U
is connected. In order to show that Jr Π Bd(tT') is connected for each
r 6 i?, we will show that if x, y e Jr Π Bd(Z7), say x < y, and 2 e [#, y]9

then 2; 6 J r ΠBd(C7).
Since x eJr nBά(U) = Jrf]U Π Q and 2 > x, it follows from (7)

that zeQ. Moreover, since yeϋf there exists a sequence {#<} in U
converging to y. Since Ls[v, yt] is a continuum ([9], p. 171), con-
taining both y and v and X is hereditarily unicoherent, it follows that
[ v j j c i φ j j . As ze[v,y], we may assume that there exists a
sequence fo}, where zt e [v, y^\, converging to z. By (7), zte U and
whence zeϋ. Obviously zeJr and we conclude zeJrpιUf)Q =

(4) -^ (5): Trivial.
(5) —> (3): Suppose X does not have property P. Let {a?J be a

sequence of points in X converging to v such that Ls[v, xt] = Kφ {v}.
Let ε > 0 be such that diam(i£) > 3ε and let U be a connected

neighborhood of v such that diam( U) < ε. Then there exists an
index ί> 0 such that XiβU and [v, xt] Π [X\B(v, 2ε)] =̂ 0 . But then
U and [v, Xi] are two continua in X whose intersection is not con-
nected, contradicting the fact that X is hereditarily unicoherent,
and the proof is complete.

4. Decompositions of fans* We say that a space X is a (q — c)-
space if, in X, every quasi-component is connected. In other words,
for (q — c)-spaces the quasi-components and the components coincide.
We will show that if a fan is locally connected at the vertex v of
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X, then X\{v) is a (g = c)-space.

THEOREM 4.1. Let X be a fan which is locally connected at the
vertex v of X and

X — UreB {JrI Jr = [0,1] for each reR and Jn Π JT2 = {v}
i/ r,Φr2eR} .

M is a (q = c)-space and {Jr\{v}}, reR, is the decomposition
of X\{v} into quasi-components.

Proof. It is sufficient to show that if r0 Φ rλ e R, then there
exists a closed and open set G c X\M such that

( i ) j r o \ M c ( ? c X V V

By Theorem 3.1 there exists for each n(n = 1, 2, •••) a neigh-
borhood Un of t; such that diam(Z7n) < 1/w, Un+1aUn and Bd(J7J n Λ
is connected for each reR. We may assume that Jro Π Bd(Uj) Φ
0 ^ J^DBdiU,). Let Jϊ, - {r eR\Bd(Un) n Λ ^ 0}(n = 1,2, •••),
then RnaRn+1 and U?=iΛΛ = Λ.

Let F be the space obtained from Bd( U^ by identifying all com-
ponents of Bd(E7i) to a point and let fiBdiU^—^Y be the natural
projection. It follows ([9], p. 148) that dimY = 0. Since

/ ( j r o n Bdiuj) Φ / (J r ι n

there exists a closed and open set H? in Y such that

/ ( j r o n Bά(Ut))cHf c r \ / ( / r i n Bd(^)) .

Let Hx = f~\Hf), then JEZΊ is a closed and open set in
Define A - {r 6ΛJ J r Π H, Φ 0} and ^ = {r 6^1 J r Π JÊ  = 0}, then
Ax Π By = 0 and ̂  U ^i = i?i Moreover, since Hx is closed and open
in BdίETi), we have that

and Q1

are disjoint and closed subsets of X\{v).
By induction we will construct sets An and Bn such that

(2 ) ^ _ x c 4., Bn_, c 5%, 4 n ΰ , = 0 and Anl)Bn = Rn

and if Pn = \Jr*An {Jr\ and Qw = \Jresn {Jr} then Pw and Qn are disjoint
and closed subsets of X\{v}(n = 1, 2, •)•

Suppose An_± and Bn^ have been constructed. Since P%_x Π
Bd(i/J and Q^iΠBdίZ/J are disjoint closed subsets of Bd(J7») and
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Jr Π Bd( Un) is connected for each r e jβ, it follows as above, replacing
Ul9 Jro n B d ( ^ ) and Jn n Bd(ϋi) by Un, Pn_± n Bd(Un) and Qn_, n Bά(Un)
respectively, that there exists a closed and open subset H% of Bd( Un)
such that

P ^ n Bd( Un) dHnd Bd( Un)\Qn^ .

Let An = {reR%\JrΓiH*Φ(d} and Bn = {reRn\JrΓ\ Hn = 0}, then
An and £„ satisfy (2).

Let A = USU -A* and £ = Uϊ=i #*> then A_U JS = i2 and A Π £ =
0 . Let G = Ure^ίe/ΛM} and Gn = Urβ^{e7Λ^}. Since ί?% is open
in X and G = \Jn=ί Gn, it follows that G is open in X Similarly
X\((? U M) = UresRΛM} is open in X. Hence G is both open and
closed in X\{v} and, since roeA1 and r±eBlf (1) is proved.

5* Property P and embeddings in the plane* The main result
of this section is Theorem 5.2 where we prove that if a fan is locally
connected at its vertex, then it can be embedded in the plane. This
result gives a solution to problem 1015 of [6].

Since every fan is hereditarily decomposable and hence 1-dimen-
sional ([9], p. 206), we can consider every fan as a subspace of P.
We start with the following lemma.

LEMMA 5.1. Let X be a fan, with vertex v and

X — UreB {Jr\Jr = [0, 1] for each reR and Jri Π JT2 = M

if τxΦτ%e R)

such that {/r\{̂ }}, r eR, is the decomposition of X\{v} into quasi-
components, then there exists an embedding f: X\{v} —> C x P such
that each quasi-component of X\{v} is contained in {c} x P for some
ceC, and

(1) /(I\W)\/(I\W)cCxW,

where Cc[0,1] denotes the Cantor ternary set.

Proof. We may assume that XaP. By ([9], p. 148), there exists
a continuous function g: X\{v} —> C such that the quasi-components
of X\{v} coincide with the point-inverses of g. Then the function
/: X\{v}~^C x P defined by f(x) = (g(x), x) is an embedding. Only
(1) remains to be shown. Let

(2) (co,α;o)6/(X\M)\/(X\M),

and let {(ci9 xt)}(i = 1, 2, ) be a sequence of points in f(X\{v})
converging to (c0, a?0). We may assume that the sequence {#J in X,
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where xt — f\(cif xt)), converges to a point y e X. We consider two
cases as follows:

Case 1. y φ v. Then the sequence {/(#*)}, where /(a?,) = (c<, a:,),
converges to /(^/). Hence f(y) = (c0, x0), contrary to (2).

Case 2. y = v. Then #0 = # and whence (1) holds.

These two cases complete the proof of the lemma.

THEOREM 5.2. Let X be a* fan which is locally connected at the
vertex v of X, then X is embeddable in the plane.

Proof. Let

X - U {Jr\Jr = [0,1] for each r 6 R and Jri n Jr2 = M

if rx Φ r2eR}.

It follows from 4.1 that {Jr\M}> reR, is the decomposition of X\{v}
into quasi-components. Hence by Lemma 5.1 there exists an embedding
/: X\{v} —>CxP such that each quasi-component of X\{v} is contained
in {c} x Γ for some c e C and

f(X\^})\f(X\{v})czCx{v}.

It follows that f(X\{v}) satisfies all conditions of Theorem 2.2, where
K = f(X\{v}) ίl(Cx M). Hence there exists an embedding h: f(X\{v}) ->
Γ such that Λ(ί) = h(f(X\{v}))nϊ, where ϊ - {(a?, y)eΓ\y = 0}. Let
π: 72 —> JP/Z be the natural projection. It follows (see [9], p. 533)
that P ~ J2/ϊ and whence the mapping g: X-+Pβ defined by

(πohof(χ) if x Φ v ,

U
is the required embedding.

REMARK. J. J. Charatonik and Z. Rudy constructed a fan X
which is locally connected at its vertex (see [6], p. 215). They
conjectured that this fan is not embeddable in the plane. The above
theorem disproves their conjecture and gives a solution to problem
1015 of [6].
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ON BANACH SPACES HAVING
THE PROPERTY G. L.

SHLOMO REISNER

A Banach space E has the property G. L. if every
absolutely summing: operator defined on E factors through
an Lα-space. Some properties of spaces having G. L.
property are investigated, using methods of Banach ideals
of operators.

1* Introduction and notations* The property G. L. is known
to be shared by a number of important classes of Banach spaces: in
[6] it is shown that if E" is isomorphic to a complemented subspace
of a Banach lattice (in particular, if Έ has local unconditional struc-
ture in the sense of [4]) then E has the G. L. property. Subspaces
of Lt spaces as well as quotients of C(K) spaces have G. L. property.
Moreover, in [17] it is shown that if E is a subspace of a Banach
space F s.t. Π^Sf^ F) = £?{£?„, F) (in particular if F has cotype
2) and F has the property G. L. then E has the property G. L. In
fact, it is easy to see that it is enough for E to be finitely re-
presented in F. In this paper, we try to investigate the property
G. L. using methods of Banach ideals of operators. It is shown
that this property is characterized by a perfect ideal [Γ, Y]. We
obtain a description of the conjugate ideal [Γ*, 7*] and deduce that
[Γ, 7] is a symmetric ideal hence E has G. L. iff E' has it.

It is also shown that a number of properties, known to hold
for spaces having l.u.st. in the sense of [4] are common to all the
spaces having G. L. For example, if E is a space having G. L.
which does not contain ll-s uniformly, then either E contains l*-s
uniformly and uniformly complementary, or E does not contain
l?-8 uniformly at all.

It follows that if E is a space having G. L. and F a Banach
space, then there exist compact nonnuclear operators from E to F
and from F to E. These are partial generalizations to results of
Davis and Johnson (see [2] and [9]). We show also that for spaces
having G. L. the property /72CS^, E) = £?(£?„, E) implies that E
is of cotype 2; we show a dual implication as well.

The paper is divided into two parts. In §2 we describe some
tools in Banach ideals of operators; in §3 we use these tools in
investigating spaces having G. L. It seems to us that these tools
may be useful in other contexts.

The notations are of two kinds:
(1) General notations. We use standard notations of Banach

505
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space theory. If E is a Banach space its dual space is Ef and for
xeE, xf eE' we denote by ζx, x'} the scalar product of x and %'.

We deal with Banach spaces over the field of real numbers.
Modification to the complex numbers case is straightforward. For
a positive measure space (Ω, Σ, μ) and 1 ^ p ^ oa we denote by Lp(μ)
the Banach space of scalar, /^-measurable functions / with \f\p

integrable (with classical modification for p — oo) with the usual
norm.

We denote by LV{E) = Lp(μ, E) the space of Bochner measurable
unvalued functions with \\f(-)\\e Lp(μ) equipped with the norm

11/11 = 11 ll/( )ll IU,</o.
The term "operator" means "bounded linear operator between

Banach spaces". If E, F are Banach spaces, <S?(E, F) is the Banach
space of operators from E into F equipped with the norm of
operators.

Let E, F be Banach spaces; we say that E is finitely represented
in F (abbreviation: Ef.rF) if for every finite dimensional subspace
Ex of E and ε>0 there exists a subspace Fx of F and an isomorphism
u: E1 —> F1 with \\u\\ \\u~ι\\ <; 1 + ε. If P is a property which makes
sense for Banach spaces we say that E has super-P if every space F
with Ff.rE has the property P.

(2) Definitions and notations concerning Banach ideals of
operators and tensor products of Banach spaces. A standard
reference in Banach ideals of operators is [8] (see also, [15] and [14]);
as a reference concerning tensor products one can use [20]. If [A, a]
is a Banach ideal of operators we denote by [A*, α*] the conjugate
ideal and say that [A, a] is perfect if [A, a] — [A**, α**]. [A', a'] is
the adjoint ideal (Te A'(E, F) iff T e A(F', E')).

Let [A, α] be a normed ideal of operators and E, F Banach spaces,
a norm (called "an ideal norm") is naturally induced on the tensor
product E (x) F by considering it as algebraically contained in
Sf{E\F\ We denote E®F with this norm by E®aF and its
completion by E <§)α F. Let E, F be Banach spaces and ue E (x) F.
Let Ei, JP\ be subspaces of E and F respectively s.t. there is a
representation of u as u = ΣΓ=i χι ® V% with xt e Eί9 yte F1 for all i.
We denote by a(u, Eu JP\) the norm of u as an element of Eί ®α 2^.
If E and i*7 are not considered as subspaces of some other spaces
we denote a(u, E, F) = a(u).

We say that an ideal norm a is semi-tensorial norm if for every
pair of Banach spaces E, F, one which is finite dimensional, and
every ueE®F hold: a{u) = inf {a(u, E19 FJ; E, czEf F,cz F, E1 and
Fλ finite dimensional and ue Eλ0 JPJ.

We list here a number of ideals that we shall use in the
sequel.
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(a) [j2^ || ||] the ideal of all bounded operators.
(b) [Πp, πp] (1 g p <Ξ: OO) the ideal of p-summing operators.
(c) [Ip, ίp] the ideal of p-integral operators. Ue IP[E, F] if there

exists a probability space (Ω, Σ, μ) and operators Ve J*f(E, L^μ)),
We^f{Lp{μ),F") s.t.WiV = jFU where i is the formal "inclusion"
map of Lj^μ) into Lp(μ) and j F the canonnical inclusion of E into
E".

We define ip(U) = inf {\\V\\ \\ W\\; V, W, (Ω, Σ, μ) as in the defini-
tion}. We say that U is strongly ^-integral if the preceeding
factorization is for U instead of jFU.

(d) [NP9 vp] 1 ^ p < co the ideal of p-nuclear operators.
(e) [Γp, 7p] the ideal of operators factorizable through Lp. Ue

ΓP(E, F) if there exists an Lp(μ) space and operators A e Jzf(E, Lp{μ))>
BeJ^(Lp(μ),F") s.t.jFU = BA. We define ΎP(U) - inf | | JB| | || A\\.

(f) (A new definition). [M, μ] the ideal of operators factorizable
through a Banach lattice. Ue M(E, F) iff there exists a Banach
lattice L and Ae£?(E,L), Be ^(L, F")s.t.jFU = BA. μ{U) =
inf \\B\\ || A||. Using ultraproducts of Banach spaces ([1]) or the
methods of [5] one can show that [M, μ] = [Jϊ**, η**] where [H, η]
is the ideal of weakly nuclear operators introduced in [7]. Therefore
a Banach space E has l.u.st in the sense of [6] iff E" is isomorphic
to a complemented subspace of a Banach lattice ([5]).

It is known that the ideals in (a), (b), (c) and (e) are perfect
and the same is true for the ideal in (f). It is also not hard to
check that all the ideal norms on tensor products induced by the
above ideals are semi-tensorial.

Let E, F be Banach spaces, the greatest tensor-norm, π, is de-
fined on E(g)F by π(u) = mf{ΣU\\xt\\\\vΛ\; u = Σ?=i ^ ® ί/J for
ueE®F. There is an identification (E®κF)f = J^{F, Er) defined
by

<u, Γ> = trace Tu - Σ <«„ Γ^>
ΐ = l

for

2. Let / be an index set and {[Ai9 cLi\}ieI a family of normed
ideals of operators.

DEFINITION 2.1. (a) The greatest lower bound [Λ*^> Λΐ°kl of
the family is defined by:
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(A A)(E, F) = {TeJίf(E9 F); vi, TeA^E, F)

and sup at(T) < co}

for Γ

(b) The least upper bound [Vi^«, V< α«] °f the family is defined
by:

( ) , F) = {Te £?{E, F); T = Σ Ts\ Jal, J finite

and for all jeJ T3 e Aό{E, F)}

[ ] for Te(y At>J(E, F) ,

t h e inf being taken over all finite subsets Jal s.t. t h e r e is a r e ]

presentat ion T = Σ i e j Tό w i th Γ,. e A, (E, F).

PROPOSITION 2.2. (a) [A* Ai9 Ai a>i\ and [Vi At, V* αϊ] are normed
ideals of operators.

(b) If for all i [Ai? at] are Banach ideals then so is [A* Ai9 Ai °kl
and if, in addition, I is finite, then [\fiaίf V* α<] is αϊso α Banach
ideal.

(c) If for all i [Aif at] are perfect then so is [A<-^« Ai^il

The proof is routine.

PROPOSITION 2.3. [A, A}9 A. α?] - [(V, A,)*, (V. a<)].

Proof. Consider the following diagram, in which E9 F are Banach
spaces, E19 F1 finite dimensional Banach spaces and T, U, S, V
operators.

T

E-^F

v\ \u

(a) Suppose Te{\f'tAt)*(E, F) then

I trace TVSU\ £ (v at)\τ)\\V\\\\U\\(y at)(S) ,

hence, for all i e I

I trace TVSU\ £ (γα ()*(Γ)||7|| | |J7||α4(S) ,
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therefore Vie I af(T) ^ (V^ΠΓ) a n d it follows that

Te(AAf\E,F) and (A af)(T) £ (A aX(T) .

(b) Suppose Te At A*(E, F). Let J c / be finite and S -
be a representation of fif s.ί.

We have:

I trace TFSt/j ^ Σ | trace
3 6 ./

^ sup aΐ(T) || 7 | | || Z

£ (A αf

therefore Te(V4Λ)%δ7,-F) and (V.α.HΓ) ^ (A, of)(Γ).

COROLLARY 2.4. 1/ [A4, α,] αi e perfect, then

m particular, if E and F are finite dimensional then {without
assuming perfectness of [A%, αj) for every Te J£?(E, F) (At α, )*(T) =

Proof. Since for all i [Aίf αj = [A?*, a**] we get

= \(VA?)*Ύ = (VA*

with equality of the norms. The second assertion is an obvious con-
sequence of the first.

DEFINITION 2.5. (a) Let [A, a] and [B, b] be normed ideals of
operators and G a fixed Banach space. We define for Banach spaces
E, F:

) , F); VUeB(F, G) UTeA(E, G)} .

From the closed-graph theorem it follows that for every Te
(A/B)a(E.F) there exists a k > 0 s.t. for all UeB(F,G)a (UT) ^
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kb{U). We define (a/b)G(T) = inf {k; k as above}.
(b) Let [A, a] and [B, b] be normed ideals of operators, E and

F Banach spaces. We define

—(E, F) = {Te^(E, F); for every Banach
B

space G and Ue B(F, G) UTe A{E, G)} .

It can be shown in a standard way that for every TeA/B(E, F)
there exists a k > 0 s.t. for every Banach space G and UeB(F, G)
a(UT) S kb(U). We define a/b(T) = inf {k; k as above}.

(c) Let [A, a], [B, b], E and F be as in (b). We define

4tf(E, F) = {Ts £?(E, F); 3A; > 0 s.t. for every Banach space

G of finite dimension and Uej5f(F, G) a(UT) ̂  kb(U)}

—f(T) - inf {fc, k as above} for Te^f(E, F) .

PROPOSITION 2.6. [(A/JB)σ, (α/fty, [A/B,a/b] and [A/Bf,a/bf]
are normed ideals of operators.

If [A, a] is a Banach ideal then these ideals are Banach ideals.
If [A, a] is perfect then \A\B, a/b] = [A/Bf a/b / ] .

Proof. The verification of the first and third assertions is
routine. We prove the second assertion for A/B.

Let {Tn}nQN be a Cauchy sequence in A/B (Ef F). It is easy to
check the following facts:

(1) There exists an operator TeA/B(E, F) s.t. for every Banach
space G and Ue B(F, G) a{UTn - UT) > 0.

%—» CO

(2) The numerical sequence a/b(Tn — T) is Cauchy, hence
a/b(Tn - T)—*l ^ 0.

It is left to show that I — 0. Suppose I > 0. By (2) there is
an integer n0 s.t. for any n^n0 there exists a Banach space Gn and
an operator UneB(F,Gn) with b(Un)£l s.t. a(Un(Tn - Γ)) > 1/2.
We get for m > n ^ nQ.

(3) ί/2 < a(Un(Tn - Γ)) ̂  a(Un(Tn - ΓJ) + α(C/w(Γm - T)).
Choose nt > n0 s.t. for all [/ with b{U) ̂  1 and n, m ^t nt we

have a(U(Tn - ΓJ) < Z/8 (which is possible since {ΓJ is Cauchy in
A/B{E, F)). Fix ti > ^ and let mx > nγ be s.ί. for m > mλ we have
a(Un(Tm - T)) < Z/8 (such mx exists by 1).

Applying (3) to the fixed n and some m > mλ we get 1/2 < Z/4
which is a contradiction that completes the proof.
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PROPOSITION 2.7. Let [A, a] and [B, b] be normed ideals of
operators such that [A, a] is perfect and b is a semi-tensorial norm.
Then [AjBy a/b] is perfect.

Proof. By Proposition 2.6 it is enough to show that [A/Bff a/b f]
is perfect. Let Te (A/B f)**(E, F), then for every finite dimensional
subspace M of E and finite codimensional subspace N of F
Φ /(QNTΪM) ^ (Φf)**(T) where iM: M~> E is the inclusion map and
qN: N~> F/N the canonical surjection. Let G be a finite dimensional
Banach space and UeB(F, G), since b is semi-tensorial we have:

b(U) = inf {&([/, F\ G); Fι finite dimensional subspace of F'}

the last infinum is taken over all operators Uι and finite codimen-
sional subspaces N of F such that U has a factorization of the form:

(l)
[ L )

 QN\

F/N

For given ε > 0 let N and Uί be as in (1) with bCU,) ^b(U) + ε.
We have a(UTiM) = a(UιqNTiM)^b(U1)a/bf(qNTiM)^(b(U) + ε)(a/bfr%T).
Since ε is arbitrary and [A, a] is perfect it follows that a(UT) ̂
b(U)(a/bY*(T), therefore TeA/Bf(E, F) and a/bf(T) - (a/b f)**(T).

PROPOSITION 2.8. Let [A, α] and [B, b] be normed ideals of
operators, E and F Banach spaces of finite dimension and Te j*f(E,F).
Then (a/b fY(T) = inf Σ?=i Λ*(t7<)6( F*), the infinum being taken over
all representations of T of the form T= Σ?=i Ut V, with Vt e £f(E, Gt);
Ui G £>?(GU F) and Gx finite dimensional Banach spaces.

Proof. For fixed finite dimensional G and S e ,£f(F, E) we have

(±) (S) = sup {a(US); Ue £f(E, G), b(U) ^ 1} .
\6 /G

Define the operator §: B(E, G) -> A(F, G)

by S(U)= US . Then

(-J-) (S) = ^(
G

The correspondence S <-> S enable us to identify (A/B)G(F, E) with
a subspace of jS?(B(Ey G\ A(F, (?)). Therefore (A/B)*(E, F) -
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[(A/B)β(F, E)]' is a quotient space of A%G, F) ®r B(E, G) with the
following identification: for ψ = Σ?=i Uτ (g) Vt e A*(G, F) ®Γ B(E, G)
and Se(A/B)G(F, E) we define

= Σ < ^ , V,S> = Σ trace IT", F,S = trace ΓS

where

i = l

From the last discussion it follows that for Te £f{E, F)

f)\T) = inf JΣα*(^)δ(F,); T - ± U.V,;

We complete the proof by noting that

[4/,£/ι=r Λ (4), A
and by using Corollary 2.4 which shows that for finite dimensional
E and F

\(Afγ (±f)l = [ v (±Y v (-

L\B / \& / J Ldim 6'<oo \B/G dim^<oo\

3.

DEFINITION 3.1. We define the ideal [Γ, 7] by:

[Γ, 7] = Γ-5-, — Ί Explicitly:
TeΓ(E,F) iff for every Banach space G and UeΠ^F.G) UTeΓL(E,G).
For such an operator T i(T) = supτx(ί7Γ), the supremum being
taken over all Banach spaces G and UeΠ^F, G) with π^U) = 1.

DEFINITION 3.2. We say that a Banach space E has the property
G. L. (Gordon-Lewis) if for every Banach space G Πt(Ef G) c Γ^E, G).
Of course, E has property G. L. iff the identity operator on E is
in Γ(E, E).

PROPOSITION 3.3. A Banach space E has the property G. L. if



ON BANACH SPACES HAVING THE PROPERTY G. L. 513

and only if there exist k > 0 s.t. for every finite dimensional
Banach space G and Ue£f(E, (?) 7i(ϊ7) <, kπ^U).

Proof, This is a result of the equality

In,' πj In/' π/
which is, in turn, a consequence of Proposition 2.6 and the fact that
[Γ19 Ti] is perfect.

PROPOSITION 3.4. Let E and F be finite dimensional Banach
spaces and Te^f(E,F). Then (a) τ*(T) = inf [Σ^i^ί(^K(^)],
the infinum being taken over all representations of the form T =
Σ?=i UiVt with Vi e Π^E, (?<), Ut e Π[(Git F) and Gt finite dimensional
Banach spaces.

(b) 7*(Γ) = inf [Σ?=i llj"<llll^ill]» the infimum being taken over

all representations of the form T = Σ?=i Ti s.t for all i there exist
positive Radon measures, μ% on the unit ball B(E') of Ef and v{ on
the unit ball B{F) of F s.t. for all xeE, y' eF' and 1 <̂  i <; n hold:

I < Ttx, yf) I ̂  ( I <x, x'> I dμlx') \ I <y, y'} \ dv^y).

Proof, (a) Follows from Propositions 2.8 and 3.3 combined with
the fact ([10]) that [Γ*, 7ί] - [Π[, π[].

(b) Is a consequence of (a) and the following lemma which is
proved by methods of [10].

LEMMA 3.5. (c) Let Te^f(E, F) (E, F not necessarily finite
dimensional) then

(1) iirfJc;(t7X(7) = inf |M| | | ί£ | |

where the infinum on the left is taken over all Banach spaces G and
representations jT — UV with j the canonical inclusion of F into
F", UeΠ[(G,F") and VeΠ^E.G). The infimum on the right is
taken over all positive Radon measures μ on B{E') and v on B{F")
{with the relative ω*-topologies) s.t. for all x e E, yr e F' hold

I < Tx, y'} I ̂  ( I (x, x') I dμ(x') \ | <y', y") | dv(y") .
JBiE') JB{F")

(d) // in (c) E and F are finite dimensional then the infinum
on the left hand side of (1) can be taken over all finite dimensional
Banach spaces G.
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Proof, (d) follows from (c) since πι and π[ are semi-tensorial (in
fact, tensorial) norms. We prove (c).

Let jT = UV be a factorization of jT with UeΠ[(G,F") and
VeΠ^E, G). By the Pietsch factorization theorem there exist posi-
tive Radon measures, μ on B(Ef) and v on B{F") s.t. for xeE, y' eF'

\\Vx\\^\ \(x, xr)\dμ{x'\ || U'\F,y'\\ S \ \<v', y")\dv{y") and
JB(E') JB{F")

\\(V) || \\ ' f || | | | | '
J( JB{F)

^π1(V) + ε, || v\\ ^ π^U') + e. Therefore | | v | | | | ju| | ^ (^'(C/) + e)
ε) and

( 2 ) \ ( T x , y ' ) \ = \ ( V x , U ' y ' ) \ ^ \ \(x,x'}\dμ\ \ ( y ' , y " ) \ d v .
JB(E') JB{F")

On the other hand, suppose μ and v are Radon measures on
B{Ef) and S(F") respectively s.t. (2) hold for every xeE, y'eF'
then we define operators:

U0:F' >L1(v);

and

Let H= U0(F'), G - VΌCE7) and let «•» be t h e bilinear form on
VIE) x U0(F') defined by {(Vox, Uoy')) = (Tx, yr), from (2) it follows
that this form is well defined and bounded with norm <̂  1, hence it
defines an operator We^f{G, H') with ||TΓ|| ^ 1 and (Vox, UQy')) =
(WVQx, Uoy'). We have then the following commutative diagram:

E T > F J > F"

where ί/i and T^ are ί70 and Vo considered as operators into G and
H respectively. Of course π^U^ ̂  \\μ\\ and π^VΊ) ^ \\v\\ which
completes the proof of Lemma 3.5 and Proposition 3.4.

REMARK 3.6. In [7] Gordon and Lewis show that for all E, F
and Te£f(E, F)

( 1 ) jκ*(Γ) = inf \\μ\\,

the infinum being taken over all positive Radon measures on B(Er) x
B(F") (with the product of the ω*-topologies) which satisfy for all

( 2 ) I (Tx, y') I ̂  [ I <s, «'><»', »"
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In fact, using compactness of the unit balls it is not hard to check
that for finite dimensional E and F we can replace "inf \\μ\\" by
"inf Σ?=i llj"illll^tH" i n (1); i"i> »i positive Radon measures on B(E')
and B(F) respectively s.t. for all x, yf

( 3 ) I < Tx, y'} I ̂  Σ ( !<*,*'>! <*]"*(&') ( I <!/, ϊ/'> I dvt(y)
i = l JB{E') JB(F)

(all the μi (g) v{ but one may be taken as scalar multiples of δ(x't) (x)
KVτ) — the products of valuations at points x^eBiE'), y^BiF), the
one μt (x) vt left may be a scalar multiple of the product of Lebesgue
measures on B{E') and B(F)). The difference between μ* and 7* is
therefore the possibility to represent T as a sum Σ?=i 2"1, where each
Ti is "majorized" by the product μt (x) vim It follows of course that
μ* <̂  7*, hence μ ^Ύ and we get the result of [6]: if E" is isomor-
phic to a complemented subspace of a Banach lattice then E has
property G. L.

COROLLARY 3.7. [Γ, 7] = \Γ\ 7'], therefore E has the property
G. L. if and only if Ef has it.

Proof. [Γ*, 7*] = [Γ*', 7*']; this is obvious for pairs of finite
dimensional Banach spaces from (a) or (b) of Proposition 3.4 and
passes over to all pairs of Banach spaces since [Γ*f 7*] is perfect.
Now perfectness of [Γ, 7] gives [Γ, 7] = [Γ**, 7**] = [Γ*'*9 7*'*] -
[Γ**', 7**'] = [Γ\ 7'].

The last corollary enables us to prove that a number of proper-
ties known to hold for spaces shaving l.u.st. are true also for spaces
having the property G. L.

We use the next lemma of Pisier ([16] and [17]) which was
originally proved for spaces E with E" isomorphic to a complement-
ed subspace of a Banoch lattice. However, Pisier's proof uses only
the fact that such an E, and also E', has the property G. L.

LEMMA 3.8. Let E have the property G. L.
(a) // E does not contain Z*'s uniformly, then there exist

q, 2 ^ q < 00 and C > 0 s.t.
(1) For any E valued operator Aπq(A) <; Cπ[(A).
(b) // neither E nor E' contain Z*'s uniformly, then there

exist q,2 ^ q < oof p9 1 < p ^ 2 and C > 0 s.t.:
(2 ) For any E-valued operator Aπq(A) <Ξ Cπ'p(A).

The next theorem and its corollary is in a certain way a
generalization of results of Johnson and Davis ([9] and [2]).
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THEOREM 3.9. Let E be finitely represented in a Banach space
F such that F has the property G. L. and F does not contain Zj-'s
uniformly. Then either E contains ZΓ-'s uniformly and uniformly
complementary or E does not contain Zf-'s uniformly.

We need two lemmas.

LEMMA 3.10. Let [A, a] and [B, b] be normed ideals of operators
s.t. a is a semi-tensorial norm and [B, b] is perfect and right infec-
tive {which means', if E, F, G are Banach spaces, FaG and Te
^f{E, F) then the b-norms of T considered as operator from E to
F or from E to G are the same).

Let F be a Banach space s.t. the following holds:
(1) There exists a k > 0 s.t. for every Banach space G and

TeA(G, F) b(T)^ka(T).
Let E be a Banach space s.t. Ef.r.F then (1) is true for E as

well.

Proof. Let G be a Banach space and Te A(G, E). Let Gx be a
finite dimensional subspace of G and 2\ = T\Gl: G1 -> E. Then α(2\) ^
a(T). Since a is semi-tensional and Gλ finite dimensional then
α(2\) = inf {α(2\: G1-^N)\ N a finite dimensional subspace of E with
T^GJczN}. Given ε > 0 there exists therefore a finite dimensional
subspace NaEwith T^GJczN s.t. T1:Gί-*N — the astriction of
T19 satisfies α(7\) ^ (1 + ε)α(T1). We can find a N^F and an iso-
morphism i: N-^ JVΊ with | | i | | ^ l ; Hi"1!! <; 1 + e. Let jiN.-^Fbe
the inclusion map from JVi into F, then a(jiTj) ^ (1 + ε)a(T) and
(1) gives:

bϋifj ^ k(l + ε)a(T) , injectivity of [B, b]

implies now that 6(ΐ2\)-^ fc(l + ε)α(Γ). Therefore 6(2\) ^ A?(l + ε)2α(T)
which implies δ(2\) ^ fc(l 4- έfa(T). Since ε is arbitrary and [5,6]
perfect we conclude that b{T) ^ ka(T).

We say that a Banach space E has property I — K (respectively
/ — Nr) if for every Banach space G and strongly integral operator
T:G —> E T is compact (respectively — Γ is r-nuclear). It is known
(combining results of Diestel [3] and Pisier [18]) that the property
super (/ — Ny) is super reflexivity.

LEMMA 3.11. The following are equivalent:
(a) E has the property super (I — K).
(b) E does not contain if's uniformly.
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Proof, It is known that if E contains Zf-s uniformly than l19

as well as LJO, 1] are finitely represented in E. The formal "inclu-
sion" map LTO[0, 1] —> L^O, 1] is strongly integral, noncompact opera-
tor, therefore in this case E fails to have super (/ — K). Suppose,
on the other hand, that E does not contain ϊf-s uniformly but there
exists an integral noncompact operator into E. The adjoint of this
operator is a strongly integral noncompact operator T defined on Ef,
hence it is a Dunford-Pettis operator (which means that it takes ω-
Cauchy sequences into norm convergent sequences). Since E does
not contain Zf-s uniformly — Er does not contain an isomorph of lu it
follows from a result of Rosenthal [19] that every bounded sequence
in EF contains a &)-Cauchy subsequence, but then T must be compact
— a contradiction. Therefore E has (/ — K). Since "not containing
Zf-'s uniformly77 is a super-property it turns out that E has in fact
super (/ — K).

Proof of Theorem 3.9. From Lemma 3.8 follows the existence
of c > 0 and 2 <£ q < co s.t for every Banach space G and A: G —» F

(1) πq(A) ^ cπ[{A) .

From Lemma 3.10 we deduce that (1) holds for E as well. If E
does not contain ϊf-s uniformly and uniformly complementably E'
does not contain J*-s uniformly and follows as in [16] the existence
of d>0 and ±<p<>2 s.t. for every G and A:G-+E π[(A)£dπ'p(A).
Therefore there exists k > 0 2 < J g < co? 1<£><^2 s.t for every G
and A as above

( 2 ) ττff(A) ^ for (A) .

By Lemma 3.10 (2) is true for every Banach space which is finitely
represented in E. Now, let G be a Banach space and T: G —> E a
strongly integral operator. Then T has a factorization

T

G ^̂  > #

( 3 ) -

with (,£?, //) a probability space and i the formal "inclusion" map.
We look at the factorization

Lm(Ω,μ) 3 >Lι{Ω,μ)

(4) X /
L,.ψ, μ)
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where 1/p + l/pf = 1 and i19 i2 are the formal "inclusion" maps. Then
Ai2 e π'p(LP'(μ), E) and from (2) follows Ai2 e πq(LP'(μ), E), a known
result of Persson and Pietsch [14] combined with the fact that ixB
is strongly pf integral then shows that

T = Ai2i,B 6 Nr(G, E) with — = — + — .
r p q

Since the same is true for every Banach space finitely represented
in E, E has super (/ — Nr) and of course it has super (/ — K).
Lemma 3.11 then shows that E does not contain Zf-s uniformly.

REMARK. We do not know if the property super (/ — Nr) is in
fact strictly stronger than "not containing Zf-'s uniformly".

COROLLARY 3.12. Let Ebe α Bαnαch space which either has the
property G. L. or is finitely represented in a Banach space F s.t.
F has property G. L. and does not contain ll-'s uniformly. Then
for any Banach space G there exist compact nonnuclear operators
from E into G and from G into E.

Proof. From Theorem 3.9 it follows that in both cases one of
the three possibilities hold: (a) E contains Z*-s uniformly.

(b) E contains Zf-s uniformly and uniformly completably.
(c) E does not contain ϊf-s uniformly.

In each of these cases the result follows, in (a) or (b) from results
of [9] and in (c) from the result of [2].

Let E be a Banach space. We say that E has Grothendieck
property (G. P.) if i72(j2^, E) = £?(£?„, E) (see [4] for discussion
of this property). Maurey [12] showed that if E has cotype-2 then
E has G. P., Pelczynski [13] shows that the inverse implication is
true if E has l.u.st. We can generalize:

THEOREM 3.13. Let E be a Banach space having the property
G. L. Then

(a) E has G. P. if and only if E is of cotype-2.
(b) E' has G. P. and Ef does not contain Zf-s uniformly if and

only if E is of type 2.

Proof. In both assertions only the "only-if" parts are new and
will be proved.

By Corollary 3.7 we know that Ef also has the G. L. property.
(a) Suppose E has G. P. As in [16] the fact that £?(£?„, E) =

Π2(j^?

oof E) combined with the G. L. property of Er shows that there
exists c > 0 s.t. Any E-valued operator A satisfies
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( 1 ) π2(A) ^ cπ[(A) .

By [16] (1) is equivalent to the following condition:
(2 ) Let S be a subspace of an Lx{μ) space and ω: S —• L2{v) a

bounded operator. Then ω®IE (IE — the identity operator of E) can
be extended to a bounded operator S®ΔlE-> L2(F) (for a subspace
S of Lp(μ), Δp denotes the norm on S ® E as a subspace of Lp(μ, E):
of course Lp(μ) ®J j ? E = Lp(μ, E)).

We choose S to be the closed linear span in L^O, 1] of the
Rademacher functions {rj. (rn(t) = sign2nπt; n = 0, 1, •.) It is
known that S is isomorphic to l2. Let ω be the isomorphism from
S to ί2:

= (bn)ne

From (2) it follows that

is bounded. Therefore, for xlf , xneE we have:

α/2 I

ΣI
5 = 1

^ Woo 8) I*

= W(ύ6HIκ

Σ ^

i
therefore E is of cotype 2.

(b) Let E' have G. P. and suppose E' does not contain ff-'s
uniformly. Then E does not contain C>-'s uniformly and Pisier's
method ([16]) yields the existence of C > 0 and 1 < p ^ 2 s.£. Any
.©'-valued operator A satisfies

( 3 ) £ Cπ'p(A) .

(3) is equivalent to
( 4 ) Let ω be a bounded operator ω: Lp(μ) —> L2(v), then α) (x) Ẑ ,

is extendable to a bounded operator ω (x) 7^: Lp(/i, E') —> L2(v, E').
For such a ω we get therefore that

(ω [Lp(μ, E')]'

is bounded.
It is easy to check (identifying L2(v, E") and Lp>(μ, E") with

subspace of [L2(v, E')]' and [Lp(μ, E')}') that
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IB.y = ω'

considered as operators L2(v, E") -+Lp>(μ9 E").
Therefore ωf (x) IE,, is well defined and bounded. Now, take

Llv) = l2, Lp(μ) = Lp[0, 1] and ω: Lp[0, 1] -> l2 defined by

= «/, rn})neN .

to is bounded and ω'\ l2^ Lp\0f 1] is t h e embedding of l2 in LP>[Q, 1]:

<*>'(ff) = Σ 0i?V for g = (flr^ eΛΓ e Z2 .

W e g e t f o r x l 9 >-,xneE:

G in p' \l/p/ n

"V a* (f\rr rlt \ — V w (Q\ Ύ»
0 j = l / 3=1

Σ
1/2

Oy being the unit vectors in l2). Therefore E is of type 2.

Some concluding remarks. The property G. L. as it is defined
is in some sense an "external" property. It is interesting to find
some "internal" geometric characterization of this property. Up to
now we know of no example of Banach space having the G. L.
property for which E" is not isomorphic to a complemented subspace
of a Banach lattice, though Remark 3.6 hints that the existence of
such example is probable (a result of Lewis [11, Cor. 4.2], together
with the fact that each subspace of l± has G. L. constant 1, shows
that the two norms are not equal).

Another course of problems may arise with respect to properties
of spaces having the G. L. property, e.g., how far properties of
spaces having l.u.st or isomorphic to complemented subspaces of
Banach lattices pass over to spaces having G. L. property. Also
one can ask how one can use such properties to the solution of
problems concerning general Banach spaces. For example with
respect to the problem of compact-nonnuclear operators arises the
problem: suppose E satisfies J*f(JS9 l2) — Π^E, i2), does this imply
that E can be embedded in a space having G. L. property which
does not contain Z~-s uniformly?
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A TREE-LIKE TSIRELSON SPACE

GIDEON SCHECHTMAN

An example is given of a reflexive Banach space X such
that ( I ® I ® ® X\n, n = 1,2, , are uniformly isomor-
phic to X. Some related examples are also given.

1* Introduction* In [4] Lindenstrauss observed that a Banach
space X such that ( X φ X φ φ X ) ^ is isometric to a subspace
of X for every n must contain an isometric copy of lt. This gives
a very simple proof to the fact that there exists no separable
reflexive Banach space which is isometrically universal for all the
separable reflexive Banach spaces. Lindenstrauss asked whether the
isomorphic version of this result is true; i.e., does the fact that X
contains uniformly isomorphic images of ( I φ l φ φ l ) ^ ,
n = 1, 2, , imply that X contains lx isomorphically? An affirmative
answer would give an alternative proof to the nonexistence of an
isomorphically universal space in the family of all separable reflexive
spaces as well as in the family of all spaces with a separable dual.
(The nonexistence of these spaces was proved by W. Szlenk [8] by
a completely different method.) Unfortunately the answer to
Lindenstrauss' question is negative in a very strong sense.

THEOREM. Let 1 :g p :g oo and λ > 1. There exists a Banach
space X with a 1-unconditional basis {e£}Γ=i with the following pro-
perties:

(a) X is reflexive.
(b) X does not contain a subspace isomorphic to lp (c0 in the

case p = oo).

For every n = 1, 2, there exist n disjoint subsequences of
the natural numbers Nlf N2, , Nn such that

(c) {^iϊteNjΊ is isometrically equivalent to {eJΓ=i,
(d) If xj e [e<]<e^ ; 3 = 1, 2, , n then

l/p

Σ«y MΣI
i/p

( λ ~ 1 m a x \\Xj\\ ^ *ΣiXj ^ λ m a x \\xs\\ if p = oo ) .

(e) There exists a K < oo such that X is K-isomorphic to
( I φ l φ 0 X)ς for every n.

The construction uses ideas from [9] and [1] as well as the basic

523
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idea of James to construct Banach spaces on trees. The notations
are standard and can be found in [5] or [6].

Proof of the theorem. We first deal with the case p = oo. Let
(Γ, ^) be the set

T = {(ny i); n = 0, 1, , i = 1, . , 2n} .

With the partial order

(n, i) £ (m, j) if and only if n ^ m and (i - l)2m~% < j £ i2m~n .

Let L be the linear space of all the functions on T which differ
from zero only on a finite number of points of T. For n — 0, 1,
and i — 1, , 2n define en>i e L by

1 (n, i) = (m, j)

0 otherwise .

And define the operators Pn>i, Sn,i9 and Pw from L to L by

(x(m, j) (n, i) ^ (m, i) , α? 6 L
(Pntix)(m, j) = ,

0 otherwise

(Sntix)(m, j) = α?(m + %, (i — l)2m + i) , a? 6 L

and

Now, we define on L a sequence of norms || ||Λ by induction

I kilo = IN|Iχ - Σ Hn, i)\

ί K

\\x\\m = inf JIWL-! + λ Σ max:

where the inf is taken over all finite sequence xOf , xκ in L which
satisfy

K

= x and Pfcxλ = xk , & = 0, , K .

It is easy to prove by induction that for every x e L and every m

So that we can define

I N | = l i m N U .
m->oo
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[| || is a norm. Let Ym be the completion of L with respect to || | |m

and let Y be the completion of L with respect to || | |.

LEMMA 1. (a) {βn,J»=o,i=i is a ^-unconditional basis for Ym and
for Y.

(b) // R is a norm one projection on k(T) such that Pk)iR —
RPk,i> for all k — 0, 1, and i — 1, , 2k, then R is a norm one
projection on Ym and on Y.

(c) Sntί is an isometry from Pn,3 Ym (resp. Pn,3 Y) onto Ym(resp. Y)
for all n — 0, 1, , j — 1, , 2n.

(d) For every xeL the infimum in the definition of \\x\\m is
attained.

(e) For every x e L

I K K \

= min \\\x*\\h + λ Σ max \\Pk>ixk\\; x = Σ %k, •?*«& = #*f

Proof, (a) and (b) are proven by induction and passing to the
limit, (d) is a simple consequence of (b) (for R — I — Pn). We prove
now (e). For every {xk}k=0 such that x = Σf=oχk &nd Pkxk — xkf

Jc = 0, , K and for all m

INI ^ INU ̂  INU-i + λ Σ max \\Pk,ML-ιΣ
* = 1

So, passing to the limit and using (b) to prove that the infimum is
attained, we get

K K

min ]||cc||z + λ Σ m a 3 f 11^,^11; x = Σ %kt

In order to prove the other side inequality it is enough to prove that
for all m and all x e L

K K

min jH&olk + ^ Σ max H P ^ ^ H ; x = Σ

We prove this by induction on m. This is obvious for m = 0, assume
it is true for m — 1 and assume that

INL = IWL-i + λ Σ max llPfc^lU^

where a? = Σ*=o % a n ( i Pi&k — χk, h — 0, , K.
By the induction hypothesis

^ + λ Σ max'Λ\PKΛyh\\
h=ll£i^2h
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for some {yh}h=o such that x0 = Σί=o V% and PhVh = Vκ> h = 0, , H.
We assume as we may that H = K, then x — y0 + Σί=i G&* + #*)>
P*G»* + ί/fc) = xk + 2/*, fc = 1, , K and

+ λ Σ max \\Phti(xh

To prove (c) it is clearly enough to show that for every x such
that Pnjx = a? and for every m

ί κ )
\\x\\m = min IKIL-! + λ Σ max \\PkΛxk\\m-Λ

K k=n + l l^i^2k )

where the minimum is over all the sequences {xk}k=n such that
x = Σf=* % and Pn,3 Pkxk = xk, k = n, n + 1, , K.

Let x satisfy Pn,3 x = a; and let {yh}h=0 be such that

IML = II2/0IL-1 + λ Σ max IIP/^/JL-1 ,
h=ll^i^2Λ

% — Σ ί/* and Pfc74 = i/Λ , Λ = 0, , fl".
fe=0

We can assume that H > n and by (a), we can also assume that

PnjVh = Vh, h = 0, • • - , H.

NL = Hl/olL-i + λΣmaxllP^^IU^ + λ Σ max
h i ^ h=n+ί ^i^h

\\Vk\L-ι + λ Σ maxi Σ
Λ = l

If Σϊ=i Hl/*IL-i > 0 then since λ > 1

INL > Ill/o + l/i + + y»||*-i + λ Σ max ||PA><2/Λ||
A + 1 l^i^2«

in contradiction to the fact that the minimum is attained at
Vo, — y VH- This concludes the proof of Lemma 1.

PROPOSITION 2. (a) For every n = 0,1, and {yι)T=1 such
that Pn>iy, = yiy i = 1, « ,2W,

max ^ λ max

(b) F does not contain an ίsomorphic image of c0.

Proof, (a) The left hand side follows from the 1-unconditionality

of K,J~=<J=i For the right hand side put

2n

ΈiVt and xh = 0 for hΦ n
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<^ X max IIP^&JI = X max

then, by Lemma l.e,

(b) Assume that Y contains an isomorph of c0. Since the unit
vector basis of c0 tends weakly to zero, we can assume that there
exist a sequence {ttn}ϊ=i of norm one elements in Y, an increasing
sequence {mj~=1 of positive integers and a constant K such that

and

(P- -

max |α

= un
= 1, 2,

. max \an
lgίKoo

for every sequence {α J ϊ = 1 such that α% -^ 0 as
let 1 ^ iΛ ^ 2W% be such that

\\Pmn,inun\\ = m&xmn\\Pmntiun

. For every n

and put

vn = Pw%,

By part (a) and Lemma l.a.

1 = \\un\\ SX\\vn\\

and

λ"1 max an IIΛ

oo

Σ«Λ

VII

oo

< K max \am

for every sequence {an}n=i such t h a t an -> 0 as w —> c>o. We also have
Pmn,in

v% = vn n = 1,2, ••*. By passing to a subsequence we can also
assume t h a t

Pmn>inVr = ^r fθΓ al l T ^ ^ .

This last property (with other mn's) remains true for every block
basis of the un's. Thus, by a theorem of James [3], we may assume
that there exist an -n, a 1 ^ j ^ 2n and two normalized vectors wί9

w2 in Y such that

(I — Pn)wί = wι , Pn,jW2 = and t02|| < λ, — e where

ε > 0 sat i s f ies l < λ — ε < l + ε/λ. L e t {xk}k=o b e s u c h t h a t w1 + w2 =

Σ f - o «*, P * B * = a?*, fc = 0, , JS: a n d

(*) + + max.\\Pk)ixk\
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(such xk's exist by Lemma l.e). We can also assume that K^n
and that supp xk £ supp (wt + w2), k = 0, , K. We first prove that

(**)
\ 1 II

V P <r
lfc=i li

If this were not true then, since Pn}jPnxk = Pnxk for k — 0, •••, K,

n-l

k=ll^i^2k

n-l n-l

—: x V1 ||_p ^ II >• \ ^ P x !>AJ ε
fc=l fc=l

From (**), we get that

(***") I\p <r +- V -

Indeed,

λ

Pn%0 + Σ nXo ~Γ

Σ

Σ P.

Now, by Lemma l.e, the equalities

λ — ε _ ε

and

= xk , & = 0, w, ^ + 1, , K ,
k=n

(*) and (***) we get

λ - ε > | | W l + w2\\ ^ ||(J - PJίColli! + λ 2 max | |P t f i (/ - P J % | |

+ | | P A I I + λ Σ m a χ \\Pk,i%k\\
k=n " '"

^ llwill H

which contradicts the choice of ε. This concludes the proof of
Proposition 2.

The space Y satisfies (b), (c) and (d) of the theorem for p = co
this follows from 2.b, l.e and 2.a, respectively it is also not hard to
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see that Y satisfies (e), however (a) is not satisfied, indeed, if
{(Wit, i*)}?=i is a totally ordered sequence in T then it is not difficult
to see (using I.e.) that [enktik]t=ί is isometric to llf so some additional
work is needed.

Proof of theorem for p = oo. Define on L a new norm by

\\\x\\\ = \ \ \ x \ ψ 2 x e L

(for x == Σ«,i αn>ieHi< |x|α is defined to be Σn,< l^.ilX,*), and let X be
the completion of L with respect to this norm. It is easy to check
that {eΛ>J»=<J=i constitutes a 1-unconditional basis for X. Now, if
{#m}m=i is a block basis of {eΛ>d?=<J=i then

if

a

a max K

and only if

1/2 max α .

VII

IIΛ

II

M

Άam*
VII

1/2

b m âx \am\

δ1/2 max

for all

am\ for all alf

This proves that (b), (c) and (d) of the Theorem remain valid for X
(with λ1/2 instead of λ). In order to prove (a) it is enough, by James
theorem [2] to prove that X does contain an isomorph of <. This
in turn is a consequence of the following simple fact: if {xm}^i are
disjointly supported with respect to {ew,J?=0,i=i then

^ ( Σ nielli2)172

\m=l /

To prove (e) it is enough, in view of (c), (d) and Pelczynski's
decomposition method [7], to prove that X is isomorphic to X 0 X .
Now, as we mentioned above for any totally ordered sequence
{(nk, ik)}ΐ=i in T {enktik}ΐ=1 in Y is equivalent to the unit vector basis
in lγ thus, {enktik}ΐ=1 in X is equivalent to the unit vector basis in Z2.
So, X contains a copy of 4 and therefore is isomorphic to each of
its one co-dimensional subspaces. In particular to [enίi]n=ltίLι which,
in turn is isomorphic to X 0 X.

Proof of the theorem for 1 <: p < 00. Let X and {eJΓ=i be the
space and the basis which satisfy the theorem for p = 00 and let
{f}ΐ=i be the biorthogonal basis of {et}T=1 then clearly X* and {/JΓ=i
satisfy the theorem for p = 1.

For p > 1 define, for every eventually zero sequence {αJΓ=i,

Σ NV;
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Considerations similar to those in the proof of the p = oo case show-
that the completion of the space of finite sequences under || | |p

satisfies the theorem.

REMARK. It may be useful to know what is the dual norm to
|| | |. Define on L a sequence of norms as follows

Mo = IMIco
ί 2n

\x\m = max jMm-i, λ,-1 max Σ \Pk,M»-i
K k

and define

x\ = lim \x\m .

It can be shown that for every x e L

\x\ = max \\\x\\eo, λ"1 max Σ \Pk,M\
K l^fe<oo ί = l )

and that {[<UίUSU I'll is the dual of {[en,<]U£i, INI}-

Once this duality is proved it can be used to simplify the proof
of the theorem, in particular the proof of Proposition 2.b. We
prefered, however, to give a proof which avoids the routine proof
of the duality.
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FIX-FINITE HOMOTOPIES

HELGA SCHIRMER

A well-known result by H. Hopf states that every
selfmap / of a polyhedron \K\ can be deformed into a self-
map / ' which has only a finite number of fixed points and
is arbitrarily close to the given one. In addition one can
locate all fixed points of / ' in maximal simplexes. A map
which has a finite fixed point set is here called a fix-finite
map, and a homotopy F: \K\ X I-> \K\ is called a fix-finite
homotopy if the map ft = F(-,t) is fix-finite for every tel.
We extend Hopf's result to homotopies, and show that two
homotopic self maps f0 and f1 of a polyhedron \K\ which are
fix-finite and have all their fixed points located in maximal
simplexes can be related by a homotopy which is fix-finite
and arbitrarily close to the given one. All fixed points of
F can again be located in as high-dimensional simplexes as
possible. Some simple properties are derived from the fact
that the fix-finite homotopy is constructed in such a way
that its fixed point set is a one-dimensional polyhedron in
1JKΓ! x I.

A* Introduction* In 1929 H. Hopf [2], Satz V, proved a well-
known theorem which states that every selfmap / of a polyhedron

can be deformed into a selfmap / ' which is arbitrarily close to /

and has only a finite number of fixed points. The construction of

/ ' can be carried out so that all fixed points of / ' are, in Hopf's

terminology, "regular", i.e., they are located in maximal simplexes.

We call a map which has only a finite number of fixed points a

fix-finite map, and formulate Hopf's result accordingly.

THEOREM 1 {Hopf), Let f be a selfmap of a polyhedron \K\.

Given ε > 0, there exists a selfmap f of \K\ such that

(1) / ' is fix-finite,

(2) all fixed points of f are contained in maximal simplexes

of\K\,

( 3 ) the distance d(f, /') < ε.

We ask in this paper whether a similar result can be obtained

for homotopies. We call a map F:\K\ x I-^\K\ (where I is the

unit interval) a fix-finite homotopy if the map ft: \K\ —> \K\ defined

by ft(χ) = F{x, t) is a fix-finite map for every tel, and ask therefore

whether two self maps f0 and fx of a polyhedron |JSΓ| which are fix-

finite and homotopic can be related by a homotopy which is fix-finite

531



532 HELGA SCHIRMER

and arbitrarily close to the given one. We shall show that this is
possible if all fixed points of /0 and f are contained in maximal
simplexes, and we shall construct the fix-finite homotopy so that its
fixed points are again located as nicely as possible. They clearly
cannot all be located in maximal simplexes of \K\, but they can be
located in simplexes which are either maximal, or faces of maximal
dimension. Let us make these notions precise.

We denote by \K\ a polyhedron which is the realization of a
finite simplicial complex K, by σ an open simplex of K, by σ its
closure, and by dim σ its dimension, σ < τ means that σ is a face
of the simplex τ. The (open) star st σ of a consists of all simplexes
τ of \K\ with σ < τ. A simplex σ is called maximal if σ = stσ,
and we call it a hyper face if dim st σ — dim σ + 1. A fixed point
of a homotopy F: \K\ x I —> \K\ i s d e f i n e d a s a p o i n t xe\K\ w i t h
F(x, t) = x for some tel. If /, / ' are maps and d is the metric of
K\, then the sup metric is given by

d(f / ' ) - s u p {d(f(x), / ' ( a ) ) \ x e X ) .

We use this terminology to state our main result.

THEOREM 2. Let F he a homotopy between two selfmaps f0 and
/i of a polyhedron \K\, let f0 and f he fix-finite, and let all their
fixed points he contained in maximal simplexes. Given ε > 0, there
exists a homotopy Ff from /0 to f such that

(1) Ff is fix-finite,
(2) all fixed points of F' are contained in maximal simplexes

or hyper faces of \K\,
(3) d(F,F')<ε.

Special cases of Theorem 2 are known. Weier [6] constructed
a fix-finite homotopy satisfying (1) and a condition related to (2) if
|JBL| is a 2-dimensional pseudomanifold satisfying a certain connected-
ness condition, and in [4], Satz III we constructed a fix-finite
homotopy satisfying (1) and (3) if ]ϋΓ) is an orientable and triangula-
ble finite dimensional manifold without boundary.

The proof of Theorem 2 given below is related to Hopf's proof
of Theorem 1. Hopf started with a simplicial approximation of the
given map, and then carried out a succession of changes on simplexes
of increasing dimension which freed the simplicial approximation of
fixed points on all but maximal simplexes. The final result is a
map which is again simplicial and satisfies Theorem 1. Hopf's proof
is readily available in [1], pp. 117-118, where the successive changes
are called "Hopf constructions77.
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In our proof of Theorem 2 a homotopy is altered successively
on simplexes of increasing dimension by a "Hopf construction for
homotopies" which is described in §B. As this construction can only
be applied to simplicial homotopies, it is first necessary to approxi-
mate the given homotopy by a simplicial one. This leads to a proof
of Theorem 2 in three steps. In the first, the given maps f0 and f±

are, with the help of the Hopf construction, approximated by fix-
finite simplicial maps g0 and glf and fix-finite homotopies Hi from
fi to gi (where i — 0, 1) are obtained in a manner reminiscent of [4].
A homotopy between the simplicial maps g0 and g1 has a simplicial
approximation relative to | JKΓ| X {0} U \K\ x {1}, on which a succession
of Hopf constructions for homotopies is carried out in Step 2, leading
to a fix-finite homotopy Gr from g0 to glu Finally, in Step 3, the
desired homotopy F' is obtained by constructing a homotopy from
g0 to gx as the composite of JEZir1, F, and H19 changing it to a
homotopy G' as in Step 2, and forming the composite of Ho, G', and
Hr\ where all compositions are made with suitable scale changes to
ensure closeness between F and F'.

The homotopy Ff is constructed in such a way that the set

Fix Ff = {(&, ί) 6 I JSΓ| x I\F'(x, t) = x}

is a finite one-dimensional polyhedron. Some simple consequences of
this fact are given in §D. One of them is the existence of an upper
bound M so that the number of fixed points of f\ is ^M for every
tel.

B* A Hopf construction for homotopies* Let G be the reali-
zation of a simplicial function P—>K, where P is a suitable complex
with \P\ = \K\ x /, and let τ be a given simplex of \P\. The Hopf
construction for homotopies, which frees G of all fixed points on τ
as long as G(τ) is not maximal in \K\, will be the basic tool in the
second step of the proof of Theorem 2 and we shall embody its
results in the rather technical Lemma 1 below. We write G: \P\—>\K\
to indicate that G is the realization of a simplicial function from P
to K. The construction of KL, the barycentric subdivision of K
modulo the subcomplex L, can e.g. be found in [3], p. 49. If L — φy

then it is the ordinary barycentric subdivision of K. A refinement
of K is a complex obtained from K by means of a finite number of
subdivisions modulo subcomplexes. μ(K) denotes the mesh of \K\,
i.e., the maximum of the diameters of its simplexes.

LEMMA 1. Let P be a complex with \P\ = \K\ x /, let G: \P\ —>
\K\ be simplicial and π: \P\ —> \K\ be the first projection. If τ is
a simplex of\P\ for which π(τ) is contained in a simplex p of \K'\,
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where K' is a refinement of K, ifτf] Fix G Φ <j> where Fix G =
{(x, t) 6 \P\ \G(xf t) — π(x, t)}, and ifG(τ) is not maximal in \K\, then
there exists a simplicial map G':\PQ\—>\K\f with Q = P\str, so
that

(1) τ (Ί Fix G' - φ,
(2) G = G' on \Q\,
( 3 )

Proof. Let p* be a maximal simplex of K' with p < p*, and
σ* be a maximal simplex of K with |0*cσ*. Then

τr(τ) apap* aσ* .

If tf = G(τ), then τr(τ) Π 0" ̂  ^ implies cr < σ*.
Define G: | P ρ | -> \K\ on the vertices of PQ as follows: If ^ eQ,

let G\v) = G(v). If τy6stτ\r and v is the vertex of P ρ contained
in τjf let G'(v) be any vertex of σ, and if v is the vertex of PQ

contained in τ, let G'(v) be any vertex of σ* which is not a vertex
of σ. (As tf is not maximal, such a vertex exists.) It can be
checked that Gr extends to a simplicial map G': \P'Q\ -> \K\. The
proof that G' satisfies the conditions (1), (2), and (3) closely parallels
arguments in [1], p. 117-118, and is omitted.

C* The proof*
Step 1. Construction of fix-finite simplicial maps gt which are

fix-finitely homotopic to the given maps f.
We begin with a simple lemma.

LEMMA 2. Let \K\ be a connected polyhedron, $e\K\, and the
carrier σ of x in \K\ maximal. Given δ > 0, there exists a yea
with d(x, y) < δ whose carrier in any refinement of K is maximal.

Proof. \K\ is connected, therefore σ is of dimension p > 0. As
the number of refinements of σ is countable, the dimension of the
union A of the {p — l)-skeletons of all refinements is p — 1, and
y e σ\A with d(x, y) < δ exists and satisfies the lemma.

The result of Step 1 is given as the next lemma, where

diam H = sup {d(H(x, t), H(x, t')) \xe\K\,t,t'e 1}

denotes the diameter of a homotopy H:\K\ x I->\K\.

LEMMA 3. Let f: \K\ —> \K\, i = 0, 1, be two selfmaps of a poly-
hedron \K\- which are fix-finite and have all their fixed points
located in maximal simplexes of \K\. Given ε > 0, there exist a
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refinement Kr of K, refinements K" of the first barycentric subdivi-
sion of Kr, simplicial maps gt: \K"\ —»\K'\, and homotopies Ht from
fi to Qi so that

(1) Hi is fix-finite and has all its fixed points located in the
maximal simplexes of \K\,

(2) the fixed points of gt are located in distinct maximal
simplexes of \KΪ\,

( 3 ) diam Ht < ε/4,
(4 ) μ(K') < ε/8(n + 1), where n = dim | JSΓ|.

Proof. We can assume that \K\ is connected, otherwise the
construction is made on each component.

( i ) We first construct two maps f\\ \K\ —> \K\ and homotopies
Hi from f to f\ such that all carriers of fixed points of f\ are
maximal in every, refinement of K, all carriers of fixed points of
Hi are maximal in \K\, and diamiϊ < e/2.

Consider fQ9 and let Fix/0 = {cά} be its fixed point set. As f0 is
uniformly continuous, we can select β with 0 < β < e/16 so that,
for all cy eFix/o, the open /3-balls U(cSf β) are pairwise disjoint and
each U(cs, β) is contained in the carrier of cs in \K\. Now select y
with 0 < 7 < β/2 such that d(x, fo(x)) < β/2 for all x e U {U(cj9 y)\c, e
Fix/0}. According to Lemma 2 each U(cjf y) contains a point c) whose
carrier in all refinements of \K\ is maximal. If xe U{c§yy)\{c)}9 let
y be the point in which the ray from c\ to x intersects the boundary
Bd U(cs, 7), and z the point on the segment from cό to y for which

d ( c j , z ) ^ ή d ( c j , x ) .
d(cjf y)

To define a map f'oj from ϋ(cίf y) to U(cίt β), denote by ab the (free)
vector from a to 6 in U(cjf β), and determine f'oi(x) for x Φ c) by

MOM = Φ + zfo(z)
also let f'Qj = c'5.

As we have for all x 6 U(cSf y)

d(J*i(x\ cj) ̂  d(J'Qi(x), x) + d{x, cs)

= d(fo(z), z) + d{x, cj) < β/2 + 7 < β ,

this construction is well defined.
Now define f'0:\K\-+\K\ by

W*) if ^ U ( U(cjf 7) I c, e Fix f0} ,

otherwise .

o is continuous, and its fixed point set is Fix f'o = {ĉ  }. Hence all
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carriers of its fixed points are maximal in every refinement of \K\.
If fΌ(x) Φ fo(%)> then x e U(cjf 7) for some cs e Fix/ 0 . Denote, for

0 < t <Z 1, by cj(t) the point which divides the segment from cd to
c'j in the ratio t: (1 — t), and define HΌ3 (x9 t) as the point in U(cjf β)
which is obtained in a manner analogous to f'03 (x) but with the use
of c, (ί) instead of cj . Also put H[5(x, 0) = /0(a?). Then a homotopy
iϊό from /0 to f[ can be constructed from the H'oj in the same way
in which /J was constructed from the / ^ . If f'0(x) = /0(cc), then i ϊ j
is the constant homotopy, if f'0(x) Φ fo(x), then the set {H'0(x, £)|0 <:
t <>1} lies in some U(cί9 β). Hence diam Ή[ < 2/5 < e/8. The con-
struction of HO shows that all carriers of its fixed points are
maximal in K.

The map f[ and the homotopy H[ from fx to f[ are obtained
analogously.

(i i) We now describe the construction of the maps gt and the
homotopies H" from /• to gt.

Choose Po with 0 < p0 < ε/32 so that for each c\ e Fix f[ with
carrier ιtό in \K\ the set ϋ(c'ίf 4p0) (Zfcj9 and so that the U(c'ί9 4p0) are
pairwise distinct. As f'o is uniformly continuous, there exists a d0

with 0 < δ0 ^ i°o so that

, δ0)) c C7(c; , ft) for all cj e Fix / ; .

Furthermore choose % with 0 < η0 ^ ft so that

d(x, f&x)) ^ % if d(x, Fix /ί) ^ δ0 .

Determine ft, δx, Ύ]1 analogously for f[, and select a refinement if'
of K so that μ(iΓ) < min {δ0, δί9 ηo/(2n + 1), ηjφn + 1)}, where n is
the dimension of K.

Let α/r0 be a simplicial approximation of f'o which maps a refine-
ment of the first barycentric subdivision of K' into K', and choose
g0 as a map which is obtained from |ψ*0| by a succession of Hopf
constructions in the same way in which / ' is obtained from \ψ\ in
the proof of Theorem 2 on p. 118 of [1]. Then g0 is a simplicial
map \K"\ —> |JSL'|> where K" again refines the first barycentric sub-
division of Kf. I t is fix-finite, has all its fixed points located in
distinct maximal simplexes of \K"\, and d(\ψQ\, g0) ^ 2nμ(K'). As
d(fΌ, \fo\)^ μ(K'), we have d(f'o, g0) ^ &n + l)μ{Kf) < rj.

Next, let us construct a homotopy H" from f'Q to gQ. If x£
U{ί7(cJ, δ o ) |cJePix/;}, then it follows from [1], p. 118 that go(x) =
\ψo\(x). As ψ0 is a simplicial approximation of f'o, it is possible to
define H'0\x, t) by

H[\x, t) =
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From d(x, f'0(x)) ^ η and d(f'θ9 g0) < η follows H"(x, t) Φ X for all
0 ^ t ^ 1.

Now consider one of the sets ϋ(c'j9 δ0) contained in a maximal
simplex tcά of |JBΓ|. H" has already been defined on Bd Ό(c)9 δ0) x /
such that

d(c'j9 H[\x91)) £ d(c'3, f'0(x)) + d(fo(x), gQ(x)) £ 2p0 .

Let further H'0'(x, 0) - f'0(x) and. H[\x9 1) = go(x) for all x eϋ(cf

jf δ0).
Then H" is defined on Bd (U(c'j9 δQ) x / ) , has values in U(c'jf 2pQ),

and its fixed point set consists of c) x {0} and finitely many points
in £7(4 δ0) x {1}. To extend H" over all of Ό(c'β, δ0) x I, let cs =
(c'j, 1/2), and determine for every point x = (x, t)e(U(c'ί9 δ0) x /)\{^ }
the point y = (y, s) as the one in which the ray from cd to x inter-
sects Bd (U(c'd, δQ) x I ) . Let d denote the product metric in \K\ x /,
and define H"(x9 t) by

c'sIUXx, t) = c)x + λi/jffrCί/, s) ,

where

λ = (Z(cy, x)ld{cs, y) .

As d(cj , a?) ̂  δ0, 0 < λ <; 1, and cί(τ/, If J;(τ/, s)) ^ δ0 + 2^0 ^ 4^0, we obtain
in this way a point fΓί'(&, f) e U(c'h 4pQ). Finally, let H"(p'h 1/2) - c}.

In this way H'o' is extended over U{ί/(cJ, δ0) x I l ^ e P i x / J } ,
yielding a homotopy iϊά'' |ϋΓ| x JΓ —> | JBΓ| from f'Q to g0 which is fix-
finite and has all its fixed points located in the maximal simples κ5

of IK | . If x 6 u {Ό(c'j9 δ0) Ic} 6 Fix_/0'}, then sup {Jϊo"(^, ί), Hί'Ca?, «') Iί,
t'el} ^d(f'Ofgo) <_y, and if α? e Ϊ7(c;, δ0) for some cJePix/o', then
{Hί'(α, t) 11 e 1} c t7(c;, 4/o0), so sup {H[\x9 ί), fίί'(aj, ί') 11, ί' e 1} ^ 8ft.
Hence diamjff0" < e/4. The construction of J5ΓΓ: I -K"| x I-> \K\ is
analogous.

(iii) Define finally a homotopy if* from ft to ^ by

' (H't{x,2t) for 0 ^ ί ^ l / 2 ,
i t X > j [Hϊ(x9 2ί - 1) for . 1/2 ^ ί ^ 1 .

Then diam J ^ ^ diam R\ + diam JEΓΓ < ε/4, and JBΓ0 and ^ satisfy
Lemma 3.

2. Construction of a fix-finite homotopy between two fix-
finite simplieial maps.

The aim of Step 2 is the construction of a fix-finite homotopy
between the fix-finite and simplieial maps gt of Lemma 3. I t will
be achieved with the help of a succession of Hopf constructions for
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homotopies. For this purpose, we need to realise \K\ x / as a
suitable simplicial complex P. If K', K" and K" are the complexes
obtained in Lemma 3, then we require that P is a simplicial complex
with \P\ = \K\ x / and satisfies the following two conditions:

(PI) K[' x {0} and K[f x {1} are subcomplexes of P,
(P2) if τ 6 \P\ is a simplex and 7r: \P\ —> |ϋΓ| the first projection,

then π(τ) c p, where p is a simplex of if'.
P can easily be obtained by starting with the complex usually

associated with the polyhedron \K'\ x I and then refining it modulo
the complements of the simplicial neighborhoods of those simplexes
in K' x {0} and K' x {1} which are subdivided in K[f resp. K[f.

We state one more technical detail as a lemma.

LEMMA 4. Let Pf be a refinement of P, let Gs: | P ' | -> \K'\ be a
simplicial map, and τ e ]P'\ so that τ Γi Fix Gs Φ φ. If τ is neither
maximal nor a hyper face in | P ' | , thn Gs(τ) is not maximal in \Kr\.

Proof. Let Gs(τ) = σ, where σ is a simplex of \K'\, and π(τ)ap,
where ρe\K'\. As τ Π Fix Gs Φ φ implies π(τ) ftσΦφ, we have p = σ,
and d i m ^ ^ d i m τ . By assumption there exists a simplex r * e | P '
with τ < τ* and dim τ ^ dim τ* — 2, therefore

dim p + 1 <; dim τ* — 1 <; dim π(τ*) ,

so τr(τ*) ζί |O. But π(τ) c ^ implies τr(τ*) ΓΊ ̂  ^ ^, hence ^ cannot be
maximal in \K'\. As p = σ, Gs(τ) cannot be maximal either.

The next lemma contains the result of Step 2.

LEMMA 5. Let K', K" and g^. \K"\ —> \K'\ be as in Lemma 3.
If g0 and g1 are related by a homotopy G, then there exists a homotopy
G' relating them such that

( i ) Gf is fix-finite and has all its fixed points located in
maximal simplexes or hyper faces of \K\9

(ii) d(G,G')<e/4.

Proof. Again we can assume that \K\ is connected. Let P
satisfy (PI) and (P2). We first select as a simplicial approximation
of G a simplicial map Gs: \P'\-+\K'\, where P' is a refinement of P
obtained by a finite number of subdivisions modulo (K" x {0}) U
{Kϊ x {1}), so that Gs satisfies Gs = G on (| JΓ0"| x {0}) U (\K['\ x {1})
and d(G, Gs) < μ(K'). The existence of Gs follows from [3], p. 55.

If £0 = 0% *o) i s a vertex of \P'\ with Gs(x0, t0) = x0, then x0 is
a vertex of \K'\ and hence not maximal. Lemma 1 allows us to
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make a Hopf construction which results in a simplicial map Gs':
| P " | -* \K'\, where P " refines P', for which G.'(a?0, <o) Φ #o and Gs' = Gs

on |P'\st{3?0}| Hence any vertex 2 e | P " | Γl Fix Gί must also be a
vertex of |P'\{£0}|. We can therefore make further Hopf construc-
tions for all such vertices until we arrive at a simplicial map,
denoted again by Gs': | P " | -+ \K'\, where P " refines P \ which is fixed
point free on all vertices of | P " | . As Gs is fixed point free on the
vertices of (|ifo"| x {0}) U (\K['\ x {1}), we have G's = Gs on this
subcomplex.

Next we carry out a succession of Hopf constructions for all
one-dimensional simplexes τ e | P " | for which τ π Fix G'SΦ φ and GrJ(r)
is not maximal in |ϋΓ'|, then for all two-dimensional simplexes with
the same property, and so on. According to (P2) and Lemmas 1
and 4 we can continue until we arrive at a simplicial map Gg': | P " | —»
i T | , which equals Gs on the subpolyhedron (|iΓ0"| x {0}) U (\K['\ x {1})

of | P " | and is fixed point free on all simplexes of | P " | which are
neither maximal nor hyper faces.

If τ is a hyperface of | P" | for which τ Π Fix G[ Φ φ, then it
follows (as in [1], pp. 118-119) from the fact that G's is linear on τ
and that Bd τ Π Fix G[ — φ that Gs' has at most one fixed point on τ.
Now consider a maximal simplex τ 6 | P " | with r Γ) Fix G's Φ φ. Then
Bd τ Π Fix G' is empty or a finite set {xό}. Let .τ3- = (xά, tό), and
select ô = (XQ, Q e τ SO that t0 Φ tά for all tά. For any x = (x, t) e
τ\{x0}, let y = (i/, tc) be the point in which the ray from x0 to x in-
tersects Bd τ, and modify Gs' on τ to G' by defining G'(x, ί) as the
point in σ = G'(τ) with

x0G\x, t) = xo£ + XyG's(y, u) , where λ = rf(ϊ0, x)/d(x0, y) .

As 7r(τ) c <7 and σ is convex, this yields a point G'(#, t) e σ. Also
let G'Oo, ίo) — ô Then τ Π Fix G' consists of the union of the seg-
ments from xQ to all the xά if Bd τ Π Fix G' ^ φ, and otherwise of
the point x0 alone. If we carry out this construction on all maximal
simplexes of | P " | on which G's has fixed points, we obtain a fix-finite
homotopy G': | P " | -> |JSL'|, where P " refines P ' and hence P. By
construction G'(a;, 0) = flro(^) a n ( i G'(a?, 1) = ^(α?) for all xe\K\. If
x = (xy t) G Fix G', then x is contained in a maximal simplex or
hyperface of | P " | and hence of | P | . It follows from (P2) that x is
contained in a maximal simplex or hyperface of \K'\ and hence of

\κ\.

Each point x e | P | is moved during the succession of Hopf
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constructions at most n times, where again n is the dimension of
\K\, and by a distance of at most 2μ{K!) on each move. During
the last change of G[ to G' it is moved by a distance of at most
μ{K'). So we have

d(Gs, G')

and hence, according to (4) of Lemma 3,

d(G, Gf) ^ 2{n + ΐ)μ(K') < ε/4 .

We see that Gr satisfies Lemma 5.

Step 3. Construction of a fix-finite homotopy between the given
maps.

It remains to paste the constructed homotopies together in a
suitable way to find a homotopy F' satisfying Theorem 2. Given
F: \K\ x I—> |JBΓ| as in Theorem 2 and ε > 0, we can choose δ with
0 < 8 < 1 so that d(F(x, ί), F(x, ί')) < ε/4 for all x e \ K\ and t,t'el
with 11 — ί'| < 3. Use the homotopies ίί0, iίx obtained in Lemma 3
and define F"ι \K\ x I~>\K\ as a homotopy which equals
apart from a scale change by

F"(x, t) = H

Hoix, 2tβ)

Ha(x, 2(1 - t/8))

Fix, it - δ)/(l - 2δ

H.ix, δ(t + δ - l)/2

H,ix, δ(ί - ί)/2)

if

if

)) if

) if

if

0 ^ t ^ δ/2

δ/2^t£δ

δ ^ t ^ l -

1 - δ ^ t ^

1 - δ/2 ^ t

>

>

1 - δ/2 ,

^ 1.

Then eZ(F, ί7") < ε/2.
The homotopy G:\K\x I~-+\K\ defined by G(x, t) = F"(x, ί ( l - δ) +

δ/2) for all (%,t)e\K\ x I equals H^FHx apart from a scale change
and is hence a homotopy from g0 to glm Replace it by a homotopy
G' according to Lemma 5, and define F':\K\ x I->\K\ by

F'(x, t) =

if 0 ̂ ί ̂ δ/2 ,

i'(x, {t - δ/2)/(l - δ)) if δ/2 ̂  t ̂ 1 - δ/2 ,

T^α, δ(l - ί)/2) if 1 - δ/2 ̂  ί ̂ 1 .

It is easy to check that F' is a homotopy satisfying Theorem 2.

D* Some properties of the ίix^finite homotopy* The proof of
Theorem 2 allows an easy description of FixF'.

PROPOSITION 1. The homotopy F' in Theorem 2 can be chosen
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so that FixjF' is a one-dimensional finite polyhedron in \K\ x I
without horizontal edges.

Here a horizontal edge means an edge contained in a section
K\ x {£}, for some tel. Note that Fix F\ though constructed as

a polyhedron, was not constructed as a subpolyhedron of \P\, and
its projection ττ(Fix Ff) is not a subpolyhedron of \K\.

As Fix Ff has a simple structure, it has simple properties. We
collect a few. The first two are immediate consequences of the
homotopy and additivity axioms of the fixed point index i(f x) of
the selfmap / of a polyhedron at the isolated fixed point x.

PROPOSITION 2. Let e be an edge of Fix F\ Then the index of
f[ along e is constant, i.e.,

i(f't, x) = i(f's, V) if (#, ί)ee and (y, s) e e .

PROPOSITION 3. Let v = (x, t) be a vertex of Fix F'. Then the
index of ft at x is the sum of the indices of fixed points chosen on
all edges of Fix Fr either leading towards v or away from v, i.e.,

ϋf't, x) = Σ i(f'tk, Xu) ,
k

where all (xh, tk) lie on edges ek e st v> with ek distinct, and the sum
taken over all edges in stv f]{\K\ x [0, £)} (resp. in stv f){\K\ x
(t, 1]}).

Finally we note that Ff is "uniformly" fix-finite.

PROPOSITION 4. There exists a positive integer M so that the
number of fixed points of f\ is ^ M for all tel.

Proof. It suffices to choose M as the number of edges in Fix F\
as no section \K\ x {t} can intersect the closure of an edge of Fix F'
more than once.

E* Conclusion* For a single selfmap / of a polyhedron \K\
the construction of a fix-finite map which is arbitrarily close to /
and has all its fixed points contained in maximal simplexes is only
a first step on the road to the construction of a map homotopic
to / which has a minimal number of fixed points. It is, in fact,
possible to obtain a map g homotopic to / which has exactly N(f)
fixed points, where N(f) is the Nielsen number of /, as long as
|JBL| satisfies the Shi condition, which is a somewhat stronger con-
nectedness condition. (See [5] or [1], p. 140.) Hence a similar
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question arises for homotopies.

Problem. If f0 and f± are two self maps of a polyhedron \K\
which satisfies the Shi condition, if f0 and fx are homotopic and have
each exactly N(f0) fixed points, does there exist a homotopy F from
/o to /x so that, for every t e 7, the map ft = F(-,t) has exactly
ΛΓC/o) fixed points?
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A GEOMETRIC INEQUALITY WITH APPLICATIONS
TO LINEAR FORMS

JEFFREY D. VAALER

Let CN be a cube of volume one centered at the origin
in RN and let Pκ be a iΓ-dimensional subspace of RN. We
prove that CN Π Pκ has iΓ-dimensionai volume greater than
or equal to one. As an application of this inequality we
obtain a precise version of Minkowski's linear forms theorem.
We also state a conjecture which would allow our method
to be generalized.

I* Introduction* Let CN — [ — 1/2, 1/2]̂  be the iV-dimensional
cube of volume one centered at the origin in RN and suppose that
Pκ is a if-dimensional linear subspace of RN. Dr. Anton Good has
conjectured that the iί-dimensional volume of Pκ Π CN is always
greater than or equal to one. In case K = N — 1 this has recently
been proved by Hensley [6], who also obtained upper bounds for this
volume. Our purpose in this paper is to prove the conjecture for
arbitrary K and to give some applications to Minkowski's theorem
on linear forms. In fact we prove a more general inequality for
the product of spheres of various dimensions which contains the
conjecture as a special case.

We write x for the column vector I I in Rn and

( n \ 1/2

for its length. We define the sphere Sn by

where ρn = π'1/2{Γ(n/2 + l)}Vί\ It follows that μn(Sn) = 1 where μn

is Lebesgue measure on Rn. Also we let Xu(x) denote the charac-
teristic function of a subset U in Rn.

Our first main result is contained in the following theorem.

THEOREM 1. Suppose that nlf n2f -- ,nj are positive integers,
QN = S%1 x Sn2 x x Snj is in RN, N = % + n2 + + nJf and A
is a real N x K matrix, rank(A) = K. Then

(1.1) |det ATA\~m ^ [xQN{Ax)dμκ(x) ,

where Aτ is the transpose of A.

543
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We note that if rank(A) < K then each side of (1.1) is infinite.
From Theorem 1 we easily deduce a lower bound for μκ{QN Π Pκ)-

COROLLARY. Let QN be as in Theorem 1 and let Pκ be a K-
dimensional subspace of RN. Then μκ(QN Π Pκ) ^ l

Proof. Choose A in Theorem 1 so that the columns of A form
an orthonormal basis for Pκ in RN. Then the left hand side of (1.1)
is 1 while the right hand side is μκ(QN Π Pκ).

The corollary clearly contains Good's conjecture since QN = CN

if nό = 1 and J = N.
Next we suppose that L0), j = 1, 2, , N are N linear forms

in K variables,

K

L0) = Σ Uji&k f

so that A = (ajk) is an N x K matrix. We assume that the forms
Lj are real for j = 1,2, , r and that the remaining forms consist
of 8 pairs of complex conjugate forms arranged so that L r + 2 j _i = Lr+2j

for j = 1,2, , β. Thus N = r + 2s. Let εx, ε2, , ε^ be positive
with εr+2i_1 = εr+2j for j = 1,2, , s. We define the NxN diagonal
matrix E bj E = (cfidk) where c, = εj1 iί j = 1,2, , r, c, = (2/τr)1/2e71

if j = r + 1, r + 2, , iSΓ and δifc is the Kronecker delta. Theorem
1 allows us to prove the following precise version of Minkowski's
classical result on linear forms.

THEOREM 2. Let M be a positive integer and suppose that

(1.2) M\άetA*E2A\1/2S 1 ,

where A* is the complex conjugate transpose of the matrix A. Then
there exist at least M distinct pairs of nonzero lattice points ±vm,
m — 1, 2, , M, such that

(1.3) IL^vJl^βj

for each j and each m. In particular if |det A*A\ > 0 then there
exists a pair of nonzero lattice points ±v such that

tA*A|1/2*(1.4)

for j

(1.5)

for j

= 1,2,

= r + l , r

,r

+

\L}(±v)\^

,and

\L3-(±v) ^ ( - 2

2, . . ,JV.
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Theorem 2 was first proved in the case N ^ K and M = 1 by
Minkowski [8, p. 104]. Subsequently the extension of Minkowski's
convex body theorem by van der Corput [5] allowed Theorem 2 to
be proved for N ^ K and arbitrary Λf. Of course if N — K then
(1.2) becomes the more familiar condition

—Y|detA|
π /

and if N < K then (1.2) is trivially satisfied since the left hand side
is zero. The novelty in our result is that Theorem 2 now holds for
1 <. K < N. Previously in the case 1 ^ K < N we knew only that
(1.3) held if

(1.6) 2KM £ μκ({x e Rκ: \L0) \ £ eif j = 1, 2, , N}) .

We prove Theorem 2 by showing that the right hand side of (1.6) is
bounded from below by 2*|det A*JE2A|~1 / 2. AS will be clear from the
proof, Theorem 2 could be generalized to include linear forms with
values in Rn for various n.

In §5 we state a conjecture which would allow us to obtain a
significant improvement in Theorem 1. Specifically, we deduce from
this conjecture an analogue of Theorem 1 in which QN is replaced
by an arbitrary closed, convex, symmetric subset of RN having N-
dimensional volume equal to one.

The author wishes to thank Professors Patrick Brockett, Douglas
Hensley, and Bruce Palka for several helpful discussions on the subject
of this paper.

2* Preliminary results* In this section we briefly summerize
some facts about logarithmically concave measures and functions. A
more detailed discription can be found in the papers of Kanter [7]
and Prekopa [9].

A function / : Rn —> [0, oo) is said to be log-concave if for every
pair of vectors xlf x2 in Rn and every λ, 0 < λ < 1, we have

A probability measure v defined on the measurable subsets of Rn is
log-concave if for every pair of open convex sets U1 and U2 in Rn

and every λ, 0 < λ < 1, we have

(2.1) v{\U, + (1 - X)U2) ^ MUdYMUJ)1-1 ,

where + on the left hand side of (2.1) indicates Minkowski addition
of sets. Clearly (2.1) holds for all open convex sets U1 and U2 if and
only if it holds for all closed convex sets U1 and U2. The relationship



546 JEFFREY D. VAALER

between log-concave measures and log-concave functions is contained
in the following lemma.

LEMMA 3. Let v be a log-concave probability measure on Rn and
suppose that the support of v spans the k-dimensional subspace Pk

in Rn. Then there is a log-concave probability density function f
defined on Pk such that dv — fdμk, where μk is k-dimensional Lebesgue
measure on Pk. Conversely for any log-concave probability density
function f defined on a k-dimensional subspace Pk in Rn, the pro-
bability measure defined by dv = fdμk is log-concave, where μk is
Lebesgue measure on Pk.

The first part of Lemma 3 is a result of Borell [2, p. 123] while
the converse was proved by Prekopa [9], (see also Kanter [7, Lemma
2.1]).

Let vx and v2 be probability measures on Rn. We say that v2 is
more peaked than vx if

for all closed, convex, symmetric subsets U in Rn. (We recall that
U C Rn is symmetric if U — — U.) If f and f2 are probability density
functions on Rn we say that f2 is more peaked than f if the measure
f2dμn is more peaked than the measure fdμn. The notion of peaked-
ness was introduced by Birnbaum [1] and Sherman [10], A comple-
mentary relation is that of symmetric dominance in the sense of
Kanter [7]. If v3 and v4 are measures on Rn then v3 symmetrically
dominates v4 if

v3(Rn\U) ^ vJ,R*\U)

for all closed, convex, symmetric subsets U in Rn. It is clear that
if v3 and v4 are both probability measures then v3 symmetrically
dominates v4 if and only if v4 is more peaked than v3. For our
purposes it is more convenient to work with the relation of peaked-
ness.

If vγ and v2 are log-concave probability measures on Rn then the
convolution vfv2 is also log-concave on Rn (Kanter [7, Lemma 2.3]).
It follows that if vι and v2 are log-concave probability measures on
R%1 and Rn2 respectively then the product measure v1 x v2 is log-
concave on Rni x Rnκ Forming product measures also preserves the
peakedness relation.

LEMMA 4. Suppose that vu vtf v[ and v'2 are all log-concave
probability measures such that vx is mome peaked than v[ on Rnί and
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ZΛ, is more peaked than v[ on R%2. Then vγ X v2 is more peaked than
v[ x v[ on Rn± x Rnκ

For the proof of Lemma 4 we refer to Kanter [7, Corollary 3.2]
where the result is obtained for the more general class of unimodal
measures.

3* Proof of Theorem !• We begin by proving the following
lemma.

LEMMA 5. Suppose that nlf n2, , nj are positive integers and
QN = SnixSn2x x S n j is in RN, N = nλ + n2-\ Yny Then 1QN(X)

is more peaked than the normal density function exp { — π\x\2} on R1v.

Proof. Since the measures XQN(x)dμN(x) and exp { — π\x\2}dμN{x)
are both product measures which factor in Rnι x R%2 x x Rnj it
suffices to prove the peakedness relation in each factor space and
then apply Lemma 4. Thus we need only show that for each positive
integer n, XSn(β) * s m o r e peaked than exp{ — ττ|^|2} on Rn. Of course
it is trivial to verify that both of the density functions XsJβ) and
exp{ — τr|^|2} are log-concave on Rn.

Let ΣΛ-I = {̂  G ^ % : 1̂ 1 = 1} so that for each x Φ 0 in Rn we have
the unique polar decomposition x = rxr where r = \x\ and x' e Σ*-i
If U is a, closed, convex, symmetric subset of Rn then it follows that

(3.1) \ exv{~π\x\2}dμn{x) = f [ lv{rxf) exp {-πr2}rn-γdrdxf ,
JU J Σ % _ ! JO

where dx! is the induced Lebesgue measure on Σ»-i Now for each
fixed x! e Σw_i we have either

(3.2) XLr(rx') ^ X8n(rx') f 0 ^ r < oo

or

(3.3) Xs%(rx') £ Xv{rx') , 0 ^ r < oo ,

since SΛ and i7 are convex. If (3.2) holds at xf then

t,(ra') exp {-πr2}rn-ιdr
(3.4) J°

If (3.3) holds at x' then
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irx') exp {- πr^r^dr

£ Γexp {-πr2}rn-]dr = n-
ιπ'nίir(— +

= Γ
Jo

J
Jo

Combining (3.1), (3.4) and (3.5) we obtain

\

Σ % _i

Thus XSn(x) is more peaked than exp{ — π\x\2} on Rn and the lemma
is proved.

We now prove Theorem 1. If N = K then (1.1) is trivial so we
may suppose that K' — N—K is positive. Let Pκ be the If-dimensional
subspace of RN spanned by the columns of A. Next let W be an
NxN matrix whose first K columns are the columns of A and whose
next Kr columns are the columns of an Nx Kf matrix B. We choose
the columns of B so that they form an orthonormal basis in RN of
the IΓ-dimensional subspace which is orthogonal to Pκ. Identifying
jβ^ with Rκ x Rκ' we may write each z e RN as z = (x/y) where
xeRκ and yeRκ'. For each ε, 0 < ε <̂  1 we define

max

and

R[ = 1^6/2^': max 1̂ 1 ^
2

Clearly Hε is a closed, convex, symmetric subset of RN and so is the
image of Hε under the nonsingular linear transformation determined
by W. Thus by Lemma 5,

(3.6) ί exv{-π\Wz\2}dμN(z) ^ \
J H ε J H ε

Multiplying each side of (3.6) by {μAH'J}'1 = eΓκ' and factoring H&

into Rκ x H[ we find that

ε~κ'\ \ exv{-π\Ax + By\2}dμκ,(y)dμκ(x)
(3.7) J^JHί

( ( fZ^(Aa + By)dμκ,(y)dμκ(x) .
Hs
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By the orthogonality condition \Ax + By\2 = \Ax\2 + \By\2 and so as
ε —> 0 + the left hand side of (3.7) clearly converges to

[ exp{ - π I Ax \2}dμκ(x) = | det ATA Γ1/2 .

To evaluate the corresponding limit on the right hand side of (3.7)
we observe that for 0 < β <̂  1 and each x e Rκ,

By)dμAv) £ 1 •

Since QN and H' are both bounded we have

ε-x' \ 1QN{AX + By)dμAv) - 0

for sufficiently large \x\ independent of ε. Thus by dominated con-
vergence the limit on the right of (3.7) as ε-^0+ is

(3.8) ( jlimε-^S XQN(AX + By)dμAv)\dμκ(x) .

Clearly

lim e~κ' \ 1QN{AX + By)dμAv) = *QN(AX)

except possibly when Ax is a boundary point of QN f] Pκ, Since this
boundary has Z-dimensional measure zero we see that (3.8) is equal to

We have now shown that as ε->0+ on each side of (3.7) we obtain
(1.1) and this proves the theorem.

4* Proof of Theorem 2* By van der Corput's extension of
Minkowski's convex body theorem [5] (see also Cassels [4, Chapter
III, Theorem II]) the condition (1.6) implies that there exist at least
M distinct pairs ±vm, m = 1, 2, , Mf of nonzero lattice points such
that (1.3) holds. If rank(A) < K then (1.2) and (1.6) are both trivially
satisfied. Thus to eatablish the first part of Theorem 2 it suffices
to show that if rank(A) = K then

(4.1) 2*|det A*E2A\~1/2 ^ μκ({xeRκ: \Ld(x)\ ^ εif j = 1, 2, , N}) .

Let G0), j = 1, 2, , N be linear forms defined by G3-(x) = L0)
for j = 1, 2, , r and
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Gr+2j-i(%) =

Gr+2j(x) =

for j = 1,2, , s. We write B = (bjk) for the corresponding real
N x K matrix so that

Next we let QN = Sni x Sn2 x x S%r+s where nό — 1 for j =
1, 2, >-,r and % = 2 for j = r + 1, r + 2,^' , r + s. It follows that
|L5 (£)| ^ s5. if and only if ll2εγG0)sSn., i = 1, 2, , r, and

if and only if

i = 1, 2, . . . , s. Therefore

^({» 6 Λ ' : |L,(x)I ^ ey, i = 1, 2, • •, iV})

^ = 2^ | det BTE2B\~1/2 .det(—EB)T(—EB

An easy computation shows that BTE2B = A*E2A and so completes
the proof of (4.1).

To prove the second part of Theorem 2 we choose e3- = |det A*A\ί/2K

for j = 1,2, - ,r and εό = (2/ττ)1/21det A*A\1/2K for j = r + 1, r + 2,
•• ,ΛΓ. Then

I det A*^2^ I - 1

and so (1.4) and (1.5) follow from the first part of the theorem.

5* Lower bounds for arbitrary convex bodies* In this section
we suppose that QN is a closed, convex, symmetric subset of RN with
^γ(Qiγ) = l If A is an NxK matrix, rank(A) = K, we will be inter-
ested in the problem of finding a lower bound for

(5.1)

The method used to deduce Theorem 1 from Lemma 5 will also lead
to a lower bound in this more general situation, provided that we
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can find a suitable normal density function on RN which is less peaked
than XQN(X). We succeeded in proving Lemma 5 because the special
structure imposed on QN allowed us to appeal to Lemma 4. We now
describe an alternative method which leads to a conjectured lower
bound for (5.1).

We write Q for QN and we assume that Q is a fixed, closed,
convex, symmetric subset of RN, μN(Q) = 1. For each positive integer
m let

XlΓKx) = XξXξ - • XQ(x)

be the m-fold convolution of XQm We define the dilation operator Dλ

for X > 0 and for integrable real valued functions / on RN by

Dλ(f)(x) =

Next we define a sequence of positive numbers λm, m = 1, 2, by

(λj*%Hό) = l .

With this notation we have the following

CONJECTURE 6. For each positive integer m, XQ(β) is more peaked
than Dλm(X{

Q

m)(x).

Now let Ω be the N x N covariance matrix determined by a
random vector which is uniformly distributed on the convex body
Q. That is Ω = (α>rβ) is the N x N matrix defined by

where yr and ys are the rth and sth co-ordinate functions of y, r =
1, 2, , N, and s = 1, 2, , N. It is clear that Ω is symmetric and
nonsingular since Q has a nonempty interior. By the Central Limit
Theorem (Breiman [3, Theorem 11.10]) we have

= (2ττ)-iNΓ/2(det Ω)~ί/2 exp [-^Q^

uniformly for x e RN. It follows that

lim _ ^ = (2ττ)1/2(det Ω)1/2N

and hence

lim DλJX{

Q

m))(x) = exp{-π(άet ΩY^Ω-'x}

uniformly for xeRN. If the Conjecture 6 is true then for each
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positive integer m and each closed, convex, symmetric subset U of RN

(5.2)

Letting m —> oo on the left hand side of (5.2) and we have proved
that XQ(0) is more peaked than exp{-π(det Ω)1/NxΓΩ-1x] on RN. By
the same method used to prove Theorem 1 we obtain

THEOREM 7. Assume that the Conjecture 6 holds and let A be
a real N x K matrix, rank(A) = K. Then

(5.3) (det Ω)~K/2N I det ATΩ'1A Γ1/2 ^ ( lQ{Ax)dμκ(x) .
JRK

If the set Q in Theorem 7 is such that Ω is a constant multiple
of the identity matrix then the left hand side of (5.3) is simply
I det ATA\~1/2. Just as in our proof of the corollary to Theorem 1,
we deduce that in this case μκ(Q Π Pκ) ^ 1, where Pκ is a iΓ-dimen-
sional subspace of RN. There is also an application of Theorem 7 to
linear forms. If L0), j = 1,2, , N, are N linear forms in K-
variables we could determine precise conditions under which

( N
i/p

at a nonzero lattice point v for any p ^ 1 and ε > 0. At present,
however, these results remain hypothetical since they depend on the
open problem stated in Conjecture 6.
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T AS AN Sf SUBMODULE OF G

W. J. WlCKLESS

Let G be a mixed abelian group with torsion subgroup
T. T is viewed as an if submodule of G, where if—EndG.
It is shown that T is superfluous in G if and only if, v*,
either Tp is divisible or G/Tp is not p divisible. If G is not
reduced, T is essential in G if and only if T contains a Z(p").
Let KG) [I(T)] be the Sf injective hull of G [T]. Then I{G) =
I ( T ) 0 X with X torsion free divisible and T is a pure sub-
group of I(G). This can be used to obtain several results;
for example, if Q % I(T)9 TFAE: 1. Tess G, 2 I(G) ~ I(T) as
abelian groups, 3. Q % I(G). The condition Tess G is charac-
terized if T is a summand or if G is algebraically compact.
If T is bounded or if T is a p-group, T1 = (0) and G is re-
duced cotorsion, T is not essential. In fact, for bounded T
there is an & isomorphism KG) s I(Γ) 0 /(G/Γ). Some in-
formation is obtained on the p-basic subgroups of /(T) as a
function of those of T. A condition is given for I(T) =2 Θc Q.
These last theorems specialize to I(ET), where J51 = End T.

Preliminaries• In the last fifteen years several authors have
written papers concerning an abelian group G viewed as a module
over if, its ring of endomorphisms.

Let G be a mixed abelian group with maximal torsion subgroup
T. In this paper we consider T as an g7 submodule of G. We
determine when T is superfluous in G and then study the more dif-
ficult question of determining when T is essential in G. (If (0) φ
T Φ G, it is easy to prove that T is neither essential nor superfluous
as a Z submodule of G.)

The latter question leads to consideration of the injective hulls
I(T)f /(G)—taken with respect to gf.

Our notation, with minor exceptions, is that of [1].

1* T as a superfluous submodule of G. Henceforth, let G be
a mixed abelian group, T — t(G) its torsion subgroup and i? = End G.
To avoid stating the trivial cases of our results we always assume
(0) Φ T Φ G. We begin by characterizing those mixed G for which
ίfT is superfluous in &G ( Γ < G). In our context T < G if and only
if whenever K is a fully invariant subgroup of G with K + T = G,
then JR: = G.

LEMMA 1. Lβέ Γ = 0 Tv be a decomposition of T into its p
components. Then T < G if and only if Tp < G, Vp.

555
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Proof. The only if part of the implication is immediate since
submodules of superfluous submodules are superfluous.

Suppose Tp < G, Vp, and T < G. Then we must have T + K= G
for some fully invariant K Φ G. Clearly, K g Tp for some p. Let
K' = ϋ>Γ + Σ^pΓg Since iΓ is fully invariant with iΓ + Tp = G,
K' = G.

Let te Tp and suppose that t has order o(ί) = pι. Write t = x + y
with x e K, o(y) = w, (n, p) — 1. If a, be Z with αp^ + 6n = 1, then
£ = (αp* + bn)t = 6wί = 6nα? e iΓ. Thus, TPQK, a contradiction.

THEOREM 1. Γ < G if and only if, Vp, either Tv is divisible or
G/Tp is not p divisible.

We prove the contrapositive in both directions.

Proof. Suppose 3p with Tp not divisible and G/Tp p divisible.
Then Tp£pG and G = pG + 2V Thus, Γp < G and, by Lemma 1,
Γ < G .

Conversely, suppose T < G. Then 3p with T^ < G. Let if be
a proper fully invariant subgroup with K + Tp — G. We cannot
have Γp divisible, for then i £ 2 Horn (G, Γp)ίΓ = Tp. (If OJ G iΓ, o(x) = oo,
and teTp, the map ̂  -^ Zt extends to G.)

G/Tp is p divisible if and only if KQpG + Tp. Assume that
G/Tp is not p divisible. Then there is an x e K\pG + Γp. Therefore,
Vί 6 Tp, the p-height of x + ί in G, fc?(a? + ί), is zero.

Thus, for every positive integer ί, 5c = a? + pιG must have order
exactly pι in G/pιG. But then, Vί e Tp, we can construct an endo-
morphism of G mapping x->x->t. This implies K^TP, a contra-
diction. The theorem follows.

2* Γ as an essential submodule of G-basic results* We next
consider the more difficult problem of deciding when άT is essential
in ,G(TessG). We first dispose of the nonreduced case.

THEOREM 2. Let G be a nonreduced group. Then ΓessG if and
only if T contains a Z(p°°).

Proof. If T^Z(p°°) then, VxeG with o(x) = °o, Hαeg3 with
0 Φ a(x)eZ(p"). This, clearly, is enough to imply ΓessG.

Conversely, suppose T contains no Z(p°°). Then, since G is not
reduced, the maximum divisible subgroup D of G is nontrivial and
torsion free. Hence ΓΠ D = 0, so T is not essential in G.

From now on we assume G is reduced.
To investigate the question of when TessG, it is natural to
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consider the g* injective hulls. Let /(G) be the injective hull of the
module %?G. Since #T ̂  %G we can regard I{T), the injective hull
of ^Γ, as a maximal gf essential extension of T in I(G). If I(T) is
constructed in this way we have an g7 decomposition: I(G) = 7(T) 0
X Clearly, TessG if and only if X = (0).

THEOREM 3. Lei X 6β as above. Then X is torsion free divisi-
ble as an abelian group.

Proof. If t(X), the torsion subgroup of X, were nonzero, then
J ( T ) © ί ( J ) would be an g7 essential extension of T in I(G) properly
containing I(T)—a contradiction. Thus, X is torsion free. Since X
is an injective module, X must also be divisible.

COROLLARY. Tess G if and only if I(T) and I(G) are isomorphic
g7 modules.

Proof. Suppose θ: I(T) —> I(G) is an g7 isomorphism. Then
#(T) ess I(G). By Theorem 3, Θ(T) Π X = (0). Thus, X - (0) and
TessG.

The next theorem is central for our results.

THEOREM 4. T is a pure subgroup of I(G) (T <\ I(G)).

Proof. Let D{G) be the Z injective hull of G and let A be the
injective left g* module Hom^ (IT, D(G)). Regard G s A via G =
Hom^ (g3, G) and take /(G) to be a maximal g7 essential extension
of G in A. It suffices to show T <] A. Let J G Γ with po = 0. Suppose
hτ

p(ΰ) = m < co, but <5 = pm+ιa, aeA.

Write δ - pmδ', δ' e T. Then T = <δ;> © T' ([1], Corollary 27.2).
Let π 6 g7 be projection onto <δ'>. Then δ(ττ) = π{8) = δ = pw+1α<^) =
α(pm+1τr) = 0—a contradiction. Thus, we have proved: o e T[p] >
hτ

p(δ) = hi(δ). This shows Γ < ] i ([1], (h), p. 114).

COROLLARY 1. If T is a torsion group, E — End T, then T <1

This is proved by putting G — T in the above.

COROLLARY 2. Suppose TaG with T1 = G1, G/T divisible. Then
TessG. (iϊβrβ T1 [G1] ώβ^oίβs ίΛe jίrsί Ulm subgroup of T [G].)

Proof. Since Γ<J I(G), G/Γ divisible, we have G <| I(G). If
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G1 = T1 and X is as in Theorem 3, XΓiG = (0), so 1 = (0). Thus,
TessG.

COROLLARY 3. Let TczG with T1 = (0). Then I(T)1 = (0).

Proof. I(TY is an gf submodule of I(T). Since Γ1 = (0) and
T <\ I(T), I(T)1 n Γ = (0). Thus, /(Γ)1 = (0).

THEOREM 5. Let TaG withQ^I(T). Then TFAE: 1. TessG;
2. I(T) ̂  I(G) as abelίan groups; 3. Q §£!((?). Moreover, if 1—3

Γ1 = Gι.

Proof. The implications 1-^2, 2-* 3 are obvious. If Q
then the X of Theorem 3 is zero, so Γess G.

To prove the additional statement, note that I(T) is an algebrai-
cally compact group ([1], p. 178) which, by assumption, contains no
Q's. Thus, there can be no elements of infinite order in I(T)\ If
1—3 hold, the same is true for I(G)\ Thus, in this case, Gι = Γ ι.

COROLLARY. Let TaG with T1 = (0). Then conditions 1—3 are
equivalent. Moreover, if 1—3 hold, then Gx — (0).

Proof. If T1 = (0), then I(T)1 = (0), so Q£I(T).

Theorem 5 raises the questions: When are I(T) and/((?) isomorphic
as abelian groups? Is this sufficient for TessG? Here is a partial
result.

THEOREM 6. Let I be the g7 injective hull of the factor module
G/T. Write I(T) — J ϊ φ i Γ , where H is the maximal torsion free
divisible subgroup of I{T). Let r — rank H, r = rank 7. If r is
infinite and r ^ r, then I(G) = I(T).

Proof. Embed I(G) into / ( Γ ) φ 7 in the standard way (via a 0 β
where a and β are the extensions to I(G) of TaΙ(T) and G—>
G/Tczΐ respectively). Then, as g7 modules, I(G)® Y = I(T) © J .
Since /((?) = I(Γ) © X, we have:

The additive group of I is torsion free divisible, since I is the
injective hull of a module whose additive group is torsion free. Thus,
the number of Q's on the right-hand side of (*) is r + r = r, so
rank X ^ r. But then, I(G) - I(T) 0 X έ j(Γ).
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EXAMPLE. For each prime p, let Γp be the group generated by

{di I i — 0, 1, 2, 3, •} with relations {pα0 = 0, pnan = a0, n — 1, 2, 3,

•••}. Let T ^ θ p T p and let G = Q φ Γ . Then f = 1 and (as we

will see in Theorem 13) r ^ c. Thus, /(G) έ /(Γ). Since T is reduced,

T is not essential in G.

3* T as an essential submodule of G—some special cases* In
this section we consider the essentiality of T in G in some special
cases. First we consider the situation for bounded T. The following
theorem shows if T is bounded, then T is never essential in G.

THEOREM 7. Let Γ c G with nT = (0) and let T = I(G/T). Then:
1. n/(T) = (0);
2. I{G) is g7 isomorphic to I (T)φJ .

Proof. Let D(G), D(T), D(GjT) be the Z injective hulls of G,
Γ, G/Γ and let A, J5, C be the injective left g* modules Homz (gf, D(M))
where M = 'G, T,G/T, respectively. As in Theorem 4, regard TQ
G £ I(G) £ A. Suppressing the obvious isomorphism, write A — B φ
C—an g7 direct sum. Under these identifications T = B f)G.

To prove (1), recall T <] A, so in this case, Tf)nA = nT= (0).
Thus, if xeI(T) with nx Φ 0, then, for some λeg 7 , 0 ^ λ O # ) e
Γ Π nA—a contradiction.

To prove (2), first note that B Π /(G) is an essential extension of
T=Bf]G. Choose /(Γ)CI(G) as before—with the additional re-
quirement I(Γ) 2 JS Π I(G).

Let ace J(Γ), say x — b + c, feel?, ceC. Since C is torsion free
and nx = 0, we must have c = 0. Thus, I(T)QB. It follows that

Let πeΐlom^(A9 C) be projection onto C and let τr' = π| J ( ( ?).
Clearly, Kerπ' = B n /(G) = I(Γ), so write J(G) = I(T) 0 Γ with TΓ'
a monomorphism on Y.

To finish the proof of (2), we claim τt\Y) is an g7 injective hull
of G/Γ. To see this, first note that if G/T is embedded in C via
e:g + Γ->evaluation at # + T, we have e(G/Γ) = π'(G)Qπ'(Y), so
τr'(F) is an injective containing e(G/T) = G/Γ. Furthermore, if 0 ^
π'(?/) 6 7r'(Γ), then 3λ 6 g7 with 0 ̂  λ(y) e G Π Y. Thus, 0 ^ τr'λ(y) =
Xπ'(y) e 7r'(G) = β(G/T). This proves that e(G/Γ) ess π'(Y). The theorem
follows.

EXAMPLE. Let T = ®pePZ{p), where P is an infinite set of
primes, and let G = ̂ φ Γ . Then ΓessG, so I{G) = I(T) and, in
view of Theorem 4,1(T)1 = (0). Moreover, it is easy to see that Ί~ZQ.
Thus, if Γ is an unbounded group direct summand of G, we need
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not have the decomposition of I(G) given in (2).

The following gives one characterization of T ess G in the splitting
case.

THEOREM 8. Let T = ®Tpa G. Let kp = l.u.b.{Z | G has a Z(pι)
summand} and let H = {xeG\ o(x) = w, hr;(x) ̂  kpVp}. Then:

(1) If H=(0), TessG;
(2 ) If G= T®F and Γess G, ί&ew ί ί = (0).

Proo/. (1) is clear. To prove (2) suppose G = Γ 0 i ^ and 0 ^
xeH. Then, for some positive integer w, 0 Φ nx e JEf Π F. Clearly,
nx cannot be mapped by an endomorphism of G onto any nonzero
element of a bounded Tp.

If Tp is unbounded, then G has an unbounded p-basic subgroup,
so kp = oo. Thus, hG

p(nx) = A?(wa?) = • oo. If λ e g7 with 0 ̂  λ(wa?) e Tp,
then λ restricts to a nonzero map of the subgroup {m/pk(nx) \m, ke
Z}g:F into Tp. This is impossible since Tp is reduced. Thus, nx
cannot be mapped by an endomorphism of G onto a nonzero element
of any Tp. The result follows.

It is easy to describe when ΓessG for algebraically compact G.

THEOREM 9. Let T = ®TpczG with G (reduced) algebraically
compact. Write G as a product of p-adic modules, G = ΠGP. Then
TessG if and only if, Vp, either Tp — Gp or Tp is unbounded.

Proof. It is immediate that ΓessG if and only if, Vp, TpessGp.
If 3p with Tp Φ Gp and Tp bounded, then Tp is not essential in Gp.

Conversely, by considering projections onto summands of a p-adic
basis for Gp, it is easy to see that Tp unbounded implies Tp ess Gp.

We close this section with:

THEOREM 10. Let T c G with G (reduced) cotorsion, T a p-group,
T1 — (0). Then T is not essential in G.

Proof. If T is bounded, T is not essential. If T is an unbounded
p-group, (0) Φ Pext(Q/Z, T) = [Ext (Q/Z, T)]\ Since G is reduced
cotorsion, G ~ Ext (Q/Z, G) ~ Ext (Q/Z, T) 0 Ext (Q/Z, G/T) ([1] H,
p. 234 and Lemma 55.2). Thus G1 Φ (0), T1 - (0) and T cannot be
essential in G.

4* The structure of I(T). In this section we prove three
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theorems concerning the structure of I(T). With trivial modification,
each of these theorems can be rewritten to give the same result for
the injeetive hull of a torsion group over its own endomorphism
ring.

Since I(T) is algebraically compact, it is natural to try to find
out what its p-basic subgroups look like as a function of the p-basic
subgroups of T. In the case T1 = (0), this information would charac-
terize I(T) as an abelian group. The next result shows that I(T) is
generally large with respect to T.

THEOREM 11. Let B [Bf] be a p-basie subgroup of T [I(T)]. Let
f = final rank B. If Z(pk) occurs in B, then Br contains ®re^<£r>
with I j ^ I = 22/, o{zr) ^ p\ VT.

Proof, Suppose B contains a Z(pk). Write G = (b) 0 Γ, o(δ) = p\
and let φ α e i ( δ α ) g β with \A\=f, o(ba) ̂  pkVa.

Choose {Aβ I β e J^} a collection of subsets of A such that:
I <S*f I = 2f, if F is any finite subset of J ^ and β0 e F then
[Aβo\\Jβ*βo,βeFAβ] Φ 0 . (See [1[, Lemma 46.2.)

For / 9 e j / define dβ e Hom(© (ba), <6» by dβ(ba) = Xβ(a)b-Xβ the
characteristic function of Aβ. Extend each δβ to g7.

It is clear that the left ideals &δβ form a direct sum s in g7.

Let {Cr 17 6 j ^ } be a family of subsets of ,sx? with the above
independence property, | ,s>/\ = 22/. Consider:

Here λr is the g" map defined by λr(δ^) = XGγ(β)b, XCj the charac-
teristic function of the subset Cr, and λ̂  is the map obtained by in-
jectively.

Let zr = λj(l). We have ĉ Or) = XG.(β)b. It is easy to see from
this equation that {zx \ X e ._£/} is a p independent set of elements of
order ^ pk. This can be included as a summand of B\ The result
follows.

Continuing with the same notation we have:

THEOREM 12. If B' contains a Z(pk) so does B.

Proof. If B' contains Z(pk) then I{T) has a Z(pk) summand.
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Therefore, so does Horn (gf, D(T)). (I(T) can be regarded as a direct
summand of Hom(gf, D(T)). Therefore, so does Hom(g', D(T)P).

The pure exact sequence 0 -> ί(ίf) -> g7 -> &jt[&) -> 0 yields 0 ->
[g7*(gf)]* -> g7* -» £(gT -> 0, where If* - Homz (Λf, D(Γ)P). This
sequence is pure exact, so splits, since all its terms are algebraically
compact. (In this proof "splits" means splits as an exact sequence
of abelian groups.) Since [l?/ί(ί?)]* is torsion free, ί ( ^ ) * must have
a Z(pk) summand.

Now t{&)* = [t(&)P]*. Let Bo be a basic subgroup for £(g%.
Repeat the above procedure with 0 -> 2?0-» ί(i?)p -> t(z?)p/B0-+ 0 to
conclude that 7?0* must have a î (2>fc) summand.

Since BQ is a direct sum of cyclics, Bo itself must have a ίί(p*)
summand. Thus, g7 and, therefore, Horn (G, Γp) have J£(pfc) summands.

Let B be a p-basic subgroup for G. The p-pure exact sequence
0 _> B -> G -> G/S -• 0 yields the ί9-pure exact sequence 0 -> (G/.B)57 ->
GJ -> (5)J where MJ = Romz (Λf, Γp). Since (G/5)4 = TF0 0 r Qr> where
W is the p-adic completion of a direct sum of copies of the p-adic
integers, this sequence also splits. It's not hard to show that {B)Δ

must have a Z(pk) summand.
Say B = 2?! ® S2, where JBX = © α Z(p*«) is a direct sum of finite

ί>-power cyclics and B2 = 0^ Zβ is free. Then BΔ = (By φ (JB2)
J, SO

one of these groups must contain a Z(pk) summand.
If (By = IL TP[pι«] has a ^(pfc) summand, then Bγ itself must,

so T does.
If (J?2)

J = Π = Π/ϊίΓp^ has a Z(pfc) summand, again Tdoes. (If
Π = <y> Θ r, o(y) - pfc, then hξiv^y) = ft - l. if i/ - fed, v, e (Γ,),,
then, for some /90, hp

T*)h(ph~ly^ = fc — 1 and, therefore, o{pk~ιyβ) = p.
Thus, 2/̂  is contained in a ^(pfe) summand of (Tp)βQ.)

Thus, in either of the above cases, B contains a Z(pk).
In view of Theorem 5, it is of interest to discover when QQI(T).

(Obviously, we must have T1 Φ (0).) We are unable to decide if
T1 Φ (0) is also sufficient for QξZl(T). We close the paper with a
result in this direction. First, we need two lemmas.

LEMMA 2. Let T = φ Γp c G and suppose Tl Φ (0) whenever
Tp Φ (0). Then VT

Xess VT.

Proof. If teT\T\ then Π(t) Φ 0, 77 the projection onto <α>,
some Z(pk) summand of G. It is easy to construct #eHom^«α>, Tp)
with 077(ί) Φ 0. Thus, ^Γ'ess^Γ.

Let ^ = &/t(&). Since ^g 7 )! 7 1 - (0) we can regard Γ1 as an gf
module.

LEMMA 3. Lβί ^ δe ίfee ^ ίnjective hull of T1 and let D be
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the maximal divisible subgroup of I(T). Then, under the assumption
of Lemma 2, ^ ~ D.

Proof. By Lemma 2, ^ e s s ^ Γ , so I*{Tι) = I(T).
Now ^y7 is an g* essential extension of T\ so we can regard

J? dl^T1) = /(Γ). Since ^ is an injective module over a ring
with torsion free additive group, ,J^ £ D. But J9 is an ΪP essential
extension of T\ Thus, J? = D.

THEOREM 13. Let E = End T, E = jgyί(^) αwd suppose R: if ->
i? is (m£o, where R is the restriction map. Then, if T1 is unbounded,

Proo/. Let Γx - {0 Γp | Γί ^ 0}, Γ2 = {0 Γp | Γί - (0)}. Clearly,
2\ and Γ2 are g7 submodules and /(Γ) = I(Tλ) 0/(Γ 2 ). It suffices to
show I(jFi)2φβQ, so, without loss of generality, assume T = Tx.
Then Lemma 3 applies, so it is enough to construct c independent
elements of infinite order in J? = D.

Choose fa I i = 1, 2, 3, •} £ Γ1 with {ofe) = p{*} unbounded. For
each fixed i, choose distinct φ°°=1 (biά) part of a pΓbasie subgroup of
T such that Σi,i<&ϋ> is direct and such that 0(6^) ^ pf. (Each Tp is
reduced with T\ Φ (0), thus has an unbounded basic.) Finally, choose
{Xij}QT w i t h piXij = α?<.

Now define δ, e Horn, ( 0 , <&„•>, Tp.) by δ.φ^) = χtj. Each ^ is a
small homomorphism (see [1], Lemma 46.3) so each ^ extends to an
endomorphism of TPi and, thus, to an endomorphism of T. Still call
this extension δim

LEMMA 4. Σ< ̂ ^ ^ s α ^ ^ direct sum in E. Here Et — δt +

J5 is regarded as a left if module in the natural way.

The proof of Lemma 4 is not difficult and is left to the reader.
Let {Na \aeA} be a family of subsets of the natural numbers

with I A| — c such that if FQ A is finite and a0 e Fthen [Nao\\JaeFyaΦaoNa]
is countable.

For all aeA, consider the diagram of E modules:

0 >@<&δt >E

Here Xa is the if map defined by λα(^) = XNJί)χif XNa the charac-

teristic function of Na, and X'a the g7 map obtained by injectivity.

Set za = KΦ, ϊ the identity of the ring E. Since R: & -^ E
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is onto, choose at e g" with R(σt) = δt.

Then σt(za) = λ j ^ ϊ ) = X'a(δt) — XNa{i)xi. This equation, together
with {o(Xi)} unbounded, easily implies that {za\ae A} is an independent
set of elements of infinite order. Thus, / ( Γ ) 2 φ β Q .

COROLLARY. Let T be a torsion group with Tι unbounded and
E = End T. Then IE(T) 2 Θc Q.

Added in proof. The proof of Theorem 13 can be modified, using
a procedure similar to that of Theorem 11, to construct φ2βQC/(Γ).

REFERENCES

1. L. Fuchs, Infinite Abelian Groups, Vol. 1, Academic Press, New York, (1970).

Received July 24, 1978 and in revised form November 6, 1978. This paper was written
while I was visiting Tulane University. I would like to thank Professor Laszlo Fuchs
for his generous advice and assistance during my visit.

THE UNIVERSITY OF CONNECTICUT

STORRS, CT 06268



PACIFIC JOURNAL OF MATHEMATICS
Vol. 83, No. 2, 1979

THE CLASS NUMBER OF Q{V-p) MODULO 4,
FOR /> = 3 (MOD 4) A PRIME

KENNETH S. WILLIAMS

If p is a prime congruent to 3 modulo 4, it is well-
known that the class number h(—p) of the imaginary quad-
ratic field Q(V—p) is odd. In this paper we determine h(—p)
modulo 4.

The class number of Q(τ/—p) is odd, if p is a prime congruent to
3 modulo 4 (see for example [3: p. 413]. D.H. Lehmer [4: p. 9] has
posed the problem of determining the Jacobi symbol ( — l/h(—p)) —
( — l)<Λ<-p>-υ/% that is, of determining h( — p) modulo 4. In this paper
we evaluate h( — p) modulo 4 in terms of the class number h(p) and
the fundamental unit ep = T + UV p of the corresponding real
quadratic field Q(τ/p). It is known that T and U are positive in-
tegers which satisfy T = 0 (mod 2), U = 1 (mod 2), JV^) = T2 - pU2 =
+ 1. We prove

THEOREM. If p > 3 is a prime congruent to 3 modulo 4 ίfcβw

(1) λ(-p) == h(p) + U + l(mod 4) .

It is easily checked that (1) does not hold for p = 3 (&( —3) =
fe(3) = t/ — 1). (p = 3 is a special case as this is the only value of
p = 3(mod 4) for which the ring of integers of Q(V—p) has more
than 2 units.) The method of proof is purely analytic in nature, it
uses Dirichlet's class number formula (in various forms) for both
real and imaginary quadratic fields and also some results from cy-
clotomy. It would be of interest to give a purely algebraic proof.

Proof. Let p > 3 be a prime congruent to 3 modulo 4 and set
p = exp(2πi/p). For z a complex variable, we let

(2 ) F+{z) - ff (z - <oO, F_(z) - ff (z - pj) ,
3=1 J = l

(j.'p)--fi ( i/p)=—l

so that

(3) F+(z)F_(z) = F(z) ,

where F(z) is the cyclόtomic polynomial of index p, that is,

565
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F{z) = ff (z - p) =
— 1

J*V and î _ are polynomials in z of degree (p — l)/2 with coefficients
in the ring of integers of Q(V—p) (see for example [6: p. 215]).
Hence we can write

(5 ) F+(z) = i (F(z) - Z{z)V~P) , ^
Δ Δ

where Y and Z are polynomials with rational integral coefficients.
From (3) and (5) we have

( 6 ) Y(z)2 + pZ{zf = 4F(z) .

It is also known [6: p.216] or [7: p. 209] that Y and Z have the
symmetry properties expressed by

(P-3)14 (p-35/4

( 7 ) Y{z)= Σ o . ( z " - 1 " — - 2") , Z ( 2 ) = Σ δ.(«*- l ) ί ϊ - + 2 ) ,

where the an and bn are integers with

α0 = 2, αx = 1, α2 = (3 -

and

(see [7] for further values of an and δw: see [6] for a table of values
of Y and Z for p ^ 29).

Differentiating the expressions in (7) and (6) with respect to z,
we obtain respectively

(p-3)/4 / / /n 1 \ \

(8) Y'{z) = Σ «. ( ( - - njs"-'"1-" - »« -M ,

Z'{z) = Σ δ ( ( y

and

( 9 ) Y{z)Y\z) + pZ(z)Z\z) = 2F\z) .

Taking z = i in (7) and (8) we obtain

f A3(l - i), if p = 3 (mod 8) ,
Y(i) — \

[A7(l + i), if p = 7 (mod 8) ,
( 1 0 )

 = i~B3(l + <), if p = 8 (mod 8) ,
W (J57(l - i), if p = 7 (mod 8) ,
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and

_ ίc« + 2Dti, if p = 3 (mod 8) ,

* ~ (C7 + 2Ai, if P = 7 (mod 8) ,

= p , + 2 F 3 i if p = 3 (mod 8) ,

(# 7 + 2 i % if p s 7 (mod 8) ,

where A3, , F7 are rational integers (given in terms of the an and
δ j . Using (10) and (11) in (6) and (9) with z = i, we obtain

[At - pBf= - 2 , i f p = 3 (mod 8) ,
( ' (AT ~ pBI= +2, if p = 7 (mod 8) ,

and

μ 3 C 3 + 2pB3F3= - 1 , 2A*D, - J)-B3S3 = p, if p = 3 (mod 8) ,
/I O\

(A7C7 + 2pjB7F7 = p, 2A7Dr - pB7E7 = 1, if p = 7 (mod 8) .

Clearly from (12) and (13) we see that A3, B3, C3, E3, A7, B7, C7 and E7

are all odd. Now Liouville [5: p. 415] has shown that

(14) Z{z) Y\z) - Z'(z) Y{z) =
Z — Lύ

Taking z = i in (14) we obtain

(15) Z(ϊ)Y'(ϊ) - Z'{ϊ)Y(i) = (L + Λf) + ΐ(L - M) ,

where

(JJ-D/2 f /27*\ (P-D/2 /27 + 1\

5*=0 \ P ' 3— 0 ^ P '

Applying the transformation i -> (p — l)/2 - i to L or M we obtain
L — ikf. Also we have

5=1 V p / 5=0 V p /

( ) ; 1 - W -i) + 2\
p /p 5 = p

(p-3)4 / Λ \ (P-D/2 / /ί \ (P-D/2

= Σ (±) + Σ (̂ -) = Σ
5=1 \ p / /4 \p /

so, by Dirichlet's class number formula (as p == 3(mod 4), p < 3) see
for example [2: p. 346], we have

(16) L = M= J2 - (A)Jfc(-p) .
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Hence from (15) and (16) we have

(17) Z{ϊ)Y\ί) - Z\i)Y{i) = 2 {2 - (^h(-p) .

Using (10) and (11) in (17), after equating real and imaginary parts,
we obtain

(18) p ( P ) = 2B*D* - A*E* > i f V = 3 (mod 8) ,
\h(-p) = 2B7D7 - A7E7 , if p = 7 (mod 8) .

Now from (13) we have

(E3=-2AZB3D3 - Bz (mod 8), if p = 3 (mod 8) ,
(19)

[E7 = -2A7B7D7 + £ 7 (mod 8), if p = 7 (mod 8) .

Using (19) in (18) we have

-A3B3 (mod 4), if p == 3 (mod 8) ,( 2 0 ) ^ ( P ) l-Λ-B7 (mod 4), if p = 7 (mod 8) .

From (4) we have F(i) = i, and so taking 2 = i in (2) and (3)
we obtain

-i{F_(t)Y = ̂ β - = ff(l + i^)- ( ί /"

= eχP + Ϊ ^ ( ) Σ (
2m + 1 2 \p/m=i\p

= exp (Λ(p)log(Γ + ϋ" v T ) + ̂ ( l - (A)) h(-p))

where we have made use of the Gauss sum

i=1 \ p

and the two results
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and

=«L((A) _
V pWp/

2m + l W - i r = M^
p / 2m + 1 V p

which follow easily by standard arguments from Dirichlet's class
number formula (see for example [2: p. 343]). Hence we have (using
(10))

(T + UV~p)h{p) = (-1) (

— (A, + B,Vp)\ if p = 3 (mod 8) ,

λ_(A7 + B7V~p)2, if p = 7 (mod 8) .
2

This is essentially a result of Arndt [1].
Expanding (T + UV~p)h{p) by the binomial theorem and equat-

ing coefficients of V p, we have as h(p) Ξ= 1 (mod 2),

JJh(p)rβ{h{p)-l)/2 _ι_ TJh(p)-2ηπ2/^(h{p)~Z)/2 ι . #

\ 2 /

A3£3, if p = 3 (mod 8) ,

A7B7, if p = 7 (mod 8) .

As Γ = 0 (mod 2), Ϊ7 Ξ= 1 (mod 2), this gives

(A3B3 (mod 4), if p = 3 (mod 8) ,

~ [A7B7 (mod 4), if p = 7 (mod 8) ,

so that

/O1x Muί>3 — C/ + 1 (mod 4), if p = 3 (mod 8) ,
(zi) up) = \

[A7B7 - 1 7 + 1 (mod 4), if p = 7 (mod 8) .
Putting (20) and (21) together, we obtain (1) as required.

From (1) we have (-l/fc(-p)) = (-l)<*<-*>-«/2 = (-ijifcw+cj^ I n

particular whenever h(p) = 1 (a common occurrence) we have

In [8] the author has treated, in a similar way, Lehmer's ques-
tion [4: p. 10] regarding h(—2p) modulo 8, when p is a prime con-
gruent to 5 modulo 8.
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ON TOPOLOGICAL ANALOGUES OF LEFT THICK
SUBSETS IN SEMIGROUPS

JAMES C. S. WONG

We discuss the relation among various topological
analogues of left thickness in semigroups and their connec-
tion with left invariant means for locally compact separately
continuous semigroups. Until now, most results in this
direction have been obtained for only jointly continuous
semigroups. However, an important convolution formula
found recently by this author made the transition to sepa-
rately continuous cases possible.

1* Introduction* Let S be a semigroup and T a subset of S.
T is called left thick if for each finite set FaS, there is some seS
such that FsaT. In 1965, T. Mitchell obtained the following in-
teresting results:

THEOREM 1.1 (Mitchell [7]). Let S be a left amenable semigroup
and T a subset of S, then T is left thick iff there is a left invariant
mean m on S such that m(ζτ) = 1 where ξτ is the characteristic
function of T.

THEOREM 1.2 (Mitchell [7]). If T is a left thick subsemigroup
of a semigroup S, then S is left amenable iff T is left amenable.

Since then, various attempts have been made to obtain topo-
logical analogues and extensions of these concepts and results to
locally compact semigroups (with jointly continuous multiplication)
with only partial success (see Day [3], [4] and Wong [10], [11]). In
fact, in these attempts, a topological analogue of one or the other
(but not both) of Mitchell's theorems was found. The purpose of
this paper is two-fold. First, we introduce a "suitable" topological
analogue of left thickness and extend both of Mitchell's results.
Second, we shall do it in the more general setting of locally compact
separately continuous semigroups because of an important convolu-
tion formula obtained recently by this author for such semigroups
(see Wong [12] and § 2 below).

§ 2* Notations and background* For notations and definitions
in analysis on locally compact (Hausdorff) semigroups, we shall
follow [11] (to which the present paper is a sequel) except that we
are now dealing with a locally compact separately continuous semi-
group S. Although all the results cited in the references here are
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for jointly continuous semigroups (or compact separately continuous
ones), many of them (in particular, those we are going to need
here) can be carried over to general separately continuous semigroups.
We shall discuss this briefly here and where appropriate, special
remarks with respect to this will be made below.

As usual, let M(S) be the measure algebra with convolution
product and M0(S) the probability measures. Recently, this author
has obtained the following convolution formula:

fdμ*v = \^f(xy)dμ(x)dv(y) =

for all feL^lμl^vWμ^eMiS). (See Wong [12].) It follows
that M0(S) is a convolution semigroup (algebraically) and that

support (μ*v) — [support μ support v\~

if μ,veMQ(S).
As a result, if S is jointly continuous, μ*v has compact support

whenever μ, v do. In general, this may not be the case except for
example when μ = da is the Dirac measure and v has compact sup-
port. Then δa*v has compact support ( = α support v).

Also, the functions x—*f(xy), y fixed and x—» \f(xy)dv(y), though

continuous, need not be in C0(S) if / is in C0(S), the continuous
functions on S which vanish at infinity. Thus M0(S) need not be a
topological semigroup under the weak* topology of M(S) = CQ(S)*.
Despite this apparent setback for separately continuous semigroups,
it should however be remarked that for example the construction
used in Wong [11, Lemma 3.1, p. 296] is valid for separately con-
tinuous semigroups since it requires only that M0(S) be a semigroup.

Now let T be a Borel subset of S. Consider the following
conditions on T:

(TLS) For "each KaS compact, there is some μeM0(S) such
that v*μ(T) = 1 for any veMQ(S) with v(K) = 1. [Can assume
μ{T) = i.]

(TLT) For each ε > 0, KczS compact, there is some μeM0(S)
such that v*μ(T) > 1 - e for any veMQ(S) with v{K) = 1. [Can
assume that μ has compact support and μ(T) > 1 — ε.]

(ΓLLX) For each ε > 0 and veM0(S) with compact support,
there is some μ in M0(S) with compact support such that v*μ(T) >
1 - ε .

(TLL) For each ε < 0 and veM0(S) with compact support,
there is some seS such that v*δs(T) > 1 — ε where δs is the Dirac
measure at s.

(LT) For each FaS finite, there is some seS such that Fsa
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T [Can assume s e T.] (This is MitchelΓs definition of left thickness.)
and

(*) For each ε > 0 and veMQ(S) with compact support, there
is some μeM0(S) with compact support such that μ(T) > 1 — ε and
v*μ(T) > 1 - ε.

T is called topological left substantial if T satisfies (TLS). In
Wong [10], it is proved that if T is a (locally compact Borel)
topological left substantial subsemigroup of S, then T is topological
left amenable iff S is. This is a topological analogue and extension
of Theorem 1.2. Also condition (TLS) remains unchanged if we
require the measure μ to satisfy the additional assumption that
μ(T) = 1. The proof can be found in [10]. Since similar situations
will frequently occur again below, we present the proof here for
completeness. As in [10], if φφKaS compact is given, choose
k 6 K and let K± — Kk U {k} which is also compact. There is some
μ1eM0(S) such that v^μx(T) = 1 if v^M^S) and vx(Kx) = 1. Con-
sider μ = δk^μ1eM0(S). μ(T) = 1 since ^(JKi) = 1. Moreover, if
v6Jlίo(S) and v(K) = 1, then

v*μ(T) = (v+d^μάT) = 1 since ^

= ( ξκlίxk)dv(x) - v(K) = 1 .

On the other hand, T is called topological left thick if T satisfies
(TLT). It is proved in Wong [11] that if S is uniform strong
topological left amenable (hence topological left amenable), then T
is topological left thick iff there is a topological left invariant mean
M on M(S)* such that M(XT) = 1 where Xτ is the characteristic
functional of T in S (see [11] for more details). This is a topolo-
gical analogue and extension of Theorem 1.2. Condition (TLT)
remains unchanged if we require the measure μ to satisfy the
additional assumptions that μ has compact support and μ(T) > 1 —ε.
For if ε > o and KaS compact are given, there is some μeM0(S)
such that v*μ(T) > 1 - ε/2 for all veM0(S) with v(K) = 1. Since
the measures in Λfo(S) with compact supports are norm dense in
Mϋ(S), we can choose μ1eMQ(S) with compact support such that
Wμ-μΛl <e/2, then

\(v*μ1 -v*μ)(T)\ ^ \\v*μx - v*μ\\ <-|-

and v*μλ(T) > 1 — ε for all veM0(S) with v(K) = 1. Next, suppose
the pair (ε, K) is given and K Φ φ. Choose keK and let Kx — Kk U
{k} which is compact. By the above argument, there is some μ2 e
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M0(S) with compact support such that

τ*μ2(T) > 1 - ε for all τeM0(S)

with τ(K,) — 1. Consider μ3 = δk*μ2eM0(S), which has compact sup-
port ( = fc support μ2), μ3(T) = δk*μ2(T) > 1 — ε since δk(K,) = 1.
Moreover, if veJlίo(S) and v(K) = 1, then v*μ3(T) = (v*δk)*μ2(T) >

1 - ε since v*δk(K,) = [ ζKl(xk)dv(x) = v(K) = 1 .

Later, M. Day [4] improves the result in Wong [11, Theorem
4.1, p. 297] by calling T topological left lumpy if T satisfies (TLL)
and proves that if S is topological left amenable, then T is topolo-
gical left lumpy iff there is a topological left invariant mean M on
ΛΓ(JS)* such that M(lτ) = 1. Thus for uniform strong topological
left amenable semigroups (in particular, any left amenable locally
compact group), the concepts of (TLT) and (TLL) are the same.

In general, of course (TLS) implies (TLT) which in turn implies
(TLL,). Also (TLL) and (TLL,) are equivalent. This is due to Day
[4] (under further but redundant assumption). Clearly (TLL) implies
(TLL,). Conversely, if veM0(S) has compact support and v*δs(T)^
1 - ε for all s in S, then v*μ(T) = [v(Ts~1)dμ(s) = [v*δs(T)dμ(s) ^
1 - ε for all μeM0(S). Hence (TLL,) and (TLL) are equivalent.

Also (TLL) implies (LT). The proof is implicit in Day [4].
For given any finite FaS with k elements, consider v = l/k Σαejpδσ e
M0(S) with compact support. By (TLL), there is some seS such
that v*δs(T) > 1 - I/ft. Hence δσs(T) = 1 for all σ e F or Fs c Γ.

Finally, condition (*) is somewhere between topological left
thickness and topological left lumpiness. Clearly (*) is formally
stronger than (TLL,). Also (TLT) implies (*) in view of the above
remarks concerning the additional assumptions at the end of the
condition (TLT).

This condition (*) is precisely the "suitable" condition we are
looking for in order to extend both Mitchell's results.

3* Main results*

THEOREM 3.1. Let T be a Borel subset of a locally compact
semigroup S such that M(S)* has a topological left invariant mean.
Then the following statements are equivalent:

(1) There is a topological left invariant mean M on M(S)*
such that M(XT) = 1.

(2) T is topological left lumpy (i.e., T satisfies (TLL) or
(TLL,)).

(3) T satisfies (*).
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Proof. Equivalence of (1) and (2) is due to Day [4, Theorem,
p. 89]. Since the only difference between conditions (TLLλ) and (*)
is that the measure μ in (*) must satisfy the additional assumption
that μ(T) > 1 — e, Day's original proof in [4] can easily be adapted
to show (1) implies (3). However, we shall present a modification
of Day's argument to show that Theorem 3.1 remains valid if the
measure μ in condition (*) is required to satisfy μ{T) — 1. Suppose
(1) holds and M is a topological left invariant mean such that
M(XT) = 1. Let μa be a net in M0(S) with compact supports such
that μa-»M weak* in Λf(S)**. Then limaμa(T) = 1 and for each
veMQ(S) with compact support,

= μa(p ® ZΓ) > M(v ® Xτ) = M{XT) = 1 ,v*μa(T) =

since M is topological left invariant.
Define τaeM+(S) by

= \ξτfdμa,feCQ(S).

Then τa(B) = μa(B Π Γ) for any Borel set B in S. In particular,

Ta(T) = μa(T) -> 1. Hence we can assume τa(T) Φ 0. Let vα6ikf0(S)
be defined by va = τJτa(T) = τa/μa(T). Then for any feC0(S), we
have

« - ( f&μ.
JT

II
-Ml/11.̂ .(2")

Hence

Let ε > 0 and v e M0(S) with compact support be given, there
is some a0 (depending on ε and v) such that

and

\p«-μa\\<

v*μ«(T) > 1 - ε/2 if a ^ a0 .

Hence
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\v*va(T) -v*μa(T)\

^ \v*va -v*μa\{T)

= a μa 2 l a = a0 .

Consequently

The measure μ = y«oeΛfo(*S) has (compact) support czK0Π T where
Ko is the (compact) support of μaQ and μ satisfies the requirements

μ{T) = 1 and v*μ(T) > 1 - ε .

This completes the proof.

REMARKS. It should be remarked that Day's result [4, Theorem,
p. 89] is for jointly continuous semigroups. However, his proof
(and the above adaptation) is actually valid for separately continu-
ous semigroups (see also discussions at the beginning of §2).

Theorem 3.1 is a topological analogue and extension of Theorem
1.1. It is also an improvement of Day's result in [4, Theorem, p.
89] (from joint continuity to separate continuity). It also shows
that for topological left amenable semigroups conditions (TLL) and
(*) are the same. It is not known in general whether condition (*)
remains unchanged if we require the measure μ in (*) to satisfy
μ(T) = 1.

To obtain the analogue of Mitchell's second result, we need
the following lemmas. From now on, unless otherwise stated
explicitly, T is a locally compact Borel subsemigroup of S. It is
known that if μeM(S), then the restriction μτ = μ\τ of μ to the
Borel subsets of T is a measure in M(T). In fact the correspondence
μ —> μτ is an isometric order preserving isomorphism between the
subalgebra of all measures μeM(S) with \μ\(T') = 0 and the algebra
M(T). Moreover μτeM0(T) if μeMQ(S) and μ(T) = 1 (see Wong
[9] and [4] for details).

LEMMA 3.2. Let μ, veM0(S) with μ(T') ^ ε and v(T) = l. Then
(1) \μ*ι>-v\(T')^ε
( 2 ) \μ*v - v\(T) ^ \μτ*vτ - vτ\{T) + ε.

Consequently

\\μ*v - v\\ ̂  \\μτ*vτ ~ vτ\\ + 2ε .

Proof,
(1) Since μ, v ^ 0 and v(Tf) = 0, we have
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= \ \ ζAxy)dμ(x)dv(y) + 1 \ ξτ,(xy)dμ{x)dv(y) .
JTJT JTJT'

Since T is a subsemigroup, T Π Try~ι = φ if y e T and the first
integral vanishes. Thus

\μ*v -v\(Tr)

(2) If S c T is Borel in S then B is Borel in Γ and

ζn(xy)dμ(x)dv(y) + ( ί ζB{xy)dμ{x)dv{y)
Γ J Γ J 2"

= μτ*vτ(B) + ί ί ζB(xy)dμ{x)dv(y) ,

since Γ is a subsemigroup and v(T") = 0.
Hence if {Blf B2, , 5W} is a partition of T into Borel sets in

S, we have

- v)(Bk) \ ̂  I (μr*vτ - vΓ)(BA) I + ( ( ζβk(xy)dμ{x)dv{y)
JTJT'

and

= sup I Σ IO" y - y)(5*)|: {Bu Bif • • , 5,} a Borel

partition of Γ in s [

I I ξτ(xy)dμ(x)dv(y)
JTJT'

^ \μτ*vτ — vΓ|(T) + ε .

The last part of the lemma is now trivial.

LEMMA 3.3.

( 1 ) Let va be a net in M0(T) such that \\v*va — va\\ —> 0 for
each v eikfo(T). // 0 < ε < 1 and τ is a measure in M+(T) such
that 1 — ε < r(Γ) = | | r | | ^ 1, then there is some a0 (depending on
T and ε) such that

||τ*v« — vα | | ^ 2ε if a ̂  a0 .
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( 2 ) Let va he a net in M0(T) such that for each F c T compact,
\\v*va — va\\ -> 0 uniformly for all veM0(T) with v(F) = 1. Let
0 < ε < 1 and F a compact subset of T be given. Then there is
some a0 (depending on e and F) such that for any τeM+(T) with
τ(T\F) = 0 and 1 - ε < r(Γ) = | | r | | ^ 1, we have

\\τ*v* — y«|| ^ 2ε for a ^ a0 .

Proof.

(1) Let c = | | r | | Φ 0 and write τ = cv with V G I 0 ( Γ ) . Then
0 ^ 1 — c < ε and

|| - va\\ = | | ' φ ) ||

^ 2ε if a ^ α0 .

( 2 ) Let 0 < ε < l and FaT compact be given. There is
some a0 (depending on ε and F) such that

\\v*»a -v«\\ <e if a ^ a0 and veM0(T)

such that v(T\F) - 0. Let τeM+(T) with τ(T\F) = 0 and 1 ~ ε <
τ(Γ) = | | τ | | ^ 1. Write τ = cv where c = | | τ | |=£θ and veM0(T).
Then as before 0 ^ 1 - c < ε and v(T\F) = 0, and

\τ*va - va\\ ^ | | v * v β - va\\ + | c -

^ 2ε if α ^ a0 .

THEOREM 3.4. Lβί S be a locally compact semigroup and T a
locally compact Borel subsemigroup of S satisfying condition (*)
of § 2, ί/ẑ w S is topological left amenable iff T is topological left
amenable.

Proof. Assume that S is topological left amenable (i.e., M(S)*
has a topological left invariant mean). Since T satisfies (*), by
Theorem 3.1, there is a topological left invariant mean M on M(S)*
such that M(XT) — 1. Therefore M(T)* also has a topological left
invariant mean by a topological analogue (separately continuous
version) of Day's well-known criterion for amenability of (discrete)
subsemigroups (Day [1] and Wong [14, Theorem 4.1]).

Conversely, suppose M(T)* has a topological left invariant mean.
Then there is a net va in M0(T) such that ||τ*yα — va\\ —>0 for each
τeM0(T). Let μa be the unique measure in M0(T) with μa(T') = 0
and μalτ = yα. Suppose now veikfo(S) has compact support. We
claim that ||z;*μα — μ«|| —> 0. By (*), given 0 < ε < 1, there is some
μeM0(S) with compact support such that
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μ(T) > 1 - ε and v*μ(T) > 1 - ε

(i.e., μ(T) < e and v*μ(T') < ε).
Now apply Lemma 3.3 (1) to the measures τ = μτ and (v*μ)τ,

there is some a0 such that if a ^ a0

\\μτ*K - v«\\ < 2ε
and

\\(v*μ)τ*va - %>a\\< 2ε .

By Lemma 3.2, if a Ξ> a0

\\μ*μa - μa\\ ^ \\μτ*μalτ - μalτ\\ + 2ε

^ l|j«r*^« - ^11 + 2ε ^ 4 ε
and similarly

||(^*i«)*jMα - μa\\ S \\{v*μ)τ*μa\τ - μ*\τ\\

^ \\(v*μ)τ*v« ~ ^11 + 2ε

^ 4 ε .

Consequently,

\\»*μ« ~ ^11
^ | |v*^α - i>*(μ*μa)\\ + ||(v*i")*i"β ~ μa\\

^ I l i " * ^ - ^11 + ||(v*^)*Aίβ - μa\\

^ 8ε if a ^ α 0 .

Therefore S is topological left amenable and this completes the
proof.

REMARKS. Theorem 3.4 is an extension of Wong [10, Theorem
3.2, p. 233].

4* Uniform strong topological left amenability* It is quite
natural to ask whether MitchelPs second result has also an analogue
for uniform strong topological left amenability. To answer this in
affirmative, we need the following concept of left lumpiness first
introduced by Day [4] for a Borel subset T in & (not necessarily a
subsemigroup):

(LL) For each KaS compact, there is some

seS such that KsaT .

Like MitehelPs concept of left thickness, there is no loss of
generality here in assuming that se T. Thus we have the follow-
ing string of implications

(LI) ~ (LL) = > (TLS) ==> (TLT) ==> (*) ==> (TLL) = > (LT)
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with {LI) which stands for left ideal being the strongest and
MitchelΓs (LT) the weakest of all these conditions.

THEOREM 4.1. Let T be a locally compact Borel subsemigroup
of a locally compact semigroup S. Consider the following statements:

(a) S is uniform strong topological left amenable
(b) T is uniform strong topological left amenable.
If T satisfies (*), then (a) implies (b). // T is left lumpy, then

(a) and (b) are equivalent.

Proof. Suppose T satisfies (*) and S is uniform strong topo-
logical left amenable. Then by Theorem 3.1, there is a topological
left invariant mean M such that M{XT) = 1. By [11, Lemma 3.1, p.
296, (separately continuous version, same proof)], we can assume
that there is a net μaeM0{S) such that for each compact set KaS,
\\μ*μa — μa\\ -» 0 uniformly for μeM0{S) with μ{K) = 1 and that
μa->M weak* in Λf(S)**. Define τa and va as in the proof of
Lemma 3.1 above and let θaeM{T) be defined by

[gdθa = [g'dva, geC0{T)

where g\s) = g(s) if s e T and g'(s) = 0 if s <£ T. Then θa = valτ e
M0(T). (See Wong [9] and [14, Lemma 3.1] (separately continuous
versions).) Now let Fa T be compact and veM0(T) with v(F) = 1.
Then there is a unique μeM0(S) with μ{T')^§ and μ\τ = v. Clearly
μ(F) = 1. Since μ(T) = 0, va(T) = 0, we have

| | V * 0 α ~ θa\\ = \\μτ*Va{T ~ Va\τ\\ = \\(μ*Va ~ »a)\τ\\

= \\μ*v« - »a\\

^ \\μ*va - μ * μ a \ \ + \\μ*μa - μa\\ + \\μa - va\\ .

Now \\μa — va\\ —> 0 and \\μ\\ = 1, this last sum tends to zero uni-
formly for VGMO(JΓ) with v(F) = 1. Hence (a) implies (b).

If T satisfies (LL) which is stronger than (*), then (a) certainly
implies (b). Conversely, suppose T is uniform strong topological
left amenable. Let vaeM0(T) be such that for any FdT compact,
||v*vα — va\\ — 0̂ uniformly for veM0(T) with v{F) = 1. Let μa be
the unique measure in M0(S) such that μa]τ = vaf and μa(T') = 0.
We claim that the net μα converges strongly to topological left
in variance uniformly on compacta in S. Let KczS be compact.
By (LL), there is some aeT such that Ka c Γ. Then F = KaU
{a} is a compact subset of T. Given ε > 0, there is some cc0 depend-
ing on (ε, F) such that

li<5ί*vα — va\\ < ε if a ^ a0 and teKa U {̂ } .
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Therefore for any a ^ a0, keK, we have ka e Ka and

\\δk*μa - μa\\

^ \\8h*μa ~ δk*da*μa\\ + \\δka*μa - μa\\

^ \\δa*μa- μa\\ + \\δka*μa - μa\\

= \\δa*va - va\\ + \\δka*va - va\\ < 2ε .

This implies that S is uniform strong topological left amenable
(See Day [4, (lsau) <=> (W) pp. 88-89].) and the proof is complete.

If the semigroup S is jointly continuous, then the result can
be partially strengthened.

THEOREM 4.2. Let T be a closed topological left thick subsemi-
group of a jointly continuous semigroup S. Then T is uniform
strong topological left amenable iff S is.

Proof Since T is closed, T is necessarily locally compact Borel.
Sufficiency is clear by Theorem 4.1. On the other hand, if T is
uniform strong topological left amenable, there is a net vaeMQ(T)
such that for each compact FaT, \\v*va — va\\ —> 0 uniformly for
all veM0(T) with v(F) = 1. Again let μaeM0(S) satisfy μa(T') = 0
and μa]τ = va. We claim that μa converges strongly to topological
left in variance uniformly on compacta. Let KaS be compact and
0 < ε < 1. By (TLT), there is some μίeM0(S) with compact support
ζ c S such that μt(T) > 1 - ε and μ*μx(T) > 1 - ε for all μ e MQ(S)
with μ(K) = 1. Since T is closed and S is jointly continuous, both
Fx = Kt Π T and F2 = K2 Π T where K2 = KKX are compact subsets
of T. So is F = Fλ U F2. By Lemma 3.3 (2), there is some a0,
depending on (ε, F) such that for any τeM+(T) with τ(T\E) = 0
and 1 - ε < r(Γ) = | | r | | ^ 1, we have

\\τ*»a - K\\ < 2ε if a ^ a0 .

Now apply this to the measures r = μ1[τ and (μ*μdτ where
μ e JlfoGS), ̂ W = 1- We have

1 ^ μllτ(T) = μ,{T) > 1 - ε

and

μllτ(T\F) = μι{T\F) £ μ1(T\FJ - μ,(T Π Kl) <* μ^Kl) = 0 ,

since support μί = Zi.
Similarly,

1 ^ (μ*μMT) = Λ*A(Γ) > 1 - ε

and
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= μ*μ1(T Π K^) ^ μ*

= 0,

since

μ*μx(K2) = \ί\ίζKKl(xy)dμ(x)dμ1(y) = 1 .

Hence by Lemma 3.3 (2),

\\μ1]τ*va — va\\ <2ε

and

"i)r*y« — v«II < 2ε for all a ^ a0, μeM0(S) with μ(K) = 1 .

Consequently, for all a ^ a0, μeM0(S), μ(K) = 1, we have

\\μ*μ«- μ«\\

= \\μ*μa - μ*(μi*μa)\\ + \\{μ*μd*μa - μa\\

^ \\μi*μΛ - μa\\ + 11^*^)*^ - μ«ll

^ Ilj"nr*^« - ^11 + \\(μ*μi)τ*va - ^11 + 4ε ^ 8ε ,

by Lemma 3.2 and above. This completes the proof.

5* Pointwise strong left amenability* As mentioned in Day
[4], an analogue of Theorem 1.1 is still needed for left amenable
locally compact semigroups which characterizes those subsets on
which some left invariant mean can be concentrated. He also
remarked without proof that to obtain a left invariant mean which
concentrates on a Borel subset T, under the assumption that T
is left thick, would require something like left amenability of S
regarded as a discrete semigroup which is not a common property
of left amenable locally compact semigroups.

In this section, we shall first show that if S is left amenable
as a discrete semigroup, then S is left amenable as a locally compact
semigroup and then supply a proof of Day's remark, using an
elegant application of the fixed point property for left amenable
discrete semigroups. Also we shall obtain an analogue of Mitchell's
second result (Theorem 1.2).

THEOREM 5.1. Let S be a locally compact semigroup which is
left amenable as a discrete semigroup, then S is left amenable. In
this case, if T is a Borel subset of S, then the following statements
are equivalent:
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(1) There is a left invariant mean M on M(S)* such that
M(XT) = 1.

( 2 ) T is left thick.
(3) There is a left invariant mean m on m(S) such that

m(ξτ) = 1.

Proof. Suppose S is left amenable as a discrete semigroup.
Let φ\ BM(S) —> Af(S)* be the natural embedding of the bounded
Borel measurable functions BM(S) into M(S)* defined by φ(f)(μ) =
\fdμ, μeM(S). It is known that φ is an order preserving isometric

isomorphism (into) which commutes with left translations and φ(ϊ) ~
1. Let m be a left invariant mean on m(S) and n its restriction
to BM(S). Then n is left invariant on BM(S). Let K be the set
of means N on M(S)* which extends n. (In other words φ*(N) —
n.) By Hahn-Banach Extension Theorem, K Φ φ. (A mean M on
Λf(S)* can be defined equivalents as Λf(l) = ||Λf || = 1.) K is a
compact convex subset of the separated locally convex space M(S)**
with the weak* topology. Moreover, if aeS and NeK, then
l*NeK where la; M(S)* -»M(S)* is the left translation operator in
M(8)* defined by laF = δa © F. Therefore the map (s, N) -> ίfiV is
an action of S as continuous aίfine maps in K. By Day's Fixed
Point Theorem (Day [2, Theorem 1] or Mitchell [7, Theorem 5]),
this action has a fixed point N which is a left invariant mean on
M(S)* (extending n). By Day [4, Theorem, p. 91], (1) implies (2)
which is equivalent to (3) by Mitchell [7, Theorem 7, p. 257]. It
remains to show that (3) implies (1). This however follows from
the above arguments since we can assume in the definition of K,
the mean n to satisfy n(ξτ) = 1, then any fixed point N has the
property that N(XT) = 1 because <p(ζτ) = lτ. This completes the
proof.

REMARKS. Theorem 5.1 is an analogue of a result in Wong
[11, Theorem 5.2, p. 301] for locally compact groups.

THEOREM 5.2. Let T be a locally compact Borel subsemigroup
of a locally compact semigroup S. If T satisfies (TLL), then T is
left amenable iffS is.

Proof. Suppose S is left amenable and T satisfies {TLL).
Then there is a left invariant mean M on M(S)* such that M(XT) —
1 by Day [4, Theorem, p. 91]. Hence M(T)* also has a left
invariant mean (Wong [14, Theorem 4.2, separately continuous
version]).
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Conversely, suppose T is left amenable, and va is a net in
M0(T) such that H ^ * ^ - va\\->0 for each te T. Let μaeM0(S) be
such that μa(T) = 0 and μalτ = va. Since T satisfies (TLL), T is
left thick. For seS, there is some teT such that st e T. Con-
sequently

\\δs*μa - μa\\

^ \\δ.*δt*μa - δs*μa\\ + \\δ.t*μa - μa\\

£ \\δt*μa- μa\\ + \\δat*μa- μα\\

Hence S is left amenable.

6* Some examples•

(1) Let S = iϋ be the real numbers under addition and usual
topology. Then S is a locally compact abelian group. S is amena-
ble in every sense we have considered. Let T be either [0, oo) or
(0, oo), then T is a locally compact Borel subsemigroup of S which
is clearly left lumpy in S. Therefore by Theorem 4.1, T is uniform
strong topological left amenable.

(2) Let S be a compact semigroup with identity. Suppose
CB(S), the continuous bounded functions on S has a left invariant
mean. By DeLeeuw and Glicksberg [5, Lemma 2.8, p. 70], S has a
unique minimal right ideal, the kernel K(S) of S which is a disjoint
union of minimal left ideals of S that are compact topological
groups. Let T be any one of these. Then T is left lumpy. Being
a compact group, T is uniform strong topological left amenable.
By Theorem 4.1, so is S. On the other hand if M(S)* has a left
invariant mean, so does CB(S) by restriction. It follows that for
compact semigroups with identity, uniform strong topological left
amenability, the existence of topological left invariant mean or left
invariant mean on M(S)* or CB(S) are all equivalent. [Note that
the restriction of the natural embedding φ: BM{S)-*M(S)* to CB(S)
commutes (besides with left translations) also with left convolutions:
φ(μ®f) = μ®φ(f) ^ feCB(S) and μeM(S), while if feBM(S)
and μeM(S), μ®f need not be in BM(S) but is in GL(S), the
generalized functions on S (See Wong [13] for details).] In fact,
we can show that any left invariant mean m on CB(S) is always
topological left invariant. For with notations as above, let v be
the normalised left Haar measure in T. Again by [5, Lemma 2.8,

p. 70], m(/) = \f\τdv, f e CB(S). Let μ e M0(S) be such that μ(T') =
0 and μιτ = v. By Wong [9, Lemma 3.3, p. 129], dα*μ = μ for all
α G T. Since T is a left ideal in S, δs*μ = μ for all seS. It follows
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that τ*μ = μ for all τ e M0(S). Moreover m(τ ®f)=[(τ® f)Tdv =

U ® fdμ = ί/dτ*μ = ^/dμ = J/IΓcfe> = m(/) for any τeM0(S) and

m is topological left invariant. [Recall that τ ® f(x) = \

for /eOB(S), τeikΓ(S).]

Addendum* After the submission of the present paper, we
have been informed by M.M. Day that in general the measure μ in
condition (*) can be chosen such that μ(T) = 1 and that as a con-
sequence, topological left lumpiness is equivalent to condition (*).
This latter result was also communicated to us independently by
H. Junghenn.

M. M. Day also claims that if a Borel subset T is topological
left substantial, then T~ is left lumpy and as a consequence, these
two concepts coincide for closed sets.
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