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ON A THEOREM OF HAYMAN CONCERNING THE
DERIVATIVE OF A FUNCTION OF
BOUNDED CHARACTERISTIC

PATRICK AHERN

W. Hayman [On Nevanlinna’s second theorem and exten-
sions, Rend. Circ. Mat. Palermo, Ser. II, II (1953).] has
given sufficient conditions on a function, f, of bounded
characteristic in the unit disc, in order that f’ also have
bounded characteristic. In this paper it is shown that one
of these conditions is also necessary for the conclusion of
the theorem to hold.

Let U be the open unit disc in the complex plane and let T be
its boundary. It is well known that there are functions f, that are
bounded and holomorphic in U, such that /"¢ N(U). Here N(U) is
the Nevanlinna class. In fact, O. Frostman, [1, Théoreme IX], has
shown that there are Blaschke products with some degree of “smooth-
ness” whose derivatives fail to lie in N(U). More precisely, he
shows that there is a Blaschke product B, whose zeros {a,} satisfy
the condition,

ST —la) < e, forall a >%,

but B'¢ N(U). In Frostman’s example, every point of T is a limit
point of the sequence {a,}.

W. Hayman, [2, Theorem IV], has proved a result in the positive
direction. A function f, that is holomorphic in a bounded domain D,
is said to be of order K if, for every complex number a, the number
of solutions of the equation, f(2) = a, that are at a distance of at
least ¢ from the boundary of D is at most Cs ™%, for some constant
C. C may depend on a but not on e. We say f has finite order if
it has order K for some K. Now let D be a bounded open set such
that US D, and let DN T = U, 1., where I, = {”: a0, < 6 < B.,}.

THEOREM A (Hayman). Suppose that

(i) (@ 2.(B.—a,)=2rx
() 2 (Bn — a,)log 1/(B, — a,) < oo.
(ii) there are constants ¢, C > 0 such that if «a, < 6 < B, then

dist(e”, 0D) = &(|6 — a, |10 — B.])" .
(ili) f 18 holomorphic and of finite order in D and f e N(U).
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298 PATRICK AHERN
Then f*eNU) for k=1,2,8, ---.

The conditions (i)(a) and (i)(b) just mean that the set £ = T\U, 7,
is what is usually called a Carleson set.

In [4], P. Kennedy investigates the necessity of condition (i)(b).
He shows that if (i)(a) holds but

i & 1
* 1 C— ) )log ———— = oo,

then there is a bounded open set D 2U such that DN T = U, I, I, =
{¢: a, < 0 < B,}, and a function f that is bounded and holomorphic
in D such that f ¢ N(U). He observes that condition (*) does not
follow from the condition

1
n_“'nl —_— = oo,
;w 01)094/8

” ”

and writes that “there is still a gap between the positive information
given by Hayman’s theorem and the negative information” given by
his example.

In this note we close the gap by showing that condition (i)(b)
is the right one. Our example is a Blaschke product that retains
the same degree of smoothness as the one of Frostman’s example.

THEOREM. To each sequence of arcs {L}, I, = {¢: e, < 6 < B},
that satisfies (i)(a) but not (i)(b), there corresponds a Blaschke product,
B, whose zero sequence, {a,}, clusters only on T\U, I,, such that
B e NU) and >, 1 — [a,)* < = for all @ > 1/2. Moreover, there is
a bounded open set D, such that D2U, DNT = U, IL,, D satisfies
condition (i)(c) with C =2, and B extends to be bounded and of order
1 in D.

Proof. Lete, = B, — a,. We are assuming that >}, ¢, log (1/¢,) =
co. We may choose numbers 4,, 0 < 4, < 1, such that lim,. 6, = 0,
and >,0,¢,log 1/e, = <. Now define d, = &;’» and ¢, = (1 — d,)e™
and v, = (1 — d,)e**». Let B be the Blascke product whose zeros are
{e.} U {v.}. The zeros of B cluster only on the set £ = T\U., I, so
B is holomorphic on I, for every n. We calculate that

1—107&[2 + 1_17n12 }
(z —e)1 —C,2) » (2 — 7)1 — 7,2)
so that when e’ eI, we get

R@:MM;

eB(e) = Be{z Lol o 5 Lol

% [eiﬁ_ckP % (eiﬂ___;),klZ
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If B’ were in N(U) it would follow that

> SI log* (Z —l.—il—@ﬁ)dﬁ < oo

) T
Now,
¢ — o, = (L= le, ) + 4], sin (L% )
=d. + (0 —a,)
and hence

1 et o d
lew..._cnlz o dfv + (0 - a’n)z

If ¢?¢1,, then

10g+<2 iﬂ) > log (Z 1—lef >

A }eiﬂ_ck12 % ]eio__ckl2
d,

1_—[670! > .
di, + 0 —a,)

|ei0 m0”|2 -

W%

log log

So we see that

3, e (3 ) 2 B, tor e

P e — e, di + (0 —a,)
a
= Sve,lo “
T gdi+si

Since 4, < 1, we see that d, = ¢2"» < ¢, (assuming ¢, < 1), so

d d 1 1 1
log —=2— = log == =1 =log = + 4,10 .
B e = s T T %3 &
Hence,
ZS 10g+ {Z-l—_]—%—i—g—}d(? g?ﬂlog—]-“— -+ Zéﬁenlog_l_ = oo ,
e T 2 = :

So B'¢ N(U). Also we see that

S = Ja, ) =23 ds = S el et < o

if @ > 1/2 because (2 — 4,)a = 1 for all sufficiently large n.
It remains to construct the domain D. We have the inequality,
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) . 1— |of Sall /1
Bre?) =1 — (1 — 2
| B(re”)[* = ( 7){; |1 — 1rec, 2 i |1"7'6i07k!2}
Zl—~4(1—7'2> Z 1—|Ck‘2 2—}-2 1—[7k|22 .
k f’hei”-— 1 Folpeit ~ 1
& A

(We may assume |¢,| = 1/2, |7, = 1/2.)
Now suppose @, =0 = (a, + £,)/2 and [z]| < 1, then

Brenkz1 - T30~ o) + A - %)
So, |B(re“)* = 1/4 if

1 —_ "'2 < i 1 — C
[re” — et 16 3, (L —~ [ef) + 1 — 719
Note that C is independent of 6 and ». Similarly we see that if
(@, + B.)2 <0 < B, and
L—s 3 1 _
[re' — e [* 16 ;(1 —lel) + 2@ — (7))

A

’

then |B(re)|* = 1/4. We may calculate that, for C > 0,

{1-3“: L= C} = {re?: |re’ — pe*| > 1 — o},
],rezﬂ — ezl !2

where o = C/(1 + C).
So, if

Ao ={re?ir =1, @, <0 < B,, |16’ — pe'*»| >1 —p,
and |re’’ — pe't»| > 1 — p} and 4 = U, 4, , then |B(z)|
=>1/2,ze4.

Now for |z| > 1, B(z) = 1/B(1/z), so |B(z)| <2 if 1/ze 4. Assuming,
as we may, that C <1, we see that I', = {z:1/z¢€4,} = {z:|z| =1,
|z 4+ 6en| < 1 +06 and [z + de'»| < 1 + 6}, where & = C/(1L — C).
Finally, if welet &2 =U U U, I, then ¢ is an open set and | B(z)| < 2
for ze 2.

Now we define a function

0 — a0 — B, if a, <60 <pB, for some n

A (0) =
p0) 0 otherwise .

We check that +'(0) exists for all # and that there is a constant K
such that
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Wf’(‘%) — %”’(02” = Klﬁl - 02] .

(See [4, Lemma 1] for a similar ealculation.) For & > 0 we define
D, = {re’’: r < e¥'?}. Then D, satisfies condition (ii). of Theorem A
with C =2. (Again, see [4, Lemma 2], for a similar calculation.)
Also, it is not hard to that D, £ ¢ for all sufficiently small ¢ > 0.
So we fix some ¢ > 0 such that D. & ¢ and let D = D.. Since D&
¢, B is bounded in D. It remains to show that B has order 1 in D.
Let @: D—U be a conformal map. Since - satisfies a Lipschitz
condition it follows from a theorem of Kellogg [3], that ¢’ extends
to be continuous and nonvanishing on D. From this we can conclude
that there is a 6 > 0 such that 1 — |9(2)| = d dist (¢, 0D) for all z e D.
Fix aeC and let f = B — a and let {a,} be the zero sequence of f.
Then {p(a,)} is the zero sequence of the bounded function fo@™ so
S (1 — |@(a,)]) < o and hence 3, dist(a,, D) < «=. From this we
may conclude that B has order 1 in D.

As a final remark we point out that we may choose the arecs I,
in such a way that E = T\U. I, is a countable set with only one
limit point, and such that (i)(b) fails. If we apply the theorem to
this situation we get a Blaschke product B whose zeros converge to
a single point such that B’¢ N(U), while the zeros sequence, {a,},
satisfies >, (1 — |a,)* < e for all a > 1/2.
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FINITENESS OF LOWER SPECTRA OF A CLASS
OF HIGHER ORDER ELLIPTIC OPERATORS

W. ALLEGRETTO

Finiteness criteria are established for the lower
spectrum of a class of higher order elliplic operators. The
results are obtained by the introduction and consideration
of a suitable second order operator. Examples are given
to show that the method can yield optimal results.

Let G denote a domain of Euclidean m-space E™. We always
consider the topology of one point compactification of E™, so that
if G is unbounded, then oo is a point of 4G, the boundary of G.
This note deals with the spectrum of the Friedrich’s extension L
of the operation < defined on Cy(G) by:

(1) U = (—=1)"4"u — qu .

Here we denote by 4" the n-times iterated Laplacian and we assume
that ¢ is a real function defined in G.

In the case » = 1 there is a well known connection between the
spectrum S(L) of L and its oscillation properties, [1], [2], [6], [7], [8].
Basically, it is shown that, under suitable regularity conditions, the
oscillation constant of L is the least point p of the essential spectrum
of L and that (—o, £) A S(L) is finite iff L — g is nonoscillatory.
It is our purpose to obtain conditions, based on oscillation theory,
which guarantee that (— o, d) A S(I.) is a finite set, where § is a
constant which is assumed hereafter to be zero. We observe that,
given the monotonic dependence of the least eigenvalue as a domain
function, the same proof as in [6], for the case » = 1, shows that
if L is oscillatory then (—oo, 0) A S(L) is infinite. It does not
appear known, however, whether there is a higher order version of
the arguments used in [7] to show that if L is nonoscillatory then
(— o0, 0) A S(L) is finite. This observation is the main reason behind
our attempt to relate L to a second order operator.

Basieally, our method consists in introducing a second order
expression 4, related to ~ and in then obtaining finiteness conditions
for (— 0, 0) A S(I.) by examining the nonoscillation properties of /.
It may intuitively appear that the introduction of a second order
expression implies that the results obtainable in this way are not
optimal. This indeed can happen, but we show by example that
our method may yield best possible results in the sense that the
constants appearing in the expressions can not be improved.

After some preliminary results we shall consider (1) only for

303



304 W. ALLEGRETTO

the case n = 2, and merely indicate how the formulas are to be
modified for the cases n > 2. We do this because our method
remains unchanged in the general case, while the expressions
involved can become quite lengthy and complicated (depending on
n, m, @).

We now state our assumptions on - We shall assume that:

(1) qeCp. (i.e., g is locally Holder continuous) in a neighbor-
hood of 0G and q e Li.(G);

(ii) < is bounded below on C;(G) so that L is well defined.
Consider a real second order elliptic expression ¢ given by

/1’11/ = _Z Dz(aiiju> ’

with a,; = a;,. We shall say that ~ is admissible iff the following
condition is satisfied:

(iii) if G, is any bounded smooth subdomain of G with G,cG
and o ¢ L”(0G,), then the form B(u, v) given by:

Blu, v) — SC (S a, DD, — qui) + S ouv
on C'(G,) gives rise, by extension, to a self-adjoint operator in L*G))
with finite negative spectrum.

Explicit conditions on ¢, a,; which are sufficient in special cases
for (ii), (iii) to hold may be found in [9], [11]. We observe that
our assumptions allow the possibility that ¢ become singular on
parts of (possibly all of) 0G.

We also recall the following definition of nonoscillation at oG
(see [1]); The operator L (or the expression /) is nonoscillatory at
oG iff there exists a neighborhood N of oG (i.e., N is open in E™U
{eo} and 0GC N) such that if F is a bounded domain in N A G then
(—eo, 0] A S(L(F)) =¢. Here L(F) denotes the extension of ~
defined on Cy(F'). The definition of L oscillatory at parts of 4G is
analogous.

Finally, we shall say that G satisfies condition (A) iff: there
exists a family of nested bounded smooth closed surfaces {S,};, and
associated domains {G{} (j > i) such that: GIcG, Gi=S,US,,
J=1+1 -+, =, {U . G}io, is a deleted neighborhood base of oG
(in the induced topology on G). Condition (A) is usually satisfied by
the regular domains considered in oscillation theory.

THEOREM 1. Assume that G satisfies condition (A) and that
there exists an admissible second order expression 4 with C” coef-
ficients such that:
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for all ¢ e CY(G@). Assume further that 4 — q is monoscillatory at
0G. Then S(L) N (—e,0) 15 a finite set.

Proof. Since 4 — q is nonoscillatory at oG, it follows from our
assumptions that there exists a positive solution v of (4, — v =0
in a neighborhood N of 0G. A suitable form B, as given in (iii),
may then be constructed using v so that if ¢¢ Cy(G) is perpendicular
(in L? to a finite dimensional subspace (determined by B) of L* we
then have:

(¢y /17 ¢) - (q¢r ¢) g 0 .

Detailed proofs of the above statements follow by trivially modifying
the arguments given in [6 — 9]. The conclusion now follows from
inequality (2) and the spectral theorem.

We remark that if G is an exterior domain with smooth boundary
then Theorem 1 remains valid if “nonoscillatory at <" is substituted
for “nonoscillatory at 0G”. Furthermore it is now sufficient that
qgeC%, near . In the definition of admissible we substitute here
for the form B of (iii) the form B’ defined on {u|ucCYG A {|x| < R)),
% = 0 near G — {<o}} by:

B'(u, v) = S 3 a;;DuD;v — quv} + S - ouv .

GAlle! <R} fwl=

The proof of this remark is essentially identical to that of
Theorem 1. We remark that an essential requirement is that < be
an isolated point of 6G. Analogous results are possible for problems
on bounded domains G with singularities on isolated parts of 4G.

COROLLARY 1. Assume that for some function w > 0, we C*(G)
we have (¢, (—1)" 74" 'g) = (wg, ¢) for all ¢ € C3(G@), and let 4 denote
the expression: 4 = — >, Di(wD,g). If 4 is admissible and 4 — q
18 monmoscillatory at 0G then S(L) N\ (—=,0) is a finite set.

COROLLARY 2. Let G be contained in an exterior domain. Then
there exists constant C, a, 8 (which depend on m, m) such that for
any ¢e€C(G) we have (¢, (—1)" 4" ) = (we, ¢), where w =
Clz|*(sn|x|).

The proof of Corollary 1 is immediate from the observation:

6, (~1°4%9) = 3, (Dig, (~ 174" Dig) 2 3, (wDis, Dig)

Corollary 2 is a summary of results found in [3], [4] where explicit,
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but often lengthy, expressions are given for suitable C, a, 8 in
terms of n, m.

The general operator L may now be considered by using
Corollaries 1 and 2. As mentioned above, however, we proceed by
explicitly considering only the case n = 2, and by showing that in
this case Theorem 1 can lead to optimal results. We do this by
first obtaining a lemma which gives better results than those
obtainable from Corollaries 1 and 2.

LEMMA 1. Let G be an exterior domain, m > 4 and let ¢ € C3(G).
It follows that:

(3) (9, 49) =z 2| Lo 5 (D)
El

Proof. We adopt the procedure used in [3], [10] for similar
estimates. Let Y, denote a system of complete orthonormal spherical
harmonies and let k& = k(4) denote the order of Y,. For a given
e Cyr(G) we set f;, = S¢¢Yidw where @ is the full range of the
angular variables and dw denotes the angular component of the
volume element in polar coordinates. It follows that:

[agr = S| (s + DL BRI =B gy,

=0

and:

[ L5 @gr =51 0= + fr=ktle + m — 2)ar .

=0
Consequently, (8) will be satisfied if we can show that for all k:

Swrmﬂ(f,, L m =D e+ m = 2)f>2

r v

(4)

0

= 722 Sw{?'"‘“s(f VA k(e + m— 2))dr

[
where we have set f, = f. We first expand and integrate by parts
the left hand side of (4) and then estimate the (f"')* term by Formula
(9) of [5, p. 83]. This procedure shows that for (4) to hold it is
sufficient that:

(5) [Tl + mo—2) 4

% f{iﬂmm—2>2+k<k+m—2><2m—8-_%5)]} 0.

v
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Estimating the (f’)* term by the results of [3] reduces (5) to showing
that, for each possible value of %, we have:

| £H{20e+ m—2) T kol m—2)+ ko +m—2)(2m—8— )]
>0.

But this inequality is easily seen to be valid by direct examination,
and the result follows.

We remark that if m < 4 the above procedure apparently leads
to worse constants than m?*/4.

To apply the lemma we first recall that, by [3], [10], the
operator L generated by

u = Mu — qu

in GC E™, m >4, is oscillatory (resp. nonoscillatory) if 16|z|*q¢ =
m*(m — 4)* + 6 (resp. < m*(m — 4)?) near infinity, where 6 > 0.

COROLLARY 3. Let n = 2, m > 4 and let G be an exterior domain
with smooth boundary. Assume that —47'>, D,(m*|x|*D,p) s
admissible and that for all |x| sufficiently large we have 16|x|*q(x) <
m*(m — 4):.  Then S(L) N\ (— <0, 0) is finite. Furthermore m*(m — 4)
1s the largest possible comstant.

Proof. By the remark following Theorem 1 and by Lemma 1
it is sufficient to show that the operator generated by:

49 = —47 X Di(m? |2 Dig) — 94

is nonoscillatory at {«}. Since 16|xz|*q(x) < m*(m — 4)* near co, this
is the case by the results in [3]. Finally that m*(m — 4)*is optimal
follows from the above remarks.

As another simple example where “optimal” results are obtained,
let us consider the case where G is the 1/2 plane in E* given by
2, > 0 and ¢ has singularities on =, = 0. In this case the analogue
of Corollary 3 is:

COROLLARY 4. Let —>,DJ((1/4x;)D,p) be admissible. Assume
Sfurther that mear 0G we have xiq(x) < 9/16. Then S(L) N (— o, 0)
is finite. Furthermore 9/16 is the optimal constant.

Proof. In this case we have (see [1])

¢ —d8) = (30:9)
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and it is therefore sufficient to show that the operator generated
by the expression:

-3 D] =D~ a9
i=1 43

is nonoscillatory at 0G. Again from [1] it follows that the condition
x3g(x) =< 9/16 is sufficient for nonoscillation at 0G. That this constant
is best possible follows from a separation of variables argument
which makes use of the observation that 9/16 is optimal in one
dimension (by a theorem of Leighton and Nehari [12, p. 143]).

In conclusion we remark that other second order nonoscillation
theorems (for example those involving integral and/or logarithmic
estimates, which are explicitly given in [1], [3], [4], [12]) could be
used in place of the simple criteria we employed. It is also evident
that other regions could be substituted for the exterior domains
and 1/2 plane case which we explicitly considered. By these means,
several variants of our results can easily be stated.

Finally, we note that the regularity requirement “qeC:.,” of
condition (1) can be modified. It is also sufficient, by the spectral
theorem, that the expression 4u + qu “majorize” (in the sense of
forms) a nonoscillating second order expression with regular
coefficients.
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SUPERHARMONIC INTERPOLATION IN
SUBSPACES OF C.(X)

L. AsiMmow

Let E be a closed subset of the compact Hausdorff
X and let A be a closed separating subspace of Cc(X). Let
o be a dominator (strictly positive, l.s.c.) defined on XX T, T
the unit circle in C. Conditions, formulated in terms of
boundary measures, are discussed for approximate and exact
solutions to the problem of finding o-dominated extensions
in A of functions gec(A|z)” satisfying retg (x)=p(z, t) on
EXT. Various interpolation theorems of Rudin-Carleson
type for superharmonic dominators are incorporated into
this framework.

We do not assume that A contains the constant functions. We
denote M(X) = C(X)*, the space of regular Borel measures on X.

We consider N = M(E) as situated in M(X) as the range of
the projection 7, ¢t = |, and denote the complementary projection
ot = ptlng. Thus (A|z)* is identified with the subspace A* N N in
M(X).

We call pe M(X) a boundary measure if |p¢| is maximal with
respect to the Choquet ordering as a measure of X (embedded by
evaluation) in the w* compact unit ball A¥. If 1€ A then this is
the same as |#¢| being maximal on the state space S,, as Xc S,, a
w* closed face of Af.

For brevity we denote the boundary measures by o,M(X), or
oM(X), if A is understood, and in general, adopt the convention of
writing 0,S for SNo,M(X). Thus, 0,A* refers to the boundary
measures annihilating A. The space A* is the quotient space
M(X)/A* and images under the quotient map are denoted /# for
peMX). A subset Sc M(X) is called A-stable if S = (3,8)".

We call E an interpolation set if Aly is closed in C(®). Gamelin
[8] shows that K is an interpolation set if and only if there is a
k; 0 <k < o, such that for each me 4+,

(1) lmm + A O N = kl|zm]] .

The best value of k is called the extension constant, e(4, E).

In [10] Roth introduces a general framework for interpolation
problems by means of a dominator, p, defined as a strictly positive
l.s.c. extended real-valued function on X x T (T the unit circle in
C). We let

U={feCX):retf (x)/o(x,t) <1 for all (x,t)e X x T}

311
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and write
1 flle = sup{retf(z)/o(z, t): (x, t)e X x T}

for the Minkowski functional of U. Thus ||f|, <1 if and only if
retf(x) < o(x, t), (%, t)e X X T. Then ||p¢|l,, pe M(X), refers to the
polar functional given by

| £ll, = sup{re(f, p): fe U} .

Since o is l.s.c and positive there is a constant ¢ such that || f|[,<
cl|f|| (the uniform norm corresponding to o = 1) and if p is bounded
above the two are equivalent.

We say FE is an approximate p-interpolation set for A if K is
an interpolation set and for each ge(Al;)” and & > 0 there is an
feA such that fl;, =9 and ||fl, <|lgll, + & We say E is an
exact p-interpolation set if f can be chosen with {|fll, = l[gll,- It
is shown in [5] that for bounded p, E is an approximate p-interpola-
tion set for A if and only if for each me 4+,

(2) lzm + A* N Nil, = || —mml], .

If, in addition, the image U of U° under the quotient map is
decomposable by N then E is an exact p-interpolation set. If there
is an 8, 0 =< s < 1, such that for each me A4+,

(3) lwm + A" N N, = sl —mm|l,

then the above holds and E is p-exact for A. Gamelin’s results
[8] can be phrased as follows: Let G be a compaet set in X\E
and let

1 for (z,t)e Ex T
o(G, k), t) = {k for (x,t)eG x T
1V k otherwise.

Then E is lan approximate o(G, k)-interpolation set for all such G
if and only if (1) holds and if, in addition, e(4, E) < 1 then E isan
exact p-interpolation set for any continuous T-invariant o such that
0>elA, E) on X x T. This was obtained in abstract form using
polar techniques by Ando [3].

In [6] Briem shows that if E is a subset of the Choquet
boundary, 0,X, then E is an interpolation set if and only if (1)
holds only for meco,A*. Further, if X is metrizable then (1) holds
for 9,A* if and only if E is an approximate p(G, k)-interpolation
set for each compact G C0,X\E. The A-stability of the unit ball
M(X) (Hustad’s theorem [9]) and of N = M(F) (since £ Cd,X) are
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essential here. If (1) holds for ¢(4, F) <1 (again, & is the smallest
k such that (1) holds for all medA*) then E is p(G, k) exact for
any GCc o, X\E and k> €.

If (1) holds for all med, A" with k = 0 this can be expressed as

(4) mco, At imples time 4 .

The set E is called an M-set if M(E) is A-stable and (4) holds. Roth
[10] shows that if E is an M-set and p is a bounded A-super-
harmonic (if 1€ A this means p(x,t) = Sp(-, t)dy for any pe MiH(X)
and 2 = xe X C 4}) dominator then E is an exact p-interpolation
set for A. This generalizes the Alfsen-Hirsberg theorem [2] which
deals with T-invariant o and Ecd,X.

In this note we consolidate these results by showing that for
E an interpolation set with M(E) A-stable and o A-superharmonic
then F is an approximate p-interpolation set if and only if (2) holds
for mead,A*. If in addition U is decomposable by N in A* then
the interpolation is exact. This is the case if o is bounded and (3)
holds for mea,A*. (If p is bounded and (2) or (3) holds then E is
already an interpolation set.) We give a measure theoretic condition
for the decomposability of U and show by means of simple examples
of A(K) spaces that exactness of interpolation can be deduced in
this way even though equality holds in (2) which, of ecourse,
precludes the use of (3).

1. Hustad-Roth stability theorems. Let A be a closed separat-
ing subspace of C(X). Define @:C(X)—-CX x T) by Of(x,t) =
tf(x). By separating we shall mean that the range of @|, separates
the points of X x T. This assumption can be avoided, as is shown
in Fuhr-Phelps [7], but at the expense of additional technicalities.
If yve M(X x T) then the Hustad map is given by

p=0e MX); () = | tfmdnie, 1) .

If @ = @], has range BC C(X x T) and vy is a maximal probability
measure on X X T'C B* representing I € B then Hustad’s theorem
says p = @*v belongs to 4, M(X), with ZZ = L = ¢*L. We combine
this with the following observations concerning T-invariant A-super-
harmonic dominators to obtain a general stability theorem due to
Roth [11].

Thus let p be a strictly positive l.s.c. extended real-valued
function on X such that for each z€ X and pe M;*(X) with fZi=z¢

A*, we have p(x) = S edy, that is, p is A-superharmonic. If U =
X
{f eC(X): reffo <1} then U° is a w* compact convex subset of the
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positive cone M+*(X), and we let U be the quotient image in A*.
Take R+ to be the one-point-compactification of R+ and

X, ={x,8eX X B:px) <s < + oo},
Y, = {(z, p(x)) € Xi: p(x) < oo},
Y. = {(x, o(®)) € X;: (&) = + o0} .

Since p is l.s.c., Y,U Y, and Y, are both G, subsets of X, so that
Y, is a Borel set. Define

P C(X) — C(Xo); vf(w, 5) = f(@)fs ,

and let 6 = 4|, with (not necessarily closed) range B C(X,). Since
o is strictly positive + is bounded and #* is one-to-one from B*
into 4*. Let

go: Xy — B*

be the evaluation map and let V = w* — cogy(X,).

PROPOSITION 1.1. Let p be a T-invariant A-superharmonic domi-
nator on X as above.

(1) ¢, is oneto-one on X\X X {=}), X X {=} = 4;(0), and
6*V = 1.

(2) If v is a mazimal probability measure on V then Y[éo( Yo) U
{0}]] =1 and v may be identified with the measure on Y, given by
Yog.

(8) If v is as in (2) and p = +*v then for any bounded Borel
Sunction h on X

[ pdee = | (@ip@anta, o)

In particular, pe U°.
(4) Let pye M"(X) with fl, = x,€ X C AF and define fi, € M(X,)
by

ASF) = (o) F, o@)odpa) .
Then for any bounded Borel function h on X

[, (@), 9 = Mo hdp .

In particular fi,=0, fi(X,) = fi(Y,) =1, and [, represents (x,, o(xy) €
V.

(5) If v is maximal on V then ¢ =*v is maximal on K =
coX C A*.
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Proof. (1) The separation theorem shows U= w*co{w/s: (x, 8) €
X,}. Now
% ogy(x, s) = x/s€ A*

so the rest of (1) follows from the fact that A separates points in
X. For (2) let p=1—X, on V and note that the lower envelope
0 is the Minkowski functional of V. Since v is maximal,

L= lfe: p(e) = pa)}] = (e p@) = 1 or 0}] .
Now A = 1 implies ¢,(x, As) = (1/N\)gy(2, 8), so that
S8 Y) U{0)] = 1.
If feC(X) then y™f) = | (F@)fshdv(, 5) = | (F@)lp@)du(a, o(@)

and so (3) holds.
(4): If Fe(C(X,) and 0 < F <1 then

0= A(F) = (Upe)| pdr = 1.

Thus fI, = 0, fZ,(X,) < 1 and pg[{x: p(x) = + }] =0. For F = «h,
AE) = | (@i, 9
= Wotw)| hdps, .

(5): Let f be a continupus convex function of K and denote the
upper envelope of f by f(K), where [1,1. 3.6]

FE) () = sup{pe(f): pre MF(X) and fi = x,e A*) .

If 9 =(fIx) then geC(X,) with g =0 on X X {eo}. If f£, = x, and
H, is asAin (4) then [, represents (z,, p(x,)) € V and the upper envel-
ope, §(V), satisfies

GV (s, p(20) Z sup{fi(@): fls = @} = (1/0(0))F (K)(x0)
by part (4). Thus, using part (3), and [1, I. 4.5],
|70 = rlap = | 17(K) = pljpav=| [67) — glas = o
since v is maximal. Hence, g is maximal on K.

We now consider the case where p is defined on X x T. We
say such a p is A-superharmonic if for each (z,t)e X X T and pe
M(X x T){ with



316 L. ASIMOW
' Swsﬂy)dp(y, s) = tf(x) for all fe A

we have o(z, t) = S odpe.
XXT

THEOREM 1.2 (Hustad-Roth). If o is an A-superharmonic domi-
nator then U° is A-stable.

Proof. Let 9:C(X)—->C(X x T); &f(x, t) = tf(x) and let
U'={FeCX x T):reF(z, t)/ox, t) < 1}

and ¢ = @|, with range B.

Let 7: (X x T)— C(X,); TF(x, t, s) = F(x, t)/s, where X, is the
closed epigraph of p in (XX T)xR+*. Now @UcCU* and ¢(ANT) =
BN U'. Given Le U, let Le(UY" cB* and L'e V (as in Proposi-
tion 1.1) with ¢*L’ = L and ¢*L = L. We have B} = w*co(X x T)
and the hypothesis says o on X X T is B-superharmonic. Hence
the results of Proposition 1.1 apply. Thus if »' is maximal on V
representing L’ then 1.1 (3) and (5) show vy = ¥*Y’ is maximal on
B representing L e(U!)". Then p=g¢*velU’ and f=LeU.
Furthermore, Hustad’s theorem shows g is a boundary measure.

If 1€ A then the condition for A-superharmonicity is somewhat
simpler.

PRrOPOSITION 1.8. If 1€ A them 0 is A-superharmonic if and
only if for each pe M (X) with fi = x,

o, t) = | o, .

Proof. If p is A-superharmonic and pge M,/(X) with £ =2z we
can embed X as X X {t} c X X T so that the measure p satisfies
|, sf@in = tf@)
xxT

and hence
o,z o odu = o, dp.

Conversely, if pge M, (X x T) and represents tx then, since 1€ A,
we have tcoX = tS,(S, the state space of A) is a face of AF. Hence
suppp C X X {t} and the measure p(f) = SXXT f(@)dp represents «
so that
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o, 2 | o, odm={_ odp.
X XxT

2. Dominated interpolation. If E is a compact subset of X
we let

M={feCX): fl,=0}

and denote M N A by E*. It is well known that E is an interpola-
tion set for A if and only if A + M is closed in C(X) and this in
turn is equivalent to N being w* (or norm) closed in A*. The
following characterization of approximate p-interpolation sets follows
from results in [5;4.2]. We denote N = M(E)cC M(X).

THEOREM 2.1. Let p be a (strictly posttive l.s.c) dominator on
X such that either p is bounded or E is an interpolation set. The
following are equivalent:

(i) E is an approximate p-interpolation set for A,

(ii) A+ M is closed in C(X) and

A+MNU+M)=ANTU+ M),

(i) UnN=(UNN),
(iv) g+ AN N, =g+ A*|, for all re N,
v) llmm + A* N N|l, £ || —zm||, for all me A*.

For xe A* we write ||z||, for the Minkowski functional of U
so that if /i =«

Nwlle =1l + Al

The set U’ is split, that is, [|¢|l, = [[mell, + [[7.pello [10, 5]

PROPOSITION 2.2. Let N and U° be A-stable sets in M(X).
Then for preod M(X),

(1) flg+ A = llp + a4, = lI2],,

(2) llg+ N+ A, = |[mpt + T0A™ |, (Tt = ),

(3) If HPHP = Hﬁ“ﬂ then

lmpelle = i@ lle (i =1,2).

Proof. If peoM(X) and |||, <» then pt = rv+m with ve U°
and me A*. The stability of U’ shows we can assume yvedU® so
that meoA*. Then (1) follows. If =1y + %+ with veolU",
nedN,{e A", then {e€dA* and mp =rry + nlern, U’ + w,0A".

Conversely, if wp = v + 7, vedlU’ {€o0A" then
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p=rv+ @p—nl)+ LerU’ + oN + 0A* .
For (3), we have

Imeelle = 1@l = llmpe + Arll, = {2t — Topt + Al
= llell, — lmape + A8l = llpelle — lmatelle = Hlmuells -

Since we do not assume le€ 4, we take the Choquet boundary,
0,X, to be X NextAF. There are two main instances where the
A-stability of N can be deduced.

ProprosITION 2.3. Let E be a closed subset of X such that
either

(a) EFcoX or

b) E=FnX, Fa w* closed face of A}.
Then N is A-stable.

Proof. In the case (a) each probability measure on K is maximal
and so the result follows since coE spans N. In case (b) each
maximal probability measure g with ZeccoE has its support on
(ext F')~ C K.

THEOREM 2.4. Let E be a closed subset of X such that either

(a) EcoX, or

(b) E=FnX, F a closed face of AF.
Let p be an A-superharmonic dominator such that eivther p 1is
bounded or E is an interpolation set. Then the following are equi-
valent:

(i) K is an approximate p-interpolation set,

(i) gt + A* N NI, = ||¢t + 84*]|, for all p2€aN,

(i) |lzm + At N N, < || —7ym||, for all medoA*.

Proof. The hypotheses imply that U° and N are A-stable and
so 2.2. (1) shows for peoM,

e+ Al = {lpe + 04" |, .

Thus (i) = (ii) « (iii) follows from 2.1. If (ii) holds and e Un N
then choose ¢ edN with 2 =2z and pe U’ + A*. Then

e+ A NN, =llpg+0A |, =lip+ A, =1

so that £ =v +m; ve U’ me A* N N. Hence ve N and fi=x=Ve
(U°N N)". Thus 2.1 (iii) holds and hence (i) is shown.

The exactness of p-interpolation is characterized by the sum
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ANU+ E-(E*+ the ideal of functions in C(X) vanishing on E)
being closed in A, a condition which is implied by the decompo-
sability of Uby N in A* [5; Theorem 3.2]. If FE is an interpolation
set (so that N if w* closed in A*) then U is said to be decomposable
by N if there is an a =1 such that each ze U is a convex combina-
tion of elements y,z with ye UNN,ze U and ||z]| < allz + N||
(dual uniform norm).

The condition for decomposability, and hence exact interpolation,
can be formulated in terms of representing measures in M(X). We
illustrate this for boundary measures in the case where p is super-
harmoniec.

THEOREM 2.5. Let E be a closed subset of X and A a closed
separating subspace such that either

(a) KFcoX, or

(b) E=FnX,F a closed face of A},
and let o be an A-superharmonic dominator such that either o 1is
bounded or E s an interpolation set.

If for each xe U there is a ped, U with i =« and

[|wopt + 0A* || = al|mopt + w0A" ||
(a a constant 1ndependent of () then E is an exact p-interpolation

set.)

Proof. Given we U choose a boundary measure p satisfying
g=ua, £l =gl and |7 + 04" || < allme + woA*||. Now
el = llmwpello + || 7optll, shows that p is a convex combination of
t,eU°N N and p,e U scalar multiples of ¢, mpt respectively.
Thus, ||g, + 0A*|| < a|/p, + 7,0A*|| and x is a convex combination
of ye(U'N N)" and ze U with (using 2.2 (1) and (2))

Hzll = llp + 0A || = a|[pts + THA" || = ||t + N + A*|]
=allz + NJ| .
This shows that (U°N N)> = UN N and that U is decomposable by
N. Therefore E is an exact p-interpolation set.

If E is an M-set then w,0A" C0A* so that
[|7opt + THAL || = || 7ot + 0A* ||

and the condition of 2.5 is automatically satisfied (for A-stable U°).
More generally, if U° and N are A- stable and, for some s <1

[lzym + A N N, < s||—7ym||, for all medA*
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then a computation based on [5; 4.8] shows the condition of Theorem
2.5 holds, so that E is an exact p-interpolation set.

COROLLARY 2.6. If E is an M-set for the closed separating
subspace A CC(X) then E is an exact p-interpolation set for A for
any A-superharmonic dominator .

Proof. If E is an M-set then N is the range of a projection in
A* so that E is an interpolation set for A. The conclusion then
follows from 2.5.

3. Examples. We illustrate the results of §2 with various
choices of p. First, let X be a compact metric space with E a
closed subset and M(E) A-stable for the closed separating subspace
AcC(X). Let G be the collection of compact subsets G o, X\E
and let p = o(G, k) be the dominator mentioned in the introduction.
Then (for k < <o)

(1) l|wm + A* N N|| £ k||z,m]|| for all meoA*

if and only if E is an approximate po(G, k)-interpolation set for all
GeZ. To see this we note that since G —d,X, U° is A-stable so
that the second property holds if and only if

(2) lzm + A* N N||, £ ||—nym||, for all medd-, G < .
It follows easily from [5;4.1] that if ¥ = X\(E N G) then
Heelle = Hletlell + Ellgtlell + AV E) [ el ]
so that
[|lmym + AN N|| = ||lzym + A" N N|,
and, since for boundary measures g, the metrizability of X gives
|LI(X\E) = | ¢](3.X\B) = sup{| ¢ (@): Ge Z},
we have
kllmm|| = sup{||mm|l,: 0 = o(G, k), Ge £}.

The equivalence of (1) and (2) is now immediate. If (1) holds for
ky <1 and k, < k <1 then for o = po(G, k)

llmm + A U N[, = |j[r;m + A* N N|| £ Ellmls]] + [[m]y]])
= (ko/B)Ellme|] + [Imly]]) = (kofk) [l mom ]|,
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so that F is an exact o(G, k)-interpolation set for A.

The study of sufficient conditions for the A-convex hull of F
to be a generalized peak set (we now assume 1€ A) has been shown
[4] to be related to an ordering on C,(X) and M(X) induced by
choosing P to be a closed proper convex cone with nonempty interior
in C. Let a, B be the generators (of modulus one) of the dual cone
P* = {z:1reaz = 0 for all a € P}. We denote by ¢ the element of P
such that reev =1 (v =a,8). If feCi(X) we say f = 0P) if
fX)CP and g = 0(P*) means y(B)e P* for all Borel sets BC X.
Then the function e = ¢ becomes an order unit for C(X) in which
the order unit norm |[|-||. (equivalent to the uniform norm) is given
by

lfort==v

o 8 = 1/c for t = + v, T=ap

where ¢ is a constant such that
cz| < |reaz| \V |reBz| .

This provides an example of a p which is not T-invariant.
Let p* and o~ be strictly positive l.s.c. functions on X and
take

ot(x) on X x {1}
o(x, 1) = {07(x) on X x {L1}
+ oo otherwise.

Then U={feCX): —p~ <ref <p*}. If peU° and f is real then
Mif € U for all real » so that

1 = rep(Nif) = — Mmp(f)

and hence imu(f) = 0. Thus g is a real measure and U°cC reM(X).

If A, is a real subspace of C(X) then we can apply the results
of §2 to the self-adjoint space A, + 74, = A. Then || f]|l, = ||refll,
and me A+ if and only if m = m, + im, with m,, m, real measures
in A'. Also m is a boundary measure if and only if m, m, are
boundary. Hence E is an approximate (exact) p-interpolation set
for A if and only if it is for A, = red, and the measure conditions
of §2 need only involve real measures in M(X). If X is a compact
convex subset of a locally convex space and A, = A(X) (real affine
continuous functions) then p is A-superharmonic if and only if
ot =(o*)" and o~ = (07)", that is, if and only if po* and p~ are
concave on X.

Let X be a square in R* with vertices denoted {1, 2, 3, 4} with
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E = {1, 2} diagonally opposite and 4, = A(X), p*, 0~ = 1. Then 04"
is a one-dimensional subspace of the four-dimensional space oM(X)
spanned by the point-masses {d,}i-,. A generator for dA* is m=é,+
0, — 0, — §,. Clearly A" N N = {0} since coF is a simplex and so

llmm + A* N N = [[zm]|| = [lzm]] .
This shows F is an approximate p-interpolation set for A(X).
Obviously E is in faet an exact interpolation set, but this cannot
be concluded from a condition such as (3) in the introduection.
Nevertheless, the condition of 2.5 holds, since if
u = I\,
then
el = 3]

and

N7t + TPA || = inf{| N — N + [N — A NER} = [N — Ny .
If »;, and )\, are opposite in sign then

7ot 4+ BA | S [mopell = ] + M) = N = Ng| = (| + mAA ]

If, say 0 < \; < )\,, consider v = ¢£ + \ym. Then U = ¢ and

ol = 21 = Nl = (Nl + Rl + 210D + [N = [N = (2]
and

T 4+ 0A* ]| S [T )] = M — Ny = ||t + TH0A* | .

We conclude with an example of an approximate interpolation
set which is not exact. Let X be the unit ball of the sequence
space ['(w* topology) and let p = 1. Then take A = ¢, the pre-dual
of I, so that ||all, = |lall. = sup{|a,|}- Let E be the singleton
{%, 20 =1/2", n=1,2,---. If (a,2)=1 then >.,a,/2"=1 so
that some a, must be greater than one. Clearly we can find such
an a with |la]] <1+ ¢ for any ¢ > 0. Thus E is an approximate,
but not exact, p-interpolation set.
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AN ANTI-OPEN MAPPING THEOREM FOR
FRECHET SPACES

STEVEN F. BELLENOT

It is well-known that completeness is necessary for the
usual open mapping theorem for Fréchet spaces. In contrast,
it is shown that, with the obvious exception of o, each
infinite-dimensional Fréchet space has another distinet com-
plete topology with the same continuous dual.

By a space or subspace, we mean an infinite-dimensional locally
convex Hausdorff topological vector space over either the real or the
complex scalars. Our notation generally follows Robertson and
Robertson [7]. In particular, X’ and o(X, X’) denote the continuous
dual and the weak topology on X, respectively. Denote by w (re-
spectively, ¢) the space formed by the product (respectively, direct
sum) of countably-many copies of the scalar field. We use ¢, [, and
I, to denote the Banach sequence spaces (with their usual norms)
of, respectively, null sequences, absolutely summable sequences and
bounded sequences.

Our main result can be stated as:

THEOREM. Fach Fréchet space (X, ) + @ has a topology %, so
that, o(X, X') < 9 < { and the space (X, ) is complete.

By the open mapping theorem, (X, 1) is a complete space which
is not barrelled. In Section one we prove the theorem for the special
cases of (X, () = ¢, (Case I) and (X, {) a nuclear space with a con-
tinuous norm (Case II). Then in Section two we reduce the theorem
to these special cases.

We will have ocecasion to use Grothendieck’s characterization of
the completion of the space (X, {) as the set of linear functionals on
X’ which are o¢(X’, X)-continuous on {-equicontinuous sets (see
Robertson and Robertson [7], p. 103). Berezanskii’s [4] (see also [2,
pp. 61-62]) notion of inductive semi-reflexivity is used in Case II.
In particular, complete nuclear spaces are inductive semi-reflexive,
and the topology constructed from {g,} in Case II is complete in any
induective semi-reflexive space. The only other fact used about nuclear
spaces is that their topology can be defined by means of (semi-)
inner products (see Case II and Schaefer [7] p. 103).

Perhaps it is worth pointing out, that there are always lots of
differently-defined complete topologies on each complete separable
space (see Bellenot [1], [2] and with Ostling [3]): the difficulty is in
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showing that these topologies are really different.

1. Two special cases. First we prove the theorem for the
following special cases:

Case 1. The Banach space ¢,: Let & be the norm topology on
¢, and let % be a free ultrafilter on the set of positive integers
(i.e., NZ = @). For each Ae%Z and K > 0 let

EA,K)={x=(@,)el: ||zl £ K and %, = 0 for each me A} .

Let » be the topology of uniform convergence of the collection of sets
{E(A, K)U{y"}: Ae Zz/, K > 0, {y*} a l;-norm-null-sequence} .

Since finite sets are 7-equicontinuous and each of the sets above are
&-equicontinuous, we have d(c, I,) <7 < &.

To see that n < & note that if 1y =¢ there would be a set
E(A, K) U {y"} whose polar is contained in the unit ball of ¢,. Since
y™ is a l-norm-null-sequence, there is an M, so that m = M implies
that |yn| <27, for each n. (Where y" is the sequence {y%},.) Since
7 is free, A must be infinite and there is a &k = M with ke A.
Consider x €¢,, the vector which is the zero sequence, except that
it is 2 in the kth position. Clearly « is not in the unit ball of ¢,
but it is the polar of E(4, K) U {y"}, a contradiction.

Consider X, the completion of (¢, 7), as a subspace of the alge-
braic dual of [,. Since each [,-norm-null-sequence is 7-equicontinuous,
X cl,. Suppose D is a subset of the positive integers with D¢ 7.
Then, since % is an ultrafilter, D¢, the complement of D, is an
element of %. Thus the 7-topology restricted to the subspace
{xec:xz, =0 if ne D} is the norm topology. It follows that for each
f = (f.) e X, the subsequence {f,: ne D} is a null-sequence, since f is
o(l;, ¢;)-continuous on E(D¢, 1). Let f = (f,) el, with A = {n:|f,| = 6}
infinite, for some 6 > 0. If A¢ Z, then f¢ X by the above, so
assume AeZ. Write A = BUC, a disjoint union of infinite sets,
one of them is not in %, and thus f¢X. Therefore X =¢, and
(¢o, ) is complete.

Case II. (X, %) is a nuclear Fréchet space with a continuous

norm: Let ||-|,=<1-|: < --- be a sequence of continuous norms
which define the &-topology on X. Since X is nuclear, we assume
that the unit ball of each || -||,.; is precompact in the norm || - ||, and

that each [|z|)2 = (x, z);, for some continuous inner product (-, ),
on X X. Let ||-]||; also represent (the possibly infinite-valued) dual
norm of ||-|; on X’. A sequence {a,} C X’ is called k-admissible if
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{llavis} is bounded and the semi-norm, p,(x) = sup, |a,(x)|, defined for
x e X, is stronger than ||-||;. That is, there is a constant K, with

(*) |z, < Kp,(x), for each zeX.

A nonincreasing null-sequence of positive reals {»,} is said to be
k-discriminating, if for each k-admissible sequence {a.},

lim sup || a, || At = oo .

Note that if {\,} is k-diseriminating and {z,} is another nonincreasing
null-sequence of positive reals so that lim, g, /x, = 0, then {g,} is also
k-discriminating.

First, we prove that for each %, there is a k-discriminating
sequence. To see this, let {¢,} © X be a sequence orthogonal in (- , -},
and orthonormal in (-, ->,. (The {e,} can be chosen inductively, by
picking e,., € (N ker £;) N (N7 ker g,), where f; and g, are the continuous
linear functionals given by f,(x) = e, x); and g,(x) = {e;, ), 1 =
1,2 ...7n.) Re-order {e,} so that the sequence {||¢,]|.}, is nondecreasing.
We claim that the sequence A, = 1/n||e,: ]|, is k-diseriminating. Suppose
not, then there is k-admissible {a,} with

**) lanlle < N

Let 6 = 27 K™, where K is the constant in (¥).

Inductively choose f, € X and an integer-valued function ¢, so that

(1) [|full: =1 and f, espanfe;: (n — 1) < j = n'};

(2) aup(fa) =0 for j < m; and

(8) latwm(fu)] = 0.
If f; and ¢(J) have been chosen for j < m, it is possible to choose f,
satisfying (1) and (2) since condition (2) puts » — 1 constraints on f,
and f, is chosen from a (2n — 1)-dimensional space. Thus by (*) we
can find a ¢(n) such that 27'|f,|, =27 < K|ai.(f.)|, i.e., that (8)
is satisfied.

Let A(n) ={j: (n — 1> < j < n’}and suppose f, = Dicam A:€;- Since
{e;} is orthonormal in <-, ->,, condition (1) implies >;c.,wm  a;]* = L.
But {¢;} is orthogonal in <., ->, hence

1/2
Walle=[ 3 tallledi [ = llewlle = nat.
Thus by condition (3), we have
***) 0 Zapm(f)] = bl I falle = v @G e -

On the other hand, condition (2) implies that ¢ is 1 — 1 and hence
¢(m) = n, infinitely often. Thus (**) implies [[@im !l = Ny = Ny
infinitely often. Combining with (***) yields



328 STEVEN F. BELLENOT

0<oEn™ NN, = 1 , for infinitely many =,

n

a contradiction.

For k =1, let {\f} be a k-discriminating. The sequence A, =
n ' min {\: j < n} is thus k-discriminating for each k¥ = 1. Let p, =
Nam+ns and let 1 be the topology of uniform convergence on sequences
{ar}C X’ with the property that there is an integer & and constant K
with ||a. || < Kp,. It is easy to check that o(X, X') <7 <é& Note
that if U is any &-neighborhood of the origin and if p,. is the gauge
functional of U-polar in X’, then there is an integer &k and a constant
K so that o’ € X’ implies ||a’||, < Kpop(a'). Thus by Bellenot [2, p.
62 and Th. 4.1, p. 64], » is a &rotor topology and (X, ) is complete.

To show that n < &, we will prove that ||-]|; is not »-continuous
on X. By Robertson and Robertson [7, p. 46], the %-neighborhoods
of the origin are polars of finite unions of the above sequences (as
sets of values in X'). (Note that it is possible for lim (p,./tt,) = o,
and so we must consider finite unions.) Suppose || - ||, is »-continuous,
then there is a finite number of sequences {b,.},, 1 <1 < J, used to
define 7, so that |||, < sup{|b,.(x): 1 <1 =Zj,n =12, .-} for each
xecX. Let &k and K be so that ||b, ]l < K, for 1 <7 < j and each
n. Let {a,} be a listing of values in X’ contained in the sequences
{br.}sy 1 <1 < 7, so that {||a.|l:} is nonincreasing. It follows that {a,}
is k-admissible. Since n > j =4 = 1 implies (n + 1)(n + 2) = nJ + 2,
and {\,} is noninereasing, XNinm+n = Apj+.  Thus if m = 7° + 7 + 1,

then m =nj -4 with » > j7=4>=1, and

amlle = Kty = Khinmin = Khp

Hence lim sup,.(||@nlli/*.) < o and sinece {\,} is k-discriminating, {a,}
is not k-admissible. This contradiction completes the proof of the
theorem for this case.

2. The general case. The following two lemmas are of a general
nature. The first lemma shows that completeness is a “three space
property” while the second is used often in the proof of the theorem.
The referee has pointed out that Lemma 1 is known, we include a
proof for completeness.

LEMMA 1. Let X be a space, Y a closed subspace of X and Z =
X/Y, the quotient. IfY and Z are complete, then X is complete.

Proof. Let ¢: X — Z be the quotietlt map and let j: X — X be
the injection of X into its completion X. Since Z is complete, ¢
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extends to a map ¢: X — Z so that ¢oj = ¢. Furthermore, since ¥
is complete, j(Y) is closed in X, and thus we can construct the
quotient W = X/j(Y) with quotient map v: X —W. Since ker 45 =Y,
there is a map 0: Z —»W so that 6op = 4oj: X —W. Thus fodoj =
4roj, but since j(X) is dense in X and since 60 and - are continuous,
we have 6op = . Therefore ¢ and thus j are surjective maps, so
that X is complete.

LEMMA 2. A Fréchet space X satisfies the conclusions of the
theorem if X has a closed subspace Y which satisfies the conclusions
of the theorem.

Proof. Let & be the topology on X with neighborhood basis of
the origin %Z. Let 7 be a topology on Y with o(Y, Y') <9 < &y
and so that the space (Y, %) is complete. Let 7° be the neighborhood
basis of the origin for (Y, 7). Let%? ={V+U: Ve 7, Uez}. It
is straightforward to check that % is a neighborhood basis of the
origin for a topology { on X with the properties:

(i) oX, X")=C<§,

(ii) {ly =7, and

(i) (X, /Y = (X, §/Y.

Thus by (ii), (iii) and Lemma 1, (X, {) is complete and by (i) it satisfies
the conclusion of the theorem.

Proof of the theorem. Let (X, &) be a Fréchet space = w. It
follows that ¢ is not the weak topology on X. First, we show there
is a separable closed subspace Y of X, so that &, restricted to Y has
a continuous norm. Since & is strictly stronger than ¢(X, X'), there
exists a continuous semi-norm on (X, &) which is not a linear com-
bination of semi-norms z — |[{x, 2’)| with 2'e X’, and thus from
Schaefer [8], corollary on p. 124 it follows that X has a continuous
semi-norm p so that the dimension of X/ker p is infinite. Let E be the
normed space X/ker o with p norm and let +: X — E be the quotient
map. Let {¢,} C E be a linearly independent sequence. Let {z,}cC X
be so that (zx,) = e,, and let ¥ be the closed linear span of {x,} in
(X, &). Since p O rawx) = p(3r aie;), for all scalar sequences {a}, +,
restricted to Y, is an isometry of Y with semi-norm p into a subspace
of E with norm p. Thus by Lemma 2, we assume that (X, &) is
separable and has a continuous norm.

Suppose (X, &) is a Banach space. In the notation of Bellenot
and Ostling [3], since X is separable and complete, we have & = &,.
Furthermore, Theorem 3.1 of that same paper shows (X, &) is
complete, where &, is the topology of uniform convergence on &-
equicontinuous ¢(X’, X)-null sequences. Clearly, o(X, X') < &w < &,
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and if &, < & then we are done. If &, = & and since (X, &) is a
Banach space, there must be a ¢(X’, X)-null sequence {a,} C X’, whose
polar in X is contained in the unit ball of X. It is easy to check
that the map, T: X — ¢, which sends 2 € X to the sequence {a,(x)} € ¢,
is an isomorphism of X onto a closed subspace of ¢,. (These results
are known, see the author [1].) A classical result of Banach (see
Lindenstrauss and Tzafriri [6, p. 53]) says that X must have a
subspace isomorphic to ¢,. An application of Lemma 2 and Case I
completes the proof if (X, £ is a Banach space.

If (X, &) is not a Banach space, then X is not a subspace of B w,
for any Banach space B. Thus a result of Bessaga, Pelezyhski and
Rolewicz [5] show that (X, &) has a nuclear subspace Y. Thus Case
II and Lemma 2 completes the proof of the theorem.

REMARKS. It is possible that the following statement is true:

(*) Each complete space (X, & with & +# (X, X’), has another com-
plete topology 7 with o(X, X') <7 < &.

There are three places in the proof of the theorem where
metrizability was used. The most subtle use of the metric was in
Lemma 2. If (X, &) is not Fréchet, it is possible that X/Y is not
complete (Schaefer [6, Ex. 11, p. 192]) and hence Lemma 1 cannot
be used to show (X, ¢) is complete. (The author thanks E. G. Ostling
for pointing this out to the author.) Thus it is possible that (*)
could be true for separable X, but false in general.

If (X, &) is separable and complete, then, as in the proof of the
theorem (X, &) is complete (see Bellenot and Ostling [3]). In this
case & = &, implies that (X, &) is a closed subspace of a product of
copies of the Banach space ¢,. In order to handle this in the manner
of Case I, one must extend this case to include each (X, &) which is
not inductively semi-reflexive, but for which & = &5,. Examples of
spaces which fall into this extended case and which may fail (*) are
the spaces (X, &,,) wWhere (X, &) is any separable nonreflexive Banach
space.

The proof that the topology constructed in Case II is complete
works for any inductive semi-reflexive space. However, to show
that this constructed topology was different from the given topology
made strong use of the metrizability. In fact, if (X, &) = ¢, then
for any positive nonincreasing null-sequence, {¢,}, the topology con-
structed in Case II will be the &-topology. It is open question if
¢ is the only such exception among complete separable spaces with
a continuous norm. (Weak topologies are also exceptions.) In any
case the space ¢ is perhaps the most likely counter-example (among
the inductively semi-reflexive spaces) to (*).
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LOCALE GEOMETRY
B. J. DAy

We commence with a locale ¥ (that is, a complete
Heyting algebra) and introduce the notion of an -“-valued
betweenness relation on a set. The concept of an Z-valued
geometry is then formulated and the relevant versions of
the Radon, Helly and Carathéodory theorems are proved.

Introduction. The abstract theory of join systems was develop-
ed by W. Prenowitz [8] and [9] as an aid to studying descriptive
and spherical geometries. This notion of join system has since been
further developed by V. W. Bryant and R. J. Webster [1] to enable
the corresponding axiomatic treatment of such results as the Radon,
Helly and Carathéodory theorems. It is this aspect of the theory
with which the present article is concerned.

We commence this article by extending the notion of a join
system so that it is no longer necessarily two-valued. More precisely,
given a locale lattice ¥, we introduce the notion of an &-valued
betweenness relation (-, -, -): X X X x X— % on a set X; if
(x, ¥, 2) = pe ¥ we might say that the point z lies on the segment
(x, y) with “probability »”. This loose description is related to
theories of multivalued logic which arise in topos theory. Indeed,
one can develop join systems in a reasonably complete topos in terms
of multivalued join systems over the category of sets; see §4. These
notions, in turn, give rise to the forms of the Radon, Helly and
Carathéodory theorems dicussed in §3.

We emphasize here that, in this preliminary article, we do not
deal with multigroups (after W. Prenowitz) nor do we enter into
all aspects of dimension theory (after V. W. Bryant and R. J.
Webster). Also we leave the proof of the more basic elementary
deductions as simple exercises for the reader; these results are used
without reference.

1. P-forms. Let = be a locale and let X be a set. A
symmetric F-form on X is a function X(-, -): X X X — & such
that X(z, ) =1, X(z, y) = X(y, x), sup, X(z, ¥) \ X(y, z) = X(=, 2).
A functional on X is a set map A: X — & such that A = sup, A(x) A
X(z, -). A simgleton, or point is a functional of the form 7 = X(z, -):
X — & Thus each functional is an “expansion of singletons” or
an “internal colimit of points”. For notational convenience we shall
represent ¥ simply by x unless we wish to emphasize the distinetion.

The ordered set of functionals on X is denoted Fnl (X, &©); it
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is a sublocale of <~*. Note that if 4: X — <& is any functional
then 4 = z iff A(x) = 1.

A map of F-forms f: (X, X(-, -)) = (X', X'(-, -)) is a set map
f: X — X' such that X'(fx, fy) = X(x, y) for all z, y € X.

2. Convexity spaces. An Z-preconvexity space is a set X
equipped with a symmetric -form X(-, -): X X X — <& and a map
(-, -, ) XX X x X— < which is functional in each variable
separately. A map of preconvexity space is a map f: X — X’ of

Z-forms such that (fz, fy, fz) = (x, ¥, 2) for all z, y,2€X. The
resultant category is denoted <“pc.
Given X e “pc we define the convolutions:

AB(x) = sup A(y) N\ B(z) A (9, 2, @)
A/B(z) = sup A(y) A B(@) A (2, 2, ¥) -

Then Ty = (x, y, -) is the join of x to y, while Z/§ = (y, -, x) is the
extension of x by y.

An interesting consequence of these definitions is the following
Kan-extension principle: If f and g are polynomials of n-variables
in the convolution operations AB and A/B, and f(x, -, 2,) =
g(z,, ---, x,) for all points z,, - - -, x, then f(4,, ---, 4,) = g(4,, ---, 4,)
for all functionals 4,, ---, 4,.

An Z-convexity space is an & -preconvexity space which satisfies
the following axioms:

Cl. (symmetry) (x, v,?2) = (y, 2, 2) .

C2. (idempotence) (a, a, ) = X(a, x), (a,z, a) = X(a, ) .

C3. (associativity) sup (¥, v, w) A\ (w, 2, ) = sup (v, 2, w) \ (¥, w, x) .

C4. (transposition) sup &, w, y) A (&, w,v) < suip (x, ¥y, w) A\ (&, v, w) .

C5. (cancellation) sgp (x,y, W) A\ (2,2, w) = X(y,2) V (%, 9,2)V (x,2,Y) .
The full subcategory of ~“pe comprising the <“-convexity spaces

is denoted ~c.
The following propositions are immediate from the axioms.

PROPOSITION. xy/xz = y/z \V/ 2yY/z \V Y/xz.

PROPOSITION. AB = BA, (AB)C = A(BC), A<AA and A< A/A,
(A/B)/C = A|BC, A(B/C) < AB/C, and A/(B/C) < AC/B.
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PROPOSITION. (i) zA/x= AV x4V Alx,
(ii) xA/xB = A/BV zA/B\ A/xB,
(iii) x/xB = x/B.

The following relations are easily deduced by iterated use of
the preceding proposition:

LEMMA 2.1 (Radon).

L, <X . . .
= V{wio ey, 0 s sg e 1, all dzﬁerent} .

i1 """ T,

LEMMA 2.2 (Carathéodory). For n=r

Ly -- X,

‘4 4y, o0, 1, all different and

p~q§r}.

For the remainder of this section we shall suppose that X is a
fixed ¢“-convexity space. A functional A4: X — & is said to be
conver if AA = A; note that singletons are convex (C2). The convex
hull of a functional A is defined to be V., 4".

PROPOSITION. (i) IfA, ---, A, are convex then so are A, --+ A,
and A,/A,.

(ii) The convex hull of a functional A is the intersection in
Fnl (X, .&2) of all the convex functionals which contain A.

A functional 4: X — <7 is said to be linear if it is convex and
A/A = A. The linear hull of a functional A4 is defined to be
a1 A™[A™ and is denoted by [A].

PROPOSITION. (i) The linear hull of a functional A is the
intersection in Fnl (X, &) of all the linear functionals which
contain A.

(ii) If A is convex then A/A 1is linear.

(iii) If A is convex then [A] = A/A.

(iv) [ao- - @,] = - - 2, /2 -+ X,e

3. The Radon, Helly and Carathéodory theorems. Henceforth
in this section we suppose that X is a fixed ““-convexity space.
We shall also suppose that whenever we consider a set {x, ---, x,}
then the Z,’s are distinct (recall that Z, is denoted simply by z,).
The product functional of M = {x,, ---, x,} is denoted by M* =
T, - e
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A set {x, ---, 2,} of singletons is said to be strongly dependent
if there exists an (0 < ¢ < n) such that [z, - -+ Z,_ %y, - - - 2, ](@) = 1.
If every set of m» + 2 singletons is strongly dependent then we say
that X has dimension < n.

THEOREM 3.1 (Radon). If{x, ---, X,+.} 18 a set of n + 2 single-
tons in a convexity space of dimension < m then there exist disjoint
nonempty subsets M and N of {x,, ---, T,+} such that M* AN N* +#0.

Proof. The m + 2 points lie in a space of dimension £ n so we
may assume, without loss of generality, that [z, - x,+,](®) = L.
By Lemma 2.1 we have either N*(x,) # 0 where N is a subset of
{x), -+, 2,4,} Or N*/P*(x,) + 0 where N and P are nonempty disjoint
subsets of {x,, ---, #,.,}. Thus the result follows from taking M = x,
in the first case and M = {x,, P} in the second case. In the first
case we have N™*(z,) = 0 implies 2, A N* = 0 since x, A N* =0
implies x,(z,) A N*(x,) = 0 implies N*(x,) = 0, and in the second case
we have N*/P*(z,) =+ 0 implies sup,, N*(u) A P*(v) A (v, %, u) #= 0
implies sup, N*(u) A 2,P*(u) # 0 implies there exists a u ¢ X such
that N*(u) A z,P*(u) # 0.

THEOREM 3.2 (Helly). If A, ---, A, is a family of n + 2
convexr functionals on a convexity space of dimension < n and any
n + 1 of these functionals intersect with certainty then all the
Junctionals have a nonzero intersection.

Proof. For each i(0 <7 < n + 1) there exists, by hypothesis, a
singleton z, such that

xiéAo/\ cc /\A,;_l/\Ai+1/\ "'/\A,,.H.

If ©, = x; for some 7+ j then z, < 4, A --- A A,;, and the result
follows. Otherwise the singletons z, are distinet so that, by Theorem
3.1, there exist nonempty disjoint subsets M and N of {x, ---, Tesi}
such that M* A N* 0. Because M* A N* S A, N\ --- N\ A, the
result follows.

LemMmA 3.3, Ife <o, ---x, and M*/N*(x) = 0 where M and N
are nonempty disjoint subsets of {x, ---, x,} then there exists a
proper subset P of {x,, ---, x,} such that P*(x) #= 0.

Proof. The proof is by induction on the cardinal of N. Firstly,
if |N| =1, assume N =z, without loss of generality. Let S =
{#;, +++,2,}. Now z=2x,---x, implies =z, < 2/S*. Moreover, if
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M*/x(x) # 0 where M is a nonempty subset of S then S*/x,(x) + 0.
Thus 0 == S*/z,(x) < S*/(x/S*) < S*/x(x) since S* is convex. But
S*/x(x) # 0 implies sup, S*(w) A (z, z, w) # 0 implies S*(x) #0 so
2, +--x,(x) #0. Now suppose |N|=2+1 and 2 <2, ---2, and
M*/N*(x) = 0. Without loss of generality let N = {z,, - -+, ,}. The
conditions * < %, --- 2, and M*/z, --- x,(x) = 0 imply that z, ---x,
Ja, « -+ 2, (x) = 0 since x < %, - -- x, implies x, < z/x, --- 2,. Thus 0=
M*[xy - 2,(x) < (%, -+ 2,)/(®/®, -+ T)%, -+ x(v) implies x, --- 2,
jxz; -+ x,(x) # 0. Butw, .-z, /aw, - 2,(2) = (@, - Tufm, - - 2) /)@
SO &, ++» X,/x, -+ - x,(x) 0. Thus, by Lemma 2.2, either P*(x) # 0
where P is a nonempty subset of {x,, ---, z,} or @*/R*(x) = 0 where
@ and R are nonempty disjoint subsets of {z,, ---, z,} and |R| < ».

THEOREM 3.4 (Carathéodory). If x Zx,--- 2, for singletons
in a convexity space of dimension < n then there exists a proper
subset P of {x, «--, x4} such that P*(x) += 0.

Proof. Without loss of generality let us assume z, < [, - - - Z,44]-
Thus, by Lemma 2.2, either M*(x,) = 0 where M is a subset of
{2, -+, Tprs} Or M*/N*(2,) = 0 where M and N are nonempty disjoint
subsets of {x, -+, 2,,,}. In the first case z, --- x,..(x) # 0 and in
the second ecase x, --- 2, /N*() # 0. In order to establish these
assertions let S = {x,, -- -, Z,+,}. In the first case note that M*(x,) = 0
implies S*(x,) = 0. But z < x,S* implies %, < 2/S* thus

0 = S*(x,) = sup S*(u) A X(x,, u) = sup S*(u) A x,(u)
< sup S*(u) A z/S*(u) = sup S*(w) A x(w) A S*(w) A (w, u, v)
= sup S*(u) A S*(w) A (w, u, £) = S*(x)
since S* is convex. Thus x, --- x,..(x) # 0. In the second case we

have to show that sup,,S*(u) A N*@) A (v, 2, w) = sup, S*(u) A
xN*(u) = 0. But we have

0 = sup S*(u) A z N*(u) < sup S*(u) A (x/S*)N*(u)
< sup S*(u) A eN*/S*(u) = sup S*(u) A eN*(v) A S*(w) A (w, u, v)
= sup S*(») A xN*(v)

since S* is convex, as required. Thus either P*(x) = 0 where P is
a nonempty subset of {x, ---, x,+,} or M*/N*(x) # 0 where M and
N are nonempty disjoint subsets of {x, ---, #,.,}. The first case is
as required while in the second case the result follows from Lemma
3.3.
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REMARK. In the case &° =2 these results reduce to the
generalizations of Radon, Helly and Carathéodory theorems discussed
by Bryant and Webster [1].

4, Examples. Examples of <“-convexity spaces can be generat-
ed by various different processes. Perhaps the most basic of these
arises from the fact that <#c¢ is closed under colimits in “»c and
¢ has a generator (namely the one-point space). Thus, by the
special adjoint-functor theorem (Mac Lane [7]), the inclusion #eC & pe
has a right adjoint, so every $“-preconvexity space has a canonical
associated convexity space.

If X is an .~-convexity space then X” is an <~ “-convexity space
for all sets Z. Thus it is consistent to define, in a topos & (see
Johnstone [6]) for which each & (Z, Q) is complete as a Heyting
algebra, an Q-convexity space as a map (-, -, - X X X X X— 2 in
% such that &£ (Z, X) is an & (Z, 2)-convexity space for all
Ze&.

Another example arises as follows. Call a functional 4: X — &
left exact if A(x) A A(y) = sup, A(a) A X(a, ) A X(a,y) and
sup, A(a) = 1; a left-exact functional is always linear. Given X e %
define X to be the set of all left-exact functionals from X to &
On X define X(A4, B) = sup, A(x) A B(z) and (4, B, C) = sup,,,,. A(x) A
By) A C(®) A (z,y,2). Then X is an <~ -convexity space and X — X
is a map of _“-convexity spaces.

Finally, if X X X x X — &3, v e 4, represents a set of convexity
space structures on a set X, one for each A ¢ 4, the induced map
XxXxX—-1l.%5 is a convexity-space structure. This fact
allows the construction of <~-valued convexity spaces from families
of classical convexity spaces on X (see, for example, quasiconvexities

[5D-
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CONTINUOUSLY VARYING PEAKING FUNCTIONS

JOHN ERIK FORNAESS AND STEVEN GEORGE KRANTZ

Let X be a compact metric space, A S C(X) a closed
subalgebra. Let &S X be the set of peak points for A.
It is shown that there is a continuous function @: F—> A
such that &(x) peaks at x for all x€ &,

0. Let X be a compact Hausdorff space, C(X) the continuous
functions on X under the uniform norm, and A a closed subspace
of C(X) containing 1. Let & be the set of peak points for A.
Clearly if X has more than one point and x€.Z” then there are
infinitely many functions in 4 which peak at . Can one construct
a function

0. F — A

so that @(x) peaks at z and @ has some regularity properties?

In [4], using the von Neumann selection principle, it was shown
that for X =2 < cC" with smooth boundary, A = A(2) (the
analytic functions on &7 which extend continuously to &), one can
choose @ to be measurable. The same argument is valid under much
more general circumstances.

In the present note we prove that, for quite general X and for
A an algebra, @ can be chosen to be continuous. This generalizes
results in [1, Theorem 3.1] and [2, Proposition 4].

1. Throughout the discussion, X will be a fixed compact metric
space with metric d. We let C(X) denote the continuous, complex-
valued functions on X with the uniform norm and 4 & C(X) will
be a closed complex linear subspace. If ze X, » >0, then B(x, r) =
{te X:d(z, t) < 7}.

DEFINITION. A point x e X is said to be a peak point for A if
there is an fe A with f(x) =1 and, for all ye X ~ {x}, [f(¥)| < 1.
The function f is said to peak at x.

We let .&7(4) denote the set of peak points for A.

THEOREM. Let X be a compact metric space, A Z C(X) a closed
subalgebra (with or without 1). Then there is a continuous map

0. F4)— A
such that @(x) peaks at x for each x € F°(A).
341
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The remainder of the paper is devoted to the proof of the
theorem. We proceed via a sequence of lemmas. The plan of the

proof is as follows.
For each ke{l, 2, ---} we will construct a continuous function

D,: P(A) —> A

such that for each xe.Z%(A) we have

(1) [[9)]l =1;

(i) [P@)](@) = 1;

(iii) if te X ~ B(z, 1/k) then |[@,(x)](®)| <1 — 1/(k + 2).
Once the {®,} are constructed, the proof is immediate. For let
O =372,270,. Then @ is continuous and for each x € Z°(4) we have
O(x)e A and [®(x)}(x) = 1. Moreover, if ¢ = 2 and k > 1/d(z, t) then

2@} = > 27[2.@)](0) | + |27 [Pu()](B) ]
<1-2"%427%1 - 1)k +2) <1.
So @(x) peaks at . Thus it remains to construct the @,.
LEMMA 1. Let x,€ FP(A). Let p be a strictly positive continu-

ous function on X with p(x,) = 1. Then there is an feA with
fley) =1 and |f(x)| < p(x) for all xe X.

Proof. This is a special case of Theorem 12.5 of Gamelin [3],
p. 58.

COROLLARY 2. With hypotheses as in Lemma 1, thereisa ge A
such that g(x,) = 1, |g(x)| < p(x) for all xe X ~ {x,}.

Proof. Immediate.

LEmMMA 3. Let x2,€.F(A). Let €A peak at x,, There is «a
map

U F(A) N A{ly(x)| > 1/2} — A
so that

(i) ¥(x) peaks at x for each x e .F(A)N {|y(x)| > 1/2},
(ii) ¥ (xo) = ¥

(iii) ¥ 4is continuous at x,.

Proof. For each z e P(A) ~ {x,} choose, by Corollary 2, a func-
tion @, € A such that ¢, (x) =1 and
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") |2.(0)] <min{@2 — |y(@)| — [v@)D/2QA — [¢(=)]), 1}
for all te X ~ {x}.

Now for each z e .ZP(4) N {|v(x)| > 1/2} we define

A~ p@)Dp.+ sgny@)3yl/[2— @] if @, W@)]>1/2,

v =
@ o if z==,.

Here sgnz = z/|z|, any zeC ~ {0}.
Clearly if # # «, and z is sufficiently close to x, then |(x)| > 1/2
and we have

W (@) —rl] = [[¥(@) — sgnp(@) - pll + |lsgnyp(@) -4 — |
= [I[2( — Wr@))p. + sgn yp(@) - ¥ 1/[2 — [(@)]] — sgn y(x) - |
+ llp(1 — sgn y(x))|
= {24 — [p@)Dllp. — sgny(x) - ¥l
+ @ = @)D llsgn g (@) - ylII/2 — lp@)l] + |1 — sgn ()]
= 5(1 — [y(@)]) + |1 — sgn y(x)]

—0 as r—ua,.

It remains to verify that ¥(x) peaks at « when |y(x)] > 1/2. For
such z, we have [¥(x)](x) = 1. Further, if ¢ « then by (*) we
have

2(1 — [y (@) D]Pa(B)] <2 — |y(@)| — [4:(?)]

or
12(1 — [4(@) NPa(E) | + |9(@)] < 2 — |4(x)]
whence
12(1 — [4(@) DPa(t) + sgn (@) | < 2 — |yo(x)]
or

T @] <1.

LEMMA 4. Fix a positive integer k. There is a sequence {®f}3.,
of functions,

oi: F(A) — A

satisfying, for each ze F(A) and every j,
(i) 2@l =1;
(ii) [2i®)]=) =1;
(iii) lim sup [|@i(x) — Qi(y) || < 477 - (1/k);

F(4) dy-~z
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(iv) for every te X ~ B(x, (1 — 279) - (1/k)),
O] S (L = 2006+ 2) + $27 (10 + 2) 5
(v) 110i@) — 0F @) S 27 k), § = 2.

Proof. This lemma is the heart of the matter. We construct
the @f inductively on j. First consider j = 1. For each x e .(4)
construct, by Lemma 1, a function ¢, A which satisfies @,(x) =1
and

|#.(0)| < min {1l — 8kd(x, t)/(k + 2), 1 — 2/(k + 2)} .
Using +» = ®,, construct a function
(*) Ve Z4) N {|y(x)| > 1/2}— A

satisfying the conclusions of Lemma 8. Choose 7!, 0 < 7L < 1/4k so
that te B(x, r.) implies that [@,(t)] > 1/2 and

1¥(x) — O < 47 A/ + 2)) .
Now observe that if y e B(zx, 7%) and t ¢ B(y, 1/2k) then

dz, t) = d(y, 1) — d(y, ) =z 1/4k .
Therefore for such y, ¢ we have

T | = [[T@)D]] + [[Ta(@)]@) — [T
**) = lpa(O] + 47 (1% + 2))
=A—2/(k+2)+27 1)k + 2) .

Now since F(A) is a metric space, it is paracompact ([5], p.
160, Cor. 85). Hence there is a locally finite refinement Z* = {Ul},cq,
of the covering {B(®, r.)};cow of FP(A). Let z,, we 2, be chosen
so that U, < B(x,, 7.,). Let B, denote B(x,, r;,). We may assume
that U, < B.. Let {X.} be a continuous partition of unity sub-
ordinary to Z* and define

o= 3, NI, .
Then conelusions (i) and (ii) are immediate. Conclusion (iv) follows
from (**). Conclusion (v) is vacuous for 7 = 1. It remains to
verify (iii).

Fix 2¢.57(4). Then there is a neighborhood W of x and
{w,, +++, w,} S 2, so that WnsuppX, = 0 only if we{w, ---, @}
Of course m may depend on x. Letting ; denote x,, i =1, ---, m,
we have that
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hm sup ||0i(x) — DUy || = Z limsup [X (@) — X\, (W) |Z., ()]

F(4) o2y~ =1 o (4)NWsy—z

+ Z X, () limsup ||7; (x) — %% ()]l

F(A)NW 3 y—z

=0+ Z Xofo) limsup (|7 () — T (2|

F{A)NB,, 2Y—%

+ 310 limsup |7 =) — T1@)])

<247k +2) <47 (k) .

Now suppose that @i --., @ have been constructed so that (i)-(v)
are satisfied. Let xe.Z(A4). Using + = @i(x), we construct a
funetion

Titt: PA) N {|p(x)| > 1/2} — A

satisfying the conclusions of Lemma 3. Choose #i*!, 0 < 7i** <
27771 .(1/k) so that te B(x, ™) implies that |[@i(=x)]t)]| > 1/2 and
both

¥ () — TP ] < 4772 - (L/k + 2))
(***) and
|0i(x) — OO = (4/3)-477 - (1K) .
If now ye Bz, ri*), t¢ Bly, A — 2777Y) - (1/k)) then
d(z, t) =z d(y, t) — d(y, ») = (L — 279)(1/k) .
Hence for such y, ¢ we have

T IO ] = [[TH@IO ] + T @]E) — [Tl
= |[2i@I®)] + 477 - 1k + 2)

<A —2/k+ 2)+ Zﬂ_} 27 (L) + 2)) + 2777 (1/(k + 2))
= (L= 2k +2) + 527 Uk + 2) .

Choose a locally finite refinement Z/#* = {Ui"},q;,, of the covering
{B(x, ri"}se w of FP(A). Let {x.}uco;,, be chosen so that Uit <
B(x,, ri)=Bi", each w e 2;,,. We may assume that Ui"'CBi". Let
{Xi*} be a continuous partition of unity subordinate to Z#+'. Define
@iﬂ — Z Xiﬂw’gﬂ .
welj4y @
It follows as in the case j = 1 that (i), (ii), (iii), and (iv) hold. To
verify (v) fix xe Z(4). Let w, ---, w, satisfy the property that
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L(x) # 0iff we{w, -+, w,}. Let x; denote x,, =1, ---, m. Then
10£@) — 0i(@) | < || S 2@ @) — i@
+ | S @@ - oy

+ | St @elw) - o)
S47 Ak + 2) + 0 + (4/3)47(1/k)) = 279(1/k) .

The induction is complete.

LEMMA 5. For ke{l,2, ---} there exist functions
D, FA)— A

such that
(1) ||9=)|] =1 for all xe€.F°(A),
(ii) [Pu(@)](2x) = 1;
(iii) @, 1is continuous;
(iv) [[@®)]@)] £ 1 — 1)k + 2) for all x e ZP(A), t € X ~ B(x, 1/k).

Proof. Let @] be as in Lemma 4 and define @, = lim;.. ®j. That
the limit exists follows from (v) of Lemma 4. The conclusions (i)-(iv)
of the present lemma now follow from the corresponding parts of
Lemma 4.

By the discussion preceding Lemma 1, the proof of the theorem
is complete.

REMARK. Our proof yields something more general. Indeed,
instead of assuming X to be metric, one need only assume that the
relative topology on .&” has a o-locally finite base. By [5], p. 128,
this is equivalent to assuming that .Z” is metrie, hence paracompact,
and the proof goes through as before.

The referee has kindly observed that given our Lemma 3, one
can use Theorem 3.1” of [6] to prove that if X is compact Hausdorft
and A is separable then the theorem holds. This is a weaker result
than the one outlined in the preceding paragraph. Moreover, the
proof using [6] is not essentially shorter than the elementary one
presented here, and the construction of @ as the unifiorm limit of
discontinuous functions has intrinsic interest.

REMARK. It would be interesting to know whether, in the
presence of differentiable structure in X and A4, the peaking funec-
tions may be chosen to vary differentiably.
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LONG WALKS IN THE PLANE WITH FEW
COLLINEAR POINTS

JosepH L. GERVER

Let S be a set of vectors in R”. An S-walk is any
(finite or infinite) sequence {z;} of vectors in R" such that
Zis1—2: €S for all i. We will show that if the elements of
S do not all lie on the same line through the origin, then
for each integer K = 2, there exists an S-walk Wy={z,}/\®
such that no K11 elements of Wx are collinear and N(K)
grows faster than any polynomial function of K.

Specifically, we will prove that
1 , 1
log.N(K) > g(logzK — 12 — E(log2 K—-1).

We will then show that if the elements of S lie on at least L
distinet lines through the origin, then there exists an S-walk of
length N(K, L) with no K+1 elements collinear, such that N(K, L)=
(1/4)L*N(K — 1), where L —2< L+« <L+ 1 and L* = 0mod 4. In
[3] it was shown that if Sc Z? and for all se€ S we have ||s||<M,
then there does not exist an S-walk W = {z,}X5™ such that no
K + 1 elements of W are collinear and

log, N(K, M) > 2"M*K"* + log,K .

Before proving these theorems we introduce some notation. If
A=(a, ---,a,) and B= (b, --+, b,) are ordered sets of vectors, we
let RA = (a,, ---, a,) and we let (4, B) = (a, -+, a,, b, ---, b,). We
let 24 = (4, A) and, for every positive integer %, we let (k+1)4 =
(KA, A). If J is a vector operator, we let JA = (Ja,, ---, Ja,).

THEOREM 1. Let S contain two wvectors independent over R,
and let K be an integer greater than or exual to 2. There exists
an S-wallk Wy = {2, )00 such that mo K + 1 elements of Wy are
collinear and such that

log, N(K) > %(logzK —1p — %—(logz K—1).

Proof. 1f we let (log, K — 1)*/9 — (log, K — 1)/6 = log, K, then
log, K = (25 + 31/65)/4 > 12 or (25 — 31/65)/4 < 1. Therefore if
1 <log, K<12, and 2 < K < 4096, then

349
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1 . 1
—9—(log2 K—1)?-— -—6—(log2 K—-1)<log, K.

Since W, cannot have more than N(K) collinear points, we need
only consider K > 4096.

We may let S = {i, j} without loss of generality, where i and j
are orthonormal unit vectors.

For every positive integer m and nonnegative integer =, let
Ar =i, and let

A:z.nu = (mAgy anJA:b) )

where Ji = j and Jj=1i. Let V = {v,},., = tA!, where p is the
greatest integer less than or equal to ((7/9)K)", and vy is the least
integer greater than or equal to log, ¢ — 3/2. Note that since K >
4096, we have p¢ =14, and vy = 3. Let z, = >}»_, v, for each p, and
let W= {z,})_.,. We maintain that W has no more than K collinear
points and that log, N > (log, K — 1)?/9 — (log, K — 1)/6.

Let b, =1 and let b,,, = (¢ + 2")b,. Then b, is the cardinality
of A,, and N = pub,. Clearly b, = p¢*, so N=p*' and log, N =
(v + 1) log, # = (log, ¢t — 1/2) log, p¢. Since g is the greatest integer
less than or equal to ((7/9)K)Y, and ((7/9)K)"* > 14, we have p >
(14/15)((T/)HK)*>((1/2)K)**. 1t follows that log, N>1/9[log,((1/2)K)]*—
log, (1/2)K)/6 = (log, K — 1)*/9 — (log, K — 1)/6.

We now prove that W has no more than K collinear points.

Let Cf={z,;ab, =<p < (a+ 1)b,}. For each =, all C; are
congruent; specifically one can get from any one to any other by
a translation plus, possibly, a reflection about the major diagonal
(i.e., a reflection about the line passing through the vector i + j,
which interchanges i and j), followed by a rotation about the origin
of 180°. This reflection plus rotation is equivalent to a reflection
about the line perpendicular to the major diagonal (i.e., the line
passing through the vector i — j). We will refer to this latter
line as the minor diagonal. Let

Ui={ChBp+2"=sa<(B+1)(¢+2)
ifn=+yand U={C:0=a s .

Note that C7,, = {z,: B¢t +2")b, = p = (B8 + 1)(¢e + 2™b,}, so U{ is
a partition of Cf,, and U? is a partition of W. We now consider
a line with slope m and determine for each n, the maximum number
of elements of U} which the line can intersect (the maximum number
cannot depend on B, since all Cf,, are congruent). Let 7, be this
maximum number. Then the line cannot intersect more than » =
Tl%=, 7. points of W.
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Let s, be the slope of z,; i.e., s, = y,/x, where 2, = x,i + y,J.
The slope of Zziip, — 2m, is then either s, or s;', depending on
whether CZ is a simple translation of C?, or a franslation of the
reflection of C? about the minor diagonal. We wish to find a lower
bound on s,/s,_,.

Now z, =1, 9, =0, %,,, = px, + 2"y,, and ¥,., = ¢y, + 2"2,. It
follows that x,, ¥,, and s, are strictly positive for all n = 1. We
now prove by induction that s, < 2*/¢.  Clearly s, =0 < 2/¢ and
s, = 1/p < 2'/p.  Suppose s, < 2*/p. Let t, =2"/s,p.. Then ¢, > 1.
Now

Sppr = (UYn + 2°2,)/(U%, + 2"Y,)
= (us, + 2")/(¢ + 2"s,)
= (s, + ps,t,)/(¢ + psit,)
= (8a + 8.8.)/(1 + s3t,) .

Thus

tpyn = 2”“/3”4—1# = 23ntn/3n+1
= 28,8,(1 + s38,)/(s, + 8,t.)
= 2t,(1 + sit,)/(t, + 1) .

We now view t,,, as a function of the real variables ¢, and s,, and
compute its partial derivatives:

0b,41/0t, = 2(83ts + 28k, + 1)/(t, +1) >0
and
0ty 4,/08, = 4tis,/(t, +1) > 0.

Since t,,, has the value 1 when s, =0 and ¢, =1, it follows that
twss > 1 when s, =0 and ¢, > 1, as is the case here. Therefore
sn+1 < 2n+1/ﬂ'

Next, recall that v —1 <log,¢ — 3/2, so if n <y —1, then
2" < 271 < 27%u,  Since 2" > s, it follows firstly that s, < 27%2,
and secondly that

8,.1/8, = (Us, + 2")/(us, + 2"s;)
> 2u8,/(1s, + 27%ps})
) 1\ 16
— 3/2 1y _ 19
= 2/(L +2 sﬂ>>2/<1+8) >

It follows that, given m, there is at most one % such that
(8/4)s, = m < (4/3)s,. Suppose there exists A such that (8/4)s;=m =
(4/3)s;. Then m < (8/4)s;,, and m > (4/3)s,_,. Moreover, for all n>
N+ 1, we have m < (27/64)s, < (1/2)s,, and for all n <X — 1, we
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have m > (64/27)s, > 2s,. All of the above also holds if we replace
s, by s;', except that some of the inequalities are reversed and
constants replaced by their reciprocals in the obvious way.

We now calculate for each of the five cases, n =N, =\ + 1,
wn=Ax—1Ln>x+1 and n <A —1, the maximum number r, of
elements of U; which a line of slope m can intersect. We can
assume without loss of generality that Cf,, is a simple translation
of C2,,; if Cf,, is a translation of the reflection of C!., about the
minor diagonal, then we can apply the same argument, replacing
s, by s;'. Then C; is a simple translation of C! for B(¢ + 2*) <
a < B(¢+2")+p, and a translation of the reflection of CJ for
Blp+2" +pu<a<(B+1)(¢n+2"). For each a, the first point of
Cxt' coincides with the last point of CZ. It is easy to prove by
induction on #» that C;. (and therefore CZ for all «) lies entirely
within a right triangle, with sides z, and y, adjacent to the right
angle, and with the first and last points of C!? at opposite ends of
the hypotenuse. Therefore the sets C: B(p + 2" < a < B¢ + 2™+
¢ lie within congruent right triangles, whose hypotenuses are
adjacent segments of a line with slope s, (see Fig. 1). It follows

FIGURE 1

that a line with slope m > s,¢9/(¢g—1) or m < s,(¢—1)/q can intersect
at most q of the sets G2 B(¢ + 2") < @ < B(¢t + 2*) + ¢ at distinet
points (i.e., assign the last point of each set C; to the set C7%,
and do not count the line as intersecting C7 if it only intersects
this last point). Suppose m < 1. Then m < (1/2)s;*, and a line of
slope m can intersect no more than two of the sets C;: B(¢ + 2"+
p=a<@B+L(¢+2%. If n=2x then a line of slope m can
intersect all p of the sets CX B¢ + 2" = a < B(¢t + 2*) + ¢ for a
total of £ +2. If n =X+ 1 or » — 1, the line can intersect at
most 4 of the sets Cr B¢ +2") < a < B¢+ 2™ + o, for a total
of 6, while if >N+ 1 or n <M — 1, the line can intersect at
most two of the sets C: B(y + 2" < a < B(¢t + 2" + ¢ for a total
of 4. If m > 1, then we obtain essentially the same results by
redefining A so that (8/4)s;' < m = (4/3)s;?, the only difference being
that g is replaced by 2", which in any case is less than p. There-
fore we have r, < g +2if n=717r, <6 if n =x—1or v+1, and
r, < 4 for all other n. Finally, we have
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r= ﬁ Ta é (# + 2)'62'41‘“2 < 36(# -+ 2).410€2y—5/2
7=0
36 9
— 2 )< L 3 < K .
Gt ==

If A does not exist, then there are at most two values of n for
which (27/64)s, < m < (64/27)s,, and these two values can take the
place of » — 1 and X + 1 in our argument.

REMARK. We can use this method to get slightly better results
as follows: The method works by partitioning W into a heiarchy
of sets, each set of order n + 1 being partitioned into g + 2" sets
of order n, and showing that for almost all #, a given line can
intersect at most four sets of order n within a given set of order
n + 1. Suppose that instead of using the partition based on the
sets CZ, we modify this partition slightly by splitting each CZ into
two sets of order =, namely {z,:ab,<p < ab,+ pb,_,} and {z,: ad, +
pb, , <9 < (¢ + 1)b,}). Then each set of order » + 1 would have
either 2¢¢ or 2"+ gets of order n, and it should not be hard to show
that for almost all #, a given line can intersect at most three sets
of order n within a given set of order » + 1. We would then have
r = cp-3 = cp't'°¢?, where ¢ is a constant which does not depend
on K, and finally

log, N = (1 + log, 3)"*(log, K)* + O(log, K) .

However, it seems impossible to push this method any further.

THEOREM 2. Suppose that S contains L elements which are
pairwise independent over R. Then there exists an S-walk 2 =
{u i, containing no set of K + 1 collinear points, such that

log, N > %[mgz (K —1) — 1 — %[1og2 (K —1) — 1] + log, L* —
where L —2 < L* <L 4+ 1 and L* = 0 mod 4.

Proof. The L elements of S with distinet arguments must
include L/2 elements (if L is even) or (L + 1)/2 elements (if L is
odd) in the same half-plane. Label these elements s, 8, 8, -+ in
order of their arguments. For 1<n < (1/4)L* let W, —-qJ,.W
where W is defined as in the proof of Theorem 1, and @, is the
linear vector operator which maps i to s,,_, and j to s,,. Let N,
be the cardinality of W and let w, = xs,,_, + ¥S,, be the final
element of W,. For 1 <7 < N,, let z, be defined as in the proof
of Theorem 1, and let u, = @,z,. Let uy,,, = >} w; + @2, for
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1<n<@/4)L* — 1. Finally, let N= 1/4)L*N, and let 2 = {u,}’,.
Note that 2 is constructed by placing the W, end to end in
sequence,

By Theorem 1,

log, N > %(logz K—1y— —(13—(10g2 K—1) +log,L* — 2.

We will now prove that no K + 2 points of 2 are collinear. Sub-
stituting K — 1 for the bound variable K then gives us Theorem
2 for the case K =>38. For the case K =2, we simply let u, =
Sv_.8;. The resulting set {w;}, which contains at least (1/2)L*
elements, is the set of vertices of a convex polygon; hence no three
elements are collinear.

Let T, = {(u}’% 0+ and let ¢, =37 w; so that ¢, is the
final element of T,. Let {,=0 and let r, =¢,_, + xs,,, for n = 1.
Note that ¢, = r, + ¥s,.. Note also that from results proved previ-
ously, the set 7, must lie entirely on or in the interior of the
triangle 4, with vertices ¢,_, r,, and ¢,. Consequently any line
which intersects 7T, must intersect 4,. Now consider the polygon
P with vertices &, r,t, 1, ¢, <+, Yy, tr in that order. The
(directed) edges of this polygon are the vectors s, ys,, xs,, ---,
Y81 and —axdiMts,,  — y> it s,,. Since the vectors s, s, s, ---
are listed in order of increasing argument, and the range of all
their arguments is less than 180°, it follows that the interior angles
of P are all less than 180°, so P is convex. Now any line intersect-
ing 4,, and in particular any line intersecting T,, must intersect at
least two sides of 4, (including each vertex in its two adjacent
sides), and therefore must intersect P. Since P is convex, a line can
only intersect P at one or two points, or along an edge. Therefore
no line can intersect more than two of the T,. Unless the slope
of a line is between that of s,,_, and s,, inclusive, it can only in-
tersect one point of 7,. By Theorem 1, no line can intersect more
than K points of 7,. Therefore, no line can contain more than
K + 1 points of Q.

REMARK. In order to compare these results with the upper
bound in [3], we can consider the case where S = {sc Z% ||s||<M}.
Since the number of lattice points in a dise of radius R is 7R® +
O(R) [2], we know that the number of lattice points with both
coordinates divisible by ¢, in a dise of radius M, is #M?*/¢*+O(M/q).
Therefore the number I of lattice points with relatively prime
coordinates is

oo

M3 (=1 3 a7+ OM 3, a7,

7=0
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where @ is the set of square free positive integers less than or
equal to M, and @, is the set of integers in @ with % distinct
prime factors. It follows [1] that

L = 6M?*mr + O(Mlog M) .

Finally, if we let N(K, M) be the length of the longest S-walk
with no more than K collinear points, and we choose any constants
¢, < (9log 2)™ and ¢, > 2®log 2, then we have

M?exp [e,(log K)*] < N(K, M) < exp [c,M*K*]
for all M and all but a finite number of K.
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ON CERTAIN SEQUENCES OF LATTICE POINTS

JoseErpH L. GERVER and L. THOMAS RAMSEY

Let S be a finite subset of R*. A sequence {z;} is an
S-walk if and only if z,.,—z; is an element of S for all 4.
In an effective manner it is shown that long S-walks in Z?
must have an increasing number of collinear points. In Z3
however, an infinite S-walk may have a bounded number
of collinear points.

1. Introduction. Let S be a finite subset of R”.

DEFINITION. An S-walk is any (finite or infinite) sequence of
vectors in R*, say {z;}, such that z,,, — z;€ S, for all 4.

Given S, let M be the maximum of the Euclidean norms of the
vectors in S. In [5] the following theorem is proved (see also [3]
for the case M =1/2):

THEOREM. Let Sc Z2, and let K be any positive integer. There
exists N = N(K, M) such that any S-walk of length at least N must
have K collimear points.

With Theorem 1 of this paper we provide an effective bound
on N(K, M). With Theorem 2 we show that the situation of ScZ?3
is quite different, i.e., an infinite S-walk in Z*® may have a bounded
number of collinear points. In Theorem 3 we show that there are
still some restrictions in Z3, namely that if S has only three
elements, then a sufficiently long S-walk must have three collinear
points.

2. The Planar case.
THEOREM 1. Let Sc Z? let K be any positive integer, and let
N be a positive integer such that
log, N = 28M*(K — 1)* + log,(K — 1) .
Then, for every S-walk {z}i_,, there is some line L, and K choices

for i, such that z,€ L.

Proof. We suppose that the theorem is false for some K and
derive a contradiction. Let @ = 8-22.M(K — 1). Let T denote the
set of (positive and negative) Farey fractions of order no greater
than Q. Let A be the set of all lines through the origin with

357
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slopes in T. Let B be the mirror image of A reflected through
the line y = 2. Enumerate ‘the lines in the two sets A and B in
order of increasing slope: L,, L,, L,, ---. Let {z;} be a counterexample
to the theorem for K. We may assume that z, is the origin.

Let z;, be an arbitrary point of the counterexample sequence.
There are lines in the set AU B, L, and L,,,, such that z; is on or
between these lines; that is, the slope of the line through the origin
and z, is between or equal to the slopes of L, and L,.,, respectively
a and b. ‘

Dirichlet’s theorem [2, page 1] gives us for x = (a + b)/2, inte-
gers p and ¢, 0 < ¢ < @, such that

lgr — | = Q7.

We have either p/g =b=a, or b = a = p/gq. Note that ab=0. We
may therefore choose p/g to be the same sign as a and b. Let H,
be the line through the origin with slope »/¢ and let U be the
larger of the two angles between H, and L, and between H, and
L,.,. Clearly, since a,b, and p/q have the same sign (viewing zero
as positive and negative), the tangent of U is at most 2Q7'¢™".

Enumerate the lines parallel‘ to H, through points of Z*® as
---H, H, H, H, H, --- so that the distance from H, to H, is
|id|, where d is the minimum distance between such translates of
H,.

We now return to z,. Among 2z, Z;,, **°, Zsrer-nix-y ab least
one point is on some H; with |i| > P — 1. Otherwise one of the
H,, with |7| < P—1, would contain K points of our S-walk,
contrary to hypothesis. Let z;, be on a line H;, with [¢|> P — 1,
and J < f<J+ (2P — 1)(K — 1). This point z, is at least distance
Pd from H, The component of z; parallel to H, is at most fM.
Thus, if V is the angle between z, and H,, we have

|[tan V| = Pd/fM .
By taking P so that 2P — 1)(K — 1) = J, we can write that

\tan V| = Pd/M[J + 2P — 1)(K — 1)]
> Pdj2M@2P — 1)(K — 1)
> d/AM(K — 1) .

We now estimate d. We may assume that both L, and L,.,
are in A, since otherwise they are both in B and the mirror image
of the forthcoming analysis applies. With this assumption both a
and b are in 7. We may also assume that p/q is in T, for if not
either p/g =1 or p/g < —1. In the first case 1/1 will play the role
of p/q and in the second, —1/1. Thus
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d _Z (pZ + q2)“1/2 g (21/2q)—1 .
Thus
[tan V' | > [4-2"*Mq(K — 1)]™*.

It is now clear that the choice of @ as 8-2"2M(K — 1) gives us
|[tan V| > |tan U] .

It is clear that the broken line path from z, to z, has crossed
either L, or L,,,. In summary, given z, on or between L, and
L,,, there is some integer ¢ such that 0 <t < (2P — 1)(K — 1) and

(i) P is the first integer such that (2P — 1)}(K — 1) = J and

(i) z,,, is within M of either L, or L,,,.

By induction we choose a subsequence {z,} of {z} such that

(i) each z, is within M of some line in A U B and

(ii) t, <t £t + 2P — 1)(K — 1), where P is the first integer
such that QP — 1)(K — 1) = ¢,.

Note that we may choose t, =0 and ¢, =1. In general, if ¢, <
7{(K — 1), then the P for t,,, satisfies

2P—-1=yj,+1.

Thus, ¢, < 2j, + )(K —1). Thus, if j,<2°—1, we have j,, <
2i+1 . 1.

We now count the number of lines in AU B. It is less than
2Q*. For any given line in A U B, the number of translates of it
through points of Z* which are within distance M of it is at most
2M/d, where d is the minimum distance between such translates.
If their common slope is p/g¢ in T, we have

dz= @+ ¢)™" = (27Q)".

If their common slope with respect to the y-axis is in 7T, the mirror
image analysis applies. Thus, in all cases, 2M/d < 2-22M@Q. Finally,
2RAH(2-22MQ) = 4-2"*M* is an upper bound on the number of
lines which the subsequence {z,} can cccupy. If the index 7 on ¢,
is at least (K — 1)(4-2'2M@®), one of these lines will have K points
of {z,}. All that is required is that ¢,<N. Since ¢,<(K—1)2'—1),
it suffices to have

log, (K — 1) + 4.2MQ*(K — 1) < log,N .

Since Q@ = 8-2"M(K — 1), we have 4-2"*M@Q*K — 1) = 2°M4K — 1)~
By our choice of N this is satisfied. This contradiction establishes
the theorem.

REMARK 1. Theorem 1 remains true in n-dimensional space
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with the same relations between N, M and K if we use n —1
dimensional hyperplanes for L instead of lines. The proof consists
of projecting the S-walk onto Z?2, finding a line there and taking
its pre-image under the projection.

REMARK 2. Professor Carl Pomerance of the University of
Georgia [4] has extended this theorem by considering walks whose
average step size is bounded. His theorem is stated below. Let
aAd(V) = 3t 2z, — z:]| for a finite sequece V = {z,}-, C Z°.

THEOREM. For every positive integer K and every positive real
number M, there exists m, = mo(M, K) such that if m > m, and
A(V)/m £ M, then there are K points of V which are collinear.

An effective bound on m, is not known for Pomerance’s theorem.
III. Three dimensional case.

THEOREM 2. If S s a set of wectors which do mot all lie in
the same plane, then there exists an infinite S-walk in which no
5" + 1 wectors are collinear.

NoratioN. If A=(a, -+, a,) and B= (b, ---, b,) are ordered
sets of vectors, and B is a vector operator, we let RA = (a,, -+, @),
(A’ B) = (aly cry Qg bl, ) bm)’ and BA = (Ba‘b ) Ban)' Let i, j,
and k£ be the three orthonormal unit vectors. For a vector z=z,i+
2,J + 2k, let ||z||'" =2, 4+ 2, + 2, and || z]|* = (@] + 2%+ 2} — 2,2, — %% —
252,)"?. Note that ||z]||'"! and ||z]||* are proportional to the components
of z parallel and perpendicular respectively to the vector i + j + k.
Let v be the length of the component of i, J, or k perpendicular to
i+ J+ k. Then v = (2/3)* and in general the perpendicular com-
ponent of z has length 7|/ z||*.

Proof. 1t suffices to prove Theorem 2 for the case where S =
{i, j, k}. Let a and g be vector operators such that ai = j, aj =1,
ak =k Bi =i,B8j =k, and Bk = j. We define inductively ordered
sets of vectors A,. Let A, = (i), and let A4,,,=(4,, ad,, RBA,, A,,
RpaA,, RBA,, A,). Note that A, has 7" elements and that the
sequence A,,, begins with 4,. It follows that there exists a unique
infinite sequence of vectors {v,} such that (v, ---, v..) = A, for all
n. Let z, = 3_, v, for all positive integers p. Then W={z,} is an
S-walk. We claim that no 5" + 1 elements of W are collinear.

For convenience of notation we let z, be the zero vector. Let
Cl={zy z, -+, z;m}. We prove by induction that the projection of
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C. onto the plane perpendicular to i + J + k lies within a trapezoid
with base 4"y, base angles 60°, and adjacent sides 4*v[3, with z,
and z. lying at extreme ends of the base. We will refer to such
a trapezoid as a trapezoid of order m. The case n — 0 is trivial.
Assume it is true for ». Note that A,, aA,, RBA,, and RpBaA,
are all mirror images of each other, either in space or in time (.e.,
one can get from one to the others by permuting the unit vectors,
by reversing the order of the sequence, or both). It follows that
the set C; = {zm,, ---, Zmu4n) IS congruent to C2, or its mirror image,
for 0 <y < 6. Therefore the projection of C; lies within a trapezoid
of order n, with z., and zu,,,, lying at extreme ends of the base.
From the definition of A,.,, it follows that the seven trapezoids of
order 7 fit together within a trapezoid of order » + 1, as illustrated
in Figure 1.

It is straightforward to prove, by induction on =, that for
any positive integer v, the projections of Cy,, and Ct! can fit
together in one of only three possible configurations (ignoring
rotations, reflections, and reversals of the sequence), namely those
illustrated in Figure 2.

It follows that the distance between two points lying in non-
adjacent trapezoids of order » must be at least 372.4*y, and that
the distance between two points lying in adjacent trapezoids, or

FIGURE 2
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the same trapezoid, of order n can be at most 2-4™y.

Now let p and g be positive integers such that 7" < |p —q| <
7"+, Then, if » =1, 2z, and z, cannot lie in adjacent trapezoids of
order n — 1, so ||z, — z,||* = 872.4*'; if m» = 0, this inequality is
trivially satisfied. Likewise, z, and z, must lie in adjacent trapezoids,
or the same trapezoid, of order » + 1, so ||z,—z,||* < 2-4"*'. Since
1z, — z,|['"" = |p — ¢q|, we have

g1z, gnt () < Hzp . Zq||l/f|2p — ZqH” < Q.47

Now let » and s be positive integers such that 7™ < |r — s| < 7",
with m = n, so that

3Tz grtgm il Nz — 2 Ml 2, — 2| < 2-4m T
If z,, z, z,, and z, are collinear, then
2o — z,ll"/llz, — 2" = ll2, — z|I*/llz, — z|"

S0 3TVEAMTLTTD g gmitrm Tt follows that (7/4)" " < 22413,
and m — n < (log 2241/3)/(log 7/4) < 11, i.e., m — n < 10. Therefore
| — s]/|p — q] < 7", and there are at most 7" collinear points in W.

Furthermore, if X is a set of collinear points in W which all
lie within the same trapezoid of order », but not within the same
trapezoid of order n — 1, then no two points of X can lie within
the same trapezoid of order » — 11. However, no line can intersect
more than five trapezoids of order » — 1 within a trapezoid of order
n. For suppose a line intersected six of the trapezoids C¢, C;, ---, C¢
in Figure 1. If C! where excluded, then the line would have to
intersect C; and C?, in which case C} would be missed. If C? were
excluded, then the line would interseet C? and Cf, missing C: But
a line intersecting C! and C? would miss Cf!. Therefore, there are
at most 5" collinear points in W, and the theorem is proved.

It is obvious that this result can be sharpened considerably
without changing the method of proof. For example it is not hard
to convince oneself, by studying Figure 2, that in fact 4" < ||z, —
Zjt =4 if T <|p —q] < 7. Also, there is no need to lump
together all values of |p — q| between 7" and 7**!. By using a finer
partition it ought to be possible to show that for a given value of
|» — q|, the possible values of ||z, — z,[|*/l|z, — z,||'' range over a
factor no greater than 4. Since 4 < (7/4)°, this would imply that
W can have no more than 7° collinear points, all lying in the same
trapezoid of order =, and no two lying in the same trapezoid of
order n — 4. Finally, one could examine the 7* trapezoids of order
n — 4 within a trapezoid of order =, preferably with the aid of a
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computer, and find an upper bound on the number which can be
collinear, not only in the plane, but in 3-space. To clinch the
argument, it might be necessary to descend to order n — 5.

One would hope that by this method a sufficiently clever and
persistent mathematician could determine the true maximum number
of collinear points in W, which undoubtedly is three. However,
there is no hope of sharpening Theorem 2 further than this, for we
have the following theorem:

THEOREM 3. If S has exactly three elements, then every S-walk
of length mine has three collinear wectors; im fact three equally
spaced collinear vectors.

Proof. This result follows from the theorem of T. C. Brown
[1] that any sequence of length nine on three symbols contains two
adjacent segments which are permutations of each other. Brown’s
theorem can be verified in about one hour by direct computation.

An S-walk of length eight with no three collinear points is
obtained by summing the sequence i, j, i, k, i, J, i.

REMARK 3. Theorem 2 also holds in the case where Sc R?
provided that there are three elements e, e,, and e, of S, such that
e X e, e, X e, and e, X e, are linearly independent over the rationals.
In other words, the condition that the elements of S be lattice
points is necessary for Theorem 1.

The above theorems leave unanswered the question of whether
it is possible to have an infinite S-walk with no three collinear
points for some S Z" (in particular, can n = 3?).
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ON THE NONOSCILLATION OF PERTURBED FUNCTIONAL
DIFFERENTIAL EQUATIONS

JOHN R. GRAEF, YUicHI KITAMURA, TAKASI KUSANO,
HirosHI ONOSE, AND PAUL W. SPIKES

We study the behavior of the solutions of the second
order nonlinear functional differential equation

(1) (a@x’) = f(¢, 2(t), z(g(?))

where a, g: [t,, ©) — R and f:[t,, ©)XR?— R are continuous,
a(t) >0, and g(t) > < as t > co. We are primarily interested
in obtaining conditions which ensure that certain types of
solutions of (1) are nonoscillatory. Conditions which guar-

antee that oscillatory solutions of (1) converge to zero as
t — co are also given. We apply these results to the equation

(2) {a@®x’) + q®)rx(g®) = e(t, 2)

where q: [{,, ©) > R, r: R —> R, e: [ty, ) X R — R are continuous
and ¢ and g are as above. We compare our results to
those obtained by others. Specific examples are included.

In the case of nonlinear ordinary equations, the search for
sufficient conditions for all solutions to be nonoscillatory has been
successful; see, for example, the papers of Graef and Spikes [4-7],
Singh [11], Staikos and Philos [14], and the references contained
therein. The only such results known for functional equations to
date are due to Graef [3], Kusano and Onose [9], and Singh [13].
Moreover, none of the results in [3], [9], or [13] apply to equation
(2) if e(t, ) = 0 or if » is superlinear, e.g., r(x) = 27, v > 1. We refer
the reader to the recent paper of Kartsatos [8] for a survey of
known results on the oscillatory and asymptotic behavior of solutions
of (1) and (2).

In view of a recent paper by Brands [1], it does not appear to
be possible to obtain integral conditions on ¢(¢) which will guarantee
that all solutions of (2) with e(¢, ) = 0 are nonoscillatory and which
are similar to those usually encountered in the study of ordinary
equations. (We will return to this point again in §2.) So too our
main results in this direction when applied to equation (2) require
that e(¢, ©) £ 0 (cf. conditions (27) and (28)). Although all the results
presented here hold if »(x) is sublinear, we are especially interested
in the superlinear case.

2. Main results. The results in this paper pertain only to the
continuable solutions of (1). A solution x(f) of (1) will be called
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oscillatory if its set of zeros is unbounded, and it will be called
nonoscillatory otherwise. Some of the results which follow concern
solutions of (1) which satisfy growth estimates of the form

(3) |2()| = O(m(t)) as t—— o,

where m: [t,, o) — R is continuous and positive. Other authors, for
example Staikos and Sficas [15], have studied the asymptotic behavior
of nonoscillatory solutions which satisfy estimates of this type with
m(t) = t*.

We will assume in the remainder of this paper that the function
f satisfies an estimate of the form

(4) [ f¢, = )| = F(, ||, [y])
where F:[t, o) X R: — R, is continuous and such that

Fi,u,v) S Fit,v/,v) for 0su=su,0=5v0.
THEOREM 1. Suppose that
(5) [ taen | Fa, om), emgududs < =

for all ¢ > 0. If x(t) ts an osctllatory solution of (1) satisfying (3),
then x(t) — 0 as t— oo.

Proof. Let x(t) be an oscillatory solution of (1) satisfying (3);
then |z(t)] < em(t), |2(9®))| < em(g9(%)) for all ¢ = ¢, = t, and some ¢ > 0.
Suppose that lim sup,..|x()| > 2M for some M > 0. Then there
exist sequences {a,} and {b,} of zeros of x(t) such that a, < b,, a,, b, —
oo as n— oo, |x(t)| > 0 on (a,, b,), and M, = max{|z@)|:a, <t <b,} >

M for n=1,2,---. Now choose ¢, in (a,, b,) so that |x(¢,)| = M,
for n =1,2, ---. Integrating equation (1) from ¢ in [a,, t,] to ¢,
we have

a)z'®) = = | "(s, 2(s), a(g(s))ds
A second integration yields
() = —SZ:[l/a(s)] Stf (u, @(w), 2(9(w))duds .
Thus
M, = |at)| = | [a@)] | " Flu, em(u), em(g(u))duds .

Condition (5) implies that the ri ghthand side of the above inequality
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converges to zero as n — oo. This contradicts |x(¢,)| = M, > M for
nw =12, --- and completes the proof of the theorem.
The following corollary is an immediate consequence.

COROLLARY 2. If condition (5) holds with m(t) = K for every
constant K > 0, then all bounded oscillatory solutions of (1) converge
to zero as t— oo,

In our next theorem the following sublinearity type condition
will be used. There exists a continuous function H: [¢,, ) — R such

that
(6) lim sup F'(¢, v, v)/v < H(¢t) .

THEOREM 3. In addition to (6) assume that condition (5) holds
with m(t) = K for any constant K > 0,

(7) gty =t
and
(8) gw[l/a(s)] SmH(u)duds < oo

Then every oscillatory solution of (1) converges to zero as t — oo.

Proof. We will first show that all oscillatory solutions are
bounded. Suppose that x(t) is an osecillatory solution of (1) and
lim sup,... |#(t)| = «=. Then there exists a sequence of intervals
{(a,, b,)} such that lim, . a, = lim, .. b, = , 2(a,) = z(b,) = 0, |2(¢)]| >
0 on (a,,b,), and M, = max{jz@®)|:t <b,} = max{|z(t)|: e, =t < b,}
and M, increases to infinity as n — - with M, = K. As in the proof
of Theorem 1 we obtain

M, = lo(t)) = | 11/a(s)] | "Fu, M,, M,)duds
where t, €(a,, b,). Hence
1< S””[l/a(s)] St"H(u)duds

which contradicts (8) as % — oo.
Since a(t) is bounded the conclusion of the theorem then follows

from Corollary 2.

THEOREM 4. Suppose that there exist continuous functions
G: [t,, ) X RL — R, and h:[t, «)— R such that
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(9) G, u,v) SGEw,v) for 0su=su, 0=v=7,

(10) £, 3, 9) — kO] S GG, |al, lyl) for o,yeR,
a) | e { 1w duds < <,

and

12) | t/a@1 | 6, emw), em(gu)duds < o

Sfor all ¢ > 0. If there exists ¢, > 0 such that either

(13) tim | [1/a(0)] ' hw) + 6w, <, clduds = —
or
a9 tim [ [1/a@)] | (b) — G, o, )duds = +<

Sfor all large T, then any solwtion x(t) of (1) satisfying (3) is mon-
oscillatory.

Proof. Let x(t) be an oscillatory solution of (1) satisfying (3).
In view of (11) and (12) all the hypotheses of Theorem 1 are satisfied
with F(¢, w, v) = |h(t)| + G, u, v) and so «(t) -0 as t— . Thus
there exists T = ¢, such that 2'(T) =0, |z(¢)| < ¢, and |2(g@®)| < ¢
for ¢t > T. Hence

15)  h(t) — G, ey 00) < f(E, 2(t), 2(9@)) < h(®) + G(t, cu co)
for ¢t = T. Integrating twice we have
|, 12/a) | (o) — G, o, e)duds = a(t) — o(T)
= | 1a@1 | b + G, ¢, eh)duds .

If either (13) or (14) holds, then x(t) cannot have arbitrarily large
Zeros.

REMARK. An alternate form of Theorem 4 can be obtained by
replacing conditions (13) and (14) by

(16) lim sup S’{h(u) + Gu, ¢, ¢)}du < 0
t—oo T

and



NONOSCILLATION OF FUNCTIONAL DIFFERENTIAL EQS. 369

an lim inf St{h(u) — G(u, ¢, c)du > 0
t »o00 T

respectively. The proof in this case would follow from inequality
(15) by noting that (16) or (17) implies that «'(¢) would have fixed
sign. Condition (16) or (17) may be satisfied when (18) and (14) are

not, for example, when S [1/a(s)]lds < oo. Similarly (13) or (14) may
t o

hold with neither (16) nor (17) being satisfied when S [L/a(s)lds = o.
o

THEOREM 5. Assume that (7) and (9)-(11) hold, G is sublinear
n the semse of condition (6), i.e., there exists Hyg: [t,, ) — R such
that lim sup,... G, v, v)/v < Hyt),

(18) r[l/a(s)] STHG(u)duds < oo,

and condition (12) holds with m(t) = K for any constant K > 0. If
either (18) or (14) holds, then all solutions of (1) are nonoscillatory.

Proof. Let z(t) be an oscillatory solution of (1). If we let
F(t, u, v) = G(t, w, v) + |h(t)|, then clearly (6) holds and moreover (11)
and (18) imply that (8) holds with H(¢) = H.(¢) + |h(t)|. Hence z(t) —
0 as ¢ — c by Theorem 3. Proceeding exactly as in the proof of
Theorem 4 we again obtain a contradiction.

REMARK. Once again an alternate version of Theorem 5 can be
obtained by replacing conditions (13)-(14) by (16)-(17).

3. Applications and discussion. We will now apply the results
in the previous section to equation (4):

(a@®)z") + q)r@(9(®) = e, @) .
Assume that
(19) let, w)| = le(t, v)| if |u|=|v],
and there are nonnegative constants A, B and p such that
(20) lr(@)| = Alz|* + B.

If for some k = 0
@ [t/ § tor o auds < =

and
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22) S [1/a(3)]S le(u, cw?)|duds < o> for all ¢=0,
to 8

then the hypotheses of Theorem 1 are satisfied with m(t) = t*. Hence
any oscillatory solution x(t) of (2) satisfying

(23) la(t)| = 0(t") as t—> o,

will converge to zero as t — . If &k = 0 in conditions (21) and (22)
then we obtain the conclusion of Corollary 2 for equation (2). In
this case we obtain Theorem 4 of Kusano and Onose [10] as a special
case. They required that »(x) be nondecreasing, xr(x) > 0 if 2 = 0,
and e(¢, x) = e(t); moreover if k¥ = 0, conditions (13) and (14) of [10]
imply conditions (21) and (22) above.

Now assume that there exist w > 0 and continuous functions
hy, hst [to, «©) — R such that

(24) le(t, ®) — k(D] < ho(O) ],
(25) [, a7l duds < o=,
and

(26) S:[l/a(s)] [ whawaduds < = .

If (7), (19)-(21) and (24)-(26) hold with » <1, w =<1, and k=0,
then all oscillatory solutions of (2) converge to zero by Theorem 3.
Theorem 5 of [10] is a special case of this result. There the
authors show that when »(x) is sublinear, i.e., lim sup,, .. 7@)/x < o,
then the hypotheses of their Theorem 4 insure that all oscillatory
solutions are bounded and hence converge to zero. In so doing they
generalized Theorems 1,2, and 3 of Singh [12] who, among other
assumptions, required a bounded delay. Under a more restrictive
condition on #(x), namely, 0 < »(x)/x < m for all z, Singh [13] gives
sufficient conditions for all oscillatory solutions of a special case of
(2) to bounded above. Under a different set of hypotheses, Kusano
and Onose [9] obtained exactly the opposite result. The point to be
made here is that while we are primarily interested in the case
where r(x) is superlinear, (cf. Theorems 1 and 4 and Corollary 2)
i.e., lim sup;,-. 7(@)/x = + o=, our condition (20) includes the sublinear
forms of Kusano and Onose [9, 10] and Singh [12, 13] as special cases
and, moreover, our integral conditions are similar in form and at
times reduce exactly to those used in [9, 10, 12, and 13].

Relative to Theorem 4, if in addition to conditions (19)-(21) and
(24)-(26), we ask that »(0) = 0 and there exists N > 0 such that either
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@) lim | [Wa@)] | + Nk + lq@duds = — e

or,

@8 1im | [1/a@)] | (@) ~ Nibw) + lg@)duds = +

for all large T, then any solution x(¢) of (1) satisfying (23) is non-

oscillatory. The alternate forms of (27) and (28) corresponding to
(16) and (17) are respectively

(29) lim sup | (hy(w) + Nlhi(w) + |g(w)|du < 0
and
(30) lim inf || (. (u) — NTh) + |g@)[Tidu > 0.

We will now give some examples to illustrate our results.

ExAMPLE 1. The equation
2+t =[sin(Ine)]/t,t =1

fails to satisfy condition (21) for & = 0 or condition (22). Here x(f) =
cos(Int) is a bounded oscillatory solution which does not converge
to zero.

ExXAMPLE 2. The equation
x’ + A = h(t),t =1

where h,(t) = [sin(ln ¢) — 8 cos(In £)]/¢* + [sin®(In ¢*/)]/t** satisfies condition
(20) with p = 8, condition (21) with % = 0, and (25). Here neither
(27) nor (28) holds and we see that «(t) = t'sin(int) is a bounded
oscillatory solution.

ExaMPLE 3. Consider the equation
(") + t7w?(th) = hy(t), t = 1

where h,(t) =[4 + 2 cos(6 In t) + 6 sin(6 In ¢)]/t* + 1/¢*, « >3 and o> —1.
Conditions (20), (21) and (25) are satisfied provided that fkp —a < —1
and Bkp — a — o < —2. If ¢ <1, then (28) is satisfied while if 0 > 1,
then (30) is satisfied. Thus, in either case, if x(f) is a solution such
that

lz(t)| = O(t*) as t— oo
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with % < (e + 6 — 2)/Bp, then x(f) is nonoscillatory. Notice that
here the forcing term h,(f) changes signs.

The best nonosecillation theorem known to date for sublinear delay
equations is the theorem of Kusano and Onose in [9]; it includes as
a special case the nonoscillation criteria of Singh [13; Theorem 4.1].
There are several similarities between the conditions imposed in [9]
and those used here. For example, when . = 0 conditions (6)-(7) of
[9] imply condition (21) above. In addition, conditions (2)-(3) and
(4)-(5) of [9] imply conditions (29)-(30) and (27)-(28) above respectively.
On the other hand, even when » <1 our condition (20) on #(x) is
less restrictive than those used in [9] or [13]. Nor do we require
q(t)>0 as was needed in [9] and [13]. In both [9] and [13] the authors
required that their forcing term e(t, ) = e¢(t) be either nonnegative
or nonpositive; this was not done here. Other related results for
sublinear equations have been obtained by Staikos and Philos [14]
who studied nth order equations. They proved that for unforced
advanced equations all bounded solutions are nonoscillatory and for
forced delay equations all unbounded solutions are nonoscillatory.
When n = 2, their integral conditions on a(t), q(t) and e(t) are similar
to those used in [9-13] and this paper.

Brands [1] constructed an example of an equations of the type
(2) with a(t) =1, gt) =t — 1, and e(t, x) = 0 such that q(¢) satisfied

(31) Sme"‘”eq(t)dt < oo, <2

and yet the equation possessed an osecillatory solution. This is
semewhat of a surprise since many sufficient conditions for oscillation
of ordinary equations have analogous counterparts (or may even be
special cases of those) for functional equations (see Kartsatos [8]).

Condition (81) is a far cry from the well known nonoscillation criteria
of Hille

Swtq(t)dt < oo
to

for linear ordinary equations.
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ANNIHILATION OF IDEALS IN COMMUTATIVE RINGS

JAMES A. HuckABA AND JAMES M. KELLER

Four theorem are proved concerning the annihilation of
finitely generated ideals contained in the set of zero divisors
of a commutative ring.

1. Introduction. An important theorem in commutative ring
theory is that if I is an ideal in a Noetherian ring and if I consists
entirely of zero divisors, then the annihilator of I is nonzero. This
result fails for some non-Noetherian rings, even if the ideal I is
finitely generated. We say that a commutative ring R has Property
(A) if every finitely generated ideal of R consisting entirely of zero
divisors has nonzero annihilator. Property (A) was originally studied
by Y. Quentel in [7]. (Our Property (A) is Quentel’s Condition (C).)
Theorem 1 shows that all nontrivial graded rings have Property (A).
(For our purposes a nontrivial graded ring is a ring R graded over
the integers such that R contains an element x, not a zero divisor,
of positive homogenous degree.) Theorem 2 completely characterizes
those reduced rings with Property (A).

Property (A) is closely connected with two other conditions on
a reduced ring. One is the annihilator condition (a.c.): If (a, b) is
an ideal of R, then there exists ce R such that Ann(a, b) = Ann(c).
The other condition is that MIN(R), the space of minimal prime
ideals of R, is compact. Our Theorem 3 shows that for a reduced
coherent ring R Property (A), (a.c.), and the total quotient ring of
R being a von Neumann regular ring are equivalent conditions; and
that each (and hence all) of these conditions imply that MIN(R) is
compact. Finally, in Theorem 4, we prove that every reduced non-
trivial graded ring satisfies (a.c.).

We assume that all rings are commutative with identity. If R
is such a ring, let T(R) be the total quotient ring of R, let Z(R) be
the set of zero divisors of R, and let Q(R) denote the complete ring
of quotients of R as defined in [5]. Elements of R that are not zero
divisors are called regular elements.

2. Graded rings.. Y. Quentel, [7, p. 269], proved that if R is
a reduced ring, then the polynomial ring R[X] satisfies Property (A).
We generalize this to arbitrary nontrivial graded rings, and hence
to polynomial rings that are not necessarily reduced.

THEOREM 1. If R is montrivial graded ring, them R satisfies
Property (A).

375
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Proof. Let I =(a, ---,a,) be an ideal of R contained in Z(R).
For 1=1,---,p,let a, = 3%, b" be the homogeneous decomposi-
tion of a;, where deg b’ = k. Let x be a regular homogeneous element
in B of degree t > 0. Construct an element a as follows:

o =a, + a2+ -+ + a,x”?,

where the s, are integers such that ts, + m, > n,, and ts; + m; >
Ny + t8,_;1 =8, --+, ». There exists a nonzero homogeneous element
¢ such that ca = 0. (The proof of this is identical to the proof of
McCoy’s Theorem: If f is a zero divisor in R[X], then there is a
nonzero b€ R such that bf = 0.)

Since deg[b'x*] = deg[bi’x*] unless ¢ = j and k = h, the homo-
geneous compontets of o are {bPwx}i= i, ™. Thus, by the unique
representation in terms of the homogeneous components ¢b{P'x* = 0
forall i, k. Since x ¢ Z(R), ¢b® = 0 for all 7, k. Therefore, ¢ € Ann(I).

COROLLARY 1. If R is any ring, then the polynomial ring R[X]
satisfies Property (A).

3. Reduced rings. In this section all rings are assumed to be
reduced.

THEOREM 2. For a reduced ring R, the following statements are
equivalent:

(1) R has Property (A);

(2) T(R) has property (A);

(3) If I is a finitely generated ideal of R contained in Z(R),
then I is contained in a minimal prime ideal of R;

(4) Every finitely generated ideal of R contained in Z(R),
extends to a proper ideal in Q(R).

Proof. (1) — (2) is clear.

(1) — (3): Assume that I is a finitely generated ideal contained
in Z(R), but not contained in a minimal prime ideal of R. Then
¢l = 0 implies that ¢ is in every minimal prime ideal of R;i.e., ¢=0.

(83)—>1): Let I=(x, -+, 2, CP, Pa minimal prime ideal of R.
By [2, p. 111], choose z,€ Ann(x;), 2, ¢ P. Thenz =22, --- 2z, = 0 and
ze Nt Ann(x;) = Ann(I).

(1)—>(4): If I is a finitely generated ideal contained in Z(R),
then IQ(R) has nonzero annihilator in Q(R). Hence, IQ(R) < Q(R).
has nonzero annihilator in Q(R). Hence, IQ(R)SQ(R).

(4) > (1): Assume that I is a finitely generated dense ideal of
R such that Ic Z(R). (A subgroup H of a ring R is dense, if
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Ann H = 0.) Then I is dense in Q(R), [5, p. 41], and whence IQ(R)
is dense in Q(R). But Q(R) is a von Neumann regular ring, [5, p. 42];
and von Neumann regular rings have Property (A), [3, p. 30]. By
the equivalence of (1) and (3) of this theorem, IQ(R) is not contained
in any minimal prime ideal of Q(R). But in Q(R), minimal prime
ideals are maximal. Therefore, IQ(R) = Q(R), a contradiction.

The results about the compactness of MIN(R) that we need are
summarized in Theorems A and B.

THEOREM A. The following conditions on a reduced ring R are
equivalent:

(1) Q(R) 1s a flat R-module;

(2) MIN(R) s compact;

(83) {MnN R: McSpec QR)} = MIN(R);

(4) If aeR and if U= {MecSpecQ(R).a¢ MN R}, then there
exists a finitely gemerated ideal I such that

Spec QR\U = {MeSpecQR): I ¢ MN R} ;

(56) If X is an indeterminate, then T(R[X]) is a von Neuwmann
regular ring.

Proof. A. C. Mewburn, in [6], proved the equivalence of (1)
through (4). Quentel proved that (2) and (5) are equivalent, [7].

THEOREM B. The following conditions on a reduced ring R are
equivalent:

(1) T(R) is a von Neumann regular ring;

(2) R satisfies Property (A) and MIN(R) is compact;

(8) R satisfies (a.c.) and MIN(R) is compact.

Proof. In [7], Quentel proved the equivalence of (1) and (2);
while M. Henriksen and M. Jerison, [2], showed that (1) and (3) are
the same.

A ring R is coherent in case I is a finitely generated ideal of R
implies there is an exact sequence R™ — R*-— 10,

THEOREM 3. For a reduced coherent ring R, the following con-
ditions are equivalent:

(1) R has Property (A);

(2) R has (a.c.);

(3) T(R) is a von Neumann regular ring.

Proof. (1)—(3): In view of Theorem B(2) we must show that
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MIN(R) is compact. Let x< R. Since R is a coherent ring, Ann(z) =1
is a finitely generated ideal of R, [1, p. 462]. Let U = {M < Spec Q(R):
x¢MN R}). Assume that Ic M N R for some M e Spec Q(R)\U, then
the ideal (I, x)c M N R. It is clear that M N T(R) is a proper ideal
of T(R) and that MNR=MnNT(R)NR. Hence, (I, x)CMNRCZ(R).
By Property (A), Ann(l, x) == 0. But this contradicts the fact that
the ideal (I, ) = *R + Ann(x) is dense, [5, p. 42]. By Theorem A(4),
MIN(R) is compact.

(2) > (3): Let xze R, then Ann(z) = (2, - -, 2,) and Ann{Ann(z)} =
Ann(z,, ---, 2,) = Ann(z). This last condition, given in [2], implies
that MIN(R) is compact (even if R does not have a unit).

(3) - (1) and (3) — (2) are clear.

COROLLARY 2. Let R be a reduced coherent ring.

(1) If R satisfies any (and hence all) of the conditions of
Theorem 3, the MIN(R) is compact.

(2) If R is a nontrivial graded ring, then T(R) is a von
Neumann regular ring.

THEOREM 4. If R is a reduced nontrivial graded ring, then R
satisfies (a.c.).

Proof. Let (a, b)beanidealin R. If (a, b)Z Z(R), then Ann(a, b) =
Ann(l). Assume that (a, b) © Z(R), and write ¢ and b in terms of
their homogeneous components; say, ¢ = a,, + --- + a, and b = b, +
--- + b,. Let x be a homogeneous element of R, x ¢ Z(R), of degree
t > 0. Choose an integer s satisfying h - st >n and let ¢ = a,, +
e+ a, bt + -+ bt

Since R in a reduced, Ann(c) = NP, where P varies over the
minimal prime ideals of R not containing ¢. By Lemma 3 of [8,
p. 153], each P is a homogeneous ideal. Hence, N P = Ann(e¢) is also
homogeneous.

Let d be a homogeneous element in Ann(¢). Then da, = 0 and
dbjer =0 for all 4,5. Then, da =0 =db and we have Ann(c)C
Ann(a, b). The other inclusion is obvious.

Let R be a graded ring which contains a regular homogeneous
element. Define T, = {a/b: o and b are homogeneous, b is regular,
and ¢ — degree a — degree b}. Just as in the integral domain case,
[8, p. 157], 2T, is a graded ring containing R as a graded subring.

COROLLARY 3. Let R be a reduced nontrivial graded ring. The
following statements are equivalent:
(1) MIN(R) is compact;
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(2) MIN(T,) is compact;
(3) T(R) is a von Neuwmann regular ring.

Proof. (1)< (3) by Theorem B.

(1)« (2): If S is the set of regular homogeneous elements of R,
then Rg = 3T, and MIN(R) is homeomorphic to MIN(R;). By [4,
Lemma 1], there is a one-to-one order preserving correspondence
between the graded prime ideals of Ry and the graded prime ideals
of T,. It follows from [8, p. 153] that the minimal prime ideals of
a graded ring are graded. Thus, MIN(E;) is homeomorphic to MIN(T)).

REMARKS. (1) MIN(R) compact -~ Property A or (a.c.). This
follows from an example in [6]. (2) Property (A)-» MIN(R) compact.
By [6. p. 427], there is a ring R for which MIN(R) is not compact.
Applying Theorem B(5), T(R[X]) is not von Neumann regular. But
R[X] has Property (A), [7, p. 269]. Thus, MIN(R|X]) cannot be
compact.
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NORM ATTAINING OPERATORS ON LEBESGUE SPACES

ANZELM IWANIK

Let X and Y be Lebesgue spaces (AL-spaces). Then the
norm attaining operators mapping X to Y are dense in the
space of all linear bounded operators from X to Y.

For any two real Banach spaces X and Y by B(X, Y) we denote
the Banach space of all bounded linear operators from X to Y. In
[7] Uhl proved that for any strictly convex Banach space Y the
norm attaining operators are (norm) dense in B(L'0, 1], Y) if and
only if Y has the Radon-Nikodym property. The question of
whether the norm attaining operators are dense in B(I'[0, 1], L'[0,
1]) has remained unsolved (cf. [7], p. 299). Here we answer this
question in the affirmative. In fact we prove a slightly more
general result.

First we introduce some notations. Let I stand for the unit
interval. For any function g defined on the product algebra in
I x I by iz =1,2) we denote the corresponding marginal functions
defined on the Borel subsets of I:

H(A) = (A x I),
1(B) = (I x B) .

The vector lattice of all finite signed Borel measures on I x I will
be denoted by M. Given any two finite positive Borel measures
m,, m, on I we write M(m,, m,) for the set of all measures ¢ in M
such that |g|* is absolutely continuous with respect to m,(1 =1, 2)
and

P ¢ oom,) .

dm,
The measures m, and m, will be fixed throughout the rest of the
paper.

Let us recall that B(L‘(m,), L'(m,)) is a Banach lattice under its
canonical order (see [5], IV Theorem 1.5 (ii)).

The forthcoming theorem establishes an isomorphism between
M(m,, m,) and B(L‘(m,), L'(m,)), and extends a corresponding result
of J. R. Brown on doubly stochastic operators ([1], p. 18). As
was kindly indicated by the referee, our Theorem 1 is also related

381
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to N. J. Kalton’s representation of the endomorphisms from L* to
L? for 0 < p <1 ([3], Theorem 3.1).

By (-, -> we denote the canonical bilinear form on L~*(m,)* X
L~(my).

THEOREM 1. The space M(m,, m,) is a wvector lattice ideal in
M and to each pe M(m,, m,) there corresponds a unique operator
T. e B(IL*m,), L*(m,)) such that
(Tuf, 1y = |Fh@)dpts, v)

for all fe L'(m,) and he L(m,). Moreover, the mapping p— T, is
a wvector lattice isomorphism of M(m,, m,) onto B(L'(m,), L'(m,) and

Hﬂwﬂ%%

oo

Jor every pe M(m,, m,).

Proof. First we note that M(m, m, is a vector subspace of
M. Since ve M(m, m,) whenever 0 <veM and v = pe M(m,, m,),
we observe that M(m,, m,) is a lattice ideal (and clearly a sublattice)
in M. If pe M(m, m, then it is easy to see that the bilinear form

L, 11 = [F@rw)ipe, v

is well-defined and continuous on L'(m,) X L*(m,). Therefore there
exists a unique operator T.e B(L'(m,), L*(m,)*) such that

[f,h]:<T1,f7h>

(see e.g., [5], IV §2). Clearly the mapping p¢— T. is one-to-one
and # =0 if and only if T, is a positive operator in the Banach
lattice sense. Moreover, for an arbitrary v =0 in M(m, m, and

for any he L”(m,) we have (T\1, h) = Shdvz, so

dy*
T1 =
d

e Li(m,) ,
2
whence T,fe L'(m,) for any fe L*(m,). Consequently, T,e B(L*(m,),
L'(m,)) by continuity. Since every pe M(m,, m,) is a difference of
two positive measures in M(m,, m,) and p¢— T, is a linear map,
we have T,e B(L'(m,), L'(m,)) for all e M(m,, m,).

We now show that p#— T, is an “onto” mapping. Since
B(IL*m,)), L(m,)) is a Banach lattice, it suffices to prove that every
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positive operator T'e B(L‘(m,), L*(m,)) is of the form T,.. Given any
such T we define a set function

(A X B) = (T%,, XB>

on all Borel rectangles in I x I. Evidently g extends uniquely to
a finitely additive positive measure (denoted also by ) on the

product algebra. The marginal measures p'(4) =\ T*1dm, and
A
®(B) = S T1ldm, are finite, positive, and countably additive, so they

are compcht by the classical result of Ulam. Since g is a nondirect
product of g and g, it is countably additive by Theorem 1 (i) in
[4]. The unique extension of g to a finite positive (countably
additive) Borel measure on I x I is again denoted by x. By a
standard approximation argument,

[For@dpa, v) = T, 1)

for all fe L'(m, and he L”(m,). Therefore T = T,.. Finally, we
note that for every pe M(m,, m,)

1Tl = 11 T || = 59D || Tin [l = sup (Tif, 1)
= sup | f@)d | :@) = sup [ 7@ UL @am,w)
m,
= Hdlml |,
dm, |~

where the suprema are taken over all nonnegative functions fe
Li(m,) with [|f], = 1.

COROLLARY 1. Let ve M(m, m,). If there exists a fumnction
g€ L>(my) with |g| = 1 such that the Radon-Nikodym derivative of
the marginal measure (g(y)dy(x, y))' with respect to m, equals

' aivl*
dm,

o

on a set B of positive m, measure, then the operator T, attains its
norm on the unit ball in L'(m,).

Proof. We put di(z, ¥) = g(y)dv(x, y). Then

(T,(Xs/m\(B)), g7

I

1
N )

_ 1 S d\
m(B) )z dm,

am, = |20
dm, lle
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implying || T.(Xs/m,(B))|l, = || T.|| by Theorem 1.

The algebra of sets generated by all dyadic-rational rectangles
in I x I will be denoted by .%. The o-algebra generated by .
coincides with the Borel algebra in I x I.

THEOREM 2. The wnorm altaining operators are dense in
B(L'(m,), L'(m,)).

Proof. Let Te B(L'(m,), L'(m,)). By Theorem 1 we have I'=1T,
for some measure ¢ in M(m,, m,). Without any loss of generality
we may assume

Given 0 <e¢ < 1, the set

dlpl 3
D= lver —%(xbl—q}
is of positive m, measure, say, m,(D) =6 > 0. Now let P, (IxI)—
P be the Hahn decomposition for g with g™ concentrated on P (see
[2], §29 Theorem A). Since P is a Borel set, there exists Pe .o/
such that |p|(P4P) < d¢/4 ([2], § 13 Theorem D). We define a new
measure fI by

dﬂ = X;d#—i- _ X(le)_;dﬂ_ .

Evidently P, (I x I) — P is the Hahn decomposition for #Z and
dlp — f| = Apszd|pt]l. Since |p—f|(IXI)<0¢/4, the Radon-Nikodym
derivative of |y — @' with respect to m, must be less than ¢/4 on
some set Cc D of positive m, measure. As Pe o7, there exists a
natural number » such that P is a union of finitely many squares
corresponding to the dyadic partition of I into 2" subintervals of
equal length. Let I, be any such open subinterval intersecting C
on a set B=CnN I, of positive m, measure. We let

d, ) = L@)(UEL) @i, v) + Los@)dpta, 1)
Note first that
aly — 1| = L@(LEL) @) 4 - e, v)

+(1- 0%%(@ Jieta, )| S@| f—prl @, ) +Sd) @, 9) -
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Therefore
diy—p _ge & _,
dm, < 4 + 2 ’
whence (| T, — T|| = || T.,_.|| < e. Moreover,
dlpl 1 on B and =<1 elsewhere.

dm,

The set (I, x I)N P is a finite union of squares of the form
I, x I(k=1,-.--,m), where each I, is an element of the dyadic
partition of I into 2" subintervals of equal length. Therefore
(B x I)N P is the finite union of the Borel rectangles B x I,. We
define a function g€ L”(m,) as follows

) = 1if ye UI,,
9 = —1 otherwise.

Clearly the Radon-Nikodym derivative of the marginal measure
(9(y)dy(x, ¥))* coincides with

dm,

on B. Therefore, by Corollary 1, T, attains its norm and the proof
is completed.

By the known representation theorems for Lebesgue spaces (see
e.g., [5], II 8.5 Corollary and [2], §41 Theorem C, or [6], 26.4.9
Exercise (C)), every separable Lebesgue space (i.e., separable AL-
space in terms of [5]) is Banach lattice isomorphic with L'(m) for
some finite positive Borel measure m on I. Therefore we obtain
the following corollary to our result:

COROLLARY 2. Let X and Y be separable Lebesgue spaces.
Then the morm attaining operators are demse in B(X, Y).

After the paper was accepted for publication, the last corollary
has been generalized to arbitrary (nonseparable) Lebesgue spaces as
a result of the author’s conversations with Professors J. Bourgain
and H. P. Lotz. The proof is outlined below:

Theorem 1 remains true if we replace (I, m;) by (J, m,) with
J; compact Hausdorff and m, a finite regular (compact) positive
measure on the Borel o-algebra <, and with M being the space of
all finite signed measures on the product oc-alglebra <Z x <.

Indeed, the marginal measures \ T*ldm,, S T1dm, are compact since
A B
the measures m,; are regular, and so Theorem 1 (i) of [4] is still
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applicable. The rest of the proof remains unchanged.

Theorem 2 is valid for the general spaces L'(J, m; with
essentially the same proof as before, .o~ being replaced now by
the algebra of all finite unions of Borel rectangles in J, X J,.

Now if X, X, are arbitrary Lebesgue spaces then every Te
B(X,, X,) can be approximated by norm attaining operators. Indeed,
let (x,) be a sequence in X, such that ||x,|| =<1 and lim | Tx,|| =
[|T||. The Banach lattice ideal Y, spanned by (x,) is a Lebesgue
subspace with a weak order unit. Also the image TY, is contained
in a Lebesgue subspace Y,c X, with a weak order unit. By the
Kakutani representation theorem there exist compact spaces J, with
finite regular positive measures m, such that Y, = L'(J, m,). By
the above, the restriction T, of T to Y, can be approximated within
a given ¢ > 0 by a norm attaining operator T,e B(Y,, Y,) satisfying
NT,|| = || T||l. If P denotes the canonical band projection of X, onto
Y, then it is easy to see that T,P + T(I — P) has norm [|T,||, is
norm attaining, and approximates T within e.
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POINTWISE COMPACTNESS AND MEASURABILITY

SurJiT SINGHE KHURANA

Among other results it is proved that if (X,%, ) is a
probability space, E a Hausdorff locally convex space such
that (E’,s(E’, E)) contains an increasing sequence of abso-
lutely convex compact sets with dense union, and /: X > F
weakly measurable with f(X) C K, a weakly compact convex
subset of E, then f is weakly equivalent to g: X —» E with
g(X) contained in a separable subset of K.

In [8] and [9] some remarkable results are obtained for the
pointwise compact subsets of measurable real-valued functions and
some interesting applications to strongly measurable Banach space-
valued functions are established. In this paper we continue those
ideas a little further. We first give a somewhat different proof of
([9], Theorem 1) and then apply it to give a generalization of
classieal Phillip’s theorem ([5]). Also some result about equicontinu-
ous subsets of C(X), the space of all continuous real-valued functions
on (X, 7,) (z, is the lifting topology, [10], p. 59; in [8] this topology
is denoted by T,) are obtained.

All loecally convex spaces are taken over reals and notations of
[6] are used. For a topological space Y, C(Y) (resp. C,(Y)) will
denote the set of all (resp. all bounded) real-valued continuous
functions of Y. N will denote the set of natural numbers.

In this paper (X, ¥, 1) is a complete probability measure space.
Let & be the set of all real-valued 9-measurable functions on X,
%=, the essentially bounded elements of <% and M=, the bounded
elements of & We fix a lifting, [10], p: &¥* — M~ and on X we
always take the lifting topology 7z, ([10], p. 59). For fe. &, ge &
we write f =g if f(®) = g(x), Ve e X, and f =g if f(x) = g(x), a.e.
[¢#]. For a Hausdorff locally convex space E, a function f: X — E
is said to be weakly measurable if hof is Y-measurable, Vhe E',
the topological dual of E. Two weakly measurable functions
fioX—E, 1=1,2, are said to be weakly equivalent if hof, = hof,
Vhe E'. The space &, and norms ||-||, and ||-]|. have the usual
meanings. We shall call a topological space, countably compact if
every sequence in it has a cluster point, and sequentially compact
if every sequence has a convergent subsequence.

We start with a different proof of the following result of [9].
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THEOREM 1 ([9], Theorem 1). Let H be a subset of & such that
for any h,eH, h,eH, h, #+ h, implies h, # h,. Then, with the
pointwise topology on H, the following are equivalent:

(1) H 1s sequentially compact;

(ii) H 1is compact and metrizable.

If H is convex, then each of (i) and (ii) is also equivalent to:

(iii) H s compact;

(iv) H 1s countably compact.

Proof. By ([6], Theorem 11.2, p. 187) each of (i), (ii), (iii), (iv)
implies that H is relatively compact in R*, with product topology.
Thus each of these conditions implies that H is pointwise bounded.
Denote by @ the homeomorphism, [0, ] — [0, 1], z — 2/(1 + z). For
any acl, the directed net of all finite subsets of H, let h,=
sup {|h|: hea}, and p, = p(®oh,). {p.} is a monotone bounded net
in C,(X), which is boundedly complete. Let sup p, = p € C,(X). This
means there is an increasing sequence {a(n)} I such that p =
SUD D (this follows from the fact that g(p) = sup ¢(p,)). Since
Do = Poh,, we get p;{l} is p-null, Va. From this it follows that
K = p™{1} is p-null. Thus ¢ = (@ 'op)Xy/x is a measurable function
such that |h| < q a.e. [¢], Yhe H.

(i) < (ii) is simple ([8], Prop. 1, p. 197), the metric d of (ii)
being defined by d(f, 9) = || (f — 9)/1 + ¢q]|,. (ii) = (iii) and (iii) = (iv)
are trivial. Now we come to the proof of (iv) = (i). Take a sequence
{fx} © H. Since 1/(1 + q)H is relatively weakly compact in (<, |||},
there exists a subsequence {f,} of {f.} and an f,€.&, such that
1)1 + 9)f, — f, weakly. Thus there exists a sequence {g,} in the
convex hull of {f,:1<mn< >} (note {g,JCH) such that
1/ + 9)g, — f, a.e. [¢] (because a convergent sequence in (<4, ||l
has a subsequence converging a.e. [¢]). Taking f to be a cluster
point of {g,} in H, we get 1/(1 + q)f = f(¢t). We claim f, — f in H.
If f, -+ f there exists an x€ X, an ¢ > 0, and a subsequence {f.} of
{f.} such that one of the two following conditions are satisfied:

(1) fa(@) > flx) + ¢, ¥n;

(ii) fa(@) < flx) —e, Vn.

Sinece 1/(1 + q)fn — 1/(1 + q)f weakly, proceeding as before we get
a sequence {g,} in the convex hull of {f,:1=<mn < o} such that
1/ + @)gn — 1/ + q)f a.e. [¢]. If f” is a cluster point of {g,} in
H we get f” = f(i) but because of (i) or (ii), f"(x) # f(x), a con-
tradiction. This proves that H is sequentially compact.

This result is also proved in [11] by a different method.
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By a classical theorem of Phillips [5], if f: X — E, E being a
Banach space, is weakly measurable and f(X) is relatively weakly
compact in E, then f is weakly equivalent to a strongly measurable
function ([8], Theorem 3, p. 200). What one really needs to do is
to find a weakly equivalent function ¢ such that g(X) is separable.
The next theorem is a generalization of Phillips’ theorem.

THEOREM 2. Let (E, .7 ) be a Hausdorff locally convexr space
such that there exists an increasing sequence {A,} of absolutely con-
vex compact subsets of (E', o(E', E)) whose union is dense in
(', o(E', E)). Suppose f: X — E is weakly measurable and f(X)C K,
for some weakly compact convex subset of K. Then there exists a
weakly wmeasurable function g: X — K, g = fw) and g X)CK,, a
separable closed convex subset of K.

Proof. Since (&, o(E, E')) can be considered as a subspace of R*,
with product topology, f can be considered as f: X — R*'. For each
he E', define g(h) = p(ho f) and let g: X — R*, (9), = g(h), Vhe E'.
g is evidently continuous. If g(x,) ¢ K for some x,€ X, there exists,
by separation theorem ([6], p. 65), an he B such that hog(x,) >
sup (K). This is a contradiction since #Zof = sup h(K) implies
oho f) < sup h(K). Evidently g = f(w). FixneN. By Theorem 1,
B, ={hog:heA,}, with the topology of pointwise convergence on
X, is a compact metric space. We metrize £ by the seminorms p,,
p.(x) = sup {|h(x)|: he A,}. We denote this metric topology by .7,.
For each n, E, = (C(B,), ||-ll) is a separable Banach space (here ||-||
is sup norm), and so F = [[3., E, is a separable Frechet space. Let
X, be the quotient space obtained from X by the equivalent relation,
x=y=g) =g(y). Bach xeX, gives rise to z¢C(B,), z(t) = t(x)
for each te B,, for every n. Thus X, can be embedded in F, z,—
(X0, %o, -+ )€ F. Taking, on X, the topology induced by F, we easily
verify that ¢g: X, — (&, .7) is continuous and so (9(X), .7,) is separa-
ble. Let K, = the closed convex hull, in (&, .7 ), of a countable
dense subset of (¢(X), 75,). If g(X) & K,, by separation theorem,
there exists an k¢ E’ and z, ¢ X such that 4o g(x,) > sup h(K,). Since
(B, 7)) DUz 4uy qo9(x,) < sup ¢(Ky), YgeUr-1 A,. Now there ex-
ists a net {h.} < U7, A, such that h,— h uniformly on each compact
convex subset of (F,0(E,E’)). From this it follows ko g(x,) < sup h(Ky),
a contradiction. This proves the result.

REMARK 3. If F is metrizable then (E’, ¢(&', E)) contains a
sequence of compact absolutely convex sets whose union is E'. If
Y is a completely regular Hausdorff space containing a o-compact
dense set and E = C,(Y) with striect topology B,, B, then it is
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proved in ([3], Theorem 3) that (E’, o(E’, £)) has an increasing
sequence of absolutely convex compact sets with dense union — here
E is not metrizable.

REMARK 4. The function ¢g: X — (¥, o(F, E')), obtained in this
theorem, is measurable in the sense of ([2], Def. 4, p. 89).

The next theorem, in some sense, is a generalization of ([9],
Theorem 3).

THEOREM 5. Let E be a Hausdorff locally convex space such
that there exist, in (E', o(E', K)), an increasing sequence {A,} of
absolutely convex compact sets whose union is E'. Suppose g: X — E
18 weakly measurable such that go f + 0 tmplies go f # 0, for every
feEl'. Then g(X) is contained in a separable subspace of E.

Proof. In the notations of Theorem 2, B, = {hog:hc A,} are
compact and metrizable, with the topology of pointwise convergence,
and .7, is the metric topology, on E, of uniform convergence on A,.
Proceeding exactly as in Theorem 2, we prove that g(X) is a separa-
ble subset of (E, .7,). Let F = (E, 7,) and E, = the closed separa-
ble subspace, in (E, .7 ), generated by a countable dense subset of
9(X), 7). If g(x,) ¢ E, for some z,e X there exists, by separation
theorem, an he E’ such that hog(x,) >0 and o =0 on E, Since
E =Us A, CF, hog(x,) < sup (hog(X)) < sup h(E,) = 0, a contradic-
tion. This proves the result.

In the next theorem we do not assume H to be uniformly
bounded ([8], Theorem 4, p. 203).

THEOREM 6. Let H be a pointwise bounded subset of C(X). If
H 1s equicontinuous then, with the topology of pointwise convergence
on X, its closure in C(X) is compact and metrizable. Conversely
if H is sequentially compact then there is a p-null set A such that
H is equicontinuwous at each point of the open set X\A of (X, 7,).

Proof. If H is equicontinuous then its pointwise closed convex
hull H,, in R*, lies in C(X) and is compact and convex, and so the
result follows from Theorem 1.

Conversely suppose H is sequentially compact. Then, by
Theorem 1, H is compact and metrizable. By the generalized
Egoroftf’s theorem ([4], p. 198) there exists a U-partition of X =
U Xi, with p#(X;) =0 and p(X;) >0, Vi =1 such that H|, is
compact in the topology of uniform convergence on X,, Vi = 1.
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Y, = X, N p(X,), 1 = 1, are nonvoid, disjoint, open subsets of (X, 7,)
and p(A) =0, where A = X\Uz, Y,. By the Ascoli Theorem ([1],
Ch. X, §2.5), H|,, are equicontinuous for each . The result follows
now.
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COMMUTATION WITH SKEW ELEMENTS IN
RINGS WITH INVOLUTION

CHARLES LANSKI

This paper describes the structure of additive subgroups
and of subrings which are invariant under Lie commutation
with higher commutators of the skew-symmetric elements in
2-torsion free rings with involution. Except for cases arising
when the subring is central, or when the ring satisfies a
polynomial identity of small degree, the invariant subring
must contain an ideal of the ring. With the same exceptions,
the invariant subgroup must contain either the derived Lie
ring of the set of skew-symmetric elements in some ideal,
or the Lie product of the set of skew-symmetric elements
in the ideal with the set of symmetric elements in the ideal.
Furthermore, the appropriate one of these Lie products is
not Lie solvable.

The first general results of this kind were obtained for simple
rings by Herstein [4], who characterized the Lie ideals of K, the
set of skew-symmetric elements, and then by Baxter [2], who did
the same for the Lie ideals of [K, K], the derived ring of K. Their
work has been extended in several ways. For prime rings, the Lie
ideals of both K and [K, K] were studied by FErickson [3], and an
investigation of additive subgroups of K invariant under commutation
with [K, K] in semi-prime rings was made in [7]. This was followed
by a description of arbitrary additive subgroups invariant under
commutation with [K, K] [9], and of subgroups of K invariant under
commutation with higher commutators of K [10]. Returning to
simple rings, Herstein [5] showed that no noncentral proper subring
could be invariant under commutation with K, except in certain
small dimensional cases. This work was extended to semi-prime rings
and commutation with [K, K]in [8]. Our purpose here is to complete
this chain of results by describing the structure of additive subgroups
and of subrings invariant under commutation with higher commutators
of K.

Throughout the paper, R will denote a 2-torsion free ring with
involution, *; S(R) = S = {re R|+* = 7}, the symmetric elements of
R; K(R) = K = {re R|r* = —r}, the skew-symmetric elements of R;
and Z(R) = Z, the center of B. The Lie product [A, B] of subsets
A and B of R is the additive subgroup generated by all commutators
[a,b] = ab — ba for a € A and be B. A higher commutator of K is
a Lie produet of K with itself, some fixed number of times in a
given association. For example, [[K, K], K]=V is a higher commu-
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tator of K, asis K* = [K, K]or [V, K”]. In general, write K" =
[K®, KD].

The goal of the theorems mentioned above is to show that
Lie invariant additive subgroups of K contain [K(J), K] for J a
nonzero *-ideal of R, and that invariant subrings contain a nonzero
*-ideal. Even for simple rings, one encounters two exceptions; when
the invariant object is central, and when R is no more than sixteen
dimensional over its center. These exceptions exist for R a prime
ring also, and the second must include the possibility that R is an
order in such a simple ring, in which case we say that R satisfies
S;. As one would expect for semi-prime rings, one of the three
possibilities should hold in each prime image. In fact, a stronger
result can be proved. In [10] it is shown that an invariant subgroup
of K contains [K(J), K], which is “very” noncommutative or R de-
composes as a direct product of the two kinds of exceptions. To
make these notions precise, we recall two definitions from [10].

DEFINITION. Let R be a 2-torsion free semi-prime ring and set
X = {P|P is a *-prime ideal of R with 2R ¢ P}. Let

Q, = N {Pe X|R/P does not satisfy Sy}

and @, = N {Pe X|R/P satisfies S;}. If for some subset TC R, T +
Q,C Z(R/Q)), then (@, Q,) is called a splitting of R for T.

When A is an additive subgroup of K invariant under commutation
with some higher commutator of K, then to say that there is a
splitting of R for A is clearly the same as being able to “construct”
R from the two kinds of exceptions discussed above. If no such
splitting exists, one associates to A a *-ideal of R with the property
described in our next definition.

DEFINITION. Let R be a 2-torsion free semi-prime ring, A a sub-
set of R, and J a *-ideal of R. Then J is called a controlling ideal
Jor A if for each Pe X satisfying K“(J)C P, either R/P satisfies S,
or A+ PC Z(R/P).

The existence of a controlling ideal for A gives information about
A with respect to every PeX. For example, if there were no
splitting of R for A, but A> K“(T) for some *-ideal T of R with
K% (T) # 0, one might have T'C P for some PeX with neither
A + PcC Z(R/P) nor R/P satisfying S;. Even if K"(I + P)c A+ P
for a *-ideal I + P of R/P, there is no obvious way to lift this ideal
back to some I in R with K (I)C A, or to do this simultaneously for
many primes. However, an ideal J controlling A with 4> K%(J),
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uniformly satisfies A + PDKW(J + P) for every Pe X and K“(J + P) +#
0 unless R/P is one of the two exceptional cases.

Next we make two easy observations to which we shall refer
several times. Henceforth, we assume that for P X, the involution
on R/P is given by(r + P)* = +* 4 P.

LEMMA 1. Let R be a semi-prime ring and A an additive sub-
group of R satisfying [A, K“1C A. Then for each Pe X, KW(R|P) C
K(R) + P, and so, [A + P, K“*"(R/P)]Cc A + P.

Proof. Clearly, it suffices to show that K*(R/P)c K(R)+P. But
if « + P,y + PeK(R/P), then (xy —yx)+ P = (xy — y*z*) + Pe
K(R) + P.

LEMMA 2. Let R be a semi-prime ring and J a *-ideal of R.
If for some Pe X, K(J)C P, then either J < P or R/P satisfies Ss.

Proof. If Jg P,J + P is a nonzero *-ideal of R/P with
K®™J + P) = 0. It can be shown that this condition forces J + P
to satisfy S,, although one can get directly that J + P satisfies S;
by using Lemma 1, applying [10; Lemma 3], and then applying [7;
Lemma 2, p. 735]. It follows that R/P must satisfy S, since it has
an ideal which does.

Before our first main result, which extends [9; Theorem 1, p.
77] to higher commutators, note that if V is any higher commutator
of K, then VC K and [V, K]cCV. An essential ingredient in our
arguments is [10; Theorem 1] applied to higher commutators of K,
which we state as

THEOREM A. Let R be a semi-prime ring and V o higher com-
mutator of K. There exists an tdeal I*=1 of R which is a controlling
ideal for V, and which satisfies VO[K(I), K] and VDI, where V is
the subring generated by V.

With the preliminaries done, we can now prove our first main
result, about invariant additive subgroups of S.

THEOREM 1. Let R be a semi-prime ring, A an additive subgroup
of S, and V a higher commutator of K so that [A, V]C A. Then
either there is a splitting of R for A, or there exists a *-ideal I of
R controlling A with AD[KI), SI)] =Y and Y? = 0 for any 1.

Proof. By Theorem A, VO[K(J), K] for J* = J, an ideal of R
controlling V. Let B =JN A, and observe that [B, K“(J)] < B, and
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that J is a semi-prime ring. Using [9; Theorem 1, p. 77] we may
conclude that either there is a splitting of J for B, or that there
exists an ideal T*=T of J with BDO[S(T), K(T)]. The last paragraph
of the proof of [9; Theorem 1, p. 81] shows that for any Pe X(J)
with TCP, either J/P satisfies S; or B + PC Z(J/P). This together
with Lemma 2, shows that T is a controlling ideal for B.

Assume first that there is a splitting of J for B. It follows
that there is a splitting of R for B [10; Theorem 2]. Hence, for
each Pe X either R/P satisfies S; or (ANJ)+ Pc Z(R/P). Since
[A4, KY(J)]cANJ, one obtains [A4, K®(J)]C P, if R/P does not satisfy
S;. Should K“(J)c P, then because J is a controlling ideal for
V, V+ Pc Z(R/P). An easy induction argument shows that K9V
for some 7, so that KY+*YCP. The fact that P is a proper ideal of
R and Lemma 2 give that R/P must satisfy S;. On the other hand,
if K9(J) ¢ P, then K®(J) + P is not commutative and [K*J) + P,
KYR/P)]c K®(J) + P by Lemma 1, so [8; Theorem 2, p. 90] may
be used to conclude that the subring generated by K®(J)+ P contains
a nonzero *-ideal of R/P, unless R/P satisfies S;. Thus the condition
[4, K¥J)]C P forces either R/P to satisfy S, or A + PC Z(R/P).
Consequently, a splitting of J for B gives rise to a splitting of R
for A.

Next, assume that AD> BD[S(T), K(T)], for T an ideal of J
controlling B. Set I =JTJ, a *-ideal of R. Clearly, 4 >[S(), K(I)]
and we claim that I is a controlling ideal for A. Let Pe X and
suppose that K“(I)c P. By Lemma 2, either R/P satisfies S; or
Ic P. Assuming that B/P does not satisfy S;, the *-primeness of
P, together with the facts that J is a *-ideal of R, and T* = T J,
gives TcPnJ. If Jg P then PNJeX(J), so TcPNJ means
that J/PNJ satisfies S; or B+ (PNJ)c Z(J/PNJ), since T is a
controlling ideal for B. The first possibility is equivalent to the
nonzero ideal J + P of R/P satisfying S;, which would force R/P to
satisfy S;. In the second case, (4 N J) + Pc Z(R/P)and our argument
in the last paragraph shows that A + Pc Z(R/P) if R/P does not
satisfy S;. The same argument shows that R/P must satisfy S;
when Jc P. By definition, I is a controlling ideal for A.

Finally, assume that Y = 0 for Y = [S(I), K(I)]. We claim that
this gives a splitting of B for A. Let Pe X and note that Y+ PcCP,
Y@+ Pc K(R/P), and by Lemma 2 [Y*¥ 4+ P, K"(R/P)]c Y®+P. From
[10; Lemma 3] we have either Y + P Z(R/P) or that R/P satisfies
S;. In the first case, a result of Amitsur [1; Theorem 1, p. 63] shows
that (I + P)/P satisfies a polynomial identity, and so, R/P satisfies
the same identity. Of course, if I P we would be finished by our
earlier arguments. Consequently, localizing R/P at its central sym-
metric elements gives a semi-simple finite dimensional algebra Q [6].
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Since in this localization, I + P becomes @, S(I) + P localizes to S(Q),
and K(I) + P localizes to K(Q), it follows that in @, [[S, K], [S, K]] C
Z(Q). A consideration of the possible cases shows that @ is at most
four dimensional over its center. Very briefly, if @ is not simple,
or has an involution of the second kind, then @® = 0, and otherwise
one can split @ to obtain matrices over a field, where straightforward
computations give the result. Consequently, R/P must satisfy S; (in
fact, S,) so Y* = 0 forces a splitting of R for A, completing the
proof of the theorem.

Combining Theorem 1 with [10; Theorem 4] gives the version
of [9; Theorem 2, p. 82] for higher commutators of K.

THEOREM 2. Let R be a semi-prime ring, V a higher commutator
of K, and A an additive subgroup of R satisfying [A, V]C A. Then
one of the following holds:

(1) AD[KU), Kl=L for I* =1 an ideal of R controlling
AN K, and L # 0;

(ii) AD[KU), SH)] =Y for I* =1 an ideal of R controlling
ANS, and Y = 0;

(iii) there is a splitting of R for ANS + AN K.

If in addition, A* = A, then (iii) can be replaced by: (iii)’ there is
a splitting of R for A.

In trying to improve Theorem 2 (iii) to (iii)’, the same counter-
example and considerations as in [9] show that some additional
assumption is required. Before discussing the nature of the involution
on R, we point out that if in Theorem 2 (iii), for each Pe X with R/P
not satisfying S;, P is not a prime ideal of R, then in fact 4 + PC
Z(R/P). To prove this, note first that if P is not a prime ideal of
R, then P=QN Q" for a Q prime ideal of R. Now Q + Q* is a
nonzero ideal of R/Q* and ¢ + @* = (¢ — ¢*) + @*, s0 @ + Q* C K + Q*.
If the higher commutator V in Theorem 2 contains K'”, then [4, @] +
Q*Cl4, K" + Q*CA + QF so [4 QY] +Q*C(4NK) + Q*C
(ANK) +Q*C Z(R/Q*). Since Q“ + Q* is a Lie ideal in R/Q*, it
follows that either A+Q*C Z(R/Q*), or @ +Q*C Z(R/Q*), unless R/Q*
satisfies S, [11; Lemma 8, p. 120]. The possibility Q" + @* ¢ Z(R/Q*)
and repeated use of [11; Lemma 7, p. 120] force @ + Q@* < Z(R/Q%),
which in turn means that R/Q* is commutative. Repeating the
whole argument with @ and Q* interchanged shows that A + PC
Z(R/P) unless R/P satisfies S,. We isolate one special case of Theorem
2 to which our observation applies.

COROLLARY. If im Theorem 2, R is a *-prime ring which is
not prime, then ANS + AN KC Z forces A C Z unless R satisfies S;.
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As in [9], the obstruction to showing that a splitting of R for
ANS -+ AN K forces a splitting of B for A occurs in prime rings
whose extended centroid has an induced involution of the second
kind [13; Theorem 4.1, p. 511]. When this involution is of the first
kind, we can prove the result corresponding to [9; Theorem 7, p. 93]
for higher commutators.

THEOREM 8. Let R be a prime ring with extended centroid C,
and assume that the involution induced on C s the identity map.
If V is a higher commutator of K and A s an additive subgroup
of R satisfying [A, V]C A, then ANS + AN KcCZ implies that
either AC Z or R satisfies S;.

Proof. Let I be the controlling ideal for V given by Theorem
A. Then Iis a prime ring and K%¥(I) c V implies that [AN I, K®(I)]c
ANI We wish to apply [9; Theorem 7, p. 93] to I and A N I, but
first we must verify that the involution on C,, the extended centroid
of I, is the identity map. This follows from work of Martindale
since the extended centroid is the center of a certain quotient ring
and these quotient rings coincide for B and for I [12; Theorem 1,
p. 440]. A proof of this result, using the definitions in [13] follows
easily from the fact that any ideal T of I contains the ideal ITI of
R and an ideal N of R contains the ideal NI of I. This observation
and [13; proof of Theorem 4.1, p. 511-512] show that C and C; have
the same kind of involution. Applying [9; Theorem 7, p. 93] gives
either AN Ic Z(I) or I satisfies S;. Since I satisfying S; forces R
to satisfy S;, assume that AN Ic Z(I). Thus AN IcC Z(R), and in
particular [4, KW (I)]c Z, forcing [A, K®(I)] =0. As in the first
part of the proof of Theorem 1, we must have AC Z unless R
satisfies S;, completing the proof of the theorem.

Using the same ideas as above, we can obtain the higher com-
mutator version of [8; Theorem 3, p. 92] for invariant subrings.
Note that for subrings, the nature of the involution is immaterial.

THEOREM 4. Let R be a semi-prime ring, V a higher commutator
of K, and A a subring of R satisfying [A, V]C A. Then either
ADM* = M, a noncommutative ideal of R controlling A, or there
is a splitting of R for A.

Proof. By Theorem A, VO[K(I), K] for I* =1 an ideal of R
controlling V. Clearly, B= AN I satisfies [B, KY({I)]c B, so [8;
Theorem 3, p. 92] applies to the subring B of I to yield a splitting
of I for B, or that B> T* = T, a noncommutative ideal of I. We
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observe that the proof of [8; Theorem 3, p. 92] actually shows that
T is a controlling ideal for B, since T can be chosen to be a con-
trolling ideal for BN K by [10; Theorem 1], which is all that is
necessary. If B> T holds, then ADB>DITI =M. The fact that
M is a controlling ideal for A follows exactly as in the proof of
Theorem 1. Should M be commutative, the semi-primeness of R
would force M c Z(R). In particular, T°cC Z(T) and Z(T»*Tc Z(T).
Thus 0 = [Z(T):*T, T]| = Z(TYT, T], so Z(T)[1, T] = 0 from the fact
that T is a semi-prime ring. But now T*[T, T] = 0so that (T[T, T =
0, forcing T[T, T] = 0. Hence [T, Tl T N Ann(T) = 0, contradicting
the assumption that 7' is not commutative. To complete the proof
of the theorem, it suffices to treat the case when there is splitting
of I for B. As in the proof of Theorem 1, such a splitting gives
a splitting of R for B [10; Theorem 2], and the fact that B>
[4, K“(I)] for I a controlling ideal of R for V yields a splitting of
R for A.
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A RADON-NIKODYM THEOREM FOR FINITELY
ADDITIVE BOUNDED MEASURES

HuGH B. MAYNARD

An exact Radon-Nikodym theorem is obtained for finitely
additive bounded scalar measures defined on a field, the
additional condition being a local condition on the dominant
average range. The traditional technique of transferring the
problem to the Stone space, which results in approximate
Radon-Nikodym derivatives, is circumvented by isolating an
Exhaustion principal for finitely additive measures which
is then utilized to obtain the necessary decompositions.

Examples are given to illustrate the basic difficulties which arise
in differentiating with respect to signed finitely additive measures
and it is demonstrated that one difficulty arises from a lack of a
suitable Hahn decomposition of the differentiating measures. The
concept of an exhaustive Hahn decomposition is defined for finitely
additive measures and is compared to the related concepts of an
approximate Hahn decomposition as well as the standard Hahn
decomposition. It is shown that g having an exhaustive Hahn
decomposition is equivalent to |z¢| having a Radon-Nikodym derivative
with respect to ¢ and this result is then applied, in this situation,
to obtain a simplified Radon-Nikodym theorem.

The question of characterizing indefinite integrals of finitely
additive measures has been under consideration for a number of
years. There have been two basic approaches to this problem, both
seemingly arising from a desire to characterize the absolutely con-
tinuous bounded measures. The first was to enlarge the class of
integrable functions to include objects other than point functions
and to then obtain an equivalence between absolute continuity and
integral representation. Rickart [10] obtained such an equivalence
by including the multi-valued contractive set functions, while Tucker
and Wayment [12], in the setting of finitely additive operator-valued
measures, obtained a similar equivalence between an enlarged class
of integrable objects and a generalized definition of absolute con-
tinuity. The second approach is that of the Radon-Nikodym Bochner
theorem [3, p. 315, Theorem 14] which utilized the Stone space to
characterize the absolutely continuous, bounded variation measures
as those which can be approximated arbitrarily close in wvariation
by integrals of integrable simple functions. There does not seem
to be any characterization of indefinite integrals of point functions
with respect to a finitely additive bounded scalar measure prior to
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this paper.

The method of proof is interesting in that it is shown that if
m is representable as an integral with respect to g, then there exists
certain “nice” decompositions of X such that both g and m satisfy
a restricted form of countable additivity with respect to these de-
compositions. This is sufficient to allow arguments similar to those
used in the Bochner integral case [Maynard, 8, Theorem 2.1]. In
fact the lack of various decompositions seems to be the key to the
difficulties which arise in the finitely additive situation.

2. An exhaustion principle. The notation and definitions
employed in this paper will be the same as those of Dunford and
Schwartz [3, Cnapter III] which is an equivalent development, in our
setting, to that of Gould [7]. Let X be a set, ¥ a field of subsets
of X, and p: ¥ — R a finitely additive bounded measure (= set function).
As usual |g¢| will denote the total variation of g and is a positive
finitely additive measure and 3+ will denote the subset of ¥ consisting
of sets with positive g-variation. In addition we will use the notation
8(A) to denote the diameter of a set ACR.

DEFINITION 2.1. A set property P is said to be locally exhausting
in (X, 3, p) if there exists an @, 0 < a < 1, such that for each Fe 3+
there exists FFC K, FFeX*t, such that |¢|(F) =z a|p¢|(F) and F' has

property P.

DEFINITION 2.2. A countable (possibly finite) disjoint collection
{Xi}iey © 2* is said to be exhausting in X if, given any ¢ > 0, there
exists N > 0 such that

[y|<X~gXi)<a.

LEMMA 2.3 (Exhaustion principle). If P is a locally exhausting
set property in (X, X, 1), then there exists a countable (possibly finite)
set of disjoint subsets, {X.},c; C 2%, such that each X, has property
P and {X.};c; is exhausting in X.

Proof. Since P is locally exhausting, there exists X, ¢ X, X, e 3+,
such that X, has P and |p¢|(X) = a|p|(X). Proceed by induction.
If | p] (X ~ U, X,) =0, then the process terminates and {X,}r_, satisfies
the conclusions of the lemma. If |p¢|(X ~ Ui, X;) > 0, choose X, C
X ~ Ui X, X,1,€ 2", such that X, ., has property P and |¢|(X,+,) =
a|lp|(X ~ U, X,). If the process never terminates we obtain a
disjoint sequence {X;}2,C X+ such that each X, has property P.
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If lim, ., |p¢|(X ~ Ui X;) # 0, then there exists a 8 > 0 such that
(X ~Ur X,) > B8, for L<n < c>. Thus

21X 2 alpl(X ~ U X) > a8 >0

for every m, and since {X;}2, is disjoint, this violates the boundedness
of p.

DEFINITION 2.4. A set property P is said to be a null difference
property if whenever E e X+ has property P and F'eX* such that
|| (EAF) = 0, then F has property P.

LEMMA 2.5. P is a locally exhausting null difference property
in a complete bounded finitely additive measure space (X, X, ), then
there exists a countable (possibly finite) set of disjoint subsets,{X,};c; <
X+, such that X = U,.; X;, each X, has property P, and {X},.; is
exhausting in X.

Proof. By the Exhaustion principle there exists a set {X.}..,
satisfying all conclusions except that X need not equal UJ,.; X;. But
since {X.};c; is exhausting in X we have that X ~ U,.; X, is a gnull
set and hence is measurable by completeness of (X, 3, ¢£). Thus since
P is a null difference property, X ~ UU,;.; X; may be adjoined to X,
without altering any of the desired properties.

3. A Radon-Nikodym theorem. The approach to be used in
obtaining a Radon-Nikodym theorem for bounded finitely additive
measure is similar to the locally small average range approach for
the Bochner integral. The major difficulty in this approach lies in a
possible instability of the average range due to locally large values
|| (B)/|(E)| of the integrating measure. This is-due to the lack
of a Hahn decomposition for bounded finitely additive measures. A
secondary problem is that while a local property will yield a countable
maximal decomposition of the space, the measures need not be coun-
tably additive with respect to this decomposition. It is easy to
construct examples on the field of finite and cofinite subsets of the
integers with locally small average range but without Iloeally
exhausting small average range.

We consider first the various types of average ranges which
are useful in Radon-Nikodym theorems for the Bochner integral,
operator-valued measures, and finitely additive measures. Suppose
m: Y — R is another finitely additive measure. The standard average
range which occurs in the Radon-Nikodym theorem for the Bochner
integral [Rieffel [11], Maynard [8]] has the following definition.
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DEFINITION 3.1. For each EeJX*, the average range of m with
respect to p¢ over K is: A,(FE) = (m(F)/u(F): FC E, p(F") = 0}.

However without a Hahn decomposition the loecal structure of
A, (E) may always be poorly behaved when the ratios, |p|(F)/|u(F)|,
are large and hence to avoid this problem we consider, with finitely
additive measures, the dominant average range.

DEFINITION 3.2. For each E ¢ X+, the dominant average range
of m with respect to ¢ over E is

AXE) = {m(F)/p(F): FCE, Fest, and |aF)| > 2ip/(F)} .

The third average range we will consider is the c-approximate
average range which is useful for operator-valued measures, Maynard
[7], but is primarily used here for convienence and to illustrate the
connections between the various average ranges.

DErFINITION 3.3. For each FEe X+, the c-approximate average
range of m with respect to p over E is

AB, ¢) = (e R: |m(F) — ap(F)| < ¢|p|(F), VFC E, Fe 3} .

The following two properties are the key properties involved in
the Radon-Nikodym theorem for finitely additive measures.

DEFINITION 3.4. m is said to have locally exhausting small doma-
nant average range iff for each ¢ >0 there exists a(e) >0 such that
for E e X+ there exists FCE, Fel+, with [p#|(F) > ae)|pn|(E) and
o(AXE)) < e.

DEFINITION 8.5. m issaid to have locally exhausting approximate
average range iff for each ¢ > 0 there exists a(g) > 0 such that for
EcXt there exists FCE, FelXt, with |[¢[(F) > ae)|p|(E) and
A(F,e) # @.

DEFINITION 3.6. If m, p#: ¥ — R are finitely additive measures,
then m is p-continuous iff for every e > 0 there exists ¢ > 0 such
that |y¢|(E) < 0 implies that |m|(H) < e.

It should be emphasized that the definitions of g-continuity in
[5] and [8], requiring only that |m(E)| < e, are too restrictive as
noted in [4] and should be the above definition.

LEmMMA 38.7. Let (X, X, tt) be a bounded finitely additive measure
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space and m:X — R be a p-continuous finitely additive measure.
Then m has locally exhausting small dominant average range iff m
has locally exhausting approximate average range.

Proof. Suppose m has locally exhausting approximate average
range, and let ¢ > 0 be given and a(¢) the guaranteed constant
corresponding to ¢/4. Then if Ee X+, there exists FC K, Fel+,
[¢I(F) > a(e)|pt|(E) such that A(F, e/4) + O@.

Choose x € A(F, ¢/4). Then if F,C F, F, e 3+, such that |u(F,)| >
1/2| ¢ (F) we have

(B2 | () - apF)| e < 2 A 8

&
w(F) JpFY)] = 4 |FY "2

Thus d(A%L(F)) < ¢ and m has locally exhausting small dominant
average range.

Suppose that m has locally exhausting small dominant average
range. Let ¢ > 0 be given and a(¢) the constant corresponding to
¢. Then given K € X+, there exists FFC K, F'e 3+, such that 6(A%(F)) <
¢. Choose F,C F such that |u(F)| > 1/2|¢|(F,). Then it suffices to
show that m(F,)/u(F,) € A(F, ¢).

Let Cc F,Cex+. If |p¢|(C) =0 then by pg-continuity, m(C)=0
and we have the desired inequality. If |¢|(C) %= 0, then let § =
min(u*(C), ¢~ (C)) where p*(C) = supp-¢ (D) and ¢ (C) = —inf,, (D).
If 6 = 0 the argument is trivial so suppose 6 > 0. Then by Darst
[5] there exist disjoint sets 4, B such that C = A U B with property
that p+(B) < 6/4 < |pt|(B)/4 and g (A) < d/4 < |p|(4)/4. Then

| (A = | (4) — p(A)] > | pl(A) — 20 (4) > lﬂ;_é)
and similarily |p#(B)| > |¢|(B)/2. Thus

m(©) — M) ey = |mauB) - M) ya By

F) MF)
s Im(4) = ZELUA)| + |m(B) ~ 2 1(B)
<[4 =53

) — 1By | < el (4) +el 1 (B)

= ¢e|p[(C) .

Thus m(F)/u(F,) € A(F, ¢) = @ and hence m has locally exhausting
approximate average range. As the third example in §4 demonstrates,
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it is not true that either of these two conditions imply that m has
locally exhausting small average range, even if m is an indefinite
integral. We are now prepared to prove our main theorem after
we point out a restricted form of countable additivity which will
enable us to mimic proofs in the countably additive case.

LemMA 3.8. Let m and pt be two R-valued measures in (X, 2), &
a field, such that m is p-continuous. Then ¢ is uniformly countably
additive with respect to a disjoint sequence {E)>,c 3(.e., VFe X",
HEF) = >, i(F N E,) where convergence is uniform in F) iff {E.}i,
1s exhausting in X. In addition if {E.)..; is exhausting in X with
respect to tt, them m is also uniformly countably additive with respect
to {E;}..

The following bound on the c-approximate average range can
easily be calculated.

LEMMA 3.9. Let m and pt be two R-valued measures in (X, ).
Then for ¢ > 0, 6(A(E, ¢)) < 2, Ec 3+,

THEOREM 3.10 [Radon-Ntkodym theorem]}. Let (X, X, 1) be a
bounded finitely additive measure space, 3 a field of subsets of X
and ¢ a signed measure. If m is a finitely additive R-valued
measure, then there exists a p-integrable function f:X — R such
that m(E) :S fdp, VEe S iff

(a) m 1s onunded, p-continupus and

(b) for all 6 > 0 there exists F;,C X, F;e Y such that

(1) WX~ F,) <o

(il) AX(F;) is bounded and

(iii) m has locally exhausting small dominated average range
wm Fj.

Proof. We may assume throughout the proof that (X, 2, f) is
complete since a function integrable with respect to the completion
is integrable with respect to (X, X, ) and has the same integral
values.

(=) Suppose m(KE) = S fdp. Then (a) is well known [Dunford
and Schwartz, 3, III 2.18 arfd 20]. Let 6 > 0 be given. Then there
exists a simple function f, such that g*{x:|f(x) — f.(x)] > 1} <é.
Choose A €X such that 4> {x:|f(x) — fulz)] > 1} and p(A) <6 and
let F;=X~ A. Hence F, satisfies (i). Let N=sup {|f.(x)|: x € F;}+1.
Thus | f(x)|<N for all € F,. Now if ECF;, |u(E)|>1/2|¢|(FE), then

|m(B)| = SEfd#] <2N|p|(E)<4N|p(E)| and hence A%(F;) is bounded.
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Let ¢ > 0 be given and let a(e) = min {1/16, ¢/8N} and suppose
Ee3t, ECF,. Since f is totally measurable on F),, there exists a
measurable partition {X,}7., of E such that |u|(X,) < |¢|(E)/4 and
0(f(X)) <e/2,1<i=<mn Now by Lemma 3.7 it suffices to show the
equivalence with locally exhausting approximate average range.

Claim 1. f(X,)C AX, ¢/2),1 <1 < n.
Proof. Let re f(X;) and let FC X;, FeX*. Then
m(F) = rF)| = || f — rdp| < £ i)

since | f(x) — r| < ¢/2 for all xe X,. Thus f(X;) C A(X,, €/2).

We now cover the interval [— N, N] with the disjoint intervals
E,=[—N + ke/2, —N + (k + 1)¢/2),0 < k < [4N/e] = Q where [-]
is the greatest integer function.

For each k, 0 < k < @, we define the following set of indices:

I, ={i: AX, ¢2) N E, + @} .

Now A(X,, ¢/2) must intersect at least one E, since f(X,)C
[—N, N] and can intersect no more than two since 0(A(X,, ¢/2)) < e.

Claim 2. There exists k¥ = 0 such that
(Y X.) > @) 11 (B) -
Proof. Suppose not. We already know that
(0 X0) 2 1)) — (X 2 BELE)
but on the other hand

k(U x) = 1e(0 {ux}) s Sir(Ux)

k=0 \iel, i€l

4 e
¢ 8N
M1 11 3

<| = i —_ . = = ,

__Lz + 16 [1|(B) < 4|y|(E)

< @ + Do) 118 = ( L)

Thus there exists I, such that |g|(U;.;, X.) > a(e)|p|(E). Let
F = UieIk X.

Claim 3. A(F,e) = Q.
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Proof. Let r = —M + ((k + 1)/2)e and suppose F'C F, F' ¢ 3+,
Now for each X, i€ I,, choose r, € A(X,, ¢/2) N E,.
Then |r — ;| < ¢/2 since 7, r,e E,. Now

|m(E") = #p(F")| S 35 | m(E” 0 X) — g 0 X))
+ 5 (e =l [ 0 X)

ST EpE NX) + S Sp|(FNX) =e|p|(F).
icly 2 ici, 2
Thus r€ A(F, ¢) # @.
Hence since |p¢|(F') > a(e)|p¢t|(E) we have finished demonstrating
the necessity of our conditions.

(=) Suppose m satisfies (a) and (b) and hence has locally ex-
hausting approximate range.

We will use the following notation. If z =(z, ---, 2,) € N", then
p(R)=(2y, * -, Zu), ¢(&)=%,, and (2, 1)=(2, -, 2., 1) € A", where the
dependence on % is suppressed in an effort for notational simplicity.

Now there exists a disjoint sequence of sets {F}c 3+, which of
exhausting in X, guaranteed by conditions (a) and (b). We will
obtain a density for m on each F', and then sum to obtain the entire
density. Fix N.

Now the set property, A(F, 1/2) = ¢, is a locally exhausting
null difference property in F, and hence there exists a disjoint
countable set {Y},.,, €2, A,C N, with {Y;} exhausting in X, Fy =
U..,, Y., and A(Y7, 1/2) # @.

Since A(F, 1/2%)+ @ is a locally exhausting null difference property
in each Y! we may decompose each in an exhausting manner, Y! =
Ui Y0, where A(YZ ,, 1/2°) = ©.

Let A;={zeN:p(z)e 4, q) e A}.)}. Thus Fy = U..,Y? and
this decomposition is exhausting.

In general if {Y7},.,, is exhausting in Fiy, A, CN*, Fy = U.c, Y.,
we may decompose each Y in an exhausting manner and obtain the
decomposition {Y7*},.,,,, where

Yr= U YeH AP C N, A(YLS, 12+ @

2+1
ieAz

Fy= U Y, Apry = {2e N p(2) € 4, q(2) € A3} -

z€dpty

We now define a sequence of functions, f,: Fy — R, in the fol-
lowing manner. For each n and each z€ A, choose x7¢€ A(Y?, 1/2")
and let f, = 3.4, x:”X,v:».

Claim 1. f, is totally measurable, bounded, and hence integrable
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and | fidp = 3 a2 (@Y.

Proof. Since {Y}..,, is exhausting in F, the finite sums con-
verge in measure to f, and hence f, is totally measurable. f, is
bounded since the dominated average ranges are bounded and hence
the l-approximate average ranges are bounded in F'y.

Claim 2. {f,(®)};-. is uniformly Cauchy for tc Fy.
Proof. Let ¢ > 0 be given and choose M such that 1/(2M) < e.

If te Fy, there exists a sequence {z,}, z,€ 4,, such that te Y.
Thus if n, m > M with m > n we have that
fat) = a7 e A(Y:, 1/2") C A(Y", 1/2") and
fat) = 27 € A(Y ", 1/12™) < A(Y 2, 1/27) .

(2%

But 6(A(Y™, 1/27)<1/2""" and hence | f,(t)—f.(t) | <1/2" ' <1/2" <e
for any te Fy.
We thus can define ¢,(¢) = lim, ., f,(t): Fy — R.

Claim 3. ¢y is totally measurable, bounded and hence integrable.

Proof. f,— gy uniformly and hence in measure which implies
that gy is totally measurable. ¢, is bounded since the functions {f,}
are uniformly bounded.

Claim 4. gFgNd/x — lim , ... SE fudp, VEe S, EcC Fy.

Proof. The functions {f,}r_. are uniformly bounded and converge
uniformly, and hence in measure, to gy on Fy. Thus by the Dominated

Convergence theorem we obtain that ¢, is integrable and S gxap =
E
lim,,,,,wg fudp, VEe S,
E

Claim 5. S gydpt = m(E), VEe 3, EC Fy.
E

Proof. Let ¢ >0 be given. Then there exists » such that
HFgNd;z — SFf,,dy' < ¢/2 and such that 1/2* < ¢/8]p|(E). Now choose
K > 0 such that

(i) [ fde—_ 5 ap@avn|<$

£ &) 4

2= (K -
z€ 4y,
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and
(i) 1m1(E~( U 1)<

Then

m(E) ~ S apEN Y

zedy,

= { (B~ U‘ (B Yz”>)’ + S |mENYD) -z BN Y|

zE~1

< % + ™) since e A(Yr", 1/2%)
ZS(K,-

< 7;— since {Y?} is exhausting,

- 8 8 4

Thus
]SﬂgNd# — m(E)f = {SEgNdﬂ - SEfﬂd#}

+ | gEf,,d;z -5 apENYD

2= (K

zed,
+ |5 wtmENYD — mE)
2Z(K,--+,K)
<& L& L& .
=3 + 1 + 1 €

Since ¢ > 0 is arbitrary,g gxdp = m(H).

If we extend each g, to be zero off Fy and let 2, = >%_, g and
f =lim,_, h;, = 3 %105, it suffices [Dunford and Schwartz, III, 3.6]
to show the following three conditions are satisfied.

(i) h,— f in measure,

(ii) for each ¢ > 0 there is a E,. €Y such that

| ih@ldipl<e k=12, and
X~E,

(iil)  lim . g, OS [held|pt] = 0, uniformly in k.

The first two conditions follow easily from the exhaustive nature
of {Fy}. If ¢ >0 is given, choose § > 0 such that |¢|(E) < 6 implies
Im|(E) < e.

Then for any % and any EeX, |¢|(E) < 4d, we have

|, imldlel={, o haldinl = (B0 (U F)) <
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Thus for FelX,
| Jar = & | godpt = 2B 0 ) = i)
since {F'y} is exhausting in X.

CorOLLARY 8.11. Let (X, 2, 1t) be a positive bounded finitely
additive measure space. If m is a finitely additive R-valued
measure, then there exists a p-integrable function f: X — R such that
m(E) = S fdp, vEeS, iff

E

(a) m 1is bounded, p-continuous, and

(b) for all 6 > 0 there exists F,C X, F,e XY such that

(1) X~ F,) <39,

(ii) A.(F;) is bounded and

(iil) m has locally exhausting small average range in Fj.

Proof. If p is positive then g = ¢} and hence A,(E) = Ai(F).

4. Examples. The failure of absolute continuity and boundedness
to imply the existence of a density arises, it appears, from the lack
of appropriate decompositions of the space which are obtainable in
the countably additive case on a c-algebra.

When the domain is a o-algebra, it is impossible to suitably
separate the support of countably additive measures and finitely
additive measures which yields the failure. If m is Lebesgue mea-
sures on [0, 1] and 3 the Lebesgue measurable subsets of [0, 1], we
have, for any nonzero pge[L*(m)]* = ba(X, m) such that ¢ =0 and
o is purely finitely additive, that m is (m + gt)-continuous. However

there exists no density f such that m(E) = S fd(m + ) = S fdm +
fdpe since S fdp must be identically zero, (otherwise it is purely

ﬁmtely additive) and hence f =1 a.e. Thus p#=0on >, which yields
the desired contradiction.

If the doman is a field, not a o-field, then we can illustrate the
failure utilizing countably additive measures since we do not have
a Hahn decomposition. Let X = [0, 1), 3 the field generated by the
half open intervals, [a, b). Let m represent Lebesgue measure on
[0, 1) and choose a Lebesgue measurable set A < [0, 1) which intersects
every interval in a set with positive Lebesgue measure. Define
mE)=pwENA) —mENA),EeX. Of course A¢X. Then m is
p-continuous and m is bounded, in fact |m|= ¢ Now m cannot be
an indefinite integral with respect to |m | since for £ € 3+, 6(A,(E))=2
and hence m does not even have locally small average range.



412 HUGH B. MAYNARD

A similar example can be used to show that while indefinite
integrals need have locally small dominated average range they need
not have even locally bounded average range. Let X, X, A, and m

be as above and »(H) =\ zdm.

Then if Ee X+, thereEexists a subset FeX+, FC E, such that
m(F) =0 and yet »(F') %= 0. Then by m-continuity of v there are
sets, {B}, BCF such that the values {m(B)} are arbitrarily small and
yet {v(B)} are uniformly bounded away from zero and hence the
average range is never bounded.

The above examples depend upon a lack of suitable decompositions
of the underlying space. The effect of appropriate Hahn decomposi-
tions is to eliminate many of the difficulties.

DEFINITION 4.1. Let p¢#: Y — R be a bounded finitely additive
measure. Then g has a Hahn decomposition iff there exist disjoint
sets A, Be XY, X = AU B, such that p*(B) = £ (4) = 0.

¢ has an approximate Hahn decomposition iff for each & > 0
there exists disjoint sets 4., B.e 3, X = A, U B,, such that p¢*(B,) <e
and g (4,) <e.

¢ has an exhaustive Hahn decomposition iff there exist two
increasing sequences {A4,}, {B,} € 2 such that p¢+(B,) = ¢ (4,) = 0 and
(X ~ (A, UB,)—0 as n— oo.

An exhaustive Hahn decomposition is equivalent to the countably
additive extension on the Stone space having a Hahn decomposition
where each set is, within a null set, a countable union of images
from XY+. The second example in this section shows that finitely
additive bounded measures need not have exhaustive Hahn decomposi-
tions. Darst [3, Lemma 2.1] has shown, however, that every finitely
additive measure has an approximate Hahn decomposition and, of
course, every countably additive measure on a o-field has a Hahn
decomposition.

The Radon-Nikodym theorem simplifies when the integrating
measure has an exhausting Hahn decomposition as the following
simple lemmas demonstrate.

LEMMA 4.2. If p s a bounded finitely additive measure on
(X, 2), 2 a field, then there exists a p-integrable f such that |p|(E) =

S fap, iff ¢ has an exhaustive Hahn decomposition. If X is a o-
E
field then |p|(E) = S fdp iff ¢ has a Hahn decomposition.

E

LEMMA 4.3. If p is o bounded finitely additive measure with
an exhaustive Hahn decomposition, then any bounded finitely additive
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measure has locally exhaustive small dominated average range with
respect to p iff it has locally exhaustive small average range.

These lemmas yield the following theorem.

THEOREM 4.4. Let (X, 2, 1) be a bounded finitely additive measure
space with an exhaustive Hahn decomposition. If m is a finitely
additive R-valued measure, then there exists a p-integrable function

f: X — R such that m(E) =S fdp, VEe 3 iff
E

(a) m 1s bounded, p-continuous, and
(b) for all & > 0 there exists F,C X, F;e€ 2, such that
(1) X~ F;) <o
(i1) A,(F;) 1s bounded and
(iii) m has locally exhausting small average range in Fj;.
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PEIRCE IDEALS IN JORDAN TRIPLE SYSTEMS

KEVIN McCRIMMON

We show that an ideal in a Peirce space J,(1 =1,1/2,0)
of a Jordan triple system J is the Peirce ¢-component of a
global ideal precisely when it is invariant under the multi-
plications L(J, /2, J1/2), P(J1/2)P(Jy/) (for 1=1); under L(J,/s, J1/5),
P(J1/2)P(Jy5), P(J12) P(€) P(Jy/5), L(J /s, €) P(Jy,dy2) (for ¢ =0);
under L(J;), L(Jy), L(Jy, e) L(e, J1/5), L(J,/s, €) Ple, Jy,5) (for
©=1/2). We use this to show that the sub triple systems
J; and J, are simple when J is. The method of proof closely
follows that for Jordan algebras, but requires a detailed
development of Peirce relations in Jordan triple systems.

Throughout we consider Jordan triple systems (henceforth abbre-
viated JTS) with basic product P(x)y linear in y and quadratic in
x, with derived trilinear product {xyz} = P(x, 2)y = L(x, ¥)z, over an
arbitrary ring @ of scalars. Because we are already overburdened
with subscripts and indices, we prefer not to treat the general case
of Jordan pairs directly, but rather derive it via hermitian JTS.
For basic facts about JTS and Jordan pairs we refer to [1], [3], [6].
Our analysis of Peirce ideals will closely follow that for Jordan
algebras; although the basic lines of our treatment are the same as
in [4], the triple system case requires such horrible computations
that we do not carry out so fine an analysis, but concentrate just
on the main simplicity theorem.

1. Peirce relations in Jordan triple systems. Any Jordan triple
system satisfies the general identities

(JT1) L(x, y)P(x) = P(x)L(y, x)
(JT2) L(z, P(y)x) = L(P(x)y, ¥)
(JT3) P(P(x)y) = P(x)P(y)P(x)

and the linearization

(JT3") P({xyz}) + P(P(x)y, P(2)y) = P(x)P(y)P(z) + P(z)P(y)P(x)
+ P(x, 2)P(y)P(x, z) .
A more useful version of this is the identity
(JT4) P({xyz}) = P(x)P(y)P(2) + P(2)P(y)P(x) + L(z, y)P(z)L(y, x)
— P(P(x)P(y)z, z) .
Other basic identities we require are

415
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(JT5) L(z, y)P(z) + P(z)L(y, x) = P(L(®, y)z, 2)

(JT6) P(x)P(y, 2) = L(x, y)L(x, 2) — L(P(2)y, z)

(JT7) Py, 2)P(x) = L(z, 2)L(y, ) — L(z, P(x)y)

(JT8) 2P(x)P(y) = L(z, ¥)* — L(P(x)y, ¥)

JT9) [L(z, y), L(z, w)] = L(L(x, y)z, w) — L(z, L(y, x)w) .

(See for example JP1-3, 20, 21, 12-183, 9 in [1, pp. 13, 14, 19, 20].)

PEIRCE DECOMPOSITIONS. Now let ¢ be a trivotent, Ple)e = e.
Then J decomposes into a direct sum of Peirce spaces

J = J1®J1/2@Jo
relative to e, where the Peirce projections are

E, = P(e)P(e), E,,= L(e, e) — 2P(e)P(e) ,

(1.1)
E, = B(e,e) = I — L(e, e) + P(e)P(e) .

We have
(1.2) L(e,e) = 2¢1 on J,, Ple)=0 on J,+J,.

Note that P(e) is not the identity on .J,, though J, = P(e)J: it induces
a map of period 2 which is an involution of the triple structure and
is denoted by z — x*(x € J,). For reasons of symmetry we introduce
a trivial involution ¢ — = on J,, so * is defined on J, + J,:

1.3) z = Ple)x,, xf =2,.

Note that if J is a Jordan algebra and e is actually an idempotent,
then zf = x, too.

The Peirce relations describe how the Peirce spaces multiply.
Let ¢ be either 1 or 0, and 7 =1 — ¢ its complement. Then just as
in Jordan algebras we have

(PD1) PJ)J,cd;, PJ); = PJ)Jy, =0

(PD2) P(J,)de Ty s P(Jyp)d; CJ;
(1.4) (PD3) {JJJy Tdies {Jipdiedi}

PD4) {JJdi} S

(PD5) {J,JJ;J} =0.
(For all this see [6] and [1, p. 44].) These show that the Peirce
spaces are invariant under the multiplications mentioned in the
introduction.

PEIRCE IDENTITIES. For a finer description of multiplication
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between Peirce spaces it is useful to reduce Jordan triple products
to bilinear products whenever possible. We introduce a dot operation
xz-y (corresponding to zoy in Jordan algebras) for elements a, in
Peirce spaces J,, and a component product E,(x,., ¥.,) (corresponding
to the J;,-component of x,,0¥,, as follows:

Bl) Y = Y@ = {®eYyn) L(x) = Lz, e): d,,— J,
(B2) 2o Y = Yuo @ = {@le}  Llx,) = P(@y, €): Jyjy—— J1
(B3) xi = P(x)e, .-y, = {xiey,} L(x) = Lz, e): J,— J,
(B4) E\( Y1) = {XieYuree) I
(B5)  Ei(%uey Yire) = {Tupelspely Eif@1) = P@i)er JipX iy —— J,
(B6)  Ly(@y,) = L., €), Li(®,) = Lie, @,,) so that

L(®,5)a; = @@y, L@ 0)a; = 0, Li@,)Yys = Ei(Yun ©0s) -

(1.5)

It turns out that the only Jordan products a® or xoy which are not
expressible in triple terms are

X5, TooYo, Hi(20,/,) -

The need to avoid these products causes many complications when
passing from Jordan algebra results to triple system results.

For example, let ¢ be an ordinary symmetric idempotent in an
associative algebra A with involution, made into a triple system
J = JT(A, *) via P(x)y = xy*x. Then the Peirce spaces are the usual
ones, J, = A, J,, = A, + A, J, = Ay. The bilinear products we have
introduced take the form

T Y = Tl T Y1

Xo*Yie = LYz T YiieZs
E\(%y, Y1) = E\(Y5 + Yiia%)
Ey(@y0 Yie) = Eo(@1Y1 + Y1) -

This suggests that because of the * the products ,-y,, and E.(z,,, ¥.)
are going to behave anomalously.

1.6. PROPOSITION. The triple products of Peirce elements are
expressed in terms of bilinear products by

P P@)Yue = @it Ei(@yssy Y1) — Yo Eo(@12)

P2)  (@eYiire} = Bior Bi(Riay Yira) + Zir Bi(@yas Yis)
= Yo Bo(®112 2112)

(P3)  (2p0.Y,0} = B, aF Yirp) = Ei(Yor, @+ 21)

P4)  (zny10a.} = Ei(®y, af -Yys)

(P5) {abizin) = a;- (b 2.)
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(P6) {aizl/zbj} = ai'(zl/z'b;‘) = (a;k'zUz)’bj
P7) ez, = 21/
(P8)  Ei(ys Y1)* = E(Ysa, )

and we can write
(P9) L(x,s, a;) = L(x,,-af), L(a,, z,,) = Lj(a;k'xm) .

The triple product of elements x = x, + Ty + X0, ¥ = Y, + Yo + Yo
may be written as

P@)y = P(x)y, + P(@)¥o + P(@)%1s + P@ye)(¥: + Yo) + {4,950}
+ {2y 200} + {Zoloie} + {2 Y1a@ie} + {20 10%00)
(1.7 = P(x)y, + P + {@12 Bi(@uny Yi2) — Yy Bo(@10)}
+ P(@) (Y, + Yo) + @0 (ToYuse) + 000 (Y5 Tis) + Xoe (Yo T1s2)
+ B(®y, € Yis) + Eo(@ys ToYiss) -

Proof. Most of these product rules can be established either by
using JT5 to move L(x, y¥) inside a triple product P(z)w, or by using
the linearization of JT2 to interchange x and z in a produect {x(P(y)z)w}.
Thus (P1) is P(x)y = P(x){yee} (by 1.2)) = {{eyx}ex} — {ey(P(x)e)} (by
JT5) = E\(x, y)-x — y-Ey(x), and (P2) is its linearization. (P7) follows
from PD2, {eez,,} = z,,, and (P8) is vacuous for 7 = 0 by triviality
of * and symmetry of E,, while for ¢« = 1 P(e){axye} = P(e)L(e, y)x =
— L(y, e)P(e)x + P({yee}, e)x = —0 + {yxe} by JT5. For (P3)-(P6) we
will need (P9),

L(x,, a,) = L(x,,-af, e) L(a,, xy5) = Le, af-2,s)

L(z,,, a,) = Le, 2./~ a,) L(ay, ®,,) = L(a,- @, €) -

To establish this for a, we note L(x,, a) = L, Pl)a}) =
— L(af,P(e)x,,) + L({x, ,ea’}, ) (linearized JT2)=L(x,,-af, ¢) and dually
for L(a,, x,,); for a, we have L(x,, a,) =L({x,ee}, a;) = — L({x,,a.¢}, €) +
L(x,, {eea,}) + L(e, {ex,,a,}) = —0 + 0 + L(e, 2,,-a,) and dually for
L(a,, x,,,)- By B6 we can write these in the uniform manner (P9).
Applying these to z,, yields (P3) and (P4) respectively, and applying
them to a,, b; respectively yields (P5) and (P6). O

Even in a Jordan algebra the products P(x,)y, and P(x,,)y; cannot
be reduced to bilinear products if there is no scalar 1/2e€ @ (though
2P(x,,)Y;, and more generally P(x,,, ¥..)a;, can be reduced by (P3)).

It will be convenient to introduce the abbreviation

P*(x,) = *oP(x,,)o* (i.e., P*(@yn)a, = P(w,)a’ ,

L8 prlnas = (P@a)®, so PP*@a) = P*@,)Pa)P @) -
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We now list the basic Peirce identities. Many of these have
appeared in [6], or in [1], [2] disguised as alternative triple identities.

1.9. PEIRCE IDENTITIES. The following identities hold for ele-
ments a;, b,c,eJ(1=1,0,7=1—1) and x, ¥y, 2€ J,):

(PI1) we have a Peirce specialization a, — L(a,) of J, in End (J,,):

(i) Pla)bi-z= a;bf(a;-2) L(P(a)b}) = L(a,) L) L(a,)
(ii) e-z=z Le) = Id
(iii) ai-z = a,-(a,°2) L(a}) = L(a,)
(iv) (a;*b)-z = a,-(b;+2) + b+ (a,-2)
L(a,-b,) = L(a,)L(b,) + L(b,)L(a,)

(PI2) P(a,)E(x, v)* = E(a;-x, af-y)
(PI8) L(ay, b)E(z, y) = Ei(a;-(bf-x), y) + Ex, af-(b;-y))
(P14) a,-E(z,y) = E(a,x, ¥) + E(x, af-y)
(PI5) P(R)E(x,y) = Ej(z, E,(y, 2)-x) — E;(P(2)2, ¥)
(P16) P(Ei(x, y))a;, = P(®x)P*(y)a;, + P*(y)P(®)a; + E(z, P(y)(a-x))
(PIT) {P()a}-y + P®)(a;y) = Eix, y)-(af -x)
(PI8) {P*(x)a}-y + a,- P(x)y = Ea;-x, y) -«
(P19) P(x){a,xb} = P(x)a,-(b,-x) = P(x)b,- (af-x)
(PI10) P(a;-x)b; = P(a,)P*(x)b;, Pa;-x)b, = P*(x)P(a,)b;
(PI11) P(a,)P(x)b; = P*(a}-x)b;, P(x)P(a,)b, = P*(a}-x)b,
(PI12) L(a, b;)P(x)c; = Pla; (b} -x), x)c; = Ei(a; (b} ), ¢f-x)
(PI13) L(a;, b,)P*(x)c; = P*(af-(b;-x), x)c; = H(c;-x, a;+(bF -x))
(P114) P(x){abie;} = P(x, b;-(af-x))e; = Ei(z, ¢f - (b, (af -x)))
(PI15) Ey(a,-x) = P(ay)Ey(x), Eya,-x) = P*(x)ai
(PI16) P(a; x)y = a.- P(x)(al¥y)
(PILT) P(a,-x, )y = a,- P@)y + P(x)(af-y) .

Proof. The Peirce specialization relation PIL(i) follows from JT5,
using B6: P(a,)b;-z = L;(2)P(a;)b, = {— P(a;)L;(2) + P(L;(2)a, a;)}b, =
—0 + {(z-a,)ba,}(by PD1) = a,- (b} (a;-2)) by P5. We have already
noted e-z,, = 2,,, whence (ii). Setting b, = ¢ in (i) yields (iii), and
linearization yields (iv).

The identities involving the E, follow from JT5 and JT4. For
PI2 and PI5 we have B6 Pw)E(x, y) = Pw)L;(y)x = — L,(y)P(u)x +
{(L,(y)uw)xu} (by JT5); when w =a, we get —0 + {(a; ¥)xa;} =
E(a;-y, af-x)(by P4) as in PI2, and when v = z we get — E;(P(?)x, ¥) +
Ei(z, x- Ei(z, y)*) (by P4) = E;i(z, E(y, 2)-x) — E;(P(2)x, y) (by P8) as in
PI5. For PI3, L(a, b,)E(x, y) = L(a,;, b,)L;(y)x = L;(y)L(a;, b,)x —
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[Li(y), L(a;, b)le = E,(L(a;, b)w, y) — L(L;(y)a,, b)x + L(a, L(y)b)x (by
JT9) = E(a;- (b} -x), Y)—0+{a;(b;-y)x} = E(a,- (bf x), ¥) + Ey(x, af-(b;-y))
(by P4). PI4 is the special case b, = ¢ of PI3. For PI6 we use JT3’
for ¢ = 1: P({xyeh)a, = {P(x)P(y)Ple) + P(e) P(y)P(x) — P(P(x)y, Ple)y) +
Ple, ) P(y) Pe, x)}a, = P(x)P(y)a: + (P(y)P(x)a,)* — 0+ E(x, P(y)(af-x)),
while for 7 =0 we use JT4: P({xey})a, = {P(x)P(e) P(y)+ P(y)P(e) P(x)+
L(x, e)P(y)L(e, ) — P(P(x)P(e)y, ¥)}a, = P(x)(P(y)a,)* + P(y)(P(x)a,)* +
Ey(z, P(y)(a, ) — 0.

The identities involving P(x)a; are established in the same ways.
For (PI7), P(®a., -y + P@®)(a;-y) = {L;(y) P(x) + P(@)L;(y)}a; =
P(L;(y)», x)a; = P(E(z, y), v)a; (by JT5) = Ex, y)-(af-x) (by P5). For
(PI8) we use linearized JT1: for ¢ = 1, {(P(x)a)ye} + {(P(x)y)ate} =
{z{alzyle}, for i = 0 {(yP(x)ane} + {a,(P(x)y)e} = {{axy}xe}, and we use
P8. For (P19), P(x){a:xa;} = P(x)L(a;, ¥)a; = L(x, a;)P(x)a; (by JT1) =
{rxa,P(x)a;} = P(x)a; (af-x2). For (PI10) with 7+ =1 we have by JT4
that P({a,ex})b, = {P(a,)P(e)P(x) + P(x)P(e)P(a,) — P(P(a,)P(e)w, x) +
L(a,, e)P(x)L(e, ,)}b, = {P(a,)P(e)P(x) + P(x)P(e)P(a)}b,. If k = 0 this
becomes P(a,)P(e)P(x)b, = P(a,)(P(x)b,)* = P(a,)P*(x)b,, while for k=1
becomes P(x) P(e)P(a,)b, = P(x)(P(a)b)* = P*(x)P(a)b, by (1.8).
Similarly if © = 0 we have P({a,xe})b, = {P(a,)P(x)P(e) + P(e)P(x)P(a,) —
P(P(a,)P(x)e, e)+ L(ao,x) P(e) L(x,a,)}b, = {P(a,) P(x) P (e) + P(e) P(x) P(a0)}bs,
reducing if & =0 to P(e)P(x)P(a,)b, = P*(x)P(a,)b, and if k=1 to
P(a,)P(x)P(e)b, = P(a,)P*(x)b,. Since * is an involution on J,, J;,
(PI11) follows by applying * to (PI10) (with a,, b, replaced by af, b}).
Similarly (PI13) follows by applying * to (PI12) (with a;, b, replaced by
a¥, b¥), where (PI12) follows from JT5: L(a,, b,)P(x)c; ={— P(x)L(b;, a;)+
P({aba}, w)}e; = Pla;- (b -2), x)c; (by P5) = Eia;-(bf-x), cf-x) (by P3).
For (PI14), P(x){ab.c;} = —L(b;, a;)P(x)c; + P({b,a;x}, x)c; (by JT5) =
—0 + {(b;- (a}-x))e;x} = Ei(x, ¢f - (b;-(af-x)) (by P3). (PI15) is just the
particular case b = e of (PI10). For (PI16) with ¢ = 0, P(a,-x)y =
E(ax-y)-(ayx) — Ey(ao-a)-y = a0 {E(a, 2, ¥)*-x} — Pla)E,(x)-y (by
PI15)=a,-{E\(Y, @y x)-x} —a,- {Ey(x) - (@, 9)} (by PIli)=a,-{E.(, a,-y)-2—
E\(x)-(a,-y)} (by symmetry of P3) = a, {P(x)(a,-y)}. For <=1,
Pla,-x)y = E(a, 2, y)(a,-2) — Ey(a,-x) -y = {—a,- (E(a, -2, 9)2)}+
{E\(ai-=, y)+ E(a, -z, af -y} — P*(x)ai-y (by (PIliv), (PI4), (PI15)) =
—a,- (E(a,-x, ¥) - 2) + Pla) B (%, ¥)* -« + E,(ai-x, y) ¢+ {ai- P(x)y —
E (ai-x, y)-a} (by (PI2), (PI8)) = a,-{—E.(a,-x, ¥)-x + E(x, ¥)-(a, %) +
a,[E(z, y)-x — Eyx)-y]} (by PILj, iii) = a,-{E\(x, af-y) — Ey(2)-(a-¥)}
(by (PI4), (P6)) = a,-P(x)(a-y). (PIL7) is just the linearization a, >
a,, e of PI16, or it follows from JT5. ]

Observe that the proof of PI16 depended only on PI1, 2, 4, 8, 15.
Note also that there is no analogue of PIliv for J, so we cannot
commute an L(a,) past an L(b,) at the expense of an L(a,-b,), which
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means that if K, is an ideal in J, we do not have L(J,)L(K,C
L(K,)N(J,) as we do for an ideal K, in J,. Similarly there is no
analogue of PI4 or PI17 for 7z = 0.

THE BRACKET PRODUCT ON J,,. Even more basic than the in-
herited triple product P(x)y on J,, are the bracket products

(1.10) (wyz); = Ey(x, y)-2, {x; 2y = Eyx)-2 .

This gives two trilinear compositions on J,,, the one for ¢ = 0 being
symmetric in the first two variables
(@Yz), = {Yxz), .
Formulas P1, P2 show
Plx)y = {xyx), — {(x;
(L.11) @)y = {xyx), — {%; Yo
{vyz} = (wyz), + (zyz), — {x2y), .

In the special case of a maximal idempotent where J, =0 we see
P(x)y = {xyx),, so the bracket product coincides with the triple
product; Loos [1, 2] has abstractly characterized such products ¢, ,)
on such J,, as alternative triple systems. We will show that in
general even if J, # 0 the product {(xyz), still behaves somewhat like
an alternative triple produect.

The interaction of the bracket with multiplications from the
diagonal Peirce spaces is given by

L(a;, b)<zyzy; = {L(a;, b)x, y, 2), + {x, L(a¥, b}y, 2>,
- <x’ Y, L(b:ky a/:k)>z

(1.13) a,-{xyz), = {a, %, ¥, 2); + L&, af -y, 2), — {x, Y, a, %),
(1.14) L(a,, b)<xyzy; = (=, y, L(af, b})z);

(1.15) L(a){xyz); = <y, , L(af)z);

(1.16) @, {xyx), — {a,-x, ¥, £), = Ey@)-(af-y) — P@)a’ -y .

1.12)

Unfortunately (1.13) with 1 replaced by 0 is false (even in triple
systems JT(A4, *) derived from associative algebras), and there does
not seem to be any analogous identity for the interaction of (,, ),
with J,.

To verify these identities, note for (1.12) L(a,, b,)E;(x, y)-z =
a;- (b - (Ei(z, ¥)-2)) (by P5) = {a:b,E(z, ¥)}-2 — Ei(x, y)-(bf - (a;-2)) (by
linearized PI1i) = {E,(a,- (b -x), ¥) + Ei(x, af - (b;-¥))} 2 — Ei(x, y)-{bfa}z}
(by PI8, P5) = (L(a, b))z, ¥, 2); + {x, L(a¥, b)Yy, 2); — {x, y, L({, ai)z),
(by P5). We obtain (1.13) by setting b, = ¢ in (1.12). TFor (1.14),
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L(a,, b)Ej(x, y)-z= L(a,) L) L(E;(x, )z = L(E;(x, ¥))L(a!)L(,)z (using
P6 twice) = (x, y, L(a}, b})z); (using P8). When 72 = 1 (1.15) follows
from (1.14) by setting b, = e¢; in general we argue as Dbefore
L(a)L(E;(x, )z = L(E;(, ¥)*)L(a¥)z = {y, z, af -zy;. For (1.16),
a,-{wyx) = a,- {P(@)y + E(x)-y} (by (1.10), P1) = {—P*(®)a, -y +
E(a,-x, y)-a} + Eyx)-(a-y) (by PI8, P6) = Ey(x)-(a-y) — P)ai -y +
{a, 2, Y, ).

Next we have some intrinsic bracket relations for the more
important bracket <z, ¥, 2) = (%, v, 2).:

a.17 (uvlxyz) + {xyluvz) = {uvrdyz) + {xlvuy)z)

Cuviaya) — (uvryyr) = {(x{vuy)x) — {xy{uvr)
(1.18) = E\(x)-{vuy) — E(E(x)-v, u)-y
+ Ey(x, [E\(x, v)-u — Ex, u)-v])-y

1.19) (wyzyyw) — {eyl{zyw) = {P(e)P(y)P(x) — P(x)P(y)le-w
(1.20)  <(adyry)w) — {zylzyw) = {P(®)P(y) — Ple)P(y)P(x)}le-w
(1.21) (xyarvw) — (al{vay)w) = {P(e)P(y, v)P(x) — P(x)P(y, v)le-w
(1.22) (zyzyyw) — {a{yzy)w) = {P(e)P(y)P(x, z) — P(z, 2)P(y)le-w
(1.23) (uvedyw) + {x{vuy)w) = (xyurvw) + {ulyxvyw) .

Here (1.17) is just (1.13) for a, = E,(u, v), af = E,(v, ), while (1.23)
is a consequence of the symmetry in uwv, 2y on the left side of (1.17).
Setting a,= E,(u, v) in (1.16) yields {uv{xyx) — (uvrdyx)(= (x{vuydx) —
Ceyluva) by (L.17) = Eyx) - (E\(v, w)-y) — P@E (v, w)-y = Eyx)-
(E\(v, w) - y) — Ex, Ey(u, )-v)-y + E(P®)v, u)-y (by PI5) = Eyx) -
(E\(v, w)-y) — Ex, E(u, ©)-v)-y + E(E(x, v)-x, u) -y — E(E(x) v, u)-y
(by P1) = Ey(x) - (E,(v, w)-vy) — Ey(Ey(x) - v, u) -y + Eyx, [E, v) - w—
E(x, uw)-v])-y (by P3 and symmetry of E,), which is (1.18). The
formulas (1.19), (1.20), (1.21), (1.22) are respectively

(1.19)  E((zyx), y) — E(x, v)* = {P(e)P(y)P(x) — Px)F(y)le
(1.200  E(w, <yxyy) — E\(x, v)* = {P(@)P(y) — P(e)P(y)P(x)}e
.2r)  E(xyx), v) — Bz, (vay)) = {P(e)P(y, v)P(x) — P@)P(y, v)le
(1.22)  E((zyz), y) — Ez, {yzy)) = {P(e)P(y)P(x, 2) — P(x, 2)P(y)le .

Here (1.19") will follow by setting v = v in (1.21’) (or z = z in (1.22"))
and using (1.20"). For (1.20’) note E\(x, v)*= P(E . (x, y))e = P(x)P*(y)e +
P*(y) P(x)e + E,(x, P(y)(x-e)) (by PI6) = P(x)P(y)e + (P(y) P(x)e)* +
E\(x, P(y)x) = E\(x, <yxy) — P(y)e-x) + P(x) P(y)e + P(e)P(y) P(x)e =
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E, (z, <yxy)) — {x(P(y)e)x} + P(x) P(y)e + Ple) P(y)P(x)e = E\(x, {yxy)) +
P(e) P(y)P(x)e— P(x)P(y)e. For (1.21') note that E,(P(x)y + E,(x)-y, v) —
E\(z, E\(v, 2)-y)={(P(x)y)ve} + {y Ey(x)v}* — {xy E\(v, x)*} (by P1, P3, P4)—
{L(P(x)y, v) + P(e)P(y, v)P(x) — L(x, y) L(x, v)le = {P(e) P(y, v) P(x) —
P(x)P(y, v)}e by JT6. Finally, for (1.22") we have E,(y, E, (x, ¥)-2)*—
E\(z, E\(y, 2)-y) = {y2E\(z, ¥)*}* — {xyE,(y, 2)*} = P(e)L(y, 2)L(y, x)e —
L(z,y)L(z,y)e= P(e){L(P(y)z,x) + P(y) P(x,2)}e — { L(x, P(y)z) + P(x,2) P(y)}e
(by JT6, JT7) = E,(P(y)z, x)* — E.(x, P(y)2) + {P(e) P(y) P(x, ) —
P(x, z)P(y)le = {P(e)P(y)P(x, z) — P(x, 2)P(y)}e (by P8).

In the special case that J, = 0 we obtain the easy half of Loos’
characterization [1, p. 76| of alternative triple systems.

1.24. PROPOSITION. If K,,CJ.,, is a bracket subalgebra
(<K1/2K1/2K1/2> c K1/2) with EO(KI/Z) = P(Kl/z)e =0 (fO’I' exampler KI/Z =
Jip if Jy =0, or K,;, = P(x)J,, or K,,, = P(x)J,, + ®x principal inner
ideals determined by an xeJ,, with P(x)e = 0), then K,, becomes an
alternative triple system under the bracket

{zyz) = E\(x, y)-2 = {{xyelez} (@, y,z€ Kj) .

The Jordan triple product on K,, is then P(x)y = {xyx).

Proof. The axioms for an alternative triple system are

(ATL) Cuviwyz) + (wyluvz) = (uvr)yzy + (x{vuy)z)
(AT2) (uwv(xyz) = (uvx)yxr)
(AT3) <(aylxyz) = (wyx)yz) .

Here (AT1) follows from (1.17), and (AT2), (AT3) from (1.18), (1.19)
since E(K,, = P(K,,)e = 0. By (Pl) we have P(x)y = E(x, ¥)-x =
{xyxz) in this case.

If x has P(x)e = 0 then the inner ideals K,, = P(x)J,, C P(x)J,, +
ox = K, kill e, P(K,)e = P(K.;,)e = 0. Indeed, by JT3 we have
P(K,,)=P(x)P(J,,) P(), and by JTL P(K,,)= P(P(%)J,z) + P(P(%)J 1, ®) +
OP(x) = {P(x)P(J,,) + L(x, J,;,) + ®}P(x). To see next that these inner
ideals are bracket-closed subalgebras, first note that since P(K},)J,, C
K,,C K, by innerness we have {(xyx) = P(x)yec K,,, hence by
linearization (xyz) + {zyx) e K,,, for any x,z2€ K,, and any y¢cJ,,.
Next we show (K,,J,,x> and (xJ,,K,,> are contained in K,,; by
skewness it suffices to prove the latter, where <{(xJ,,K,) =
E1<xy Jl/'2) - P(w)Jl/Z - —P({E)(El(.’t, JI/Z)* : Jx/z) + P(E1<x; Jl/Z) &, x)*L/z (by
PI]-7) CP(x)JUz + P(<le/2x>7 x)Jl/Z CP(KI/Z)JUz CKu’z- Final-
1y, <K1/2J1/2K1/2> = E1 (Kl/27 Jl/z) : Kl/z c —P(fl)) (E1 (Kl/zy Jl/2)* : J1/2) +
P(EL(KI/Zy J1/z) * X, x)*L/z CP(x>J1/2 + P(<K1/2J1 ’zx>; x)JI’Z CP(K;/Z)JL/Z (by
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the previous case) C K,,. Thus in fact we have the stronger closure
<K;/2J1/2K;/z> c Ki/z- D

In any alternative triple system we obtain an ordinary bilinear
alternative multiplication by fixing the middle factor: the homotopes
A" with products x-,y = {(xuy) are alternative.

1.25. PROPOSITION. If K,, 1s a bracket-closed subspace of J,,
with P(K,,)e = 0, then for any u € K, the homotope K with product

x -,y = {auy)

is an alternative algebra. If u 1is a tripotent with P(u)e =0
then we have an involutory map x — Pu)x =% on K, =J,,€) N
J(u) = Pu)d,,(e), and the bracket can be recovered as

(1.26) layz) = (€ . Y) *u? -

If in addition E,(u, u) = {uue} = e then u acts as unit for P(u)J,,(e),
and x— T 18 an involution of the multiplicative structure.

Proof. By 1.24 we know K., is an alternative triple system under
the bracket, hence the homotope K| is an alternative algebra [1, p.
64]. When % is tripotent P(u)®* = P(u), so P(u) is involutory on
P(w)J,, and furthermore for =z, y, ze P(u)J,, we have (% -,¥) .2 —
(xyzy = (wuyyuz) — {x{uyuyz) = {P(e)P(w) P(x, y) — Pz, y) P(w)}le -2
(by 1.22) =0 since P(K,,e = Pu)P(J,,) P(u)e =0. Thus we re-
cover the bracket on P(u)J,, from the bilinear product and the
involution.

When {uue} = E,(u, w) = ¢ in addition then w is a left unit,
U,y =K u-y=ey=1y. If we knew x — T reversed multiplica-
tion this would imply # = u was also a right unit; we can also argue
directly, z -, u = {xuu) = E\(x, w) -u = {guu}— E (u, ) -x+ E(x, u)-u =
L(u, w)(P(u)x) — e-x + 0 (since Ey (K, = 0) = P(P(w)u, u)Pu)x —
2z (using JT1) = 2P(u)’x — = = x.

To see x — Z is indeed an involution, first use the right unit to
see & -, Y = (T -, Y) .U = (YU,

(1.27) x -,y = {auy) = {xyu) (when {uue} =e) .
Then

¢,y = udeuy)u)
= (uauyywy — {P(e)P(x, y)P(u) — P(w)P(x, y)le-u (by 1.27)
= (Zyu) — 0 (again P(K,;,)e = 0)
=T, Y (above) .
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Thus the involution condition is precisely (1.27).

The condition E.(u, u)-y = y is necessary well as sufficient for
(1.27) to hold. Indeed, using (1.21), (1.18) and P(K,,)e =0 one
can show in general that Pw){{zuy) — (ayu)} = (ulaouy)u) —
ulxguruy = (uyuyau) — (uulyau) = {Id — L(E\(u, w))}{yrw), which
again establishes sufficiency; for necessity set x = u, so (uuy) —
{ugwy = E(w, w) -y — Py = E(u, w)-y — y. O

These alternative structures on the subsystems P(w)J,, are
important for the study of collinear idempotents [5]. These are
families of tripotents {e, - - -, ¢,} with P(e,)e; = 0, {e,e.e;} = e; for i == 7,
and the P(e))J..(e;) = Jyu(e;) N J.(e;) carry isomorphic alternative
structures. (The motivating example is the collinear matrix units
{ew, €y, ++ -, e} in M, (@) under zy'z.)

2. Ideal-building. A subspace K J is an ideal if it is both
an outer ideal
(2.1) P(J)KC K
(2.2) L(J, )KCc K
and an inner ideal
(2.3) P(K)JC K.
If K is already an outer ideal, the inner condition (2.8) reduces to
(2.3) P(l;)J < K for some spanning set {k;} for K.

Note that the operators L(y, z) cannot be derived from the P(x)’s.
From now on we fix a tripotent ¢ with corresponding Peirce
decomposition

J:Jl@J1/2®Jo-

Since the Peirce projections (1.1) are multiplication operators, any
ideal K <] J breaks into Peirce pieces

KZKlEBKl/z@Ko (Kl:Ksz)

Using the expression (1.7) for the product P(z)y in terms of bilinear
products, we obtain a componentwise criterion for K to be an ideal
(exactly like that in Jordan algebras).

2.4. IDEAL CRITERION. A subspace K=K DK, ,D K, is an
iwdeal in the JTS J=J, B J,,PJ, iff for i=1,0 and j=1— i we
hawve
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(Cl) K, is an ideal in J,

(C2) E(Jy K., C K,

(03) Jz - Kl/z - K1/2

(C4) Ki * J1/2 c K1/2

(C5) P(J.,)K,CK;

(C6) P(k,,)J, C K; for some spanning set {k,,} for K, .

If 1/2e€ @ then (C5) and (C6) are superfluous.

Proof. Clearly the conditions are necessary, since any product
with a factor in K must fall back in K. Just as in the Jordan
algebra case, they also suffice. Outerness (2.1) P(J)KC K follows by
(1.7) since P(J,) K, D K, (by (C1)), P(J,,) K;C K; (by (C5)), J.so E(J 10y Kisa) ©
K1/2 (by (02), (04)); Kl/z'Jo c Kl/z (by (03)), J1'(J0‘K1/2) c Kl/z (by (03)),
J;-(Kf-J,,) c K, (by (C4), (C8) — note that Kf = K, for any ideal
K, < J, since the involution is given by a multiplication), and
E(Jys JF-Kip) C K, (by (C3), (C2)).

Outerness (2.2) L(J, J)K = P(J, K)J c K follows by the lineariza-
tion of (1.7). First note

(02’) Ei(KI/Z) Jl/i) c Kz

since E(K,., J.) = Ei(J,, Kp)* C KF C K,. We have {J.J. K} CK,
(by (Cl)): {Jl/ZJiKI/Z} c Ej (Jl/zy Jz* : Kuz) c KJ‘ (by P3, (C3>: (02)),
K1/z' EI(JI/Z’JI/Z)CKl/z (by (03)): Jl/z'E1<K1/27J1/2) +J1/2‘E1(J1/2’ K1/2)CK1/2 (by
(C2)), (C2), (C4)), Jie* P(J 112y Kirp)e = Jsp+ Biy(J 1oy Kip) C Kijo (by (C2), (C4)),
Ji - (Kz* : le) + Kz : (Jz* * J1/2) c K1/2 (by (04)y (03))9 Ez (K1/2y Jz* : Jl/z) c
Ei(Kl/z; J1/2) c Kz (by (Czl»’ and Ei(Ji/Z’ Kz’*'JUz) = Ei(Jl/z'Ki'JUz)CKa
(by (C4), (C2)).

Once K is outer we can apply (2.3") to obtain innerness: for the
spanning elements k.c K, we have P(k,)J = P(k,)J;c K, by (Cl) if
1 =1, 0, while P(k,,)J; C K; by (06) and Pk, )))d s = by Bk, Js) —
Jus Pllky)e C K,y J, — Jup Ky < K,y by P1, (C5), (C3), (C4). Thus K is
an ideal.

When 1/2e @, (C5) and (C6) follow from (C2-C4) since P(x) =
1/2P(x, x) Where P(JI/Zy Jl/z)Ki = Ej(Jl/z,Ki*'Jx/z)CKa' by (C4), (02)’ and
P(J.py Kipp)J: C Ei(Jypey I3 - Kipp) + Ei(K,p, JF - J1) © K by (C3), (C2), (C2).

Ul

An ideal K; in a diagonal Peirce space J; is itnvariant if it is
both L-invariant

(2'5) L(J1/2, Jl/Z)Ki = Ei(JUz; sz 'Jl/z) - Kz‘

and if 7 = 0, also
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(2.6) L(J,)s, e)P(J,, ) Ky = E(J s, Jo- (Ko Ji) C K,y

and P-invariant

2.7 P(J,,)P(J,») K, C K,

and again if ¢ = 0 also

(2.8) P*(J,,)P(J, 1)K, = P(J,p) P*(J,1) Ky = P(J,,)P(e)P(J,) K, C K, .

Note that the maps L(J,,, J,,) and P(J,,)P(J,, automatically send
J, into itself (and L(J,,, e)P(J,, J,») and P(J,,)P(e)P(J,,;) send J, into
itself).

An ideal K,,, <] J,, in the off-diagonal Peirce space is invariant if

(29) L(Ji)KUz = Jz ‘ K1/2 c Kl/z
LI(JI/Z)LO(JI/Z)KI/Z = L(Jl/zy e)L(e, Ji) K, = <K1/2J1/2J1/2> CK,
Ll(Jl/Z)LO<K1/2)Jl/2 = L(J1/2, e)P(e, J1/2>K1/2 = <J1/2K1/2J1/2> c K1/2 .

Note that these maps do send J,, back into itself.
An alternate characterization of invariance in terms of the bracket
products is that K,, be a subspace satisfying

(2.10)

(2.9') Ji . K1/2 c Kl/z
(2-10’) <J1/2J1/2K1/2>1 =+ <J1/2K1/2J1/2>1 + <K1/2J1/2J1/2>1 C K1/2
(2.10") <J1/2K1/2J1/2>0 =+ <K1/2; J1/2>0 c Kl/z ’

i.e., that K, be an ideal of the bracket algebra J,,. Clearly any
invariant bracket ideal (2.9)-(2.10”) is invariant in the sense of
(2.9)-(2.10) and is an ordinary ideal by (1.11). Conversely, if K, is
an invariant ordinary ideal it must be a bracket ideal: (K, ,J,;J,,>, +
{J ;K3 sy, 18 contained in K,, by invariance (2.10), {J,,J.,K, ), C
J,-K,,C K,,, by invariance (2.9), similarly {J,,J,,K ;). C J,- K,s C K,
by (29)7 Whlle <J1/2K1/2J1/2>o: <I{1/2J1/2J1/2>0C - {J1/2J1/2K1/2} + <J1/2J1/2K1/2>1+
(Ko 1s) © Ky, by ordinary idealness and closure under ¢, , >, also
(K5 Jizpo = {Kippd 1, Ki 1)1 — P(Ky ), C K, for the same reason, with
(s K)o C o Ky C K,y by (2.9).

If 1/2€ @ then L-invariance (2.5) of K, <]|J; implies P-invariance
(2.7) in view of JT8. It is not clear whether (2.5), (2.6) imply (2.8)
when 1/2€ 0.

An important tool is the ability to flip an ideal from one diagonal
Peirce space to another.

2.11. FLipPPING LEMMA. If K, is an ideal in J, then

Ko = P(Jl/z)K1
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18 an tdeal in J,, which is invariant if K, is. If K, 1s an ideal
wn J, then

K, = P(J,,)K, + P*(Ji/z)Ko

is an ideal in J,, which again s invariant if K, is.

Proof. We handle both cases at once by proving
KJ‘ = P(JI/Z)Ki + P*(Juz)Ki

is an ideal inheriting invariance from K,. Note again that K} = K,
for any ideal K, <]J..
Outerness (2.1) follows from (PI11, 10):
P(a)P(@,p)k, = P*(a]-®.)k: € P*(J,5)K;
P(a’j)P*(xl/z)k'i = P(ai'wl/z)ki € P(Jl/z)Ki .

Outerness (2.2) follows from (PI12, 13):

L(a_,,-, bj)P(xI/‘z)ki = P(ay(bf “Xys3), Tup)ki € P(J1/2)-Ki
L(aj’ bj)P*(xUz)ki = P(a}k'(bj'xl/z)y xx/z)ki € P*(Jl/Z)Ki .

To see that K; is inner (2.3'), for the spanning elements P(x,,)k,
and P*(x,,)k, we have

P(P(xl/z)ki)Jj = P(xl/z)P(ki)P(xUz)Jj c P(xl/Z)P(kl)Jl c P<xl/2)Ki
P(P*(xl/z)ki)Ji = P*(xUz)P(ki)P*(xl/z)Ji C P*(xl/Z)P(k’z)Jz c P*(xl/z)Ki

using (1.8) and innerness of K, in J;,. Thus K; is inner as well as
outer, hence is an ideal in J;.

If K, is L-invariant (2.5) to begin with, then K; will be L-
invariant too:

L(xl/zy ’.’/1/2)P(z1/2)ki = {P({xl/zyl/zzi/z}’ z1/2) - P(zl/z)L(yUzy w1/2)}ki (by JT5)
€ P(Jl/z)Ki + P(JI/Z)L(J1/2’ J1/2)Ki c P<J1/2)Ki
(by L-invariance)

L(x1/2; YY) P*(21)ky = L<x1/2; y1/2)P(e)P(z1/z)ko
= {P({zvs¥.1¢}, €) — P(e)L(Yys2, )} P (2,2)k  (bY IT5)
€ P<J1)P<J1/2)Ko - (L(J1/27 Ji/z)P(JUz)Ko)*
c P*(J,,) K, (by PIll, above, and L-invariance) .

L-invariance (2.6) only applies when 7 = 1. In this case it follows
from L-invariance (2.5) of K,: we have E(J,,, K, -J.,)={J.,K.J, )} T K,
by definition, and J,- (K,-J,,) C K, -J,, because {J(P(J, ) K.} =
_{JO(P(J1/2)J1/2)K1} + {J0J1/2{K1J1/2J1/2}} (by JT2)C{J0J1/2K1} (by L-invari-
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ance of K)) = K,-(Jy-J,,) T K- o
If in addition K, is P-invariant (2.7) the same is true of Kj:
P(@,0) P(Y,)(P(2,0)l:) = P(@,)(P (Y1) P(21)K:) € P(J 1) K,
P(,/) P(Y12)(P* (2u0)k0) = P(@1) P(Y,2) P(€) P(2,0)k0
= {P({2.,¥16}) + P(P (%) P(Yy)e, €) — P(e)P(Y.)P(.,)
— L@\, Y1) P()L(Yys2y %)} P (212)k,  (by JT4)
C{P(J,) — P(e)P(J,,) P(J,s) — L(Jyss, J112) P(€)Li(J 1oy J112)} P(J 1) Ko
C P*(Jp) Ky — L(Jyys, J1)P*(J,)K, (by P, L-invariance of K,)
c P*(J,,)K, (by above L-invariance of K)) .

P-invariance (2.8) applies only when ¢=1. In this case it follows from
P-invariance (2.7) for K,: P*(J,)P(J,) Ko=P(J.2) P(e) P(J 2 ){P(J ) K1}
P(J,;)P(e)K, (by P-invariance of K,) = P(J,,)K, = K,.

It is not clear whether P(J,,)K, inherits P-invariance when K,
is merely P-invariant (not also L-invariant). H

We can now obtain the main result on Peirce ideals. Notice
how much messier the formulation becomes for triple systems.

2.12. PROPOSITION THEOREM. An ideal K; im a Peirce subsystem
J; is the projection of a global ideal K in J iff K, is invariant. In
this case the ideal gemerated by K, takes the form

(/'/: 1) K = Kl@Kl’Jl/z®P(Jl/z)K1
(1=0) K= Ko@ {Ko‘Jl/z + Jo'(Ko’J1/z) + P(J1/2)K0'J1/z}
@ {P(JI/Z)KO + P*(Jﬂz)Ko}

(rL = %)K = {Eo(Ju'z, Kl/z) + P(Kl/Z)JI + P<J1/2)P(K1/2)Jo + P*<J1/2)P(K1/z)']0}
@ K1/z GB {E1(J1/2y K1/2) + Ex(KUz: Jx/z) + P(K1/’2>Jo+ P*(K1/2)Jo
+ P(J,) P(Ky ), + P*(J1) P(K, )} -

If 1/2e @ we have P(J\)K; = Ej(Jy Ki-dyp), P(Kypp)d; + P*(Kyp)d; ©
Ez(KUz’ Kl/z)’ P(J1/2)P(K1/2)Ji + P*(J1/2)P(I{1/2)Ji c Ei<J1/2i K1/z) + Ei(JMz’ K1/z)*
so the expressions for K reduce to
("' = 1) K = Kl @ Kl'Jl/z @ Eo(Jl/z; Kl'Jl/z)
(t=0 K=K©D {Ko‘Jl/z + Jo (Ko iy + Ei(J o, Ky dJ, ) J )}
@ {EI(JI/Z) Ko' Jl/2) + El(Ko' Jl/z, J1/2)}

('L = %) K = EO(JI/Z, K1/2) @ K1/z @ {EI(JI/Z) Kl/z) =+ E1(K1/2; Jl/Z)} .

Proof. We have already noted that a Peirce component K, must
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be invariant under global multiplications sending J, into itself.
Certainly the ideal generated by K, contains all the above products;
it remains only to show in each case K forms an ideal.

We begin with the easier diagonal cases 7 =1, 0, where K =
KiEBKMz@Ki = Ki@{Ki‘J1/2+Ji’(Ki'J1/z) + P(J1/2)Ki"]1/2} @ {P(Jl/z)Ki +
P*(J,,)K;} (note for 7 =1 that some of these products simplify:
Jl'(KL'Juz)C(J1'K1)'J1/z - K1'(J1'J1/2)CK1'J1/2 by PIiV: -P*(JI/Z)KI =
P(J1/z) K, since K = K, and P(JL/Z) Kl'J1/2CJ1/2° L(Jl/zy Jl/z) K —
Kl*'P(JI/2>Jl/2CJ1/2'K1 by JT2)

We verify that the K, satisfy the conditions (C1)-(C6) of (1.4).
For (Cl), K, is an invariant ideal in J; by hypothesis and K; =
P(J,,)K; + P*(J,,) K, is an invariant ideal in J,; by the Flipping
Lemma 2.11. For (C5) we have P(J,,)K,C K; by construction, and
P(J,,)K; = P(J o) P(J ) K; + P(J.,) P*(J,;)K; C K; by P-invariance (2.7),
(2.8). For (C2) we have E,(J,, K,, the sum of E,(J,, K;-J.,,) and
E(Jy, I+ (K- 1) and Ey(J,, P(J.5)K;-J,,) (the latter two only when
1 =0). The first of these has E,(J,,, K;-J,,) = L(J,,, J.,,)Ki C K; by
(P4) and the L-invariance (2.5) of K, = K. For 7 = 0 the second
term Ey(J,,, Jo- (K, J,,) falls in K, by the hypothesis of L-invariance
(2.6). For 7 =0 the third term becomes E,(J,,, P(J.,,) Ky J.p) =
{Jun(P(J ) Ko)*J e} (by P8)C P(J5) P*(Jy,) Ky, Which falls in K, by the
hypothesis of P-invariance (2.8). Continuing with (C2), we examine
Ej(’]ﬂz, Kl/z)- By (P3) EJ'(Jl/Z, Ki'Jllz) = {J1/2K§J1/2} c P(Jl/z)Ki - KJ’ by
(C5). When 72 =0 we must examine two other terms: E.(J,,, J,
(Ko’Jl/z)):Ex(Ko'JL’zy Jo’JJ./z)CE1(Ko'J1/2y Jx/z): EI(JI/Z! KO'Jl/z)*CKl*:Kl.
as above, and E1 (J1/zr P(J1/2) Ko : J1/2) = L(JI/Z’ Jl/z) (P(Jl/z) Ko)* =
L(J .y J12)Pe) P(J,;) K, where L(x, y)P(e)P(2)k, = P(e)P(2)L(z, )k, +
P({xye}, e)P(z)k, — P(e) P({yxz}, 2)k, € P(e)P(J\,)L(Jy, J12) Ko +
P(J)P(J ;) K, — P(e)P(J,,)) K,C P(e) P(J ) K, + P*(J.5)K, (by PILl and
L-invariance (2.5)) C K;. This completes the verification of (C2).
We have (C4) because K;-J,,C K,, by construction and K;-J,, =
(PJyp) K) -y + (PJ) K))* - J,, (the two differing only when
1 = 0) where the latter is by PI8 contained in E,(J,,, K} J,)* -y —
K} -P(J ), Kf-J,, — K¥-J,, (by L-invariance (2.5)) ¢ K;-J,,C K,
and when ¢ = 0 the former (P(J,,) K,)-J,, is contained in K,, by
construction. (There does not seem to be any way to show it falls
into K,-J,, + Jy-(Ky+J,).) For (C3) note that J,-(K;-J,,) C K,, by
construction, J;-(K;-J,,) = Kf-(J}-J,,) C K., by P6, and for ¢ =0
Jo [Jo (Ko J o)1 € o (Ko (J0 i) € Ky, using P6 twice, and Jy-[J,-
(Ko‘JUz)] C {JOJOKO}'Jl/z - Ko'(Jo' (JO'Jl/z)) (by PIll) CKO'Jl/z - K1/27 and
finally J,-(P(J,,) K, J,) CJ,-(K,-Jy,) K, by the above. For the
last criterion (C6) we consider the spanning elements k,-x,, (and,
when 72 =0, ay-(k,-2,,) and P(x,,)k, -y, as well). We observe by
PI10, (C5), (C1) that P(k;-x.,)(J;+J ;)= P*(@.,) P(k)J+ P(k,) P*(%,,)J ;C
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P*(J)K; + P(K))J;  K; + K;, also P(a,-(ko-2.,,))(J; + Jo) = P(ao)P*(k,-
@)y + P* (ko - 12) P(ag)dy = P(ay) P(ko) P(@,/2)d , + P(,2) P(ko) P(a)J,
P(J)K, + P(J,)K,C K, + K,, and also P(P@,)k," ¥.2)J, + J5) =
P*(Y12) P(P(2y2)k0)d, + P (P (21/2)k0) P* (Y1/2)J o = P*(Y/2) P (21/2) P (o) P (2,2)J, +
P(x,,) P(ko) P(212) P* (Yy2)Jy € P*(J 1)) K, + P(J) K,C K, + K,. Thus
(C1)-(C6) hold, and K is an ideal.

The case 7 = 1/2 is even more tiresome. We must again verify
(C1)-(C6). (C3) follows from invariance (2.9), and (C2) and (C6) follow
by our construction of K,, K,. For the sake of symmetry we write
the diagonal Peirce pieces as

K, = Ei(J1/2’ K., + E(Jy Kp)* + P(Kl/z)Jj + P*(K,)J;
+ P(J,2) P(K,jp)d; + P*(J,) P(K2); .

As we remarked after (2.10), an invariant ideal is closed under
all brackets:

( * ) {‘E'L(KI/Z! J1/2) + Ei<J1/2y K1/2)} 'J1/2 c K1/2 .

We can now establish the rest of (C4), K;-J,,C K,,. Since E,(J,,, K,»»)* =
E(K,,, J,,) by P8, we have so far that {E, + E}}-J,.,C K,,. Next,
we observe {P(Km) J:‘ + P* (KI/Z) Ja’} * J1/2 c Ej (K1/29 J1/2) : (J;k : Kuz) -
P(Kx/z) (Jj * J1/2) + E:i (J1/2, J;k : Kx/z)* * KI/Z - JJ* * P(Kl/Z)Jl/Z (by PI7; 8) c
Ji(Ji-Kypp) — P(K ) e + J5f- Ky — J;- P(K, )y, © Ky, by invariance
(2.9) and inner idealness P(K,;)d.. C .. Finally, {P(J.)P(K,s)d; +
P*(J1/2)P(K1/2)Ji}‘JL/2 - Ej(Jl/Z! J1/2)'[(P<K1/2)Ji)* ‘Jl/z] - P(JI/Z)[P(Kl/z)Ji'
Jie] + B (P(Kyo)d iy 1) I e — P(Kyp)d s P(J15)d . (by PIT, 8 again)C
J:i'Kl/2 - P<J1/2)K1/2 =+ Ej(KUza ']1/2)'J1/z - 1/2 (by the previous case) c
K,,, by invariance, outer idealness, and (*). Thus all 6 pieces of K;
send J,, into K,,, completing (C4).

Next we check (C5), P(J,,)K; C K;. We have P(J,){E:(Jys K, +
Ei(Jl/Z, Kuz)*} = P(Jx/z) {Ei <J1/2, K1/z) + Ei (K1/2y J1/2)} c Ea'(Jl/z, <K1/2, J1/z,
J1/2>j) - Ej(P(J1/2)J1/2y K1/2) + Ej(Jl/Zy <J1/2, J1/2, K1/2>j) - Ej(P(JUz)KUz, J1/2)
(by PI5) C E;(J.s Kip) + Ei(Kyp, Jn) C K; by invariance and outer
idealness. We have P(J,,)[P (K, )J.]C K, and P(J,,)[P(K,n)J, +
(P(K.)J0)*]1 € P(Jys) P(K, )y + P*(J,2) P(K,2)Jy © K, by construction.
For P(Ju)[P(J.) (P(K.2)d:) + P*(Jy) P(Kye)J;] we first have
P(J1/2)P(J1/2)P(K1/2)Ji = {P({J1/2J1/2K1/2}) - P(KI/Z)P(J1/2)P(J1/2)+P(P(J1/2)
P(J ) Koy Kij) — L(J ey J1) P(Kyy2) L(J sy 1)} (by JT4) C P(K, ) —
L(J1/2y J1/2)P(K1/2)JicP(Kl/z)Ji‘l'{P(K1/2)L(J1/27 Jl/z)_P({JUle/sz/z}y K1/2>}Ji
(by JT5)c P(K,,)J; C K;. With the *’s we consider the cases 7 =1,
1 = 0 separately. For i =1, P(J.)P*(J,e) P(Ky12)d, = P(J12) P(€) P(J12)
P(K,2)J,C P(J ){P({e] . K. p2}) — P(K.y0) P(J.10) P(e) + P(P(e) P(J ) Ky o, K ) —
L(e; J1/2)P(K1/2) L(Jl/2’ e)}J1 c P(JI/Z)P(EI(KI/Z’ Jl/z)J1 + P(J1/2)P(K1/2)Jo +
O - P('IL/Z)L<3, J1/2)P(K1/2)J1/2CP*(Jl/z'EL(Kﬂz, JI/'Z)*)J1+ P(Jl/z)P<K1/2)J0 -
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P(JI/Z)EI(K1/27 Jl/z) (by PIll) Since K1/2 4 Jl/Z) c P*(K1/2)J1 + P(Juz)
P(K,;)Jy — P(J,n)E.(K,,, J,;) (by invariance (2.10))c K, (using the
above relation P(J,,)E,C E;). For i=0 we haveP(J, ;) P*(J,,) P(K,;)J,=
P(J,1) P(J,2) P(e) P(K,12)d s C{P({J./2] ,i6}) — P(e) P(J 1) P(J o) + P(P(e) P(J 5)
J1/2; J1/2) - L(ey Jl/z)P(Jl/z)L(Jl/z79)}P(K1/Z)Jo (by JT4) c P(J1)P(K1/2)Jo -
P(e)[P(Jl/z)P(Juz)P(-Kx/z)Jo] +0— L(e, J1/2)P(J1/2)(J1/2 : P(KI/Z)JO) - P*(Jfk
K. ;)Jy — P(e)K, — L(e, J.,)P(J,,)K,, (by PI11, the above, and (C4)) C
P*(K/Z)Jo - Kl* - L(ey Jl/z)Kl/Z c Kl* - E1(K1/27 Jx/z) c KI' Finally, we
check (Cl): K;<{J;. By PI2, 3 and invariance (2.9) we have
E(J,s K,;,) + E(K,s J,,) is an outer ideal in J,. P(K,,)J; +
P*(K,;,)J; is also an outer ideal by invariance and PI10, 11, 12, 13. In
the same way P(J,,)P(K,,)J; + P*(J,,)P(K,.)J, is outer, since

PI)P(J,)P(K, )] € P75 J ) P(K, ), (by PILL) C P*(J,0) P(K.2)

and P(J,)P*(J,s) P(K.j2)J; © P(J,J.,) P(K,5)J; (by PI10) C P(J,5) P(K, )],
establishing P-outerness (2.1), while L-outerness (2.2) follows from
L(Jiy Ji)[P(Jl/Z)P<K1/2) Jz] c P(J1. . (Jz* ‘ J1/2), JI/Z) P(-Kl/Z)Ji (by P112) c
P(Jl/2)P(Kl/2)Ji’ and L(Ju Jz)lP*(Jl/z)P(Kl/z)Jz] = P*(J;k * (Jz - J1/2), Jx/z)
P(K,;,)J; (by PI13) c P*(J,;)P(K,;;)J,. Thus K, is an outer ideal in J,.
For innerness (2.3') we need only check the generators E,(x,,, k.»),
Ei(xl/Z} kx/z)*y P(kl/z)ai) P*<k1/2)ah P(xx/z)P(kl/z)ai and P* (x1/2)P(kl/2)ai'
Using (1.8) we have P(P(k,.)a;)J; = P(k.»)P(a;)P(ky)J; C P(K,»)J;,
P(P*(kp)as) ;= P*(kys)P(a;) P* (ki) © P*(K,)d 5, P(P(@y2) P(kyp)a)d; =
P(,/5) P(ky0) P(0;) P(Kys0) P(@y) s © P(J o) P(K. )5y P(P*(@,5) P(kyjp)a)d; =
P*(x,) P(ky2) P(a,) P(k,.) P* (x,,,) © P*(J,,) P(K,)J;, while by PI6,
P(E; (K., J.2))J: C P(K,p2) P*(J12) s + P*(J12) P(K,2)Js + E(K.p, Kip) C
K, and therefore P(E,(K,s, J.2)*)J} = {P(E(K, s, J.)J}*C K} = K, as
well. Thus K, <] J,, all conditions (C1)-(C6) are met, and K <]J.

If 1/2¢® the cases 2 =1, 0 are simplified since P(J,,) K, =
2P(J1/2)K1: = P(JI/Z’ Jl/Z)Ki: Ei(J1/2: Kf‘Juz) (by P3 since Kz* :Ki)° The
case ¢ = 1/2 is simplified by P(K,.,)J; = P(K, s, K.s)J; = Ey (K., J} - K, ;5) C
E(K,., K,, by invariance, hence by P8 (P(K,,)J;)* CE,(,,, K.;) too,
and so P(J)(P(Ky)dy) + P*(Jy) P(Kin)d: C P(J10)Ei (K Kip) +
(P(JI/Z)Ej(KI/Z’ Kx/z))* c Ei(Jl/Z’ Jj‘Kuz) - Ei(P(JI/Z)Kl/Z’ K1/2) + {Ei(Jl/Z’ JJ"
KI/Z) - Ei(P(JUz)KUZr K1/z)}* (by PI5) c Ei(J1/27 Kl/z) + Ei(JUz; K1/2>*- D

We can easily describe the global ideal generated by a Peirce space.

2.13. COROLLARY. The ideal in J generated by a Peirce J,(e) is

=1 I(J)= J, D Jue D P(J,0)d,
(t=0) I(Jy) = Jy D (o Jie + P(J2) oI} D {P(J1)s + P*(J12) o}

( ;= %) I(J,2) = PU)T D s BT,y o) + P ue)ds+ PHT) o)
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Proof. In each case K, = J, is trivially invariant, so we have
the explicit expressions for K given by the Projection Theorem. In
case 1 = 1 the J,,-component simplifies by K,-J,, =e-J,. = Jyn. In
case t = 0 we have J,-(J,-J,) CJy-J,. for the J,,-component. In
case © = 1/2 we have for the J,-component Ey(J,,, J.) = P(Jys, Jin)e C
P(J,.)d., P(J.)[P(J. )y + P*(J,s)Jo| © P(Jy)J; and for the J,-component
P(J, ) P(J o), + P*(J,2) P(J2), C P(J,2) s + P*(J,2) . ]

When J is simple and J, = 0 the ideal I(J,) must be all of J,
leading to

2.14. PROPOSITION. If J s stmple and e a proper tripotent
(nonzero and moninvertible) then

(1) PJyp)d, =d,

(11) P(JI/Z)JO =+ P*(Jl./2)JO + E\(J,p, J1/2) = J,.
If J, # 0 then

(i) P dy + P*(Jy)dy = J,, (V) Jodie + P(Jy) o Jie = Jipe
In characteristic + 2 we have

(v) Ji=E(Jus Ji), Jo = E(Ji, J1)-

Proof. e == 0 implies J, = 0, so I(J,) = J, yielding (i). If J,,=0
then J = J, B J, forces either J = J, (e invertible) or J = Jy(e = 0)
by primeness, so we must have J,, = 0, and I(J,,) = J yields (ii).
We may well have J, = 0 with J,, J,, # 0, but if J,==0 then I(J,) =
J yields (iii), (iv). For characteristic # 2, note 2P(J,5)J; = P(J sy J15)d ;=
Ei(J1/21 Jj'Jl/z) c Ei(Jl/zy J1/2) = Ei(Jl/Zy J1/2)*- l_—_‘

In case J, = 0 we can also recover some ideal-building lemmas
of Loos.

2.15. COROLLARY [1, pp. 131-132]. Let e be a tripotent in a
Jordan triple system with Jye) =0. (1) If K., is an tnvariant
bracket ideal of J,, such that

J1 : K1/2 c KI/Z <K1/2 1/2 1/2>1 + <J1/2K1/2J1/2>1 c K1/2

then the tdeal im J generated by K,, is K= K,, P {E(K,p. J.s) +
EI(JI/Z, KI/Z)}'

(ii) If K, s an ideal of J, such that L(J,,, J,,)K, C K, then
the ideal im J generated by K, i1s K, P K,-J ..

Proof. (i) Note that K, is an ideal in J,,: Since P(2,,)¥., =
E (0,2 Yijo) X1y = {X12Y10%,2» by Pl when J, = 0, the above conditions
guarantees a bracket (hence a product P(x,,,)¥,. o P(%,, 2.2)Y..) falls
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in K,,, as soon as one factor does. This K,, is invariant in the sense
of (2.9), (2.10) by hypothesis, so by the Projection Theorem K =
K, +K1/2 where P(lez)Joz P*(Jl/2)J0 =P(J1/2)P(J1/2)J1 ZP*(J1/2)P(J1/2)J1 =
0 when J, = 0, so K, reduces to E.(J, K.z + E. (K., Jys)-

(ii) K, is invariant since P(J,,)P(J,,)K, = 0, so by the Projection
Theorem K= K, P K,-J ;5. ]

Since invariant Peirce ideals correspond to global ideals and
simple JTS contain no proper global ideals, the Peirce subsystems
contain no proper invariant ideals.

2.16. PROPOSITION. If e is a tripotent in a simple Jordan triple
system J, then them Peirce subsystems J,, J,», J, contain mo proper
tnvartant tdeals. J

We can also recover a result of Loos [1] on alternative triple
systems.

2.17. COROLLARY. If e is an idempotent im a simple Jordan
triple system J with Jy(e) = 0, then J,.(e) 1s simple as an alternative
triple system under the bracket.

Proof. By (2.15) J,, contains no proper invariant ideals K,,,
where the invariant ideal conditions (2.9-2.10") reduce to

J]. : K1/2 c K1/2 <J1/2 1/2K1/2>1 + <J1/2K1/2J1/2>1 =+ <K1/2J1/2J1/2>1 c K1/2 .

We may as well assume J,, # 0, so by (2.14) J, = E,(J., J,»). Thus
J, Ky = E(Jyysy J1s) Ko = {J 121K, 0:, and invariance under J, is a
consequence of bracket-invariance. Therefore the nonexistence of
proper invariant ideals means nonexistence of proper bracket ideals,
that is, simplicity as an alternative triple system (note J,. is not
trivial under brackets since 0 == J,.=¢-J1 CE (Jips, Jip) i =
<J1/2J1/2J1/2>1)- D

3. Simplicity theorem. As in the Jordan algebra case, we will
quickly find J, inherits simplicity from J, then will use a flipping
argument to establish simplicity of J,. Before flipping we need to
consider the case when the flipping process annihilates an ideal K, <] J,.

3.1. KERNEL LEMMA. The maximal ideal of J, annihilated by
P(J,,) is Ker P(J,;) = {z,€ Jy| P(J.2)2, = P(J,e) P(2)J, = 0}. It is an
wnvariant ideal.
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Proof. Clearly any ideal K, annihilated by P(J,.) lies in Ker P(J,,,)
since P(K,))J,C K,. It remains to show K, = Ker P(J,,) is actually
an invariant ideal.

K, is a linear subspace: it is clearly closed under scalars, and for
sums z, + w, note

P(J,2)P(zy + wo)d, = P(J,2) P(z,, wo)J, = P(J,,5) L(w,, Jo)z,
= {—L(J,, w)P(J,2) + P({Jowe sz}, J.2)}20 (by IT5)
c _L(JO’ Jo)P(Jl/z)zo + P(Jﬂz)zo =0.

K, is P-outer, P(J,) K, C K,, since P(J,»)[P(ay)z,] = P*(J,2- o)z, (bY
PI11) € P*(J )2, = 0 and P(J,)[ P(P(a0)20)Jo] = P(Jy2) P(ao) P(z) P(ao)J,
P*(J.sa0) P(20) o P(e) P(Jy) P(z)Jy = 0. Tt is L-outer, L(Jy, J)K,C Ko,
since P(J,.)[ L(a,, b))z,] & P(J,2)2,=0 by PI14 and P(J,.)[ P(L(a,, by)z.)J]C
P(J,2) {P(a,) P(b,) P(z,) + P(z,)P(b,)P(a,) + L(ay by)P(2) L(b,, a,)—
P(P(afo)P(bo)zo; zo)}Jo (by JT4)CP*<J1/2 : ao)P(bo)P(zo)Jo + P<J1/2)P(zo)=]o +
P(Juz)L(ao, bo)P(zo)Jo - P(Juz)L(Joy Jo)zo (by PI]-]-) c P((Jl/z'ao) 'bo)P(zo)Jo +
0 + P(Jysy J12) P(20)s — P(J 2y J112)20 (by PI10 and PI14) < P(J,.) P(2,)J, +
0—0=0.

K, is inner, P(K,)J,C K,, since P(J,,)[P(z,)a,] = 0 by hypothesis
and P(J,,)[P(P(z))a0)dy] = P(Jys)P(2) P(a0) P (20)Jy © P(J,2) P(20)J, = 0.

K, is trivially P-invariant (2.7) and (2.8), P(J.,.) P(J,.)K, =
P(J,,)P(e)P(J,,)K, = 0. It is L-invariant (2.5), L(Js, J,.)K,C K,,
since P(J, o)L/, Yi2)2o] = {P({Yue®ied e}, Jie) — L(Ysrey 12) P(J 1 2)}2, (bY
JT5) = 0 and

P(J ) P({2129,221) 0] C P(J, ) {P(@1/2) P(Y112) P (20) + P(20) P(Y1/2) P(275)
+ L%,z Y12) P(Ro) LYoy 112) — P(P(%1/2) P(Yy12)20, 20)}o (by JT4)
C P(J.2) P(J12)(P(Y12) P(20)0) + P(J12) P(20)
+ P(Jy) L(J sy J12) P(20) s — P(Jyys) L(J,, Jo)2o = 0

as above. The trickiest part is L-invariance (2.6), Ey(J s, Jo- (Ky- 1) C
K,. We first show this is killed by P(J,,). We have

P(Jx/z)[Eo(Juzr Jo- (Ko J1/2))]
= P(Jl/z){Jx/z(Ko'Juz)Jo} (by P4) = P(JI/Z)L(JOy Ko'J1/2)J1/2
- {— L(Ko : J1/2, Jo)P(J) + P({(Ko : Jl/z)JoJuz}’ J1/2)}J1/2 (by JT5)
CA(Ko i) o e} + LT oy Ju){(Ko Jiye)oe] o}

where {(Ko : J1/2)J0J1/2} = K, (Ko : J1/2y Jo : J1/2) (by P3) c E1 (Ko : J1/2; J1/2) =
E\(Jyy Ko+ J12)* (by P8) = {J,,KoJ,o}* (by P3) C (P(J,)Ko)* = 0.

To see P(J,,) also kills P(E,)J, we use PI6 to write P(E,(x,,,
o (2o Yu2))o C P(@12) P*(@0" (20" Y1) s + P*(ao+ (2o YD) P(@112) s + Eo(®y/2,
P(ao 2o Yuy))(Jo 2:12)). Here P*(ao- (20 Yuo)Jo = P2y Yi)Plag)J, (by
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PI11) = P*(¥4,) P(2) P(a0)Jy © P*(J,e) P(2,)J, = 0 by PI10, and P*(a,-
(2o Yy))d, = P(a))P(2 - Ys12)), = P(a)P(2)P* (y,5)J, (by PI10, 11)cC
P(ay)P(z,)J, C K, since K, <]J,, also P(a,- (2" Y1) o Tis) = o+ {2,
P(y,/2)(2- (@5-J112))} (using PI16 twice) C J,- (- 0) s0 that Eyw,,, P)C
Ey(Jyy Jo: (2,,)) is Kkilled by P(J,,) by the above. Thus P(J,,)
does kill all three pieces of P(E,)J, E, is contained in K,, and K, is
an invariant ideal. 1

Next we establish that L(J,,, J,,) and P(J,,)P(J,,) and P*(J,,,) P(J,.)
send an ideal into its “square root” or “fourth root”.

3.2. LEMMA. For any ideal K, <]J,(i =1, 0) we have

(3.3) L(J.s, J1) P(K)J; C K,
(3.4) P(J.2)P(J.2) P(P(K.)J)J: C K,
(3.5) if 1+ =0, P*(J i) P(J) P(J) P(P(K) o), C K,

Proof. (3.3) L(x.s ¥12)P(z)a; = — P(2)L(Y,p, T0)a; + PU{2,2Y,:2:},
z,)a; (by JTh5)e —P(K,)J; + P(J,, K,)J, C K; since K, is an ideal.

(3.4) For w, e P(K,)J; we have P(x,.) P(y,..) P(w,)J;={P({2.2y,,w:})—
P(w) P(y,/2) P(%./) — L2, Y1) P(W) LY,y %112) + P(P(110) P(Yy )W, wo)};
(by JT4) c P(K))J; — P(K,)J, — L(J,s, J..)P(K,)J; + P(J,, K,)J; (using
(3.3) for w, c K,.

(83.5)  P(21,)P(e) P(y,/2) P(a0) Ly C P(,2) [ P({€¥/:00}) — Pa0) P(y/) Ple) —
L(e, 9.2) P(a0) L(Y,y2s €) + P(P(e) P(Y,2) 0, @0) 1 Liy (by JT4) P(J1y2) P(J o) Loy —
0 — L(e, y1/2)P(a’0) {J1/26L0} + {J1L0Jo} = P(Jx/z)P(Jl/z)Loy so if Lo =
P(P(K,)J,)J, we have P(J,,)P(J,s)L, C K, by (3.4). L]

It is not clear whether (3.5) can be improved to assert
P*(Jl/z)P(Jl/‘z)P(P(Ko)Jo)Jo e Ko-

Now we can describe a class of ideals which is guaranteed to be
invariant.

3.6 PROPOSITION. Any strongly semiprime ideal K, <]J, is
invariant.

Proof. We first prove that K, is L-invariant, i.e., w, =
L(x,, 9,2 € K, for all z,€ K,. By strong semiprimeness we will
have w, e K, if we can show P(w,)J, C K,. But

P(w,)J, = {P(®,.)P(Y.)P(z,) + P(2,)P(Y.2)P(%.2)
+ L(®y/5, Y1) P(2)L(Y 12, @110) — P(P(2,2) P(Y,0)2,, 2)}; (by JT4)
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c P(xx/Z)P(yl/z)P(z1)J1 + P(Kl)Jl + L(x1/2; y1/2)P(Kl)Jl - {J1J1K1}
C P(x,.) P(y,2) P(2,))J, + K, (using (3.3)) ,

so it suffices if all u, = P(%,,)P(y,,)P(z,)a, fall in K,. Here again it
suffices if P(u,)J, c K,, and for this

P(u,)J, = P(.2) P(.2) P(P(2,)2,) P(412) P(@,2) ],
C P(Jy2)P(Jy) P(P(K,)J))J, C K, by (3.4) .

Next we prove K, is P-invariant. Let w, = P(x,,)P(¥.)?,; to
show w, falls in K, it again suffices by strong semiprimeness if it
pushes J1 into Ku i.e., lf P(wl)JI = P(xl/z)P(y1/2)P(z1)P(y1/2)P(x1/2)J1 c
P(x,,)P(y,,)P(z)J, falls into K,. But again this is in K, since it
puSheS J1 into KL; P(P(xl/Z)P(y1/2)P(z1)al)Jl c P(xl/z)P(yl/Z)P(P(zl)a‘1>J1 c
K, by (3.4). |

Because it is such a nuisance to verify the extra invariance
needed when ¢ = 0, and since we will not need the result, we do not
establish the analogous result for K, <] J,.

3.7. COROLLARY. Any maxinal ideal M, <] J, is invariant.

Proof. If M, is maximal then J, = J,/M, is simple with invertible
element &, hence the Jacobson and small radicals are zero and J, is
strongly semiprime (see [1, p. 38]), so M, is strongly semiprime in JJ,.

O

We now have the tools to establish our main result.

3.8. SiMpLICITY THEOREM. If e¢ is a tripotent im a simple
Jordan triple system J, then the Peirce subsystems J,(e) and J(e)
are simple.

Proof. We may as well assume ¢ is proper, else the result is
trivial. Then J, contains a nonzero tripotent and consequently is not
trivial, and it has no proper ideals since any such could be enlarged
to a maximal proper ideal 0 < M, < J, (Zornifying and avoiding e),
which would be invariant by 8.7, whereas by 2.15 J, contains no
proper invariant ideals.

Thus J, is simple. We may easily have J, = 0; we will show
that if J, is nonzero then it must be simple. First, it is strongly
semiprime: any element trivial in J, would be trivial in J (P(z,)J, = 0
implies P(z,)J = 0), whereas by simplicity and non-quasi-invertibility
(thanks to e = 0) the system J is strongly semiprime (see [1, p. 38]
again). In particular, J, is not trivial, and we need only show it
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contains no proper ideals 0 < K, < J,. Suppose on the contrary that
such a K, exists. By (ordinary) semiprimeness we have successively
= PK)K,+ 0, K/ = P(K)K,+ 0, K;” = P(K)K, + 0. By the
thplng Lemma 2.11 K" = P(J,,)K," + P*(J,,)K;" is an ideal in J,,
so by simplicity of J, we have either K;” =0 or K;” =J,. In the
first case K.’ is an ideal annihilated by P(J,,), hence is contained
in the invariant ideal Ker P(J,,) by 3.1; by (2.15) we know J, contains
no proper invariant ideals, so Ker P(J,,) D K;” > 0 forces Ker P(J,;,) =
Jy, hence P(J,,)J, = 0, contrary to (2.14iii) (assuming J, = 0). Thus
the first case K’ = 0 is impossible.
On the other hand, consider the case K.” = J,. Here (by (2.14i))
Jo = P(J,p)J, = PJ,n)K" = P(J.p) P(J o) K" + P*(J,2) P(J,)) K" s
contained in K, by (3.4) and (3.5) (noting K, = P(P(K, K, K,
P(P(Ky)Jy)J, and K" = P(K{)K; C P(J)(P(K)K;) C P(J,)P(P(Ky)J,)d,
as required by (3.4) and (8.5)). But J, = K, contradicts propriety

of K,.
In either case the existence of a proper K, leads to a contradiction
so no K, exists and J, too is simple. |

This settles a question raised by Loos [1, p. 133] whether .J, is
simple in case J is simple and J, = 0. The result was known when
J had d.c.c. on principal inner ideals. Of course, for the case J, =0
we would not need the elaborate machinery of Peirce decompositions,
since the Peirce relations and invariance are vastly simplified (for
example P(J,,)P(J,,)J, = 0, so P-invariance is automatic).

The analogous simplicity result fails for J,.: .., need not inherit
simplicity from J, since when J = M, ,(D) is the space of pxg matrices
over D relative to P(x)y = 2y*x (y* ='¥), then the diagonal idempotent
e=e,+-+e, 1Zr<p=q) has J,,=J,@BJ,. In the simplest
case p =¢q = 2, r =1 we have J,, = De,, B De,,. Note, however, that
these proper ideals K,, = J,, L, = J,, are invariant under J, and J,
but not under brackets. It is still an open question whether J,, is
simple as a bracket algebra (it is if J, = 0), or whether it is always
simple or a direct sum of two ideals as a triple system.
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HYPERSPACES OF COMPACT CONVEX SETS

SAM B. NADLER, JR., J. QUINN, AND NICK M. STAVRAKAS

The purpose of this paper is to develop in detail certain
aspects of the space of nonempty compact convex subsets of
a subset X (denoted cc(X)) of a metric locally convex T.V.S.
It is shown that if X is compact and dim (X)=2 then cc(X)
is homeomorphic with the Hilbert cube (denoted ce(X)=1I).
It is shown that if =2, then cc(R") is homeomorphic to I

with a point removed. More specialized results are that if
XC R? is such that ce(X)=I_ then X is a two cell; and that
if XCR?® is such that ce(X)=I_ and X is not contained in a
hyperplane then X must contain a three cell.

For the most part we will be restricting ourselves to
compact spaces X although in the last section of the paper,
§7, we consider some fundamental noncompact spaces.

We will be using the following definitions and notation. For
each % =1,2,---,R* will denote FEuclidean mn-space, S"'=
{xeR™ ||z|| =1}, B* = {xe R™ ||z|] £ 1}, and °B" = {x € R™: ||z||<1}.
A continuum is a nonempty, compact, connected metric space. An
n-cell is a continuum homeomorphic to B*. The symbol I, denotes
the Hilbert cube, i.e., I, = I3, [—1/2%, 1/2']. By I we will denote
the pseudo interior of the Hilbert cube, I: = [I%, (—1/2% 1/29). We
let I* denote the set of natural numbers. We use cl and co, re-
spectively, to denote closure and closed convex hull. If Y is a
subset of a space Z, then int{Y] means the union of all open sub-
sets of Z which are contained in Y. The notation X = Y will
mean that the space X is homeomorphic to the space Y.

All spaces are considered in this paper to be subsets of a real
topological vector space. Since we are restricting our attention in
this paper to separable metric spaces this is no restriction topolog-
ically or geometrically (cf. Vol. I of [14, p.242]). If X is a space,
by ce(X) we will mean the hyperspace of all nonempty compact
convex subsets of X (with the Hausdorff metric). We will call
ce(X) the ce-hyperspace of X.

If * and y are points in a real topological vector space V,
then oc@ or [z, y] denotes the conwvex segment or point (if x = y)
determined by x and v, i.e., zy = {fte + A —ty: 0=t =1} = [z, y].
Let X V. If zeX, we let S(z) denote {y e X: x’y\cX}, and we let
Ker(X) denote [),.x S(x); the set Ker(X) is called the kernel of X.
We say X is starshaped if and only if Ker(X) = @. For ACY, a
point » in A is called an extreme point of A if and only if no
convex segment lying in A has p in its (relative) interior. The
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symbol ext[A] denotes the set of all extreme points of A. If X is
a subset of R*, for some 7, a point pe X is said to be a point of
local nonconvexity of X if every neighborhood of p in X fails to
be convex. We will denote the set of all points of local nonconvex-
ity of a set X by LN(X). For spaces X and Y with XC Y the
boundary of X, denoted Fr(X), is defined by Fr(X) =cl(X)n
el(Y — X). A closed subset A of a metric space X is a Z-set
in X if for any nonnull and homotopically trivial open set UC X
it is true that U — A is nonnull and homotopically trivial (see
[1D).

The paper is organized as follows: In §2 we give some general
results which are closely related to early work of Klee. One of the
results of this section establishes that if K is a compact convex
subset of a metrizable locally convex topological vector space and
dim[K] = 2, then ce(K) = I,. This sets the stage for the remainder
of the paper, as one of our major concerns becomes obtaining ans-
wers to the following question:

(1.1) For what confinua K is ce(K)= 1,7 In §3, we show
that if KC R? is as in (1.1), then K is a 2-cell. Thus, for R? a
complete answer to (1.1) becomes a matter of determining which
2-cells K in R? have their cc-hyperspace homeomorphic to I.. Re-
sults about this are in §5, where we show that there is a 2-cell in
R? whose cc-hyperspace is not homeomorphic to I, and we obtain
some geometric results which give sufficient conditions on a continu-
um X in order that ce(X) = I.. Many of the results in §5 are for
continua more general than 2-cells in the plane.

Though KcC R* as in (1.1) must be a 2-cell, KC R® as in (1.1)
need not be a 2-cell or 3-cell (see (4.7)). However, in §4, we show
that if K R® is as in (1.1) and K is not contained in a 2-dim hy-
perplane in R?® then K must contain a 3-cell (see (4.1)). Some
lemmas about arcs of convex arcs in R? and arcs of convex 2-cells
in R® which we use to prove (4.1), seem to be of interest in them-

selves.
In §6 we give some examples and state some problems. Many

of these help to delineate the status of the problem of which 2-cells
in R? have their cc-hyperspace homeomorphic to I.. The technique
used in (6.4) is particularly noteworthy since using it in combina-
tion with suitable results for 2-cells with polygonal boundary can,
perhaps, lead to a satisfactory solution of (1.1).

The final section, §7, begins to touch on the problems connected
with determining the topological type of the cc-hyperspace of some
noncompact subsets of topological vector spaces. The main result
of this section is that, for n = 2, ce(R") = I, — {p} for pel.
Several open questions are also posed in this section.
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2. Some basic results.

(2.1) LeEMMA. Let K be a compact convex subset of a metriz-
able locally convex real topological vector space L, dim[K]| = 2. Then
there exists a countable family {{;:1 =1, 2, - -} of continuous linear
Sunctionals ; such that given Acce(K) and xel[K — Al, there ex-
ists a je It such that C;(x)¢ ;(A).

Proof. The compact metric space K in the relative topology
has a countable base of convex sets Q = {V.}z,. Define a family
FbyF={(V,V,--, VolneI, V,e@Qand colUr=} Vonel[V,]=2}.
Given any (V,, V,, ---, V.)€ F, by a (well known) separation theorem
there exists a continuous linear functional strictly separating
co(Ux! V,) and cl[V,]. For each member of F, select one such
functional thus obtaining a countable family {{]}:2, of functionals.
The proof is completed by noting that for x € K and 4 ¢ ce(K) with
x ¢ A there exists a (V, V,, ---, V,)e F with Acco(Uz V. and
zecllY,].

(2.2) THEOREM. Let K be a compact convex subset of a metriz-
able locally convex real topological vector space L, dim[K]| = 2. Then
ce(K) = L.

Proof. For each Acce(K), let {;(4) = [a,, b;] where the , are
as in (2.1) such that, without loss of generality, sup{|{,(z):zc K}<1
for each 7. Let F:ce(K)— I, be defined by

F(A) = (a,/2, b,/2%, a,/2°, by/2%, « -+, @, /27, b, /2", -+ -) .

Since {{*}2, is a separating family, F is one-to-one. Furthermore,
for each j, the co-ordinate functions F,;_, = a;/2%* and F,; = b;/2%
are continuous since {; is continuous. Thus, F' is continuous (we
are mapping into I.). Let A', A’ccc(K), ve[0,1], and je I*; then,

using the linearity of ;,

GiVAY 4+ (1 — NAY) = (4D + 1 — NE(A°)
= Naj, 03] + @ — M)[a3, b3
= [nal + A — Nal, M) -+ (1 — N)b3],

where [af, b%] = (;(A*) for & =1 and 2. Thus, F,(\A"' + (1 — N)4%) =
AML(AY + (1 — MF(A?) where t = 1,2, ---,. This says that the set
F(ce(K)) is convex. Now, since dim[K] = 2 K contains a convex
2-cell, say D. Thus, for each %, K contains a regular mn-sided
polygon P, with sides s, s,, ---, s, which lies in the “interior” of
the 2-cell D. For each 4, let 4, be a convex arc which lies in the
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exterior of P, along the perpendicular bisector of s, in D. For
each n-tuple (¢,4¢, ---,t,) in JIr, A, let G({, ¢, ---, t,) = co({t,
ty ++, t.). It is clear that the mapping G is a homeomorphism of
the n-cell JIi-, A; into ce(K). Thus, ce(K) contains an n-cell for
every n and, tnerefore, is infinite dimensional. Thus, F(ce(K)) is a
compact and infinite dimensional convex subset of [,. Hence, by
Keller’s theorem [10], F(ce(K)) = I,. Therefore, ce(K) = L.

We point out that the proof of Theorem 2.2 is a slight modi-
fication of a proof used by Klee [12] to generalize Keller’s theorem.
Also Klee, in a conversation with the authors, has pointed out a
different proof of Theorem 2.2 in the case when L is a normed
linear space. This consists of using a theorem in [17] to embed
the compact convex subsets of a normed linear space into a normed
linear space, noting that for a fixed K L,ce(K) is embedded
convexly, and then using Klee’s generalization [12] of Keller’s
theorem.

Let L be as in (2.2) and let F cce(L). We say that the family
F is conmvexr if and only if for all A, BeF and ) 0N <1,
(MA 4+ (1 — N)B) e F' (where M A means {A-a: a < A}).

(2.3) THEOREM. Let L be as in (2.2) and let F Cce(L) be such
that F' is compact, convex, and infinite dimensional. Then, F = L.

Proof. By (2.2) ce(L) and hence F' can be affinely embedded
into [,. But then F' is a compact, convex, infinite dimensional subset
of I, and Keller’s theorem applies to give F' = I (see [10]).

As a consequence of (2.3) and the part of the proof of (2.2)
showing that ce(K) is infinite dimensional, we have the following
two corollaries.

(2.4) COROLLARY. Let K and L be as in (2.2). Let Q be a
given compact subset of K such that co[@] = K. Then, {Acce(K):
QcAl=1I..

(2.5) COROLLARY. Let K and L be as in (2.2). Let K, be a
given mnonempty compact convexr subset of K. Then {Acce(K):
ANK,+ @} = L.

It follows, in particular, from (2.3) or (2.4) that the space of
compact convex subsets of the unit disec in R? which contain the
origin is homeomorphic to I..

3. A topological converse to (2.2) for the plane. In the
plane, (2.2) says that the ce-hyperspace of a convex 2-cell is homeo-
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morphic to the Hilbert cube. The question arises as to which sub-
sets of the plane have their ce-hyperspaces homeomorphic to I.. A
complete answer to this problem will involve both topological and
geometric considerations. The topological considerations are the
subject of this section. Our result is

(8.1) THEOREM. If X is a continuum 1in R* such that
ce(X) = I, then X is a two cell.

To prove (3.1) we will make use of the following lemmas. The
first three lemmas are stated in more generality than explicitly
needed for proving (3.1).

(3.2) LEMMA. Let E be a Banach space which admits a topo-
logically equivalent norm that is strictly convex. Then there is a
continuous selection from cc(E) to E. Thus, for any separable
Banach space, there is such a selection.

Proof. Let {|-]| denote a strictly convex norm on E and let
pe E. Define n: cc(E)— K by letting n(A) denote the unique point
a,€ A such that inf{||p —a|lac A} =||p — a,|l (see [3, p.19]). It is
easy to see that »n is continuous and is a selection. The second
part of (3.2) follows from the fact that any separable Banach space
admits an equivalent strictly convex norm [3, p. 18].

(3.3) LEMMA. Let X be a dendrite. Then dim[ce(X)] < 2.

Proof. Let X be a dendrite (in some real topological vector
space) and note that any member of ce(X) is either a (convex) are
or a singleton. Hence, the barycenter map g:ce(X)— X is contin-
uous where g is defined by: if ¢ and b are the endpoints of a con-
vex arc A in X or if a =0, in which case let A = {a}, then
g(A) = (o + b)/2. Let pe X. Since p belongs to arbitrarily small
open subsets of X with finite boundaries [21, p.99], there are at
most countably many convex ares 4; = [a,, b}, 7 = 1, 2, ---, maximal
with respect to the property that g¢g(4,) =p. For each p let
D, = {[s, t.J<A4A;: 9(ss, t;]) = p}. Since the map s, — |s,, t;] is a home-
omorphism of [a,, p] onto D,, D, = [a,, p] (note: D, could be just {p}).
Also, it is clear that ¢™'(p) = Uz, D,. Hence, by III 2 of [9],
dim[g7'(p)] £ 1. Therefore, from the statement on p.92 of [9]
which is verified in order to prove VI 7 of [9], dim[ee(X)] <1+
dim[X] = 2.

(3.4) LEMMA. Let X be a continuum lying in a Banach space
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E. If ce(X)=1, then X is an absolute retract and dim[X] = 2.

Proof. Let F' denote the closed linear span of X. Since X is
separable, F' is a separable subspace of E. Hence, by (3.2), we
have a continuous selection 7:cc(F') — F. Since the restriction of
7 to ce(X) is a retraction of ce(X) onto X, the fact that X is an
AR now follows from the well known fact that [14, Vol. II, Th. 7,
p. 341] a retract of I, is an AR. For the remainder of the proof,
suppose dim[X] < 1. If dim[X] =0, in which case X consists of
only one point, then ce(X) = X. So, for the purpose of proof, as-
sume dim[X] =1. Then X is a one-dimensional AR and, hence, a
dendrite (cf. Brosuk’s “Theory of Retracts” p.138). By (3.3) this
implies dim[ce(X)] £2 which contradicts the assumption that
ce(X) = I...

(3.5) Conjecture. If A is a dendrite, then cc(A) is embeddable
in the plane.

(3.6) LEMMA. The space of singletons and convexr arcs in
R*(n = 2) denoted AS(R"™), is homeomorphic to R"Xx ([0, «o)x P/
0x P*™Y). In the special case that n = 2, AS(R*) = R*.

Proof. We note that the space of lines through the origin in
R* is homeomorphic to projective » — 1 space P'. For each con-
vex arc or point ab in R* define F((ﬁ)) in R*X ([0, o)X p"*/0x p"7")
by F(oﬁ)) = (a + b0)/2, [(]|]b — al|, s)] where s is the point of p*~* de-
termined by the line parallel to ab if ab is nondegenerate and s is
the point of p"* determined by the first axis if ab is a singleton.
In this proof we have used [o] to denote “equivalence class.” It is
a straightforward matter to check that F' is a homeomorphism. If
n = 2,then R*% ([0, )X p/0X p" )= R*X ([0, =) X S'/0X SHY= R*X R*= R*.
The lemma is proved.

(8.7 LeMMA. If X is a continuum in R such that ce(X) = I,
then Iint[X] # @ and X = cl(int[X]).

Proof. Suppose there is a point p in X — cl(int(X)). Clearly,
we may then choose a neighborhood N in ce(X) about {p} such that
N consists only of singletons and convex arcs. Hence, N is embedd-
able in R* (by (8.6)) and, therefore, finite dimensional. This con-
tradicts the assumption that ce(X) = I...

(8.8) LEMMA. If X is a continuum in R* such that ce(X)=1,,
then int[X] is commnected.
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Proof. Let p and ¢ be distinet points of int[X]. We show
that there is an arc in int]X] from p to ¢q. Let 4 ={Adecce(X)|4
is a singleton or a convex arc). By virtue of (3.6), 4 is finite
dimensional. Therefore, since ce(X) = I and 4 is compact, ce(X) — 4
is arcwise connected (that no finite dimensional continuum can
separate I.) (arc separate is equivalent to separate for locally con-
nected continua) follows from the fact that, for each =, I, is a
Cantor manifold (see Corollary 2 on p.48 of [9]) and the set of all
points of the form U;., I, is dense in I, (here I, = 1%, I, x(1/2,
1/2, --+)). Let K, Lece(X) be 2-cells with [KU L]cCint[X] and
B(K) = p and B(L) = q (where B:ce(X)— X is the barycenter map).
Now, let @ be an arc in ce(X) — 4 with endpoints K and L. Since
aCfee(X) — A] each point of @ is a 2-cell and thus, the restriction
of B to « is continuous. Thus, B(e) is a locally connected continu-
um and hence B(e) is arcwise connected. Since X C R* and each
member M of « is a 2-cell, it follows that B(M)eint(M) Cint[X].
Therefore, we now have that g(a) is arcwise connected and p, ¢ge
Bla) cint[X]. The lemma follows.

Proof of Theorem 3.1. By (3.4), X is an absolute retract and
therefore R? — X is connected [7, p.364]. Therefore, (since X is
a locally connected continuum in R?), Bd[R* — X] is a locally con-
nected continuum (see 2.2 of [21, p. 106]). Let N denote Bd[R* — X].
Direct computation using only definitions yields

(*) R~ N=[R — X]Uint X .

Thus we have that N is a locally connected continuum and, by
3.9), and (x) E* — X and int[X] are the components of E* — N. It
now follows from 2.51 of [21, p.107] that there is a simple closed
curve JCN. Let G denote the bounded component of E® — J. By
(3.8), int[X]c< @, and hence, cl(int[X])c[GUJ]. Therefore, by (3.7),
Xc|[GUJ]. However, since E* — X is connected and JcC X, we
have G C X, i.e., [GUJ]cX. This proves X = G U J and, thus, X
is a 2-cell. This proves (3.1).

REMARK. The part of the proof of Theorem 3.1 which follows
the lemmas is devoted entirely to showing that if Z is a planar
compact absolute retract such that Z = cl(int[Z]) and int[Z] is con-
nected, then Z is a 2-cell. This characterization of 2-cells among
continua in the plane does not seem to be explicitly stated in the
literature.

4. Analogue to the 2-cell theorem for 3-space. In this section
we will establish
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(4.1) THEOREM. If X is a continuum in R® such that ce(X) =1,
and X 18 mot contained in any 2-dimensional hyperplane, then
int[X] = @.

We use the following lemmas to prove (4.1).

(4.2) LEMMA. Let 0:[0,1] — cc(R?) be an arc of convex arcs in
R:.  Suppose that L is a stratght line in R? such that, for 0 <t <s
where s > 0, LNo(t) consists of only one point. Then the convex
segment with noncut points c(0) N L and od(s) N L is contained in

Ubose<s 0(2)-

(4.3) REMARK. It is easy using (4.2) to prove that if ¢[0, 1] —
ce(R?) is a one-to-one continuous mapping such that, for each ze
[0, 1], 6(s) is a convex arc and such that there exist s, and s, such
that o(s,) and o(s,) are not co-linear, then |J,cp,10(s) contains a
2-cell.

Proof. Consider the mapping &: [0, s] - L defined by &)=
o(t)N L. Using the single valuedness of &, it is easy to show that
& is continuous. Thus, ([0, s]) is connected in L and the result
follows.

(4.4) LEMMA. Let 0:[0,1] — ce(R®) be an arc of convexr 2-cells
in R® such that there is a sequence s,— 0 such that o(s,) and c(0)
are not co-planar. Then, U,cp,.0(s) contains a 3-cell.

Proof. Let I],(1 =1,2,3) be the standard projection onto the
1th factor of R®. Since ¢(0) is nondegenerate, there exist ¢, and %,
such that neither [[,[0(0)] nor [[,[0(0)] is a single point. Without
loss of generality, we will assume that 7, =1 and 4, =2. Let
[a,, a,]Cint[I].(c(0))]. Note that, for xela, a,], IIi'(x)N c(0) is a
nondegenerate arc. Let ¢ be chosen so that [T;'(¢) N IIT'((a, + @,)/2)N
0(0) is an interior point of the arc o(0) N II7*((a;, + a,)/2). Let
a, < a; < (a, — a,)/2 < a3 < a, be chosen so that, for each xe€[ai, as],
IIz%e) N II7%(x) N 0(0) is an interior point of the arc [I7'(x) N ¢(0).
Let ¢, < ¢ < ¢, be chosen so that, for ye[e, ¢,] and =z € [a;, a;] it is
true that [[; ) N [Ii'x) N o(0) is an interior point of the arc

i) N o(0). Let ¢t > 0 be chosen so that:

(1) for se[0,t] and xe€lay, a:], II:7(x) N o(s) cuts o(s), and

(2) for se]0,t], x€lai, a:] and ye€lc, ¢}, I1:'(w) N 117 (x) N o(s)
is an interior point of the arc I];*(x) N o(s).

Let 0 < ¢ <t be chosen so that ¢(0) and o(¢’) arc not co-planar.
Note, since there can be at most one z in [a], a})] for which ¢(0)N
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1% (=) and o) N [I7'(x) are co-linear, we may assume without loss
of generality that, for x € [a;, a;], II:x)No(0) and II7Y(x)No(t) are
not co-linear. Since, for each x € [ai, a;], there can be at most one
y € [c, ¢,] such that JI:'(y) N II7*@®) N 6(0) N o(t’) # ©, we may now
choose a; < a) < a) < a, and ¢, < ¢, < ¢; < ¢, so that, for z < [al, a;]
and yele, e, ) NI x)Noe0)No(t’) = @. Consider now the
set of points D = {I1;(eH)NTIia;)Na(z): 4,5 =1,2,z=00r z = t'}.
We claim that co(D) C U,cp.10(s). To see this, note first that if
D, = {Il:%(e) N Il (as) N 0(0)} where 4, j = 1,2} and D, = {[I:'(c)N
II:%a) N a(t): 4, 3 = 1, 2} then co(D,) € 0(2) C [Useo,10(s)] where z¢
{0, ¢'}. Now, if peco(D) then, for some z¢[a;, a;’], we have that
pelli'(x). Also, for some wyel[e;,c;] we have that »eTl;7'(yw).
Since p e co(D) we have that p is on the convex segment in [[;(¥)N
II7%(x) which joins II:;%(y) N II:'(x) N a(0) and II:'(y) N IIT'(x) N o ().
This is true because co(D,)Nco(D, = @ (otherwise we would con-
tradict (*)). Now, the mapping o,: [0, '] — ce(Il;'(x)) defined by
o,(s) = o(s)N 1l (x) is easily seen to be continuous. Also, 0.(0) and
o,(t") are not co-linear and the line [[;*(y) N JI7'(x) in JI7%(x) cuts
each of the arcs o,(s) for s<[0,t']. It now follows from (4.2) that
D€ Uisern,i10.(8). The lemma is proved.
The following lemma is a simple consequence of (4.4).

(4.5) LEMMA. Let 0¢:][0, 1] — cc(R®) be a omne-to-one continuous
mapping of [0, 1] into cc(R®) such that o(s) is a (conwvex) 2-cell for
each s and such that there exist s, and s, such that o(s,) and o(s,)
are not co-planar. Then, U,cp.1 0(s) contains a 3-cell. We are now
ready to establish (4.1).

Proof of (4.1). It can be seen that the space of convex arcs
and points in a compact subset of R® is of dimension less than or
equal to 6 (see (3.6)). If X satisfies the conditions of (4.1) and
AS(X) denotes the space of arcs and singletons in ece(X) then
ce(X) — AS(X) must be arcwise connected (see the remark in the
proof of (3.8)). Let », and p, be points in X which lie in the
interior of two cells P, and P, respectively, such that P, and P,
are not co-planar. Now, [ce(X) — AS(X)]|D{P,, P,} and, hence, there
is a one-to-one continuous mapping o:[0, 1] — [ce(X) — AS(X)] such
that ¢(0) = P, and o(1) = P,. If o(s) is not a 2-cell for some s, then
o(s) is a 3-cell and we are done. Hence, without loss of generality,
we may assume o(s) is a 2-cell for each se¢[0,1]. Thus, by virtue
of (4.5), XD WU.,ep10(s) contains a 3-cell. The theorem is proved.

(4.6) ExamMPLE. We show that the natural analogue to (4.1)
does not hold in R*, » > 3. Let Y be the continuum in R* defined
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by Y=Y, UY,where Y, = {(x, v, 2z, w): x| =L |y =L 2| =1, w=0}
and Y, ={z, ¥,z w:lz| =Ly £, 2=0,|w] =£1}. Now, ce(Y)=
ce(Y,)Ucee(Y, and ce(Y,NY, =ce(Y,)Nee(Y, = I.,. A theorem of
Anderson [20] asserts that the union of two Hilbert cubes which
intersect in a Hilbert cube is a Hilbert cube provided the intersection
has property Z in each. We thus want to see that ce(Y, N Y, has
property Z in cc(Y,) and ce(Y),).

To this end, let U be a homotopically trivial subset of ce(Y)).
Let g: S* ' — U —ec(Y,NY,) and let g: B* — U be an extension of g.
For each pe U let d(p) = inf{d(p, ¢):qece(Y,) — U}. For each
te[0,1] and each b in the sphere of radius ¢ in B*% let G(b)=
co(N((1 — t)(d(g(b)))/2, g(b))(N(e, §(b))) = {x: for some aecg(h), [z —all
<e}). Clearly G(b)e U for each be B* and, even more, since G(b) is
a 3-cell for each b, we have G(b)e U —ce(Y,NY,). Also G|S** =g.
We have established that cc(Y),) Nece(Y, has property Z in ce(Y)).
The proof for ce(Y,) is the same. It now follows that ce(Y) = I...
This shows that the analogue to (4.1) does wmot hold in R'. Actu-
ally, it is clear that similar examples exist in dimensions n > 4 as
well.

This next example is of a 3-dimensional continuum in R® which
is not a 3-cell but whose cc-hyperspace is homeomorphic to 7.

(4.7 ExAMPLE. Let X be the continuum in R® defined by
X = X, U X, where

X, ={x, v, 2): ||[(x,y, 2)|| =1}
and

X, = {(x, , 0): max{|z|, [y} = 1}.

Now, ce(X) = ce(X,)Uce(X,) is a union of two convex Hilbert cubes.
Also, ce(X) Nee(X,) = ce(X, N X;) is a convex Hilbert cube. Using
the same techniques as were used in Example (4.6) one can easily
show that ce(X,) Nce(X,) is a Z-set in ce(X,). By Handel’s result
[8], it follows that ce(X,) N ce(X,) = ce(X) is a Hilbert cube.

5. Some geometric considerations. In view of Theorem (3.1),
it is natural to ask the question:

Which 2-cells X in R? have the property that ce(X) = I..?

The following example shows that not every 2-cell in R? has
this property.

(5.1) ExaMPLE. Let X be the 2-cell in R* pictured below.
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\ (4 !
24 D T a b \ ¢
P /\ A

The three points a, b and ¢ of local nonconvexity of X all lie
on the convex arc de. It is clear that any compact convex subset
of X which is within ¢ of the arc de (in the Hausdorff metric)
must be a subarc of de. Hence, it follows that de has small 2-cell
neighborhoods in cc(X). Therefore, cc(X) is 2-dimensional at de
and, thus, ce(X) % I...

The remainder of this section is devoted to proving two results
which can be used to establish that some rather wide classes of
2-cells do have the property that their hyperspaces of nonempty
compact convex subsets are topologically I.. We begin with some

definitions.

(5.2) DEFINITION. Let K be a starshaphed subset of [* and let
peKer(K). The point xec K will be called a p-relative interior
point of K if there exists an xz* € K such that, for some A€ (0, 1),
¥ 4+ (1 — A)p = 2. A point in K which is not a p-relative interior
point will be called a p-relative extreme point of K.

(5.83) DEFINITION. Let K, K, be two starshaped subsets of I,
such that Ker(K,)NKer(K,) + @. Let pe|Ker(K,)N Ker(K,)]. Then
p is called a K, inside point of K, if, for every x e K,, \\p+(1—N\)x:
Ae(0, DN K+~ &

(5.4) THEOREM. Let K,Z K, be two compact, starshaped sub-
sets of 1, and suppose that there exists a point v € K, such that:

(i) peKer(K)) N Ker(K,),

(ii) p 18 a K,inside point of K,

(iii) the set of all p-relative interior points of K, (resp., K,)
is an open subset of K, (resp., K,). Then, K, and K, are homeo-
morphic.

Proof. Let the hypothesis of the theorem be satisfied. We
will assume without loss of generality that » = (0,0,0, ---). For
each point x ¢ K, — {p} (clearly, the theorem is valid if K, — {p} = @)
let Z be that p-relative extreme point of K, defined by z = a,x
where a, = sup{ae(0, «):axcK,}. To each p-relative extreme
point y of K,, let , = sup{n€[0, 1]: My e K;}. Let f: K, — K, be the
function defined by
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flx) = N, if we K, — {p};

p, ifx=0p.

It is easy to see that f is one-to-one. We wish now to show that
f is onto and continuous. To see that f is onto, let xeK,. If
x = p, we are done since f(p)=p. If z=#p, then 1I/\. = c,.
Hence, y = x/n, ¢ K, and, clearly, f(y) = 2. We have seen that f is
onto. To see that f is continuous, let {z,}7, be a sequence in K, such
that lim,..2,=2 ¢ K,. If x=wp, it is clear that lim,.. f(x,)=f(p)=0n.
So, assume that x - ». We may then assume that z, = p for all «.
We will first show that lim,.. %Z,=%. Since K, is compact, we must
have that some subsequence {7, ;};., of the sequence {Z}iZ, converges
to an z,€ K,. Without loss of generality, we may assume that the
sequence {Z%,)2, converges to x,. Now, it follows from condition
(iii) that x, must be a p-relative extreme point of K,. To see that
x, = %, we need now only show that, for some X\ > 0, vx, = x. Let
A, be such that a2, = %, and consider Mzx. Now, the \,’s are boun-
ded and since |[nx — Nzl = [N [l2—2,|] we have that lim, ... v e=u,.
It is now not difficult to see that, for some A, >0, lim, ... A, = ), and
& = %, = %. To establish the continuity of f, we need now only
show that lim,..\;,=x;. First consider {\;Z;};>,. Since, for each i,
\;, @, is a p-relative extreme point of K,, we have that some sub-
sequence converges to a p-relative extreme point of K,. Without
loss of generality, we will assume that lim,. . \; % =2" where 2’ is a
p-relative extreme point of K,. But, [[M; @ — M Z| = [N, [T — Z,[|=
||z — Z,|[. Hence, lim, . \; ¥ = 2’. But, the fact that the sequence
{\;,Z}Z, is Cauchy implies that {\;}i, is Cauchy and, hence, that
there exists a A\ such that lim,..\; =X'. Thus, M'Z=1" which says
that M = \;. We have now established the continuity of f. Since
K, and K, are compact, it follows that f is a homeomorphism.

(5.5) COROLLARY. Let X be a compact starshaped subset of R*
such that int[Ker(X)] = @. Then, ce(X) = 1.

Proof. For simplicity, we will assume that the origin 0e
int{fKer(X)]. Let ¢ >0 be such that B, = {xc R™ ||z|| < ¢} is con-
tained in Ker(X). Since X is compact, there exists an # > 0 such
that X< B,. Let F be an affine embedding of cc(B,) into [, such
that F(0) = 0 (as in the proof of (2.2)). Let K, = F(ce(B.)) and let
K, = F(ce(X)). Then, K, S K,. Since we have already seen that
ce(B.) = I, (Theorem (2.2)), the result will now follow provided
conditions (i), (ii) and (iii) of (4.4) are shown to be satisfied for
p=10. It is easy to see that conditions (i) and (ii) are satisfied.
That condition (iii) is satisfied will follow if we can show that the
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p-relative extreme points of K, (resp., K,) are precisely those ele-
ments of the form F(G) where GNFr(B,) # @ (resp., GNFr(X) = @).
We will show this only for K, since it is obvious for K,. It is
clear that if Gece(X) is such that GNFr(X) = @ then F(G) is not
a p-relative extreme point of K,. It remains only to show that if
G ece(X) is such that GNFr(X) = @ then F(G) is a p-relative ex-
treme point of K,. Suppose not, then there exists a A\ > 1 such
that MF(G)e K,. Let G'ece(X) be such that F(G') = MF(G). By
the one-to-oneness and the convexity of F, it follows that \G = G.
If ceGNFr(X), then xce X. But co(re, B.)c X and contains ¢ as
an interior point. This contradicts the fact that ce Fr(X). The
corollary now follows. T. A. Chapman showed (see Theorem 10 of
[5]) that a compact Hilbert cube manifold is homeomorphic to the
Hilbert cube if and only if it is homotopically trivial. This enables
one to “localize” the problem of showing the cc-hyperspace of a
given 2-cell is homeomorphic to I..

(6.6) THEOREM. (l) If X is a contractible continuum lying
in a Banach space, then ce(X) is contractible.

(2) Thus, tn particular, if X 1s a 2-cell (or n-cell), ce(X)=1I,
if and only if ce(X) is a Hilbert cube manifold.

Proof. The closed linear span L of X is a separable Banach
space. By (8.2), there is a continuous selection % from ce(X) to X.
Define g:ce(X)x[0,1] —»ce(X) by g4,t) =tnA)} + 1A —A. It
follows using g and the contractibility of X that ce(X) is con-
tractible. This proves (1). The proof of (2) uses (1) and Theorem 10
of [5].

These next results will show that a fairly large class of 2-cells
have the property that their hyperspaces of compact convex subsets
are homeomorphic to I.. We begin with a notational agreement
and a definition.

If A is a nondegenerate, convex arc in the plane then by A~
we will denote the unique line in R® which contains 4. If pe R
and ¢ > 0 then Ble, p) = {xc R™ ||z — p]|| < €.

(5.7) DEeFINITION. Let X be a 2-cell in R* and let Aece(X)
be an are. Suppose that one complementary domain of A~ has been
designated the right side of A~ and the other the left side of A".
A point pe LN(X) N A will be said to lie on the left side (right
side) of A if, for every ¢ >0, B¢, p) — X contains points on the
left side (right side) of A~. If for some & > 0, B(e, p) — X contains
no points on the right side (left side) of A~ then p will be said to
lie strictly on the left side (right side) of A.
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(5.8) LEMMA. Let X be an m-cell. If Acce(X) is an n-cell
then A s contained im a closed starshaped subset N of X with
int[Ker(N)] = @ such that ce(N) is a meighborhood of A in ce(X).

Proof. Let Acce(X) be an n-cell and let geint[4]. Let ¢ >0
be chosen so that cl(B(g, q)) Cint[A4]. Let I' = {K € ce(X): cl(B(e, q)) K}
and let D= UI. It is not difficult to see that D is a closed
starshaped subset of X and that Ker(D) 2 cl(B(e, ¢)). It is also not
difficult to see that ce(D) is a neighborhood of A in ce(X). The
lemma is proved.

(56.9) LEMMA. If X is an n-cell in R" then the following are
equivalent:

(1) Ewvery Acce(X) lies in a starshaped subset of X whose
kernel has monvoid interior.

(ii) Ewvery maximal convex subset of X is an m-cell.

Proof. Suppose (i) is satisfied. Let Aece(X) be maximal. By
(i) there exists an m-ball BC X such that co{B, A}c X. But, by
maximality of A4, €o{B, A} = A. Hence A is an n-dimensional com-
pact convex subset of R and thus must be an n-cell. We have
that (i) implies (ii). Now, if (ii) holds and A € ce(X), then let M(A)
be a maximal convex subset of X which contains A. As M(A) is a
starshaped set whose kernel has nonvoid interior, we are done.

(5.10) LEMMA. Let X be a 2-cell in R*. Let Acce(X) be an
arc with noncut points p and q. Suppose there exists a closed ball
Dc X and neighborhoods P of » and @ of q in X such that for
each de D we have PUQ C S(d). Then A is contained in a closed
starshaped subset Y of X with int[Ker(Y)] # @ such that ce(Y) is
a neighborhood of A in ce(X).

Proof. We can assume that D lies in the interior of a convex
2-cell BC X such that 4 is on the boundary of B. We may also
assume that A — (PUQ) = @ (we would be done in this case any-
way as will become evident at the end of the proof). Let P’ and
@' be balls in R? centered at p and ¢, respectively, which satisfy

(a) the radii of P’ and @ are less than 1/2 min {radius of P,
radius of @}, and

(b) for each ac[A — (PUQ)], recl(P’),sccl(Q) and de D, the
ray through a from d must intersect the segment 7s in a cut point.
Now, for each ac A — (P U Q), choose a ball B, about a such that

(**) if recl(P’),sccl@),te B, and de D, then the ray from
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d through ¢ must intersect the segment 73 in a cut point.

Let > be the collection of all convex sets C in X such that C inter
sects both P’ and @’ and is contained in the union of P, @ and the
balls B, for ac A — (PU Q). It is clear that 3 is a neighborhood
of A in ee(X). We wish to show now that if de D, then d sees
each point of any C in >.. So, let Ce >, and let re[P'NC] and
se[@NC]. Let «aeC — (PUQ) (note, if ac[PUQ] we are done)
and let ac A — (PU®) be such that ¢ B,. Since acB,, by (**)
we have that the ray from d through «(d € D) must intersect rs.
By simple connectivity of X, it follows that the 2-cell (rds) and
(rse)((rse) may be an arc) lie in X. If the segment de intersects
rs then da = [da N (rsd)]U [de N (rsa)]  X. If the segment der does
not intersect »s, then d?xc(rsd)cX. Thus, da c X and we have
the desired conclusion. Now, let I' = {Kecce(X): KD D). Let
Y = UI'. We have just seen that the starshaped set Y has the
property that ce(Y)> >.. Also, we have that Ker[Y] D int[D] and
hence int[Ker(Y)] = @. The lemma is proved.

(6.11) LEMMA. Let X be a polygonal 2-cell in R* and let
Acce(X) be an arc such that mo two points in LN(X)N A lie
strictly on opposite sides of A. Then there exists a closed starshap-
ed subset N of X with int[Ker(N)] = @ such that ce(N) is a neigh-
borhood of A im cc(X).

Proof. Let A be an arc in ce(X) such that no two points of
LN(X)N A lie strictly on opposite sides of A. Consider the noncut
points, say » and ¢, of A. If at least one of p and ¢ is not a
point in LN(X) which lies strictly on one side of A then it can be
seen that there is a closed ball D in X and neighborhoods
B(a, p)N X and B(7, ¢) N X such that, for any d € D, (B(a, ») U B(r, ¢)) N
X cS(d). The result now follows from (5.10). Suppose now that
both » and ¢ are points in LN(X) which lie strictly on one side of
A. 1t is geometrically clear that, in this event, ono can obtain balls
P, Q@ and M such that

(a) peP,qe@ and cl(M) Cint[X],

(b) elM)N A= @, and

(¢) if C is a convex set in X such that CN P+ @ and
CNR = @ then CN(PUR)CS(m) for every m ecl(M).

The proof from here proceeds as it did in the proof of (5.10).

(56.12) THEOREM. Let X be a polygonal 2-cell in K. Then the
following are equivalent:
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(i) Ewvery maximal convex subset of X is a 2-cell.

(ii) FEach Acce(X) is contained in a closed starshaped subset
N of X for which int[Ker(N)] # @ and cc(N) is a mneighborhood of
A in ce(X).

Furthermore, if (1) or (ii) holds then ce(X) = I_.

Proof. That condition (ii) implies condition (i) follows from
(5.9). Now, assume that (i) holds. If Aecce(X) is a singleton then
it is easy to see that A is contained in a closed starshaped neigh-
borhood N in X. But then ce(lN) is a neighborhood of 4 in ce(X)
and we are done in this case. If Acce(X) is a 2-cell, then we are
done by virtue of (5.8). If A is an arce, then by (5.11) we will be
done if we can show that no two points in LN(X)N A lie strictly
on opposite sides of A. Let p, p,e LN(X)N A lie strictly on op-
posite sides of A. If both p, and p, are cut points of A then it is
clear that no convex 2-cell in X can contain 4 and this contradicts
(i). If one or more of », and p, are noncut points of A then one
can obtain an arc A’ A with A’ ece(X) for which both p, and p,
are cut points. This again leads to a contradiction of condition (i).
Thus, no two points of LN(X) N A can lie strictly on opposite sides
of A and we have the desired result. We have now established the
equivalence of (i) and (ii).

To complete the proof we need only see that if (ii) holds then
ce(X) = I.. So, suppose that (ii) holds. Let Acce(X) by virtue
of (i1) there exists a closed starshaped subset N of X with
int[Ker(N)] # @ for which cc(N) is a neighborhood of A in cc(X).
But, ce(N) = I by (5.5). Thus, ce(X) is homeomorphic to I. by
virtue of (5.6). The theorem is proved.

(5.13) THEOREM. Let X be a 2-cell in R® such that (x) when-
ever », € X are such that p<cS(q) and N is a neighborhood of » in
X, then there exists an open set M C N and a meighborhood Q of ¢
such that for each point m in M we have S(m)D Q.

The following are equivalent:

(i) Every maximal convex subset of X is a 2-cell.

(ii) Fach Acce(X) is contained in a starshaped subset N of
X for which int[Ker(N)] # @ and cc(N) is a neighborhood of A in
ce(X).

Furthermore, vf (i) or (ii) holds then ce(X) = I.

Proof. All aspects of the proof for this result are the same as
the proof of (5.12) with the exception of showing that condition (i)
implies condition (ii). So, suppose that condition (i) holds and let
Aecce(X). If A is a singleton, it is easy to use (x) to obtain the
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desired set N. If A is a 2-cell we are again done by virtue of (5.8).
Suppose, that A = [p, q] is an arc. Let B be a 2-cell in ce(X) which
contains A (condition (i) implies B exists). Let beint(B). Since
p € S(b) there is by () a ball Cc B and a neighborhood P of p such
that for each meC we have S(m)DP. Let m,eC. Since m,€B
we have S(m,)Dq. Thus, by (x), there exists a closed ball DcC
and a neighborhood @ of ¢ such that, for any de D. S(d)DQ. Now
application of (5.10) gives the existence of the starshaped subset N
of X with the desired properties. The result is established.

6. Some problems and examples. While at present we have
some large classes of nonconvex 2-cells whose cec-hyperspaces are
homeomorphic to I, we still do not know exactly which 2-cells
have their cc-hyperspaces homeomorphic to I.,. The following pro-
blems are connected with this.

(6.1) Problem. Let X be a 2-cell in R*. If every point of
ce(X) has arbitrarily small infinite dimensional neighborhoods, is it
true that ce(X) = I1..?

(6.2) Problem. Let X be a 2-cell in R. If every maximal
convex subset of X is either a point or a 2-cell, is it true that
ce(X)=1.?

(6.3) Problem. Let X be a 2-cell in R®. If every maximal
convex subset of X is a 2-cell, is it true that ce(X) = I..?

An affirmative answer to (6.1) would provide a satisfactory
characterization. This is true since it would then follow that
Example 5.1 is, in a sense, canonical. An affirmative answer to
(6.1) would imply an affirmative answer to (6.2) and an affirmative
answer to (6.2) would imply an affirmative answer to (6.3).

The following two examples give a bit more insight into the
above problems. The technique used in this next example is one
which has become standard in infinite dimensional topology. It was
first used by Schori and West in [18]. For the difinition of shape
see [4]. An onto map f: X — Y where X and Y are homeomorphic
metric spaces, is a near homeomorphism if f can be uniformly ap-
proximated by homeomorphisms. For terminology related to inverse
limits it is suggested that the reader see [13] or [18]. In the dis-
cussion of the example we use a characterization by T. A. Chapman
of near homeomorphisms between Hilbert cubes as being those con-
tinuous surjections for which point inverses have trivial shape.

(6.4) ExAmMPLE. Consider the planar 2-cell X formed by inter-
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secting the planar regions A, Band C where A = {(x, y): ©<1/2, y=0},
B ={(x, y): (x + 1/2) + y*= 1/4} and C = {(x, ¥): & + ¥* < 1} (see Fig.
6.6 below).

(1, 0)

(-1, 6)%?,
(O’ _1)

FIGURE 6.7

Note that the point (—1, 0) is a maximal convex subset of X. Now,
for each 3n/4 <0 <7m let X, =XN{(r, ¢):7/2 <o <0). For each
pair (@, 0,) with 7/2 <6, <6, <x, let the mapping Go,0,2 Xo, — X,
be defined by go,(r, @) = (7, 6,) for 6, < ¢ < 0,, and gs,0 (7, @) = (», P)
if 7/2 <9 <6,. Define, for (6,,6,) as above, the retraction 76,0,
ce(Xy,) — ce(Xy,) by 74,0,(A) = co(gs,0,(A)). Also, for a compact convex
subset A of X, which intersects {(r, 8):7r = 0} define p,(4,0)=
inf{r: (r,0)e A}. For each n=1,2, ..., let 6, = — /2" and let
To = T4,,.0, a0d X, = X, . For Aecce(X,), let Yer;(A) and define
0y = sup{d: r,(rs,,,o(Y)) = A}. For each 6¢l[d,,0,..], let

H( Y’ 0) = 70n+1,0( Y) if 0Y é 0 é 0n+1 )
C0(7,,,0,( X)) N Xo) U{(Du(70,, 1070, ,,0,(Y)), 0)} if 0, <0< 6,.

It is geometrically clear that H:»;%(A4) X [0,, 0. — r3%(A4) is a
homotopy of the identity on 7;(4) to a constant map. Thus, for
each Aece(X,), r,'(A) is contractible and, hence [4, (5.5) p. 28], of
trivial shape. It now follows that », is a near homeomorphism and,
hence, (since each X, satisfies the conditions of Theorem 5.13) that
l}'in(cc(Xn), r,) = cc(X,) = I,. Furthermore, the inverse sequence
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{(ce(X,), r.)} also satisfies the conditions that

(a) ce(X,)cee(X,,,) and U, ce(X,) = cc(X),

(b) D=1 A1, idcc(xnﬂ)) < oo,

(e) for each j, {rjo---ory:ce(Xy,)— ce(Xy) |t = j}
is an equi-uniformly continuous family of funections.

That condition (a) holds is immediate. The fact that condition
(b) holds rests on the fact that if d(A4, B) < ¢ and B is convex then
d(co(4), A) Ze.

To see that (¢) holds, let, for each =, »": X — X, be the retrac-
tion g, -

Let jelI™ be given and let ¢ > 0. Choose j, so that if
A ¢ ce(int[ X ,,]) then ANX; = @. Choosed, > 0 so that if d(4, B) <4,
then d(r»*(4), r(B))<e. Let d,>0 be chosen so that, if d(4, B)<4, and
A, Bece(Xjy.y), then d(rjo---or;(A), rjo---or;(B) <e. Let o, be
chosen so that, if A ¢ce(int[X; .,]) and d(4, B)<d,, then BNX,= .
Now, if 0 = min{d,, d,, 0;} and d(4, B) < d then, either A4, Bece(X;,,)
in which case d(rjo--cor(A), o 0 ry(B)) S d(rjo--or;(4),
rijocccor;(B)<ée or ANX; =@ and BN X; = @ in which case
pioeeeor(A) =rI(A) and r;o---09(B) =/(B) and, hence,
d(rjoeseory(A), rjo---0r(B)) <e. We have established that condi-
tion (¢) holds. Thus, by [13, Lemma B], ce(X) = lim,(ce(X,), ;) and
thus ce(X) = I..

(6.5) ExamPLE. Consider the 2-cell X in R* which is the
closure of the bounded complementary domain of |Ji, C;,, where

Co={@y:@@-1+w-1r=1, G={@y: @-1r+wH+1y=s1
Cy ={, »): (@+1)+(y+1=1} and C, = {(x, »): (@+1)* + (y—1F =1} .

(Fig. 6.7.) Note, the convex segment with noncut points (0, —1)
and (0, 1) is a maximal convex subset of X and the kernel of X
consists only of the origin (0,0). In spite of this, if one takes
Y={(z,y):2*+y*=1/4} and sets K, =ce(Y), K, =ce(X) and
p = (0, 0) then all the conditions of Theorem 4.4 are satisfied. It
follows that ce(X) = ce(Y) = I..

The 2-cell of Example (6.4) illustrates the validity of (6.1) and
(6.2) for a specific 2-cell. The 2-cell of Example (6.5) illustrates
that though the hypotheses in (6.2) and (6.3) may be sufficient, they
are definitely not necessary.

7. The cc-hyperspaces of °B" and R", n = 2. In this section
we show that cc(*B™) and cc(R"), » = 2, are homeomorphic to the
Hilbert cube with a point removed. We also state some problems.

Let U be a nonempty proper open subset of ce(B*). For each
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AcU let A4 = inf{d(A, D)|De[ee(X) — U]}, where d denotes the
Hausdorff metric. Note that 0 < Au < 2.

(7.1) LEMMA. Let U be a proper open subset of cc(B"). Let
AcUandleta bereal, 0 < @ < 1. Then (1 — adu/2)A c[UNce("B*)].

Proof. For any ac A and B8 >0, 8+ 1, note that |ja — Bal|=
11 —Bllla]| £]1 —pB|<2|1—p|. Thus, setting 8 =1 — adu/2, it
follows that

d(A, (1 — “A“)A) <2‘1 — (1 —“‘3“)' = adAu < Au,

2

which implies (1 — @Au/2)Ac U. Note that (1 — aAu/2)A € cec(’B)
since (1 — adu/2) < 1.

(7.2) THEOREM. If n = 2, then cc(’B") = I, — {p} for pel,..

Proof. Let K ={Accec(B")|ANS""'# @}. We show K has
property Z in cc(B"). Let U be a nonempty homotopically trivial
open subset of ce(B"). Let f:S*'— U — K be continuous, and let
F: B*— U be a continuous extension of f. Let h:[0, 1] — [0, 1] be
a homeomorphism such that 2(0) =1 and h(1) = 0. Define a func-
tion F'* on B* by F*(x) = (1 — [h(|z]|| F(x)u/2)])F(x). Note F* is
continuous and F'* extends f since if ||z|| = 1, F'*(zx) = F(x) = f(x).
If ||z|| < 1 note that F *(x) e [UNee(’B*)] by (7.1), and hence F*(x) e
[U—~ K]. Thus, K has property Z in cc(B"). Hence, by (2.2)
above and a theorem of Anderson [1], we assume without loss of
generality that K I%. For each t€[0,2] and A€ K let g(4, t)=
cl(N(t, A)NB")(N(t, A) = U.ea{zlllx — a|] < t}). Note g is continuous
and that g(4, 0) = A and g(4, 2) = B". (See Borsuk [4].) By a re-
sult of Chapman [6] it follows that cc(B*) — K = ce(B*) — {M} for
Mece(B*). Hence, by (2.2) above, cc("B*) = I, — {p}, and this com-
pletes the proof.

(7.3) THEOREM. If m = 2, cc(R") = I, — {p} for pel.,..

Proof. Using the proof of (5.4), it is easy to see that ce(R")=
ce("B*). Therefore, by (7.2) ce(R") = .. — {p}. Theorem 7.3 sug-
gests the following.

(7.4) Problem. If H is a separable Hilbert space, is ce(H) = H?

We will now discuss and state two problems which arise out of
our previous work. Problem 7.5 is motivated in part by the result
of Schori and West [16] that 27 = I_..
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Let D be the semidisec in R? given by {(z, y)x* + ¥* <1,y = 0}
and let K be the semicircle D N S!. Let R = {4 ece(D)lext[A] c K}.
The mapping f: 2¥ — R given by f(E) = co(E) is a homeomorphism.
Let R* = ce(D) — R. Note that R* is an open convex subset of
ce(D) and that I, = R = ce(D) — R*. This suggests the following

problem:

(7.5) Problem. Let M be an open convex subset of a convex
Hilbert cube Q. What are necessary and sufficient conditions on M
in order that I, = Q@ — M?

Several times in our work we encountered infinite dimensional
compact convex subsets P of I, such that P = ext[P]=1I.. The
countable product of semidises is such an example. This suggests
the following problem.

(7.6) Let @ be a convex Hilbert cube. What are necessary and
sufficient conditions for @ to be homeomorphic with ext[Q]?

We remark that a theorem answering the above question may
by considered as a compact analogue of the theorem of Klee [11]
that in separable Hilbert space the unit sphere is homeomorphic
with the closed unit ball.

REMARK. After this paper was written, certain developments
occurred which may be of interest to the reader. D. W. Curtis in
a forthcoming paper entitled “Growth hyperspaces” investigates,
among other things, subspaces G of the cc-hyperspace having the
property that if Ae€G and Ac B then BeG. D. W. Curtis, J.
Quinn and R. M. Schori in a forthcoming paper entitled “On the
ce-hyperspace of a polyhedral two-cell” show that the ce-hyperspace
of a polyhedral two cell in R* is I, with perhaps a finite number
of two cell flanges. J. Quinn and R. Y. T. Wong in a forthcoming
paper entitled “Unions of convex Hilbert cubes” show that the
union of finitely many convex Hilbert cube manifolds each sub-
collection of which intersects vacuously or in a Hilbert cube is a
Hilbert cube manifold, and, as a corollary, obtain the result that
if A and B are infinite dimensional compact convex sets in I, such
that AN B is infinite dimensional then AU B = I,. Reiter and
Stavrakas in a forthcoming paper entitled “On the compactness of
the hyperspace of faces” and Quinn and Stavrakas in a forthcoming
paper “Selections in the hyperspace of faces” investigate certain
topological aspects of the hyperspace of faces of a compact convex

set.
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AN EXPLICIT FORMULA FOR THE FUNDAMENTAL
UNITS OF A REAL PURE SEXTIC NUMBER
FIELD AND ITS GALOIS CLOSURE

KEN NAKAMULA

The object of this paper is to give a set of fundamental
units of a real pure sextic number field K = Q(¥a®—1),
where o is a special type of natural number and a®—1 is
not necessarily 6th power free. It is also shown that a set
of fundamental units of the galois closure L = K(v — 3) of
K is formed by a real unit and its conjugates.

Let d be a 6th power free natural number which is not a perfect
square or a perfect cube in the rational number field Q. Put 6= Vd;
then K = Q(f) is a real pure sextic number field. We investigate
the group of units of K for a special type of d as follows. Let d
be given by

(1) d = ¢(b% *+ 2)(b**c*+b% + L)(b*c*+3b% + 3)

with natural numbers b and ¢. Put

(2) ] a="0bct1l.

(The =+ signs correspond respectively throughout this paper.) Then
(38) b'd =a®—1

and K = Q(Va® — 1).

THEOREM 1. The notation being as above, we assume that d > 1
and d is square free. Then

(4) =a—b0, &=a+b0, &=a®+ abl + b6*

Jform a set of fundamental units of K.

As to explicit formulas for the fundamental units of number
fields, G. Degert [2] has given one for certain real quadratic fields.
As an application of the Jacobi-Perron algorithm (J.P.A.), L.
Bernstein, H.-J. Stender and R. J. Rudman has extended Degert’s
result to certain real pure cubic, quartic and sextic fields (see [9]
and [10]). On the other hand, H. Yokoi has given a different
formula for the fundamental units of real quadratic and pure cubic
number fields in [11], [12] and [13]. Theorem 1 is an extension of
Yokoi’s result to real pure sextic fields. A similar formula can be
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obtained for the fundamental units of real pure quartic fields (see
[7]). Theorem 1 is not included in Stender’s result when b > 1 (see
Remark 4).

THEOREM 2. Under the same assumption as in Theorem 1,
any 5 of 6 conjugates of & form a set of fundamental units of

K/ =3).

Theorem 2 gives an example of a real Minkowsk: unit of a
non-abelian galois extension K(1/—3)/Q (see [1]).

To prove Theorem 1, we use the same method as in Stender [8].
Let K, and K, be the quadratic 'and 'cubic subfields of K respec-
tively, and let E be the group of units of K. Define the group H
of positive relative units of K with respect to K, and K, by

(5) H = {e E|N,(§) = Ny(§) = 1},

where N, and N, denote the relative norm maps from K to K, and
K, respectively. Then H is a free abelian group of rank 1. The
fundamental units of the subfields will be determined in §1. A
generator of H will be determined in §2. In §3, we shall prove
Theorem 1 and show the existence of infinitely many fields which
satisfy the condition of Theorem 1. In §4, we shall prove Theorem 2.

The author wishes to thank Prof. H. Yokoi for his advice during
the preparation of the manuseript, and Prof. H.-J. Stender for sending
a copy of his paper [10] in manuscript.

1. Fundamental units of the subfields. Let d be a natural
number given by (1) with natural numbers b and ¢, and define a as
in (2). Assume that d is neither a perfect square nor a perfect cube
in Q. Then K = Q(f), where § = ¥d, is of degree 6 over Q, and
it contains the quadratic subfield K,=Q(6*) and the cubic subfield K,=
Q(#*). Denote respectively by 7, and 7, the fundamental units of K,
and K, which are larger than 1. Define the algebraic integers &, &, &
as in (4). Then it immediately follows from (3) that their absolute
norms are all equal to 1; hence they belong to the group E of units
of K. We also see that 1/£,& = a® + b%°® belongs to E N K,, and that
1/6.& = o' + a®*® + b*¢* belongs to F N K,.

ProOPOSITION 1. If d > 1 and is square free, them 7, = 1/£& =
a® + b*6°.

Proof. Since 1/£&, > 1, we have 77 = o° + b*¢° with a natural
number n. Let us assume n =2. We can write 7, = (¢t + u6®)/2
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with nonzero rational integers ¢ and wu, because d is square free.
Then w = (, — 7,)/6°, where 7, = (t — u6*)/2. Taking into account
that w =0, |7;) =1/9. <1,n = 2 and a® + b°¢° > 1, we see that

1< jul £ 0+ 7D/ < Ve® + BF)d + V1d .
From (8), 80 < a and 1/d = b%/(a® — 1). Therefore

1 <1V 2a%%(@® — 1) + Vb —1).
From (2), < a + 1. Then

1<1v2ea + D@ —1)+ Ve + D —1).

However, the right side of the last inequality is smaller than 1
for ¢ = 3, which is a contradiction. When a = 2, we see from (3)
that b =1, and then d = 63 is not square free. Since a =2 by (8),
7% = 1 under our assumption, and the proposition follows.

REMARK 1. When d has a square factor, the conclusion of
Proposition 1 does not necessarily hold. For example, set b = 1 and
¢ =22 in (1) and (2) for the plus case, i.e.,

= 22022 + 2)(22° + 22 + 1)(22* + 322 +3), a =22+ 1.
Then d = 2¢.3%.7-11-13%-79, a = 23, and
7y = 2-8:18 + VT-11-79, % = a* + b%6° .
When the square factor of d is small, Proposition 1 is also true as

is seen from the proof.

ProPOSITION 2. If d > 1 and s cube free, themn 7, = 1/§§& =
at + a’b® + b'o*.

Proof. It follows from T. Nagell [5] (see also [13]), that the
binomial unit £, = a® — b** is either fundamental unit of K; or its
square, and the latter occurs only for d = 20, 50 and a finite number
of d = +1(mod9). Now we assume 1/7} = a®> — b%*. Let d = fg?
with relatively prime natural numbers f and g, and write 1/7, =
{x + y0* + (2/9)0*}/3 with rational integers x, y and z. Then

lyl < {1 + 2 V1(a® — b%6°)}/6?
follows similarly as in [5]. Note I, 1. Here
1/(a® — b*0%) = a* + a’b*F* + b'¢* < 3a*

and
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1/6* = ¥1jd = ¥6)(a®* — 1) = ¥(a + D)J(@® — 1)

are obtained as before, and hence

lyl < ¥a + /@ —1) +2¥38 Yoo + D)/(a®* - 1) .

When a = 6, the right side of the last inequality is smaller than 1.
Therefore ¥y = 0 and 1/9, = {& + (2/9)¢*}/8. This is a contradiction,
because the square of a binomial unit ecannot be binomial. When
a=22384 or 5, a®* — 1 is 6th power free, and, by (3), b =1 and
d=a*—1. For a=2,4 or 5, we have d =0 = +1(mod9). For
a = 3, we see that d is not cube free. This completes the proof.

REMARK 2. By the same method as in the proof of Proposition
2, we can verify that the exceptional case of Theorem 6(iii) of [10]
occurs only when (u, n) = (1, 4), i.e., d = 28,

REMARK 3. As we have seen in the end of the proof of Proposi-
tion 2, we have a = 6 when b = 2. This fact will be used in the
next section.

2. Relative fundamental unit. Let d,a and K be as in §1.
We keep the notation as before. Let H be the group of positive
relative units of K with respect to K, and K, which is defined by
(5). Then, as in [8], §1, II, 8, the group H is a free abelian group of
rank 1. We denote by ¢, the generator of H which is larger than 1.

Suppose d>1 and is square free. Then, by Propositions 1 and 2,
(6) Ny =1/8& = &’ + 06, 7, =1/§& = a* + a’b** + b'6* .

The field belongs to Klasse I of [8], because
(7) N,(1/g) = 1., Ny(1/8) =75 .
Put now ¢ = 1/&inin;, then e H and
e = &Y = (a + bO)P(a® + abb + b)Y (a® + ahd + - -- 4 b%6°)

by (3) and (6).
ProPOSITION 3. If d > 1 and is square free, then ¢, = ¢ = ££YE,.

Proof. When b=1,d=a®*—1 by (3), and then Stender has
shown that ¢, = ¢ in [8], Hilfssatz 7. Let b = 2. Since ¢ >1 and
e€ H, ¢ = ¢ with a natural number »n. Assume n = 2. The relative
unit ¢ = 1/&min; can be neither a square nor a cube in K by [8],
Hilfssatz 1. Therefore n = 5. Now we can write ¢, = 1/6 >}, 2,6
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with rational integers z;(j =0, 1, ---,5) according to [8], Hilfssatz
2. Note that d divides 2, and that either «, or x, is distinet from
zero by [9], Hilfssatz 8. On the other hand, by [8], (1.6),

l¢;] < 0°9AG =0,1,---,5) with A= ¥e+2vVe+3,
since n = 5 and ¢ > 1. Hence either
d=0=<|x| <A
or
1= <A
should hold. From the fact that ¢ > 1, we obtain
1< Ajt = AVI[d®.

Taking into account that 80 < ¢ and 1/d = */(a®* — 1) < (a + 1)/(a®*—1)
as before, we can derive

1< ¥a + 1@ — D ¥/2!-8%a® + 2V -Fa® + 3) .

However, since ¢ = 6 as we have mentioned in Remark 8, the right
side of the last inequality is smaller than 1. This is a contradiction.
Thus ¢, = ¢ for b = 2, too.

3. Fundamental units of K. For natural numbers b and ¢,
let d and @ be given by (1) and (2). Let K = Q(f), where 0 = ¥d.
Further let &, &, & be given by (4).

THEOREM 1. (i) If d > 1 and is square free, then &, &, & form
a set of fundamental units of K.

(ii) For a fixed natural number b, there are infinitely many
values of ¢ which make d square free.

Proof. (i) Recall that K belongs to Klasse I of [8] by (7). It
follows from Propositions 1, 2 and 3 that

e, = &8Ye,, Vmle, = 1/66, Ve = &5/6 .

These three units form a set of fundamental units of K by [8], Satz
1’. Hence the assertion is obvious.
(i1) Let

f(X) = X(0°X £ 2)(b"X* £ b°X + 1)(b*X* & 3b°X + 3) .

We shall find infinitely many square free natural numbers in the
sequence {f(c)}=, by the help of Nagell [2], §2. Evidently, (I) the
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degrees of the irreducible factors of f(X) are at most 2; (II) the
discriminant of f(X) is not zero. For a prime number p, there is
a natural number ¢ such that b°f(c) = (b% == 1)°* — 1 = O(mod p*) if
b # O(mod p), and there is a ¢’ such that f(¢') = 6¢’ = O(mod p?) if
b = 0(mod p). This implies that (IV) there is no prime number p
such that f(¢) = O(mod p* for all natural numbers¢ = 1,2, ---. Now
let us assume that b is prime to 6. Then (III) the polynomial f(X)
is primitive. From (I), (II), (III) and (IV), we can apply [2], §2, I,
and find infinitely many square free natural numbers in {f(¢)}..
When b is not prime to 6, we apply Nagell’s result to (1/2)f(2X + 1),
(1/3)f(8X+1) or 1/6 f(6X+1) in a similar but slightly different manner
from the above in order to prove the assertion.

REMARK 4. Stender has given in [10] an explicit formula for
the fundamental units of Q( ¥ M), where M = N°+ n(>1) with natural
numbers N and #» such that » is 6th power free and divides N?,
assuming that (N%n) &= 1 or N°n is square free. We will see that
Theorem 1 is contained in his result only if b=1. Let n = pn1.--
ps(v; = 1,2, ---,5) with distinet prime numbers p, ---, p,. Write
(N°/n) = 1 = ma® with natural numbers m and x, where m is 6th
power free. Put m' = (p, --- »,)°/n; then m' is also 6th power free.
When M = N°® 4+ n, the diophantine equation mX® — m'Y® = 1 belongs
to the field Q( Y M) in the sense of [10], Definition 1, and has a
solution (X, Y) = (¢, N/p, - - - p,)(see also [10], Satz 10). On the other
hand, the equation X® — dY® =1 belongs to K and has a solution
(X, Y) =(a,b). Suppose K = Q(¥M); then it follows from [10],
Satz 7 that

m=1, m"'=d, x=a, N/p,---0,=b.

Then (N°n) + 1 = «° cannot be square free. If N®n is square free,
n = N° and N is square free. Therefore N=p,---p,, i.e., b = 1.
When M = N® — n, we similarly obtain

m=d, m'=1, x=b, N/p,---p,=a,

if K=Q(VM). If (N°n)—1 is square free, then x =b=1. If
N®n is square free, then » = N°® =1, and this is a contradiction.
Thus, we have seen that Theorem 1 is not contained in Satz 22 of
Stender [10] if & > 1.

4. Real Minkowski unit. Let K = Q(6)(¢ = ¥d) be a real pure
sextic field, and L = K() its galois closure, where { = exp(2z1 —1/3).
According to A. Brumer [1], we say a unit & of L is a Minkowsk:
unit of L if we can take 4 conjugates &9, -.., &% of £ such that
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g &Y ... £® form a set of fundamental units of L. The galois group
of L over Q is generated by the two automorphisms ¢ and z which
satisfy

=86, =0; "=C, =0T,

The defining relations of ¢ and 7z are ¢°=22= (c7)?* =1. We will
give an example of a real Minkowski unit of the non-abelian, galois,
totally imaginary field L. Since K is a maximal real subfield of L,
it suffices to find a unit ¢ of K such that &, &, ---, & form a set of
fundamental units of L. Now let d,a and K be as in §3. Assume
d > 1 and is square free. Using the same notation as before, we
first study the subfields of L.

PROPOSITION 4. The assumptions being as above, (i) &t is a
Sundamental unit of K,&), (ii) &+, g8+ form a set of fundamental
units of K,©), (iii) &+, &'+ form a set of fundamental units of
the fized field F = Q(¥—27d) of o°r.

Proof. (i) On acconut of (6), 7, = 1/£& = a* + b%° is a funda-
mental unit of K,. Suppose that 7, is not a fundamental unit of
K,({). Then since d == 3, it follows from S.-K. Kuroda [4], Satz 14,
that 37, = a® with an integer a of K, Since d %= 1(mod 4), we have
a = ¢ + yo® with rational integers x and y. Therefore

3(a® + b%0°) = (x + y&*)* .

Comparing the coefficients and taking the norms of both sides of
this equation, we see

3a® = o + dy?, 9 = (a® — dy*)*.

This leads us to a contradiction after an easy calculation using the
fact that d is square free. Hence 7, = 1/£&, = & "™ is a funda-
mental unit of K,({). (ii) On account of (6), 7:* = £& = a* — b is
a fundamental unit of K,. Suppose that 7;' and 7;° does not form
a set of fundamental units of K,({). Then we have

(8) B = Trg(l + 75 + 7)) = 3(a* + a* + 1)

with an integer g8 of Q() such that (v/B) + (v/B)", where v =1+
Nt + 979, is an integer of K, (see K. Iimura [3], Theorem 1 and
Proposition). Put 8 = a + y{ with rational integers x and y; then
we can compute (v/8) + (v/B)" by (8), and see that the coefficient of
#* is equal to (x + ¥)b*/3(a* + a* + 1). Since d is square free, it follows
that (¢ + ¥)b*/(a* + a® + 1) is a rational integer. By (2), b and a* +
a? + 1 have no common divisor except 3. Moreover, since (x + ¥)* —
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3zy = 3(a* +a*+ 1) by 8), x + ¥ and a* + a?+ 1 have no common
divisor except 3, because a* + a® + 1 is square free as a divisor of
d. Therefore a*+a?+ 1 = 3,i.e., a = 1 follows. This is a contradic-
tion. Hence ;' = £, = & and 977 = £ form a set of fundamental

units of K (). (iii) Let H' be the subgroup of the group E, of units
of F' given by

H' ={¢eE,|g" =1}.

Then H’ is generated by a unit ¢, and the roots of unity in F (see
[10], §4, II). It is easy to see that &lthu+n = gru+ed = p  and
that gletou-edu+ta = 1 Therefore &£°t°20~ = @e* with a rational
integer n and a root of unity w. Applying ¢ + ¢ to both sides, we
obtain g&itsttaeiteh = gotoferiota®  Ginee F is the fixed field of o°c, €5+
is a unit of K, and hence w’**" also belongs to K. Recall that ¢&,, &7,
2+t form a set of fundamental units of K by Theorem 1. Conse-
quently » = =1, and &°+* and the roots of unity of F' generate
H'. As we have seen above, &+*"%*0 =p,_ According to [10], Satz
24, glotu=a gnd £ form a set of fundamental units of #. This

completes the proof of (iii).

THEOREM 2. Under the same assumptions as in Theorem 1, the
galois closure L = K({) of K has o real Minkowski unit & = a — b6.

Proof. Let E’' be the subgroup of the group of units of L which
is generated by all the units of K, K°*, K and K,({). Then for every
unit & of L, & = gitigitorgitoirgrute’+eh helongs to E’. On the other
hand, by Proposition 4(i) and Theorem 1, E’ is generated by the roots

ot

of unity in L and &, &, ---, &". Hence

Es — w§f°+”'1"+"'+"4“‘ R

where @ is a root of unity and =, %, ---, #, are rational integers.
By applying 1 + 7,1 + o°c and 1 + ¢® to both sides, we get

Es(l—H') — El(Z'n.o—*nl)51(271.3—%1)0351((7»2-{-%4—%1)(02+04) ,

53(1—}-631) — wlsl(n1+ﬂ2—no—n3)(a+aZ)El(n4—n0-—n3)(a4+o5) ,

53(1+02) — w”El(‘ﬂ'o+'n3—‘n1—'n4)(1+n3)51(.'n2‘m—%4)(1+o3)17
?

where @’ and ®” are roots of unity. By Theorem 1 and Proposition
4(ii) and (iii), we see that n, = n, = --- = n, = 0(mod 8). This implies
that & is already a cube in E’ modulo the roots of unity, and hence
& belongs to E’. This shows that E’ is the group of all units of L,
and that &, is a real Minkowski unit of L.

CONCLUDING REMARK. Stender’s method is based on the group
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of relative units of a non-galois number field which has proper
subfields. We can generalize this to a field whose galois closure is
a dihedral extension over @ (see [7]).
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INNER FUNCTIONS INVARIANT CONNECTED
COMPONENTS

V. NESTORIDIS

The inner functions d = exp {(z + 1)/(z — 1)} and zd belong
to the same connected component in the space of inner
functions under uniform topology. Therefore, simplification
is not possible in general but it is always possible to
simplify by a finite Blaschke product.

0. Introduction. This work deals with the inner functions of
one variable. A complex, holomorphic function f, bounded on the
open unit disk D of the complex plane is called inner if |[f(e")| =1
a.e.; where f(e) = lim,_, f(0e).

In the set F of the inner functions we consider the topology
induced by the Banach space H>; that is, we consider F with the
topology of uniform convergence.

In this work, related to a publication of D. Herrero [2], we are
interested in the connected components of the space F, mainly with
respect to multiplication of inner functions.

Let us denote by f ~ g the fact that the inner functions f and
g belong to the same connected component. The questions that
motivate this work are the following:

(a) For the identity function 2, is there an inner function f
such that f ~ zf?

(b) Is simplification permitted? That is, does relation fw ~ gw
imply f ~ g for any three inner functions f, g, ®?

The results of this work can be summarized as follow:

(1) “Simplification” by a finite Blaschke produect is always
possible.

(2) “Simplification” is not possible in general.

(8) If the singular measure p associated with a singular func-
tion S contains at least one atom, then relation S ~ zS holds.

(4) For any nonconstant inner function g, the inner functions
exp {(g + 1)/(g — 1)} and gexp{(g + 1)/(g — 1)} belong to the same
connected component.

(5) For any nonconstant singular function S; there exists a
nonconstant inner function g such that: S ~ ¢8S.

In order to prove that simplification by a finite Blaschke product
is possible, we first show that the set zF = {zh:he F} = {xc F:
2(0) = 0} is a retract of F.

In order to give an example of an inner function f such that
f ~ zf, we shift the zeros of an infinite Blaschke product in such

473
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a way that the Blaschke product moves continuously with respect
to the uniform topology.

The following problems seem to be open:

(1) Does relation S ~ zS hold for any singular function?

(2) Find all inner functions such that f ~ zf.

(38) Characterize the inner functions ® such that of ~ wg =
f~gfor all f,geF.

{(4) Find a necessary and sufficient condition for two inner
functions f and g to belong to the same connected component.

1. Preliminaries. A complex, holomorphic funection f, bounded
on the open unit disk D of the complex plane is called inner if its
boundary values have almost everywhere absolute volue one; that is,
relation | f(e*’)|=1 holds almost everywhere (with f(e*’) =lim,_, f(0e*)).

It is well-known that a function f is inner if and only if f is
of the form:

(1

Y 4+ z
- Eapo)

f(2) = ezt [] 2= L T2 exp {~ Szl'e
el o, 1 — a2z 0 e

where ¢ is a complex constant of modulus one (j¢| = 1), k is a non-
negative integer, ¢ is a positive singular measure on the unit circle
and the points a;e D are such that 3., 1 — |a,| < <.

If ¢ = 0, then f is a Blaschke product, finite if the set I is finite
or infinite if the set I is infinite (countable).

In the case I = @ and k = 0, the function f is called singular.

The topology of the uniform convergence on the set F of the
inner functions is induced by the following metric:

a(f, 9) = If = gll.. = sup |f(z) — g(z)| = sup ess | f(e") — g(e”)| .

Let us denote by f ~ g the fact that the inner functions f and
g belong to the same connected component in the space F.

In what follows we make use of the well-known facts below:

(1) For any three inner functions f, ¢ and @ the relation
f ~ ¢ implies wf ~ wg. This is due to the continuity of the multi-
plication of inner functions.

(2) For any inner function f and any complex number «, with
la] < 1, we have the relation:

S
f fa 1 . &f ’
for the mapping Dsa— f,e F is continuous.
(8) For every nonnegative integer =, the set of all finite
Blaschke products with exactly » zeros forms a connected component
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and an open and closed subset of F. In particular the set of the
constant inner functions is connected and open and closed in F.
This fact is an easy application of Rouche’s theorem.

2. Simplification by z. Let us begin with the question, does
the relation wf ~ wg implies f ~ g. This is the problem of “Simpli-
fication”. In the case of a finite Blaschke product ®w, the answer
to this question is affirmative.

PROPOSITION 1. Let  be a finite Blaschke product. Then for
any two inner junctions f and g, the relation wf ~ wg implies

f~g.

Proof. The general case easily follows from the case w = z, to
which we will limit ourselves from now on.
Let us consider the set:

2F ={zh:he F} ={xe F:x(0) =0} .

The maps z*:2F — F and @: F — zF, where z*(z) = z/z, O(f) =
(f — f(0))/@ — f(0)f) for feF nonconstant and &(f) =z for feF
constant, are both continuous. (The set of the constant inner func-
tions is, both, open and closed!).

Therefore the mapping z* o @: F— F 1is continuous and the
relation zf ~ zg implies: f =2* o D(zf) ~2* o D(29) = g, as O(x) =«
for any x € zF; that is, @ is a retraction map and zF is a retract
of F. The proof is complete now.

3. The main result. The following theorem implies in parti-
cular that we cannot “simplify” by any inner function.

THEOREM 1. For any monconstant imner function g, the inner
Junctions exp {(g + 1)/(g — 1)} and gexp {(g + 1)/(g — 1)} belong to the
same connected component.

This theorem applied for the identity function ¢ = z(z(a) = a
for all a € D) implies the following:

PROPOSITION 2. The inner functions d = exp {(z + 1)/(z — 1)} and
zd belomg to the same conmected component (that is: d ~ zd).

Proposition 2 is equivalent to Theorem 1; for Proposition 2
implies also Theorem 1. The point is that the range of the continu-
ous map T,: F— H>, T,(f) = f og is contained in F’; that is, the



476 V. NESTORIDIS

composition of two inner functions is an inner function ([6] or [8]).
Therefore relation d ~ zd implies:

explt L 7@y~ T, ed) = gexpd L.
g—1 g—1
Hence, it remains to prove Proposition 2, which will be a conse-

quence of the following lemma, which is of a concrete geometric
nature on the half-plane:

LEMMA 1. Let

Kl:H o, o, '—_Z
=1, 1 — a2

i

l

_n| Bn —__z .
Bu 1 — B2
Be two infinite Blaschke products such that K, (0) > 0 and K,0) > 0.

If we denote ®(z) = (1 + 2)/(1 — z) then we have the following ine-
quality:

and K, =

=L

«a, 1—a,

ar ar
g gl

K, — Kl £ 3

123,
n=1

n

a rg o) — 1Y

+ 2 sup ess i — -
n=1 @(Bn) — Y

yeR

Proof of Lemma 1.

The pointwise convergence f, — f implies
trivially the inequality:

1£1l. = lim inf [ £,]].

We have therefore:

ﬁ&n x, —2 . N—En Bn_‘z
wrila,|1l — @z #0181 — B,z

K, — K,||.. < lim inf

- N

=

oo

— i g T % 1 — a, P(a,) — P(2)
t nf 1, | 1 — @, P(a,) + P(2)

®

il

We notice that [a|=[8|=|d|=[f]=1=ag —a'B| < |a — o] +
|8 — B'l. Consequently, for almost every z, with |z| = 1, we have:
1 % L= P) = 9@ _
el —a, pa) + o)

ra -
<3 ]% _ B
n=1 lanl l,@.,‘|

N

oo

Bu 1 — B P(Ba) — P(2)
LB. 1 — B, 2(8,) + P(z)
l—0a, 1-258,
1—-a, 1-—5,
Pla,) — @) P(B.) — P(2)
Pla,) + ) P(B.) + @)

==

il

N

+ >

n=1

n=1
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N N N
~ | g |ar 1—a,] 9% |4 pe 2@ = P(2)
s |ere g 23 g gl TR ) — e
<S|arg%| +23 [argl=%| 4 2supess 3 [arg 2%) — 1
n=1 Bn n=1 1-—- n yerR  n=1 q)(Bn) — Y

The required inequality is now implied.

Proof of Proposition 2. Let a,(t) be the unique point of D such
that o(e,(t)) =1 + i(n + t)w, where tc[0,1], ne N* ={1,2, ---} and
P) = 1 + 2)/L — 2).

One, then, verifies easily that:

ia—L _
e -« a,0) a,0) —z
Ge=T"1, = M0 1T- a0

with feF.

e

It is enough to prove that

B =1 a,(0) a,(0) —z ~B, =TI 0 a0 -z .
n=4 Ia{%(O){ 1- an(O)z n=3 |an<0)| 1- an(o)z

for, then we have

d~dy, =fB~fB=rB%0 &O -1 _rp,_g .2ndz,
e = JBy ~ B, = . 2,0)| T — a.(0)z SBz /e * 2 2

and we obtain the result.
In order to prove B, ~ B,, it is sufficient to prove the continuity

of the following map:

B 5 oa,t) a,t) —z :
[0,1]9t—— B, = nI:Is la, )| 1 — a,(t)z <

that is, lim,. (B, — B,ll. =0 for all ¢,€[0,1]. Using Lemma 1
we essentially have to prove the following fact:

P(a,(ty)) — 1y

lim sup i

t—ty yeR n=3

arg

This relation follows immediately from the observation that:

S |arg 2(®) — Y
n=3 P(a,(ty) — 1y
& 1+ 2iz(n + ¢, + |t — &) — 2w (t, + 3)
S 2 0 0
S 2 A Tt — [t — L) — 2inth £ 3| o

4. Consequences. Theorem 1 yields trivially the following:
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COROLLARY 1. For any inner function g, there exists anm inner
Sunction f such that f ~ gf.

Proposition 2 implies the following more general result:

COROLLARY 2. Let f be an inner function whose singular mea-
sure ¢ contains at least one atom. Then f ~ zf.

Proof of Corollary 2. We have f = f,exp K(z + a)/(z — a), with
fieF, || =1 and K > 0. Thus, it is enough to establish the rela-
tion exp K(z + a)/(z — ) ~ zexp K(z + a)/(z — a). By a rotation
this becomes:

exp K

z+1
z—1

If K>=1, using the known relation d ~ zd (Proposition 2) we
have

eprz+1:d-exp(K—1)z+1~zdexp(K—1)z+1
z—1 z—1 z—1
=zexpz+1K.
z—1

If 0 < K< 1, let us consider the transformation':

1-K _,
17K

) =1 g, -

i+ K’

Evidently we F and w ~ 2. From the known relation d ~ zd we
obtain:

exp K

2+ 1 _ Gow ~ (2d)ow = w-(dow) ~ 2+ (dow) = zexp KET L
z—1 z—1

REMARK. Corollary 2 implies that if the singular measure g
associated with a singular function S contains some atoms, then the
relation S ~ 2S holds. If the measure p + 0 does not contain any
atoms, then we do not know if the relation S ~ zS is true. It seems
that this problem (probably not difficult) is still open and we offer
the following conjecture:

“HEvery monconstant singular immer function S belongs to the
same commnected component as zS”.

1 This trick is found in [2].
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In this direction we have the following proposition, which
follows from Theorem 1 combined with a remark suggested to the
author by K. Stephenson.

PROPOSITION 3. For any mnonconstant singular inner fumnction
S, there exists a monconstant inner function g such that S ~ ¢8S.

Proof. The point is that any singular inner function S is of
the form S = exp (¢ + 1)/(g — 1), with ge F. Theorem 1 gives, then,
the result.

In an obvious manner Proposition 3 implies the following:

COROLLARY 3. (i) For every nonconstant singular inner fumnc-
tion S, there exist immer functions f and g such that fS ~ ¢S but
f*g.

(ii) Let w be an inner function such that the velation fiw ~
fuw implies fi ~ f, for every couple (f, f,) of inner functions f, and
foe  Then the conmnected component of ® contains only Blaschke
products. In particular @ is a Blaschke product.

(iil) If the commected component of an inmner function f does
not contain any proper multiple of f, then this component contains
only Blaschke products. In particular f is a Blaschke product.

The existence of infinite Blaschke products satisfying the hypo-
thesis of Corollary 3 (iii) follows from the proof of a theorem of
D. Herrero ([3], Theorem 1.1). Later, the present author proved in
[6] that if the zeros a,, » =1, 2, --- of a Blaschke product B satisfy
the condition

a, — A,
1-a,a,

lim JI

n m*EN

=1

then, the connected component for B does not contain any proper
multiple of B.
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ON COMPACT SUBMANIFOLDS WITH NONDEGENERATE
PARALLEL NORMAL VECTOR FIELDS

V. I. OLIKER

In this paper we obtain characterizations of spherical
submanifolds in Euclidean space of codimension =1. Such
characterizations are given here in terms of certain rela-
tionships involving the elementary symmetric functions of
principal radii of curvature and the support function of a
submanifold.

1. Introduction. For hypersurfaces similar characterizations
are well known. For example, let M be a closed convex hypersur-
face in Euclidean space, i the support function of M, and S, the
elementary symmetric function of order ! of principal curvatures.
It has been proved by several authors (see Simon [8], and further
references given there) that if for some integer I(1 <! < dim M)
everywhere on M A'S, = const, then M is a hypersphere. Other
results of this type are also known [8], [9].

Our proofs are based on a differential analogue of the Min-
kowski-Hsiung formulas, relating the support funection and elemen-
tary symmetric functions of various orders of the principal radii of
curvature. Those formulas are obtained for submanifolds which
possess a nondegenerate normal vector field parallel in the normal
bundle.

Finally, we note that characterizations of spherical submanifolds
in terms of the elementary symmetric functions of principal curva-
tures are obtained by Chen [2] and Chen and Yano [4] (see also Chen
[3], Chapter 6).

The author wishes to thank the referee for useful comments.

2. Preliminaries. In this section we shall present local formulas
relating the second fundamental form and the support function of a
submanifold in Fuclidean space. We shall use the following conven-
tion on the ranges of indices:

1Z4,5,80LrEm, l12asn,

and as usual, it is agreed that repeated lower and upper indices are
summed over the respective ranges. We denote by K the Euclidean
space of dimension m + n, and we fix the origin at some point O.
Consider a smooth, orientable submanifold M of dimension m(=2)
immersed in E, and represented by the position vector field

481
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X = X(ulr M) um) ’

where {u’} are the local coordinates on M. Let 2 be a point of M.
We denote by T.(M) and N,(M) the restrictions of the tangent
bundle T(M) and normal bundle N(M) at x.

Put

X, =0X, 0; = dfou’ .

The metric I, or the first fundamental form induced on M from
E via X, is G;; = (X, X;), where (,) denotes the inner product in
E. Let & be an arbitrary unit normal vector field defined in a
neighborhood U of x€ M. The second fundamental form at x with
respect to & is II(&) = b,;(§)du’du’, where b;(&)=—<(X,, &;). Let 7 be
a unit normal vector field in U not necessarily different from ¢&.
The mixed third fundamental form is III(¢, 7)) = g.;(&, n)du’du’, where
9:4& M) = <&, ;. We write III(§) = III(, &), and 9,,(8) = 9, &).
Evidently, ¢.;(& 7) = 9,:(n, &, but, in general, no other symmetries
exist. For a unit normal vector field &e N(M), h(¢) denotes the sup-
port function of M with respect to & that is, k(&)= —(X, &).

Recall that a nondegenerate normal vector field on M is a unit
normal vector field & such that det(b,;(¢)) # 0 everywhere on M (see
[2], and also [3], p. 59).

Vectors {X;} form a basis in T.(M),x€ M, and we denote by
{N(a)} a field of orthonormal frames in N(M). Put

X,;j = a”‘X ’ ai,- = az/au’au’ .

At first we note that b,;(6) = (X;; &), and b,;(&) = b;,(§) for a
unit normal vector field &. Also, g,;(&)=—<&; & = 9;,(§). Suppose
that ¢ is parallel in N(M), that is, &e T(M), i =1, -+, m, every-
where on M, and let » be an arbitrary unit normal vector field on

M. Then g,;(& 7)=—<{&i 7 = 9;{& N)-
In the frame X, :--, X, NQ), ---, N(n) we have for an arbit-
rary unit vector field &e N(M):

(1) &=—bi(©)X; + 3. <& N(@))Na) ,

where bi(g) = b,,(6)G*, and G being the inverse of G,;. From here,
for two unit normal vector fields & and 7, we find

(2) 9.5(&, 1) = bi(8)b.{(n) + %“ (& N(@))<{n; N(@)) .
If £ or 7 is parallel, then

(3) 9:5(&, 1) = bi(&)b.(n) .
Note that when M, & and 7 are such that II(¢) and II(s) are positive
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definite then so is III(&, ). However, the form III(¢) is nonnegative
definite for an arbitrary II(8). If & is nondegenerate everywhere on
M, then III(¢) induces a Riemannian metric on M. We denote by
dO(¢&) the corresponding volume-element. From formula (1) it fol-
lows that if £ is nondegenerate and parallel, then vectors {£;} form a
basis in T.(M), x € M, and according to the Gauss equation we have:

(4) &y = Ii)& — % 9:i(§, N(a))N(a) ,

where I'%(&) denote the Cristoffel symbols of the second kind with
respect to III(&).

When ¢ 'is nondegenerate, then translating it parallel to itself
in E to the origin O we can define an immersion 7v.: M — 3, where
X is a unit hypersphere in E centered at O. In codimension one 7,
is the standard Gauss map.

PropoOSITION 2.1. Let M be a submanifold of E and & a non-
degenerate parallel normal vector field on M. Then 7. is an iso-
metric immersion of M with the metric III(&) into 3.

Proof. Let the symbol <> denote an immersion, and —a pull-
back of the mertic from the ambient space. Then the following
diagram is commutative in <> and —.

o

(2,9) ———FH

{7

(M, III(£))

where o is the standard imbedding of 2 in E, and g is the metric
induced on Y from E. The Proposition is proved.

For convenience we write h(a) = (N (a)). The position vector
field X of a submanifold M can be decomposed into two parts:

(5) X=X+ Xy,

where X, e T(M), Xy € N(M). In theframe X, X,, ---, X, N(1), - -,
N(n) we have
X, = GHX, XpX;,

(6) Xy=—3 h(@)N@) .
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If £ is nondegenerate and parallel, then from (1) we see that
(7) Xp=—g"9(&)h(8)&;

where ¢'(&) are the elements of (g,;(&))™", and A& = 0,h(8).
Put

hij(&) = 0:;0(8), Vi;h(8) = his(8) — I'E(H)M(8) -
Under the above assumptions on ¢ we obtain with the use of (4)

(8) bi (&) = V.1 + 2. 9:4(&, NlaDh(a) .

3. The elementary symmetric functions of principal radii of
curvature and the associated differential equations. Let & be a
unit normal vector at a point x € M. The principal radii of curva-
ture associated with & are denoted by R., :---, R., and defined as
the roots of the determinantal equation

det(bij(é) — Rg(8) =0.

If ¢ is a restriction to  of a nondegenerate vector field, then III(%)

is positive definite, and in this case the R., are well defined. More-

over, in this case they do not vanish. Let g(&) = det(g,;(&)). The

elementary symmetric function of order % in R., (nonnormed)
ka(R) = Z Rm e Réik ’

LFLy

and it is the coefficient at (—R)™* of the polynomial

(9) det(bw(&?q(;)ng(E)) =(—R)™ + S, (RY(—R)* '+ +++ + S..(R) .
Set a;;(&) = b;;(§) — Ng;;(§), where M\ is real. Consider a poly-
nomial in )\ defined by the equation

(10) @) = 3 (V"84
where a'/(¢) is the cofactor of the element a,;(¢).

ProproSITION 38.1. Let M be a submanifold of K and & is a paral-
lel wnit normal vector field defined in a neighborhood of xe€ M and
such that II(8)>0 at x. Then the quadratic forms Siyy;, k=2, ---, m,
are positive definite at x. Here vy, ---,v, are arbitrary real para-
meters, VvV = v + Vit +v:i = 0. If M is compact, & is defined on
M, parallel, and II(E) += 0 everywhere on M, then those quadratic
forms are definite everywhere and by selecting a proper orientation
of M and E, they can be made positive definite. When k =1 this
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assertion 1s true under the only assumption that & is parallel and
nondegenerate.

The proof of this Proposition is standard and we omit it here.

Suppose now that £ is a nondegenerate parallel vector field.
Then in view of (8),(9), and (10) we put

Po(h) = — SP. k(o) ,

g9()
Qu = —— 3 840.,&, Na)h(a) ,
g(&) "=
(11) M. (h) = Paoh) + Q. .
It is not difficult to see that
(12) M..(h) = kS.(R) .

PROPOSITION 3.2. Let M be a submanifold of E and & a non-
degenerate parallel normal wvector field defined in a neighborhood of
xeM. Then

13)  Qu=(m —k + DSe ,(R)h(E) + (Hu, X),  (Su=1),

where H., is a uniquely defined wector in N,(M) = N,(M)BOéE in-
dependent on the choice of basis in N,(M). If k=1, then —H., is
the m times mean curvature vector of the submanifold v.(M)c 2.

Proof. Since e N, (M), we can select an orthonormal basis in
N,(M) so that 5 is one of the vectors in this basis. Let us preserve
the old notation for the new basis, and let £ = N(1). Then

_ SE ! S&

Qi = 9:;(ORE) + > = g,,(¢, N@)h(a)
9(é) edezn g(€)

= (m — b+ DS B (3, g6 NN, X ) -
The form —(Si/g(8))9.,(¢, »), where ne N,(M), is linear in 7. There-
fore, there exists a unique element H,, in N,(M) such that
Sk
g(é)
for any ne N,(M). (Strictly speaking, the inner product in the last
formula should be taken in N,;(M). But it is induced in N,;(M)

from F, and, therefore, it is the same in either sense.) Thus, we
conclude that

g”'(g, 77) = <H5k’ 7}>
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s _
~(, 3, B% g6 N@)N@), X ) = (Ha, X .
2dazn g(£)

The rest of the Proposition follows from Proposition 2.1 and
the fact that

Sél —_
9(8)

=g (&) .

This completes the proof.

COROLLARY 3.1. Let M be a submanifold of E and & a non-
degenerate parallel vector field on M. Then (13) holds everywhere
on M and

(14) M, = Puy(h) + (m — &k + 1)S;_((R)R(E) + (He, X)

for all xe M .
REMARK 1. The functions (H,,, X) are similar to the functions
F(&) constructed in [4]. However, the latter are related to principal
curvatures and depend on the first and the second fundamental
forms, while (H,, X) depend on the second and the third funda-
mental forms in the direction &. It is not difficult to point out
situations where H,, or (H,, X) vanish. For example, if dim E—
dim M =1, then H,, =0 for all k. Another example is when the
normal component of X has the direction &. Then h{a)= —<(X, N(a))=0
for & =2, .-+, m. In these examples the functions F,(¢) introduced
in [4] also vanish. One more example is given by the case where
III(¢, N@)) = 0 for a« = 2, .-+, m, (NQQ) = &).

REMARK 2. Let M be a submanifold of £ and £ a nondegenerate
parallel normal field on M. Let f and f” be two smooth functions
defined on M. Put

bif&) = Viif — 2. 941§, N(a)KX, Na)) .
Similarly to (9), (10), construct Si(f) and consider

Mo(f, f)) = @ SV uf" + (—m—k——’%ﬁMw ) OF

+ <H€k(f)7 X> ’ fO]’.' k > 1 ’
M. (f, f1) = ¢YEWiuf" + mf + (Hy(f), X), for k=1.
These differential operators proved to be useful in the study of

uniqueness Theorems for convex hypersurfaces in Euclidean space
[7]. (In this case they are elliptic, and the last term in the right-
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hand side vanishes.) It is plausible that they have applications in
establishing uniqueness Theorems for submanifolds of E in codi-
mension >1. We hope that we come back to it again elsewhere.

4. Applications. We begin with a slight generalization of the
formula (14), which leads to an integral formula relating the ele-
mentary symmetric functions of arbitrary order. This formula is
of Minkowski-Hsiung type, and in the form involving two consecu-
tive elementary symmetric functions of principal curvatures it was
derived and studied by many authors (see Chen and Yano [4], and
also [3], Chapter 6; in both sources further references can be found).
However, the methods of those authors do not seem to generalize
so as to obtain the following formulas (16) and (17).

In what follows, unless stated otherwise, it is assumed that M
is a compact submanifold without boundary.

The following Lemma is a version of E. Hopf’s Lemma on
Laplace-Beltrami operator.

LEMMA. Suppose that M is a submanifold of H, & is a non-
degenerate parallel normal vector field on M, and h' is a smooth
function on M. Put

Pl = g}@szz;mh',
where the coefficients S¥ are the same as in (11). Then
1 Si
(15) P (h') = 0; & 9:h) .
* V9@ <1/g<s> ! )

If k=1 and, in addition, we assume that P.(h') does mot change
its sign on M, then h' is a constant function on M. The same 1is
true when k> 1 provided there exists at least one point on M where
1I(¢) + 0.

Proof. It is easy to see, with the use of formula (4), that b;;(§)
is a Codazzi tensor with respect to I'f(&). Therefore, P;,(h’) can be
written in the divergence form (15) (see [5, 7]). When £ > 1 and
II(&) # 0 at some point of M then II(£) =0 everywhere on M because
& is nondegenerate. By Proposition 8.1 the operator P..(k') is uni-
formly elliptic. Now the rest of the proof runs similarly to the
standard proof of E. Hopf’s Lemma on the Laplace-Beltrami operator
on a compact Riemannian submanifold ([6], p. 338). The Lemma is
proved.

THEOREM 4.1. Let M be a submanifold of E and & a nonde-
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generate parallel normal wector field on M. Then for arbitrary k
and 8, k=1, ms=1, «--, k,
_om—EkE+ D) (B—1—1) !
(16)  EkS:u(R) = z;,' m — &) (b — 1)1 [Per_i(h) + (Her—ry XD
(m —k +8)! (k—s)! S.. (R
(m — k)! (k — 1)! ék—s( ) ’

and
B Su(Rd0E)
_ G, m=k+ D (k—1-1) o St g g
AT e =Dt Lh’ggmﬂw@
a7 Sm—k+ 1) (e —1—1)1 l
+ lg‘(‘) (m — k)! (k . 1)! SM<HEk—-l, X>h/ dO(E)

(m —k +9)! (k—s)! s
(m — k) (b — 1)1 SM Ser—s(R)R*AO(E) ,

where h = h(&) 18 the support function of M with respect to &.

Proof. Formula (16) follows from the formulas (12) and (14);
and (17) is obtained from (16) by integrating, applying Green’s
formula, and the preceding Lemma.

COROLLARY 4.1. If in Theorem 4.1 s =k, then
18 k| Su®IOE) = (n —k + 1| Su (BREIOE
+ | <Ha, Xd0) .

This formula is an analogue of an integral formula due to Chen
and Yano [4].

We recall that if a submanifold M (not necessarily compact) of
E is contained in a hypersphere of E centered at the origin, then
it is called a spherical submanifold (see [2]).

In the following we often make use of a Theorem due to Chen

[2].

THEOREM A. Let M be a submanifold (not mecessarily compact)
of E. If there exists a mondegenerate parallel mormal wvector field
& such that h(&) = const everywhere on M, then M is a spherical
submanifold of E.

From now on always when %k > 1 it is assumed that there
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exists a point on M where II(£) # 0, and the orientation is such
that II(&) > 0.

Examples of submanifolds with this property can be constructed
as follows. Let M, and M, be two strictly convex hypersurfaces.
Then the natural imbedding of M, x M, in Euclidean space of di-
mension = dim M, + dim M, + 2 gives such example.

The next Theorem is an immediate consequence of formulas (12),
(14), the Lemma, and Theorem A.

THEOREM 4.2. Let M be a submanifold in E and & s a non-
degenerate parallel normal vector field on M. Assume further that
for some k,k=1,2, -+, m, at every point of M

(19) cS:(R) = S (RR(E)  (S(o=1),
where ¢ s a constant such that the expression
[k —clm — k + 1)]Sa(R) — (He, X

18 either monmnegative or monpositive. Then M 1s a spherical sub-
manifold.

Proof. In the formula (16) set s = 1. Then by (19)
[k —c(m — k + D]S;(R) — (He, X)> = Pu(h),

and the Theorem follows from the Lemma and Theorem A.

In case k = 1 a result similar to this Theorem has been given
by Wegner [9], Satz 2. His result can be also obtained by our
method, and furthermore, it can be generalized for & > 1.

Let M = 8S™, where S™ is a standard m-sphere lying in
m -+ 1-dimensional Euclidean space E™*'c E. Then, evidently, H,,=0
for all k, and & is the unit normal vector field on S™ in E™™, With
this fact in mind we state the following

COROLLARY 4.2. Let M be a submamnifold of E and & a non-
degenerate parallel mormal wector field on M. If for some
ky, k=2,--+, m, at every point of M

(Hegy X) =10,
and
eSe(R) = Se_(R)(E) ,

where ¢ 13 a constant #0, then M is a spherical submanifold. Fur-
thermore, in this case it s mecessary that ¢ = k/(im — k + 1). The
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assertion is also true when k = 1, provided II(&) # 0 at some point
of M.

Proof. We show at first that the function S,.(R) does not
change its sign on M. Let A be a point on M where II(&) is definite.
Then the principal radii of curvature R, i =1, ---, n, must all be
of the same sign at A. Since £ is nondegenerate R, will all have
the same sign everywhere on M. Hence, the function S, (R) can
not change its sign on M, and moreover it does not vanish on M.

Now it is clear that the expression

[ — c(m — k + 1)]S:(R)

is either nonnegative or nonpositive and therefore by Theorem 4.2.
M is a spherical submanifold. On the other hand,

[, Sa®d0E) = 0;

hence, the formula (18) implies that ¢ = k/(m — k + 1). The Corol-
lary is proved.

A Theorem similar to Theorem 4.2 can be stated with the use

of Theorem 4.1.
We point out only a particular case of it.

THEOREM 4.3. Let M be a submanifold in E and & a nonde-
generate parallel normal vector field on M. Suppose that for some
k and s, k=1 «--,mys=1 .-k, the following conditions are
satisfied:

(m —k +38) (k—89)! s(EY .
(a) kSe(R) = m =11 (b — 11 Ser-(B)R() ;
b) | (Ha, OBE@IOEO S0 for 1=0,0,5 —1;
(© h(€) > 0.

Then M is a spherical submanifold.

Proof. The conditions (a), (b), (¢) and Proposition 3.1 imply that
all integrals in formula (17) must vanish. Hence k(&) = const, that
is, M is a spherical submanifold.

THEOREM 4.4. Let M be a submanifold in E and & a nonde-
generate parallel normal vector field on M. Suppose that for some
kE and s, k=1 ---,m,s=1,---,k, the following conditions are
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satisfied:

(@) eS:u(R) = Si_(R)AS(E) everywhere on M, where ¢ is a con-
stant = 0;

(b) (Hyyy X>=0for1=0,---,58—-1;

() h()>0.
In case k = 1 assume also that II(&) #+ 0 at some point of M.

Then M is a spherical submanifold and c=(m—k)!k!/(m—k+s)!
(k — 9)!.

Proof. At first we show that ¢ can have only the value indicat-
ed in the assertion. In showing that we follow Blaschke [1], p. 233.
Let A be a point on M where h(¢) (=h) attains its maximum. Then
at A,

7h<0.

By Proposition 3.1 the forms Sivy; k=1, -+, m, are definite, and
therefore at the point A the expressions

1
9(&)

are all of the same sign, and namely nonpositive. On the other
hand, by Theorem 4.1 (formula (16)) in view of the conditions (a)
and (b), we obtain

_m—=k+98)! (k—3s)
R e R T

g m—k+ D (h—1—11,,
=2 (m — k)] (k — 1) WPoil)

Pek_z(h) = Sgc_zVijh l = 0; 1, °t k-1 ’

The right-hand side is nonpositive at A, and similar to the proof
of Corollary 4.2 one shows that S..(R)> 0 everywhere on M.
Therefore,

_(m—k+38) (k—9)!
SO Py A T TR

Considering the point where h attains its minimum we arrive at
the opposite inequality. Thus, ¢ = (m — k)! kl/(m — k + 8)! (k — s)!.

Now, making use of the second part of Theorem 4.1 (formula
17)) and the conditions (a), (b), (¢) with constant ¢ taken as above,
we obtain

S m kDY =1 = DI i S8t pp g005 = 0
Z‘l (m — k)! (b — 1)! SM o (é) .
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From here, it follows that » = const. Hence, M is a spherical sub-
manifold. The Theorem is proved.

COROLLARY 4.3. Let M be a closed strictly convex hypersurface
in FEuclidean space E and & is the unit normal vector field on M.
Suppose that for some k and s, k=1,---,m,s=1, ---, k,

eSYR) = Si_(R)R*(§)

everywhere on M, where ¢ is a constant-0. Then M is a hyper-
sphere, and ¢ is as in Theorem 4.4. (In the last equality the sub-
seript & 1s omatted for the obvious reasom.)

Proof. For a hypersurface in F, & is always parallel, and since
M is strictly convex, ¢ is nondegenerate. Also H, =0 for
=1, ---,k. The support function i(&) can always be made strictly
positive by placing the origin of the coordinate system in F inside
M. Now the Corollary follows from Theorem 4.4.

REMARK 1. As was mentioned in the introduction, this Corol-
lary is known. In particular, the condition quoted earlier can be ex-
pressed in terms of the elementary symmetric functions of principal
radii of curvature as follows:

¢Su(R) = S, _(R)R*(E) .

If in Corollary 4.3 we take &k = m, then we obtain the above result.
It is due to Stuiss; see [8], Korollar 6.3, and other references there.

REMARK 2. Theorem 4.4 does not contain Corollary 4.2, since
in the latter it is not required that h(¢) > 0.
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FANS AND EMBEDDINGS IN THE PLANE

LEx G. OVERSTEEGEN

We prove that every fan which is locally connected at
its vertex can be embedded in the plane. This gives a
solution to a problem raised by J. J. Charatonik and Z. Rudy.

1. Introduction and definitions. In 1963, K. Borsuk [4] con-
structed a fan which is not embeddable in the plane. Hence, the
question arises to characterize those fans which are embeddable in
the plane. In particular, in [5] it was asked whether each contractible
fan is embeddable in the plane. In an attempt to solve this problem
in the negative, J. J. Charatonik and Z. Rudy constructed a contrac-
tible fan which is locally connected at its vertex. They conjectured
([6], p. 215) that this fan is not embeddable in the plane. We show
in this paper that each fan, which is locally connected at its vertex,
is embeddable in the plane (see Theorem 5.2). We will also establish,
for fans, several equivalences between the local connectedness at the
vertex and other conditions. In a forthcoming paper [11] the author
has shown that each contractible fan is locally connected at its vertex,
and hence embeddable in the plane.

By a continuum we mean a compact connected metric space. A
dendroid is an arc-wise connected and hereditarily unicoherent con-
tinuum. By a fan we understand a dendroid which has exactly one
branch-point, and we call this branch-point the wertex of the fan.
If x,y are points in a dendroid X, then we denote by [z, ¥] the
unique are in X having x and y as end-points. The weak-cut order
<, with respect to a point p, in a dendroid X is given by

x =<y if and only if [p, 2] [p, ¥] .

We denote by I the unit closed interval [0, 1] of reals, and the
symbol B(x, ¢) denotes the open ball of radius ¢ about the point x.
We use the symbol = to denote that two spaces are homeomorphic.
The symbol R, as used in Lemma 3.1, denotes a set of indices.

2. Embeddings in the plane. A cover U ={U, U,, :--, U,} of
a space is called an e-chain if the nerve (see [8], p. 818) of U is an
arc and diam(U,) <e for 1 =1,2, ---, n. A continuum X is said to
be arc-like if for each e > 0 there exists an &-chain covering X. A
point e of an arc-like continuum X is called an end-point provided
for each ¢ > 0 there exists an e-chain U,, U, ---, U, covering X such
that

495
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(1) ce U\L:JU

It is known (see [9], p. 148) that every 0-dimensional compact
metric space K is homeomorphic to a subset of the Cantor ternary
set Cc [0, 1], and hence K possesses a natural order <. We will
call this ordering the induced ordering on K. The main result of
this section is Theorem 2.2. We start with the following lemma.

LEMMA 2.1. Let X be a compact metric space and let {J,}, axc A,
be the decomposition of X into components. Let ¢ > 0 and let K be
a O-dimensional compact set in X, with induced ordering < such
that:

(2) J, is an arc-like continuum for each ac A,

(3) J,N K = {e,}, where e, is an end-point of J, for each a € A.
Then there exists an open cover U of X such that U is a finite union
" of disjoint e-chain V(i = 1,2, ---, t), where V, = {UG, ND}i=L2, ---,
k(2)) such that:

(4) Kc Ui UG, V\Ui-, UL UG, 9),

(5) all nonadjacent elements of U have positive distance,

(6) for each i,1 <1 < t, there exist a,, b;e K such that:

KnU@#, 1) ={xeKla, =2 < b}.

Proof. Denote by 0 the minimal and by 1 the maximum element
of K. Let g: X — K be defined by g(x) =e¢, if x€J,, then g is a
monotone retraction. Let

(7) =z, =sup{ec K|for each ¢ < ¢ there exists an open cover

of ¢7Y(]0, ¢']) satisfying the conclusion of Lemma 2.1},
then 2,=0. By (2) and (8) there exists an e-chain U,, U,, U,, ---, U,
in X covering g *(x,) such that

k
KﬂUU,ZQ.

i=2

Since g7'(x,)c U}, U; and K is 0-dimensional there exists a closed and
open set HC K such that ¢ *(H)c J%,U;. Moreover, we can choose
H such that

HNK={zxecK|a =z =<b}
for some ¢ and b in K. If a¢ > 0, define x, = sup {x € K|z < a}, then
z,¢ U, and x, < a. By (7) there exists a cover U of ¢g7X][0, x,]) satisfy-

ing the conclusions of the lemma (if a =0, take U = @). Since
9740, x,]) is open in X we may assume that U U g7'([0, x,]). Hence

Uu{U,ng(H)|j =1,2, ---, k}
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is a cover of ¢g~%[0, b]) satisfying the conclusion of the lemma. It
follows the definition of x, that x, = b.

If x, =b =1, we are done, whence suppose %, < 1 and let z, =
inf {x ¢ K|x > #,}. By repeating the argument above, replacing x,
by x,, one can show that ¢ ([0, xz,]) can be covered with a cover
satisfying the conclusion of the lemma, contrary to (7), since x,>2,.

We will call a cover U that satisfies the conclusion of Lemma
2.1 an e-cover of X.

THEOREM 2.2. Let X be a compact metric space and K a closed
subset of X. Let {J,}, ac A, be the decomposition of X into com-
ponents such that:

(8) J,.N K = {e}, where ¢ is an end-point of J, for each ac A,

(9) J, 18 an arc-like continuum for each acA. Then there
exists an embedding h: X — I* such that h(K) = (X) N, where | =
{(x, y) e I*ly = 0}.

Proof. Notice that by (8) K is 0-dimensional. By Lemma 2.1,
there exists for each ¢ > 0 an e-cover of X. Let U, be a 1/2-cover
of X and 7 > 0 such that » is the minimum distance between two
nonintersecting elements of U,. By induction we construct a sequence
of covers U,, U,, --- of X such that U, refines U,_, U, is a (1/2)"
cover, no sub-chain of less than nine links of U, connects two non-
intersecting elements of U,_,.

Given a cover U of X, satisfying the conclusion of Lemma 2.1,
we label the chains V,, V,, ---, V, of U such that inf {z|zc KNV} <
inf{x|lxe KNV} if ¢ <j, and the links of the chain V, = {U(4, 1),
Ui, 2), ---, U, k(1)) such that KNV, cU(:,1). If U and U* are
both covers of X, satisfying the conclusion of Lemma 2.1, then we
say that U follows the pattern {(a, b)), (a, b)), +--, (@, bpy), -+ -,
(a;, brey)} in U* if the jth link of the ¢th chain of U is contained in
the b;th link of the a,th chain of U*(i.e., U(4, 5) < U*(ay, b;).

There exist in I* a sequence of open sets D, D, --- such that
D, is a finite union of (1/2)"-chains whose elements are interiors of
rectangles, and such that D, follows a pattern in D,_, that U, follows
in U,_,, each element of D,_, contains the closure of an element of
D,, while the closure of each element of D, lies in an element of
D, , and the first link of each chain of D, intersects [ in a non-
degenerate interval, while the closure of all other elements of D,
are contained in I\l(n =1,2---).

The existence of the open sets D, satisfying the above follows
from an argument similar to one used by R. H. Bing (see [3], p. 654),
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the only difference being that in each cover D,_, we insert, in the
next step, finitely many, instead of one, new chains and we require
the first link of each chain of D, to intersect [ in a nondegenerate
interval, while the closures of all other elements of D, are contained
in I3\l

The latter facts can be established by dividing each chain of
D,_, into finitely many “strips” in each of which we insert, in the
next step, a new chain in such a way that we always insert new
links on a predescribed “side” of already chosen previous links.

It follows from Theorem 11 of [2] that X is homeomorphic with
the continuum Y = D} N DN ---, where D¥ denotes the union of
the elements of D, and moreover it follows from the choice of D,
that Y satisfies the conclusion of Theorem 2.2, and the proof is
complete.

3. Fans locally connected at the vertex. A fan X has prop-
erty P', if for each sequence of points {x,;} in X (41 =1,2, ---) con-
verging to the vertex v of X we have

(1) Ls[v, @] = {v} .

THEOREM 3.1. Let X be a fan with vertex v and

(2) X=U,exl,|J, =10, 1] for each re R and J, NJ,, = {v} of
r, # r,€ R},
then the following are equivalent:

(3) X has property P,

(4) for each ¢ > 0, there exists a connected open mneighborhood
U of v such that diam(U) < ¢ and BA(U) N J, is connected for every
reR,

(5) X 4s locally commnected at v.

Proof. (8)— (4). Let ¢ >0 be given and let < be the weak-
cut order of X with respect to v. Define V = B(v, e),

a(r) = inf {z e X|weJ, NBAV)} if J,NBUV) = @,

yed ly=zz@} if J.NBAV)+= O
& otherwise

(6) Qr:

and Q@ = U,z Q.. It follows that v¢ @, since if {v} is a sequence
in @ converging to v, then v, = x(r,) for some #,c¢ R, and hence

Lslv, v, ] N BA(V) # &, contrary to (3).
Let U = X\Q, then U is an open neighborhood of v and diam(U) <

1 It follows from the definition that property P is related to the notion of a Q-
point or a P-point (cf. [1] and [7], respectively).
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diam(V) = e. We will show that U satisfies all conditions of (4).
We claim that

(7) if ze U and = < 2, then z ¢ U, or, equivalently, if z € @ and
z =z, then zeQ.

To this end, suppose that (7) is false. Hence x¢c@, let {x;} be
a sequence in @ converging to x. Then 2, = x(r,) € Bd(V) for some
r,eR(t=1,2,---). We may assume that the sequence {x(s,)} con-
verges to a point x,eJ, N Bd(V) for some »,€R.

By ([9], p. 171), Ls[x;, 2(r;)] is a continuum and since [z;, z(+;)] C
Q(t =1,2, ---) we have Ls[x,, 2(r,)]cQcX\{v}. Moreover, since X is
hereditarily unicoherent, it follows that [z, 2,] < Ls[x, z(r)]C Q C
X\{v} and we consider two cases as follows:

Case 1. zel[x,,]. Then zeQ.

Case 2. z¢]x, x]. Then, since z > x, 2 > max {x, x,} and conse-
quently z > x, = 2(r,). Hence ze @ by (6) and the definition of Q.

In both case we conclude that z € @Q, contrary to the assumptions
in (7) and the proof of (7) is complete. It follows from (7) that U
is connected. In order to show that J, N Bd(U) is connected for each
re R, we will show that if z, yeJ, N Bd(U), say 2 < ¥, and z € [z, v],
then zeJ, N BA(U).

Since zeJ,NBA(U) =J,NnUNQ and z > =, it follows from (7)
that z2€@. Moreover, since y € U, there exists a sequence {y;} in U
converging to y. Since Ls[v, y;] is a continuum ([9], ». 171), con-
taining both ¥ and » and X is hereditarily unicoherent, it follows that
[v, y] C© Ls[v, y;]. As ze[v,y], we may assume that there exists a
sequence {z;}, where z;¢e[v, y,], converging to z. By (7), 2,€ U and
whence ze U. Obviously zeJ, and we conclude zeJ,NUNQ =
J, N BA(U).

(4) — (5): Trivial.

(6) — (3): Suppose X does not have property P. Let {x,} be a
sequence of points in X converging to v such that Ls[v, z,] = K = {v}.

Let ¢ > 0 be such that diam(K) > 3¢ and let U be a connected
neighborhood of » such that diam(U) <e. Then there exists an
index ¢ > 0 such that x,e U and [v, x;] N [X\B(v, 2¢)] # @. But then
U and [v, x,] are two continua in X whose intersection is not con-
nected, contradicting the fact that X is hereditarily unicoherent,
and the proof is complete.

4. Decompositions of fans. We say that a space X is a (¢ = ¢)-
space if, in X, every quasi-component is connected. In other words,
for (¢ = ¢)-spaces the quasi-components and the components coincide.
We will show that if a fan is locally connected at the vertex v of
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X, then X\{v} is a (¢ = ¢)-space.

THEOREM 4.1. Let X be a fan which is locally connected at the
vertex v of X and

X = U,er /.1, =0, 1] for each re R and J, N J,, = {v}
if r, = r,eR}.

Then X\{v} is a (q = ¢)-space and {J\{v}}, r € R, is the decomposition
of X\{v} into quasi-components.

Proof. It is sufficient to show that if », = »,e R, then there
exists a closed and open set G c X\{v} such that

(1) J\MvtcGa X\J, .

By Theorem 8.1 there exists for each n(m = 1,2, ---) a neigh-
borhood U, of v such that diam(U,) < 1/n, U,., < U, and BA(U,) N J,
is connected for each rc¢R. We may assume that J, N Bd(U),) #
@ #J, NBAd(U,). Let R,={reR|Ba(U.)NJ,# D}(n=12,--),
then R, CR,., and Uy R, = R.

Let Y be the space obtained from Bd(U,) by identifying all com-
ponents of Bd(U,) to a point and let f:Bd(U,)—Y be the natural
projection. It follows (|9], p. 148) that dimY = 0. Since

f(J,, N BA(UY) = f(J, N BA(U) ,
there exists a closed and open set H} in Y such that
f(J,, 0 BA(UY) c Hf Cc Y\f(J,, N BA(UY) .

Let H, = fY(H¥), then H, is a closed and open set in Bd(U)).
Define A, = {reR,|J, N H, + @} and B, = {reR,|J,N H = @}, then
A, NB, =@ and A, U B, = R,. Moreover, since H, is closed and open
in Bd(U,), we have that

P= Yol and Q=Y U\

are disjoint and closed subsets of X\{v}.
By induction we will construct sets 4, and B, such that
(2) A, ,cA,B, ,cB,A,.NB, =% and A,UB, =R,
and if P, = U,c4, {/,} and Q, = U,c5, {/,} then P, and @, are disjoint
and closed subsets of X\{v}(n =1,2, ---).

Suppose A4, ; and B,_, have been constructed. Since P,_; N
Bd(U,) and @,_, N Bd(U,) are disjoint closed subsets of Bd(U,) and



FANS AND EMBEDDINGS IN THE PLANE 501

J, N Bd(U,) is connected for each ¢ R, it follows as above, replacing
U, J,,nBA(U,) and J, N Bd(U,) by U,, P,_, N Bd(U,) and Q,_, N Bd(U,)
respectively, that there exists a closed and open subset H, of Bd(U,)
such that

P’n-—l n Bd( Un) c H’n c Bd( Un)\Q'n—-l .

Let A, ={reR,|J,NH,# @} and B, ={reR,|J, N H, = @}, then
A, and B, satisfy (2).

Let A=Us, 4, and B= ;.. B,, then AUB=Rand AN B =
@. Let G = U, {(J\}} and G, = U, .., {J\U,}. Since G, is open
in X and G = U,-,G,, it follows that G is open in X. Similarly
X\(G U {v}) = U,cs {J\{v}} is open in X. Hence G is both open and
closed in X\{v} and, since 7,€ A, and » € B,, (1) is proved.

5. Property P and embeddings in the plane. The main result
of this section is Theorem 5.2 where we prove that if a fan is locally
connected at its vertex, then it can be embedded in the plane. This
result gives a solution to problem 1015 of {6].

Since every fan is hereditarily decomposable and hence l-dimen-
sional ([9], p. 206), we can consider every fan as a subspace of I°.
We start with the following lemma.

LEMMA 5.1. Let X be a fan, with vertex v and

X =U,x{J.]J. = [0, 1] for each reR and J, NJ,, = {v}
if r, # r,€ R}

such that {J\{v}}, re R, is the decomposition of X\{v} into quasi-
components, then there exists an embedding f: X\{v} - C x I*® such
that each quasi-component of X\{v} is contained in {c} X I* for some
ceC, and

(L) FXNoh\f(X\{vh) < C x {9},

where C [0, 1] denotes the Cantor ternary set.

Proof. We may assume that XCI°. By ([9], p. 148), there exists
a continuous function g: X\{v} — C such that the quasi-components
of X\{v} coincide with the point-inverses of g. Then the funection
f: X\{v} — C x I® defined by f(x) = (g9(x), x) is an embedding. Only
(1) remains to be shown. Let

(2) (Cor %) € FI(X\{wH\F(X\{9})

and let {(c, z)}(¢ =1,2,---) be a sequence of points in f(X\{v})
converging to (¢, z,). We may assume that the sequence {x;} in X,
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where 2, = f~*((¢, 2,)), converges to a point y ¢ X. We consider two
cases as follows:

Case 1. y # v. Then the sequence {f(x,)}, where f(x,) = (¢;, %,),
converges to f(y). Hence f(y) = (¢, %,), contrary to (2).

Case 2. y =wv. Then z, = v and whence (1) holds.
These two cases complete the proof of the lemma.

THEOREM 5.2. Let X be a fan which is locally connected at the
vertex v of X, then X 18 embeddable in the plane.

Proof. Let
X = L{%{JflJ, = [0, 1] for each re R and J, N J,, = {v}
if r, # r.e R}

It follows from 4.1 that {J,\{v}}, » € R, is the decomposition of X\{v}
into quasi-components. Henece by Lemma 5.1 there exists an embedding
f: X\{#} — CxI® such that each quasi-component of X\{v} is contained
in {¢} x I* for some ceC and

SX{wH\f(X\{v}) € C x {o} .

It follows that f(X\{v}) satisfies all conditions of Theorem 2.2, where
K= f(X\{*})N(C x {v}). Hence there exists an embedding &: f(X\{v}) —
I* such that W(K) = h(f(X\{v))NI, where | = {(x, y) e I*|y = 0}. Let
w: I* — I*/l be the natural projection. It follows (see [9], p. 533)
that I? = I?/l and whence the mapping ¢g: X — I?/l defined by

_[mohof(x) if 20,
=) if z=w

9()
is the required embedding.

REMARK. J. J. Charatonik and Z. Rudy constructed a fan X
which is locally connected at its vertex (see [6], p. 215). They
conjectured that this fan is not embeddable in the plane. The above
theorem disproves their conjecture and gives a solution to problem
1015 of [6].
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ON BANACH SPACES HAVING
THE PROPERTY G. L.

SHLOMO REISNER

A Banach space E has the property G. L. if every
absolutely summing operator defined on F factors through
an L, -space. Some properties of spaces having G. L.
property are investigated, using methods of Banach ideals
of operators.

1. Introduction and notations. The property G. L. is known
to be shared by a number of important classes of Banach spaces: in
[6] it is shown that if E" is isomorphic to a complemented subspace
of a Banach lattice (in particular, if E has local unconditional struc-
ture in the sense of [4]) then E has the G. L. property. Subspaces
of L, spaces as well as quotients of C(K) spaces have G. L. property.
Moreover, in [17] it is shown that if £ is a subspace of a Banach
space F' s.t. (<7, F) = (<7, F) (in particular if F' has cotype
2) and F' has the property G. L. then E has the property G. L. In
fact, it is easy to see that it is enough for E to be finitely re-
presented in F. In this paper, we try to investigate the property
G. L. using methods of Banach ideals of operators. It is shown
that this property is characterized by a perfect ideal [I7, v]. We
obtain a description of the conjugate ideal [I'*, v*] and deduce that
[I", 7] is 2 symmetric ideal hence E has G. L. iff E’ has it.

It is also shown that a number of properties, known to hold
for spaces having [.u.st. in the sense of [4] are common to all the
spaces having G. L. For example, if F is a space having G. L.
which does not contain [%-s uniformly, then either E contains [?-s
gniformly and uniformly complementably, or E does not contain
[?-s uniformly at all.

It follows that if F is a space having G. L. and F a Banach
space, then there exist compact nonnuclear operators from ¥ to F
and from F to E. These are partial generalizations to results of
Davis and Johnson (see [2] and [9]). We show also that for spaces
having G. L. the property II(<2, F) = (52, E) implies that F
is of cotype 2; we show a dual implication as well.

The paper is divided into two parts. In §2 we describe some
tools in Banach ideals of operators; in §3 we use these tools in
investigating spaces having G. L. It seems to us that these tools
may be useful in other contexts.

The notations are of two kinds:

(1) General notations. We use standard notations of Banach
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space theory. If E is a Banach space its dual space is E’ and for
xe K, ©' ¢ B’ we denote by {z, ') the scalar product of x and «’.
We deal with Banach spaces over the field of real numbers.
Modification to the complex numbers case is straightforward. For
a positive measure space (2, 3, ) and 1 < p < « we denote by L, (%)
the Banach space of scalar, p-measurable functions f with |f|”
integrable (with classical modification for p = o) with the usual

norm.
We denote by L(E) = L,(u¢, E) the space of Bochner measurable
E-valued functions with ||f(-)|le L,(¢) equipped with the norm
WA =1 A iz,
The term “operator” means “bounded linear operator between
Banach spaces”. If E, F are Banach spaces, <“(H, F') is the Banach
space of operators from FE into F equipped with the norm of

operators.
Let E, F be Banach spaces; we say that F is finitely represented

in F (abbreviation: Ef.rF) if for every finite dimensional subspace
E, of E and ¢>0 there exists a subspace F, of F' and an isomorphism
w: B, — F, with [|u||||lu™]| =<1 + e If P is a property which makes
sense for Banach spaces we say that E has super-P if every space F
with Ff.rE has the property P.

(2) Definitions and mnotations concerning Banach ideals of
operators and tensor products of Banach spaces. A standard
reference in Banach ideals of operators is [8] (see also, [15] and [14]);
as a reference concerning tensor products one can use [20]. If [A4, a]
is a Banach ideal of operators we denote by [A*, a*] the conjugate
ideal and say that [A, a] is perfect if [A4, a] = [4A**, a**]. [4), a'] is
the adjoint ideal (T'c A'(KE, F)iff T"c A(F", E")).

Let [4, a] be a normed ideal of operators and E, F' Banach spaces,
a norm (called “an ideal norm”) is naturally induced on the tensor
product E® F Dby considering it as algebraically contained in
L (B, F). We denote E® F with this norm by E @, F and its
completion by E @a F. Let E, F be Banach spaces and uc E X F.
Let E,, F, be subspaces of E and F respectively s.t. there is a
representation of w as u = 3\, ¢, @y, with x, ¢ E,, y, ¢ F, for all 1.
We denote by a(u, E,, F,) the norm of % as an element of E @, F..
If F and F are not considered as subspaces of some other spaces
we denote a(u, K, F') = a(u).

We say that an ideal norm « is semi-tensorial norm if for every
pair of Banach spaces E, F, one which is finite dimensional, and
every e E® F hold: a(u) = inf {a(u, E,, F\); E,Cc E, F,CF, E, and
F, finite dimensional and uec E, ® F}.

We list here a number of ideals that we shall use in the
sequel.
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(a) [ 1]-1]] the ideal of all bounded operators.

(b) [, 7]} (1 < p =< o) the ideal of p-summing operators.

(¢) [I,,,] the ideal of p-integral operators. Ue I,[E, F'] if there
exists a probability space (2, Y, ;) and operators Ve ¥ (E, L. (1)),
We (L), F"') s.t. WiV = j,U where ¢ is the formal “inclusion”
map of L_(x) into L, () and j, the canonnical inclusion of E into
E".

We define 1,(U) = inf {{|V||||W|[; V, W, (2, 3, tt) as in the defini-
tion}. We say that U is strongly p-integral if the preceeding
factorization is for U instead of j,U.

(d) [N, v,] 1 <p < o the ideal of p-nuclear operators.

(e) [I',, 7,] the ideal of operators factorizable through L, Ue
I' (E, F') if there exists an L, () space and operators A e (&, L,(t)),
Be A (L,(p), F") s.t.j,U = BA. We define v,(U) = inf || B||[|A4]].

(f) (A new definition). [M, ¢] the ideal of operators factorizable
through a Banach lattice. Ue M(E, F') iff there exists a Banach
lattice L and Ae ~(H, L), Be (L, F')s.t.j,U = BA. wU)=
inf || B|}||A||. Using ultraproducts of Banach spaces ([1]) or the
methods of [5] one can show that [M, ] = [H**, n**] where [H, 7]
is the ideal of weakly nuclear operators introduced in [7]. Therefore
a Banach space E has [.u.st in the sense of [6] iff E" is isomorphic
to a complemented subspace of a Banach lattice ([5]).

It is known that the ideals in (a), (b), (¢) and (e) are perfect
and the same is true for the ideal in (f). It is also not hard to
check that all the ideal norms on tensor products induced by the
above ideals are semi-tensorial.

Let E, F be Banach spaces, the greatest tensor-norm, ©, is de-
fined on EQF by =(w) =inf {30, [z |/lly.ll; v= 3%y} for
ue K F. There is an identification (K @; FY = &2(F, E') defined
by

{u, T) = trace Tu = i {x,, Ty,
for

w=32RycEQF.
=1

2. Let I be an index set and {[A4, a;]};.; 2 family of normed
ideals of operators.

DEFINITION 2.1. (a) The greatest lower bound [A; 4, A.a.] of
the family is defined by:
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(A ANE, F) = (Te (B, F); Vi, Te A(E, F)
and sup a(T) < oo}

(4\ ai>T =supa(T) for Te (’) Ai>(E, F).

(b) The least upper bound [V, 4,, V. a;] of the family is defined
by:

<y Ai>(E, F)={(Te (B F) T =3 T; JcI, J finite
and for all jedJ T,e A (E, F)}
(Y a)(T) = int [ P aj(Tj)il tor Te(Y ANE,F),

the inf being taken over all finite subsets Jc I s.t. there is a re-]
presentation T = >;.; T; with T;e A,F, F).

PROPOSITION 2.2. (a) [A:4:; A:a]land [V, 4, V;a;] are normed
ideals of operators.

(b) If for all i [A,, a;] are Banach ideals then so is [A; A: A: @]
and if, in addition, I is finite, then [V a;, V:a;] is also a Banach
ideal.

(e) If for all i [A;, a;] are perfect then so is [A: A, A:a.].

The proof is routine.

PROPOSITION 2.8. [A.:A¥ A:af] = [(V.4)%, (V.a)].

Proof. Consider the following diagram, in which E, F are Banach
spaces, E,, F, finite dimensional Banach spaces and T, U, S, V
operators.

E-LF

VlSJ'U

E, — F,
(a) Suppose Te(V,;A)*(H, F) then

|trace TVST| = (V &) (DIVINTI(Y e )S)
hence, for all iel

trace TVSU| = (Y ) (DI VI TlladS) ,
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therefore viel aX(T) < (V,;a)"(T) and it follows that

Te (A A;‘<>(E, F) and (A a;“)(T} < (4 ai>*(T) .

(b) Suppose T'e A, A(E, F'). Let J I be finite and S = >;., S;
be a representation of S s.t.

,gj a;(S;) = <V ai>(S) L.

We have:
|[trace TVSU| £ 3, |trace TVS;U|

< Sy as ()| VI/1 Ul a(Sy)
< sup ax (D) |V [[[1U(X a(S))
= (A ) DIVIvI (Y a)s) + ],
therefore T'e (V, 4,)*(E, F) and (V,a,)"(T) < (A; aiXT).
COROLLARY 2.4. If [A,, a,] are perfect, then

(na), (Ae) [=[(var)" (va) ],

in particular, if E and F are finite dimensional then (without
assuming perfectness of [A,, a.]) for every Te Z(H, F) (A;a)"(T) =
(Vi ai)T).

Proof. Since for all ¢ [4,, a;] = [4FF, af*] we get

(ha) = (pae) <[y T = (v 49"

with equality of the norms. The second assertion is an obvious con-
sequence of the first.

DeriNiTION 2.5. (2) Let [4, ] and {B, b] be normed ideals of
operators and G a fixed Banach space. We define for Banach spaces
E, F:

(%)(}(E, F)={Te (B, F);vUeB({F,G) UTecAQE,G).

From the closed-graph theorem it follows that for every Tc¢
(A/B);(E. F') there exists a k>0 s.t. for all Ue B(F,G)a (UT) <
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kb(U). We define (a/b)e(T) = inf {k; k as above}.
(b) Let [A4, a] and [B, b] be normed ideals of operators, E and
I Banach spaces. We define

%(E, F)={Te ¥(KE, F); for every Banach
space G and Ue B(F, @) UTec A(E, ?)} .

It can be shown in a standard way that for every Tc A/B(E, F')
there exists a & >0 s.t. for every Banach space G and Ue B(F, G)
a(UT) £ kb(U). We define a/b(T) = inf {k; k as above}.

(¢) Let [A, a], [B,bl, E and F be as in (b). We define

%f(E, F)={Te~(FE F); 3k > 0 s.t. for every Banach space

G of finite dimension and Ue . (F, G) a(UT) < kb(U)}
L A(T) = inf k, b as sbove) for Te % f(E, F) .

PrOPOSITION 2.6. [(A/B)g, (a/b)¢]l, [A/B, a/b] and [A/Bf, a/b f]
are normed tideals of operators.

If [A, a] is @ Banach ideal then these ideals are Banach ideals.
If [A, a] is perfect then [A/B, a/b] = [A/Bf, a/b f].

Proof. The verification of the first and third assertions is
routine. We prove the second assertion for A/B.

Let {T,}..~ be a Cauchy sequence in A/B (K, F'). It is easy to
check the following facts:

(1) There exists an operator T'c¢ A/B(E, F') s.t. for every Banach
space G and Ue B(F, G) «(UT, — UT)m 0.

(2) The numerical sequence a/b(T, — T') is Cauchy, hence
a/b(T, — T)m 1=0.

It is left to show that [ = 0. Suppose I > 0. By (2) there is
an integer n, s.t. for any n =n, there exists a Banach space G, and
an operator U,c B(F, G,) with bU,) <1 s.t. a(UJ(T, — T)) > /2.
We get for m > n = n,.

(3) 12<a(UT, — T)) = (UT, — Tp)) + a(Uu(T,, — T)).

Choose n, > n, s.t. for all U with (U)<1 and n, m = n, we
have «(U(T, — T,)) < 1/8 (which is possible since {T,} is Cauchy in
A/BE, F)). Fix % > n, and let m, > n, be s.t. for m > m, we have
(U (T, — T)) < 1/8 (such m, exists by 1).

Applying (3) to the fixed » and some m > m, we get [/2 < /4
which is a contradiction that completes the proof.
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PRrROPOSITION 2.7. Let [A, a] and [B, b] be normed ideals of
operators such that A, al is perfect and b is a semi-tensorial norm.
Then [A/B, a/b] is perfect.

Proof. By Proposition 2.6 it is enough to show that [A/Bf, a/b f]
is perfect. Let Te(A/B F)**(E, F), then for every finite dimensional
subspace M of FE and finite codimensional subspace N of F
afb f(qxTiy) < (afb £Y**(T) where i,: M — E is the inclusion map and
gy: N — F/N the canonical surjection. Let G be a finite dimensional
Banach space and Uec B(F, @), since b is semi-tensorial we have:

b(U) = inf {(b(U, F', G); F' finite dimensional subspace of F"}
= inf b(U,)

the last infinum is taken over all operators U, and finite codimen-
sional subspaces N of F' such that U has a factorization of the form:

(1) o

For given ¢ >0 let N and U, be as in (1) with (U, < b(U) + e.
We have a(UTy)=a(Ugy Tix) Sb(U,)afb fay i) <(6(U) +e)afb £)**(T).
Since ¢ is arbitrary and [A, a] is perfect it follows that o(UT) <
b(UXa/b)**(T), therefore Te A/Bf(E, F) and a/b f(T) = (a/b f)**(T).

PropPOSITION 2.8. Let [4, a] and |B, b] be normed ideals of
operators, K and F Banach spaces of finite dimension and T e (K, F).
Then (a/b £)Y(T) = inf D71, a*(U)b(V,), the infinum being taken over
all representations of T of the form T=7r, U, V, with V,€ &< (E, G,);
U,e <G, F) and G, finite dimensional Banach spaces.

Proof. For fixed finite dimensional G and Se <~ (F, E) we have
(£),08) = sup (a(US); Ue (B, &), bU) £ 1)
Define the operator S: B(E, G) — A(F, G)

by S(U) = US. Then
a _ ~
(&), =181

The correspondence S — S enable us to identify (4/B)«(F, E) with
a subspace of L (B(E,G), AF, @)). Therefore (A/B)}(E, F) =



512 SHLOMO REISNER
[(A/B),(F, E)|' is a quotient space of A*(G, F')®. B(E, G) with the
following identification: for ¢ =37, U ®V, € A%G, F)®. BE, })
and Se(A/B)(F, E) we define
= Zn‘ U, V.8 = Zn, trace U, V,S = trace T'S
where
T=3UV,.

From the last discussion it follows that for Te &(H, F)

(&) () = inf {S a*(UB(V; T = 3, ULV
b [ i=1 =1
meg«aGﬂLeV«aFﬁ.

We complete the proof by noting that

antrl=LA (B A ()]

and by using Corollary 2.4 which shows that for finite dimensional
E and F

LE) G =LY By (]

DEFINITION 3.1. We define the ideal [I", v] by:

{(r,~] = [Fl , ﬁjl . Explicitly:
1, =,

TeI'(E, F)iff for every Banach space G and Uc II(F,G) UT e I'(K,G).

For such an operator T Y(T) = supv,(UT), the supremum being

taken over all Banach spaces G and U< /1 (F, G) with = (U) = 1.

DEFINITION 3.2. We say that a Banach space K has the property
G. L. (Gordon-Lewis) if for every Banach space G II (K, G) C I'|(E, G).
Of course, E has property G. L. iff the identity operator on FE is

in I'(E, E).

PRrROPOSITION 3.8. A Banach space E has the property G. L. if



ON BANACH SPACES HAVING THE PROPERTY G. L. 513

and only if there exist k>0 s.t. for every finite dimensional
Banach space G and Ue . Z(E, G) v,(U) < kx,(U).

Proof. This is a result of the equality

Iy L} - [L N ]

[Hl,ﬂl Hlf’ ﬂ,'lf

which is, in turn, a consequence of Proposition 2.6 and the fact that
[, 7] is perfect.

PROPOSITION 3.4. Let K and F be finite dimensional Banach
spaces and Te L (E,F). Then (a) v*(T) = inf [>7, ni(U)w,(V))],
the infinum being taken over all representations of the form T =
S UV, with V,eIl(E, G,), U; e II(G,, F) and G, finite dimensional
Banach spaces.

(b) ¥*(T) =inf [>2 | lllv:ll], the infimum being taken over
all representations of the form T = >3, T, s.t for all 1 there exist
positive Radon measures, p, on the unit ball B(E') of E' and vy; on
the unit ball B(F') of F s.t. for allxe E,y € F' and 1 < 1 < n hold:

(Ta,dl = e adidee) | 1w i)

Proof. (a) Follows from Propositions 2.8 and 3.3 combined with
the fact ([10]) that [I¥, v¥] = [I}, =1].

(b) Is a consequence of (a) and the following lemma which is
proved by methods of [10].

LEMMA 8.5. (¢) Let Te ¥ (E, F) (E, F not necessarily finite
dimensional) then

(1) inf ry(U)m (V) = inf [|v ||| ¢l

where the infinum on the left is taken over all Banach spaces G and
representations jT = UV with j the canonical inclusion of F' into
F", Uelli(G, F") and Vell(E, G). The infimum on the right is
taken over all positive Radon measures tt on B(E') and v on B(F")
(with the relative w*-topologies) s.t. for all x € K, y' € F’ hold

(T2 | 1@ lape) | K e aw) .
B(E') B(F'")
(d) If in (¢) E and F are finite dimensional then the infinum
on the left hand side of (1) can be taken over all finite dimensional
Banach spaces G.
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Proof. (d) follows from (c¢) since 7, and 7; are semi-tensorial (in
fact, tensorial) norms. We prove (c).

Let jT = UV be a factorization of jT with UeIl(G, F”) and
Vell(E, G). By the Pietsch factorization theorem there exist posi-
tive Radon measures, ¢ on B(E’) and v on B(F"”) s.t. for xe E, y' ¢ F’
Wal=| 1@ adldua), (US| 1@ v ldve”) and
el = w(V) + e, Iv|| < 7(U") +&. Therefore llvllll#ll = (@(U) +¢)
(w (V) + ¢) and

(2) KT y> = KVe, 0wy =| o adide| o, unyldy.

On the other hand, suppose ¢ and v are Radon measures on
B(E') and B(F'") respectively s.t. (2) hold for every zc¢ E, y ¢ F'
then we define operators:

U F'— L(v); UW) =<,y
and
Vi E— L(p); Vix) =<, +) .

Let H= U(F'), G = V(&) and let {-) be the bilinear form on
V(E) x U(F") defined by {(Vu, Uy') = (Tx, y'>, from (2) it follows
that this form is well defined and bounded with norm < 1, hence it
defines an operator We <~(G, H') with ||W|| <1 and (V, Uy') =
(WVe, Uy'>. We have then the following commutative diagram:

(3) Ul\ /é
G——>H’

where U, and V, are U, and V, considered as operators into G and
H respectively. Of course =, (U,) < |||l and 7, (V7)) < [|v|| which
completes the proof of Lemma 3.5 and Proposition 3.4.

REMARK 3.6. In [7] Gordon and Lewis show that for all E, F
and Te ¥ (K, F)

(L) p*(T) = inf [[ ]| ,

the infinum being taken over all positive Radon measures on B(E') x
B(F'") (with the product of the w*-topologies) which satisfy for all

’

X, Y.

(2) (T, )| = S | <2, &)<y, "> |dp’, )

B(E")XB(F'’)
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In fact, using compactness of the unit balls it is not hard to check
that for finite dimensional F and F we can replace “inf ||g]||” by
“inf ' [ gl ve]” in (1); g5, v; positive Radon measures on B(E')
and B(F') respectively s.t. for all z, ¥’

(3)  KTe,yI=3| @ adldp@)| 1w v)ldnw)

B(E’)
(all the g, ® v; but one may be taken as scalar multiples of d(x;) ®
o(y,)—the products of valuations at points z; e B(E'), y, e B(F'), the
one 1, X v, left may be a scalar multiple of the product of Lebesgue
measures on B(E’) and B(F')). The difference between p¢* and ~v* is
therefore the possibility to represent T as a sum >,-, T, where each
T, is “majorized” by the product g, ® v;. It follows of course that
p* < v*, hence ¢t = v and we get the result of [6]: if E” is isomor-
phic to a complemented subspace of a Banach lattice then FE has
property G. L.

CorOLLARY 3.7. [[',v}=1[I",7'], therefore E has the property
G. L. +f and only if E' has it.

Proof. [I'*,v*] = [, v*']; this is obvious for pairs of finite
dimensional Banach spaces from (a) or (b) of Proposition 3.4 and
passes over to all pairs of Banach spaces since [['*, v*] is perfect.
Now perfectness of [I, ] gives [[', 7] = [[**, v**] = [[™*, v¥*] =
[, v**] = I, 7).

The last corollary enables us to prove that a number of proper-
ties known to hold for spaces.having l.u.st. are true also for spaces
having the property G. L.

We use the next lemma of Pisier (J16] and [17]) which was
originally proved for spaces E with E’ isomorphic to a complement-
ed subspace of a Banoch lattice. However, Pisier’s proof uses only
the fact that such an E, and also E’, has the property G. L.

LemMmA 38.8. Let E have the property G. L.

(a) If E does mot contain I%'s uniformly, thenm there exist
7,2 =<qg< o« and C>0 s.t.

(1) For any E valued operator Arm,(4) < Crmi(A4).

(b) If meither E mor E' contain IX’s uniformly, then there
exist ,2<q< o, p,1<p <2 and C>0 s.i.:

(2) For any E-valued operator Aw,(A) < Cr,(A).

The next theorem and its corollary is in a certain way a
generalization of results of Johnson and Davis ([9] and [2]).
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THEOREM 3.9. Let E be finitely represented in o Banach space
F such that F' has the proverty G. L. and F does not contain I%-’s
uniformly. Then either E contains I'-'s uniformly and uniformly
complementably or E does mot contain [}-’s uniformly.

We need two lemmas.

LEMMA 3.10. Let [4, a] and [B, b] be normed ideals of operators
s.t. a is a semi-tensorial norm and [B, b} is perfect and right injec-
tive (which means: if E, F, G are Banach spaces, FCG and Te
F(H, F) then the b-norms of T considered as operator from E to
F or from E to G are the same).

Let F be a Banach space s.t. the following holds:

(1) There exists a & > 0 s.t. for every Banach space G and
TeAG, F) (T) < ka(T).

Let E be a Banach space s.t. Ef.r.F then (1) is true for E as
well.

Proof. Let G be a Banach space and T'¢ A(G, E). Let G, be a
finite dimensional subspace of G and T, = T'|s: G, — E. Then o(T,) =
a(T). Since a is semi-tensional and G, finite dimensional then
a(T) = inf {a(T.: G,— N); N a finite dimensional subspace of F with
T(G,)c N}. Given € > 0 there exists therefore a finite dimensional
subspace Nc E with T(G,)c N s.t. T,:G,—> N — the astriction of
T,, satisfies a(T,) < (1 + &)a(T). We can find a N,C F and an iso-
morphism i: N — N, with [|4]| £1; [|[+7*]| <1 +e. Let j: N,— F be
the inclusion map from N, into F, then a(5iT.)) < (1 + ¢)a(T) and
(1) gives:

b(jiT) < k(1 + e)a(T), injectivity of [B, b]

implies now that b(iT,) < k(L + e)a(T). Therefore b(T,) < k(1 + &)*a(T)
which implies b(T,) < k(1 + €)’a(T'). Since ¢ is arbitrary and [B, b]
perfect we conclude that o(T) < ka(T).

We say that a Banach space E has property I — K (respectively
I — N,) if for every Banach space G and strongly integral operator
T:G — E T is compact (respectively — T is r-nuclear). It is known
(combining results of Diestel [3] and Pisier [18]) that the property
super (I — N,) is super reflexivity.

LeMMA 3.11. The following are equivalent:
(a) E has the property super (I — K).
(b) E does not contain I?’s uniformly.
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Proof. It is known that if & contains {?-s uniformly than [,
as well as L,[0, 1] are finitely represented in E. The formal “inclu-
sion” map L.[0, 1] — L,[0, 1] is strongly integral, noncompact opera-
tor, therefore in this case K fails to have super (I — K). Suppose,
on the other hand, that E does not contain [”-s uniformly but there
exists an integral noncompact operator into E. The adjoint of this
operator is a strongly integral noncompact operator T defined on E’,
hence it is a Dunford-Pettis operator (which means that it takes w-
Cauchy sequences into norm convergent sequences). Since E does
not contain I7-s uniformly — E’ does not contain an isomorph of I, it
follows from a result of Rosenthal [19] that every bounded sequence
in E' contains a w-Cauchy subsequence, but then T must be compact
— a contradiction. Therefore E has (I — K). Since “not containing
{*-’s uniformly” is a super-property it turns out that E has in fact
super (I — K).

Proof of Theorem 3.9. From Lemma 3.8 follows the existence
of ¢ >0 and 2 < ¢ < <= 5.t for every Banach space G and A:G -~ F

(1) T (A) = emi(4) .

From Lemma 3.10 we deduce that (1) holds for E as well. If E
does not contain [7-s uniformly and uniformly complementably E’
does not contain IZ-s uniformly and follows as in [16] the existence
of d >0 and 1< p=2 s.t. for every G and A:G— E 7w (A) <dn,(A).
Therefore there exists £ > 02 < ¢ < oo, 1 < p <2 s.t for every G
and A as above

(2) T (A) = ki (A) .

By Lemma 3.10 (2) is true for every Banach space which is finitely
represented in E. Now, let G be a Banach space and 7. G — FE a
strongly integral operator. Then T has a factorization

¢ —— &

(3) Bj | ]A
L.(2, 1= L2, 1)

with (2, ) a probability space and j the formal “inclusion” map.
We look at the factorization

L.(Q, ) —— L2,
(4) N e
Lp’(‘g’ /’5)
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where 1/p + 1/p’ = 1 and +4,, %, are the formal “inclusion” maps. Then
A, e, (L, (), E) and from (2) follows Ai,en,(L,(¢), E), a known
result of Persson and Pietsch [14] combined with the fact that ¢B
is strongly 9’ integral then shows that

1

’

T — AijiBeN,(G, E) with L —
r P

1
T T .

q
Since the same is true for every Banach space finitely represented
in E, E has super (I — N,) and of course it has super (I — K).
Lemma 3.11 then shows that E does not contain I*-s uniformly.

REMARK. We do not know if the property super (I — N,) is in
fact strictly stronger than “not containing I7-’s uniformly”.

COROLLARY 3.12. Let E be a Banach space which either has the
property G. L. or is finitely represented in a Banach space F s.t.
F has property G. L. and does not contain 1%-’s uniformly. Then
for any Banach space G there exist compact nonnuclear operators
from E into G and from G into E.

Proof. From Theorem 3.9 it follows that in both cases one of
the three possibilities hold: (a) & contains I%-s uniformly.

(b) K contains !*-s uniformly and uniformly completably.

(¢) FE does not contain [7-s uniformly.

In each of these cases the result follows, in (a) or (b) from results
of [9] and in (¢) from the result of [2].

Let E be a Banach space. We say that & has Grothendieck
property (G. P.) if II(~,, E) = (., E) (see [4] for discussion
of this property). Maurey [12] showed that if E has cotype-2 then
E has G. P., Pelezynski [13] shows that the inverse implication is
true if E has [.u.st. We can generalize:

THEOREM 3.13. Let E be a Banach space having the property
G. L. Then

(a) E has G. P. if and only if E is of cotype-2.

(b) E'" has G. P. and E’ does mot contain I-s uniformly if and
only +f K is of type 2.

Proof. In both assertions only the “only-if” parts are new and
will be proved.

By Corollary 3.7 we know that E’ also has the G. L. property.

(a) Suppose E has G. P. As in [16] the fact that <~ (&2, E) =
11(%2,, E) combined with the G. L. property of E’ shows that there
exists ¢ > 0 s.t. Any FE-valued operator A satisfies
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(1) my(A) = emi(4) .

By [16] (1) is equivalent to the following condition:

(2) Let S be a subspace of an L,(¢) space and w:S— L,(v) a
bounded operator. Then w & I, (I, — the identity operator of E) can
be extended to a bounded operator S@AIEHLQ(F) (for a subspace
S of L,(#), 4, denotes the norm on S & E as a subspace of L,(¢, E):
of course L,(1t) @, E = L,(, E)).

We choose S to be the closed linear span in L0, 1] of the
Rademacher functions {r,}. (v.(t) =sign2"nt; »=0,1, .--.) It is
known that S is isomorphic to l,. Let @ be the isomorphism from
S to I,

w(z bn/r'rb) = (b'ﬂ)’lb€N .
From (2) it follows that
0wRI:S® E—1,

is bounded. Therefore, for %, ---, 2, € E we have:

(Zhesl)” = @@ WS r o)

l9(E)
<o L3
il3=1 | Ly([0,1),E)
1 n
= o LI | |37 @ dt
Hg=

therefore E is of cotype 2.

(b) Let E’ have G. P. and suppose E’ does not contain [;-'s
uniformly. Then E does not contain [%-’s uniformly and Pisier’s
method ([16]) yields the existence of C >0 and 1 < p <2 s.{. Any
E’-valued operator A satisfies

(3) mo(A) = Cmy(4) .

(3) is equivalent to

(4) Let w be a bounded operator w: L,(ft) — Ly(v), then o Q I
is extendable to a bounded operator ® & I,: L, (¢, E')— Ly(v, E").
For such a w we get therefore that

(@ @ Ip): [Lov, B — [Ly(g, ENY

is bounded.
It is easy to check (identifying L,(v, E") and L,(y, E") with
subspace of [L,(v, E)]' and [L,(#, E")]) that

(0 Q Ip) (Lo, E")) C L, (g, E")
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and

(@ Ig) =& @ Iy

considered as operators L,(v, E”') — L,(¢, E"”).
Therefore ' ® I, is well defined and bounded. Now, take
Lyv) = 1,, L,(¢) = L,[0, 1] and w: L,[0, 1] — I, defined by

o(f) = I, a)duew -
w is bounded and ®':l, — L,[0, 1] is the embedding of [, in L,[0, 1]:
@'(g) = 2. 9;r; for g = (g;)enels.
We get for z«, ---, 2,€ E:

(1S e at)” = [5m @,
0 li5=1 i =1 Ly (B
[0 @L(Ze®)| = 10 @ LS e

, n 1/2
= & @ Ly || (3 121
(e; being the unit vectors in l,). Therefore E is of type 2.

Some concluding remarks. The property G. L. as it is defined
is in some sense an “external” property. It is interesting to find
some “Internal” geometric characterization of this property. Up to
now we know of no example of Banach space having the G. L.
property for which E” is not isomorphic to a complemented subspace
of a Banach lattice, though Remark 3.6 hints that the existence of
such example is probable (a result of Lewis [11, Cor. 4.2], together
with the fact that each subspace of [, has G. L. constant 1, shows
that the two norms are not equal).

Another course of problems may arise with respect to properties
of spaces having the G. L. property, e.g., how far properties of
spaces having [l.u.st or isomorphic to complemented subspaces of
Banach lattices pass over to spaces having G. L. property. Also
one can ask how one can use such properties to the solution of
problems concerning general Banach spaces. For example with
respect to the problem of compact-nonnuclear operators arises the
problem: suppose E satisfies <2(E,1,) = II(E, l,), does this imply
that F can be embedded in a space having G. L. property which
does not contain IP-s uniformly?
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A TREE-LIKE TSIRELSON SPACE

GIDEON SCHECHTMAN

An example is given of a reflexive Banach space X such
that X@XP.-- P X)lln, n=1,2,---, are uniformly isomor-
phic to X. Some related examples are also given.

1. Introduction. In [4] Lindenstrauss observed that a Banach
space X such that (X@ XD --- @ X)» is isometric to a subspace
of X for every n must contain an isometric copy of [,. This gives
a very simple proof to the fact that there exists no separable
reflexive Banach space which is isometrically universal for all the
separable reflexive Banach spaces. Lindenstrauss asked whether the
isomorphic version of this result is true; i.e., does the fact that X
contains uniformly isomorphic images of (XPXP.---PH X )T
n=1,2, ---, imply that X contains I/, isomorphically? An affirmative
answer would give an alternative proof to the nonexistence of an
isomorphically universal space in the family of all separable reflexive
spaces as well as in the family of all spaces with a separable dual.
(The nonexistence of these spaces was proved by W. Szlenk [8] by
a completely different method.) TUnfortunately the answer to
Lindenstrauss’ question is negative in a very strong sense.

THEOREM. Let 1 < p < o and N> 1. There exists a Banach
space X with a l-unconditional basis {e;}i=, with the following pro-
perties:

(a) X 1s reflexive.

(b) X does not contain a subspace isomorphic to l, (¢, in the
case p = o),

For every m=1,2, --- there exist n disjoint subsequences of
the natural numbers N, N,, ++-, N, such that

(€) {edicn;i 18 tsometrically equivalent to {e}e,, and

(d) If z;¢ [ei]ieNj; J=1,2, -+, n then

n 1/p ” ” i/p

V(S led) 5 |5 ] = (S llaale)
j=1 I]=1 i=1

(v max ol = %05 =3 maxljail if p= ).
1<jsn j=1 1=j=n

() There exists a K < o such that X is K-isomorphic to
XpXPp--- @X)l;» for every n.

The construction uses ideas from [9] and [1] as well as the basic
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idea of James to construct Banach spaces on trees. The notations
are standard and can be found in [5] or [6].

Proof of the theorem. We first deal with the case p = . Let
(T, <) be the set

T= {(n> yn=01 -, 7=1,-.-,2".
With the partial order
(n,3) < (m, §) if and only if » < m and (3 — 1)2" " < j < 2n" ,

Let L be the linear space of all the functions on T which differ
from zero only on a finite number of points of 7. For n =0,1, ---
and ¢ =1, .--, 2" define ¢,,e L by

1 () =(m,J)

i m’ ] = .
a1, J) {O otherwise .
And define the operators P, ., S,. and P, from L to L by

(P, x)(m, §) = {x(m’ N (i) = (m,'j), xel
0 otherwise
(S..)m, ) =ax(m +n, (5 —1)2" +35), zelL

and

2%

Pn:ZPn,i'

Now, we define on L a sequence of norms [|-||, by induction
llello = lllly, = 2 la(n, 9)]

K
lall = inf {llzlas + A 3} max || Peillo}
k=1 1<is2k

where the inf is taken over all finite sequence «,, «-+, 2, in L which
satisfy

K
kggxk:x and Pax,=2,, k=0 -+, K.

It is easy to prove by induction that for every ze€ L and every m
Hcho é Hme § Hme—l .
So that we can define

lalf = lim 2]
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[|+]| is a norm. Let Y, be the completion of L with respect to |||,
and let Y be the completion of L with respect to ||-||.

LEMMA 1. (@) {e..)o-0iz, is @ l-unconditional basis for Y, and
for Y.
(b) If R is @ norm one projection on [(T) such that P,,R =
RP,,;, for all k=0,1,-- and i =1, --+, 2%, then R 4s a nmorm one
projection on Y, and on Y.

(¢) 8S.,;is an isometry from P, ;Y, (resp. P, ;Y) onto Y,(resp. Y)
for all n=0,1, -+, 5 =1, ++-,2™

(d) For every xe L the infimum in the definition of |lz||. s
attained.

(e) For every xe L

K K

loll = min {llafly, + % 3 maz (1Pl @ = Sion, P = ol .

Proof. (a) and (b) are proven by induction and passing to the
limit. (d) is a simple consequence of (b) (for R =1 — P,). We prove
now (e). For every {x,}, such that z = > %, and Py, = x,,
k=0,---, K and for all m

K
llell = flolln = 2ollny + N 3 max [Py 2l

K
= flaofly, + 3 > max Py, il s -
k=1151=2

So, passing to the limit and using (b) to prove that the infimum is
attained, we get

K K
lall = min {lally, + % 3% max [Pz = 3, Py = o) -
E=11sis2k E=0

In order to prove the other side inequality it is enough to prove that
for all m and all xe L

K K
lolla = min {llally, + % 3, max [Pl @ = 3o, P = o -

We prove this by induction on m. This is obvious for m = 0, assume
it is true for m — 1 and assume that

K
Hme = ||x0Hm~1 + N Z ma)i ]]Pk,ikam—l
k=11=is2

where x = 3\X 2, and P, =, k=0, ---, K.
By the induction hypothesis

H
| p——— HyoHll + N> max || Py, sl
=1 1=i=<zh
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for some {y,}i-, such that , = >\, ¥, and Py, =¥, h =0, ---, H.
We assume as we may that H = K, then z =y, + D, (@, + 9.),
Pk<xk + yk) = X + Yrs k= 17 "'7K and

K
)l = ”yoHll + A ma)i || Py,o(y + Yol -
i=iisize

To prove (e¢) it is clearly enough to show that for every z such
that P, ;& = « and for every m

lalla = min {Jleaflas + 3 5 max (1P

1 1<i<z2k

where the minimum is over all the sequences {x,}/., such that
z=>5,%, and P, ;Px, =2, k=n,n+1,.---, K.
Let « satisfy P, ;x = x and let {y,}i_, be such that

H
]l = [[Yollm s + N >, max [|Ptsllne »
h=1 124152
H
v=3y and Pyp=v, h=0 -+ H.
=0

We can assume that H > % and by (a), we can also assume that
Pn,iyh:yh9 h:()y ”'9H'

lolla = ellcs + % 3 max 1P tillac + 3 3 max [P

=n+411=<

H
= |[¥ollm—s + N Z sl + ¥ 3 max [Pyl -

11<ig2h

If S l1Wallmey > 0 then since n > 1

el > 110 + Yy + + o + Yl + N 2 max || By, 4|

+1 12152
in contradiction to the fact that the minimum is attained at
Yy ***, Yu. This concludes the proof of Lemma 1.

PROPOSITION 2. (a) For every n=20,1,.-- and {y}Z, such
that P‘n,ly‘b = Y, i = 1; ct %y 2'n’

max [y =

182"

< max [yl .
15452%
(b) Y does not contain an isomorphic image of ¢,.

Proof. (a) The left hand side follows from the 1-unconditionality
of {e, Jo_,2,. For the right hand side put

2m
z,=>.% and x,=0 for k#*n
i=1
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then, by Lemma l.e,

on
> Y
=1

= M max HPnzxn” = A max HyzH .
15ig2m 11527
(b) Assume that Y contains an isomorph of ¢,. Since the unit
vector basis of ¢, tends weakly to zero, we can assume that there
exist a sequence {u,}3-, of norm one elements in ¥, an increasing
sequence {m,}s—, of positive integers and a constant K such that
(P, — P,

Map+1

)un:un’ n:1,2,---

and

< K max |a,|

1=n<oo

max lan‘ é “Z (2 2%
in=1

1=n<oo

for every sequence {a,};-, such that a,— 0 as # — . For every n
let 1 <1, < 2™ be such that

and put

By part (a) and Lemma 1.a.
1= flt]] S Mval]l S Mwal =N

and

> Uy,

n=1

3 4w,

in=1

< K max |a,|

150 <co

AT max |a,l =

1=n<>o

=

for every sequence {a,};-, such that a, —0 as # — . We also have
P v, =v, =12 +---. By passing to a subsequence we can also

Mysiy

assume that

P

Mayrty

v,=v, forall r=mn.

This last property (with other m,’s) remains true for every Dblock
basis of the u,’s. Thus, by a theorem of James [3], we may assume
that there exist an %, a 1 < j < 2" and two normalized vectors w;,
w, in Y such that

I —Pyyw, =w,, P,;w,=w, and ||w, + w,]| <N —¢& where

¢ > 0 satisfies 1 <M — e <1 + ¢/n. Let {x,}i—, be such that w, + w, =
:Elf;o‘”ky I%Jvk = Ly k = 0, MY 1{ aJld

(*) 1w, + wll = oy, + 3 3 max [Py
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(such z,’s exist by Lemma 1l.e). We can also assume that K = »n
and that supp z, < supp (w, + w,), k =0, ---, K. We first prove that

**)

=

If this were not true then, since P, ;P,x, = Pz, for k=0, ---, K,

H/\

N> [lw, + w)| zxﬂgrg % [| Py Py

n—1

=N [Pl = )

k=1

n—

=1

From (**), we get that

(%) HP”% +L_EI:‘ x, } > %
Indeed,
+ ixk = ‘ + gﬂankl
2 [P(g ) - |2
= lw) ~ |5 P z1 -2 = 2

Now, by Lemma 1l.e, the equalities
n—1

:lzz.:l)(I—Pn)xk9 PP(-[—Pn)xk:(I——Pn)xk; IG:(),"',"’L"—I.

and
K K
an0+,§‘xk:an°+kZ‘xkr kak:xkr k“—"O,%,%‘l’l,"‘,K,
(*) and (***) we get
n—1
= o> llw + wl| 2 I = Pl + 1 3 max [| Pl — P

K
+ [| Patcol| + A’%Eﬁiﬁ Pyl |

K
+k§]xk

>1+ 5
>

which contradicts the choice of e. This concludes the proof of
Proposition 2.

The space Y satisfies (b), (¢) and (d) of the theorem for p = co
this follows from 2.b, 1.c and 2.a, respectively it is also not hard to
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see that Y satisfies (e), however (a) is not satisfied, indeed, if
{(ny, 14)}5=1 1s a totally ordered sequence in T then it is not difficult
to see (using l.e.) that [e,, ;]i-, is isometric to I,, so some additional
work is needed.

Proof of theorem for p = co. Define on L a new norm by
lelll = [l we L

(for x = D, @y €..; |2]* is defined to be >, |@..:%.,.:), and let X be
the completion of L with respect to this norm. It is easy to check
that {e, i, 2, constitutes a l-unconditional basis for X. Now, if
{x,.)2_, is a block basis of {e, i, i, then
M

|

> a2, =b max |a,|] for all a, -, ay

1m=1 | ls=msM

¢ max |a,| <
1Sms=M

if and only if

a1/21£na<)§ @) g“' il Qo 12,12 H < b2 eraSXM[a,mi for all a,, «+-, ay .
This proves that (b), (¢) and (d) of the Theorem remain valid for X
(with A\® instead of A\). In order to prove (a) it is enough, by James
theorem [2] to prove that X does contain an isomorph of 4. This
in turn is a consequence of the following simple fact: if {x,}X., are
disjointly supported with respect to {e, .}y-. i, then

H

To prove (e) it is enough, in view of (¢), (d) and Pelczynski’s
decomposition method [7], to prove that X is isomorphic to X & X.
Now, as we mentioned above for any totally ordered sequence
{(ny, 2)}e= in T {e,, .} in Y is equivalent to the unit vector basis
in I, thus, {e,, )i in X is equivalent to the unit vector basis in I,.
So, X contains a copy of 4 and therefore is isomorphic to each of
its one co-dimensional subspaces. In particular to [e,;]3-, %, which,
in turn is isomorphic to X P X.

M
2L Ty
m=1

= (3 oalt) "

Proof of the theorem for 1 < p < . Let X and {e}, be the
space and the basis which satisfy the theorem for » = « and let
{fi}. be the biorthogonal basis of {e;}, then clearly X* and {f.}:,
satisfy the theorem for p = 1.

For p > 1 define, for every eventually zero sequence {a:,,

i/p

@zl = || s,
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Considerations similar to those in the proof of the p = « case show
that the completion of the space of finite sequences under
satisfies the theorem.

?

REMARK. It may be useful to know what is the dual norm to
. Define on L a sequence of norms as follows

|zlo = [laelle,

|x|,, = max {]x]m_l, A7 max f_‘, lPk,,x]m_l}

1€k<co i=1
and define
2| = lim ||, .
It can be shown that for every xze L
ok
2] = max {jall,, V' max 3% [Pyal}
1Sk<co 1=1

and that {[e,.)5-.%-1, ||} is the dual of {[e, .]J%-02%,, |I+]

}.

Once this duality is proved it can be used to simplify the proof
of the theorem, in particular the proof of Proposition 2.b. We
prefered, however, to give a proof which avoids the routine proof
of the duality.
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FIX-FINITE HOMOTOPIES

HELGA SCHIRMER

A well-known result by H. Hopf states that every
selfmap f of a polyhedron |K| can be deformed into a self-
map f’ which has only a finite number of fixed points and
is arbitrarily close to the given one. In addition one can
locate all fixed points of f” in maximal simplexes. A map
which has a finite fixed point set is here called a fix-finite
map, and a homotopy F: |K| X I— |K| is called a fix-finite
homotopy if the map f: = F(-,t) is fix-finite for every t€ L.
We extend Hopf’s result to homotopies, and show that two
homotopic selfmaps f, and f, of a polyhedron |K| which are
fix-finite and have all their fixed points located in maximal
simplexes can be related by a homotopy which is fix-finite
and arbitrarily close to the given one. All fixed points of
F' can again be located in as high-dimensional simplexes as
possible. Some simple properties are derived from the fact
that the fix-finite homotopy is constructed in such a way
that its fixed point set is a one-dimensional polyhedron in
K| x I.

A. Introduction. In 1929 H. Hopf [2], Satz V, proved a well-
known theorem which states that every selfmap f of a polyhedron
can be deformed into a selfmap f’ which is arbitrarily close to f
and has only a finite number of fixed points. The construction of
f’ ean be carried out so that all fixed points of f’ are, in Hopf’s
terminology, “regular”, i.e., they are located in maximal simplexes.
We call a map which has only a finite number of fixed points a
fix-finite map, and formulate Hopf’s result accordingly.

THEOREM 1 (Hopf). Let f be a selfmap of a polyhedron |K|.
Given € > 0, there exists a selfmap f' of | K| such that

(1) f' is fix-finite,

(2) all fixed points of f' are contained in maximal simplexes
of | Kl,

(38) the distance d(f, f') <e.

We ask in this paper whether a similar result can be obtained
for homotopies. We call a map F:|K| X I— |K| (where I is the
unit interval) a fix-finite homotopy if the map f;:|K|— | K| defined
by f.(x) = F(z, t) is a fix-finite map for every ¢ € I, and ask therefore
whether two selfmaps f, and f, of a polyhedron |K| which are fix-
finite and homotopic can be related by a homotopy which is fix-finite
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and arbitrarily close to the given one. We shall show that this is
possible if all fixed points of f, and f, are contained in maximal
simplexes, and we shall construet the fix-finite homotopy so that its
fixed points are again located as nicely as possible. They clearly
cannot all be located in maximal simplexes of | K|, but they can be
located in simplexes which are either maximal, or faces of maximal
dimension. Let us make these notions precise.

We denote by |K| a polyhedron which is the realization of a
finite simplicial complex K, by o an open simplex of K, by & its
closure, and by dim ¢ its dimension. ¢ < = means that ¢ is a face
of the simplex z. The (open) star st ¢ of o consists of all simplexes
z of |K| with ¢ <7z. A simplex ¢ is called mazimal if o0 =sto,
and we call it a hyperface if dimsto =dimo + 1. A fived point
of a homotopy F:|K| x I— |K| is defined as a point 2 e |K| with
F(x,t) =« for some tel. If f, f' are maps and d is the metric of
| K|, then the sup metric is given by

d(f, f) = sup {d(f(@), f'(x))|x e X} .

We use this terminology to state our main result.

THEOREM 2. Let F be a homotopy between two selfmaps f, and
fi of a polyhedron |K|, let f, and f, be fix-finite, and let all their
fixed points be contained in maximal simplexes. Given ¢ > 0, there
exists @ homotopy F' from f, to f, such that

(1) F’ is fix-finite,

(2) all fixed points of F' are contained in maximal simplexes
or hyperfaces of | K|,

(3) d(F, F") <e.

Special cases of Theorem 2 are known. Weier [6] constructed
a fix-finite homotopy satisfying (1) and a condition related to (2) if
| K| is a 2-dimensional pseudomanifold satisfying a certain connected-
ness condition, and in [4], Satz III we constructed a fix-finite
homotopy satisfying (1) and (8) if | K| is an orientable and triangula-
ble finite dimensional manifold without boundary.

The proof of Theorem 2 given below is related to Hopf’s proof
of Theorem 1. Hopf started with a simplicial approximation of the
given map, and then carried out a succession of changes on simplexes
of increasing dimension which freed the simplicial approximation of
fixed points on all but maximal simplexes. The final result is a
map which is again simplicial and satisfies Theorem 1. Hopf’s proof
is readily available in [1], pp. 117-118, where the successive changes
are called “Hopf constructions”.
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In our proof of Theorem 2 a homotopy is altered successively
on simplexes of increasing dimension by a “Hopf construction for
homotopies” which is described in §B. As this construction can only
be applied to simplicial homotopies, it is first necessary to approxi-
mate the given homotopy by a simplicial one. This leads to a proof
of Theorem 2 in three steps. In the first, the given maps f, and f;
are, with the help of the Hopf construction, approximated by fix-
finite simplicial maps g, and g¢,, and fix-finite homotopies H, from
f; to g, (where 7 = 0, 1) are obtained in a manner reminiscent of [4].
A homotopy between the simplicial maps ¢, and g, has a simplicial
approximation relative to | K| x {0} U | K| X {1}, on which a succession
of Hopf constructions for homotopies is carried out in Step 2, leading
to a fix-finite homotopy G’ from g, to g,. Finally, in Step 3, the
desired homotopy F” is obtained by constructing a homotopy from
g, to g, as the composite of H;!, F, and H, changing it to a
homotopy G’ as in Step 2, and forming the composite of H, G’, and
H;', where all compositions are made with suitable scale changes to
ensure closeness between F and F".

The homotopy F' is constructed in such a way that the set

Fix F" = {(z, t) e | K| x I|F'(z, t) = }

is a finite one-dimensional polyhedron. Some simple consequences of
this fact are given in §D. One of them is the existence of an upper
bound M so that the number of fixed points of f; is <M for every
tel

B. A Hopf construction for homotopies. Let G be the reali-
zation of a simplicial function P — K, where P is a suitable complex
with |P| = |K| x I, and let = be a given simplex of |P|. The Hopf
construction for homotopies, which frees G of all fixed points on 7
as long as G(z) is not maximal in | K|, will be the basic tool in the
second step of the proof of Theorem 2 and we shall embody its
results in the rather technical Lemma 1 below. We write G: |P|—|K]|
to indicate that G is the realization of a simplicial function from P
to K. The construction of K,, the barycentric subdivision of K
modulo the subcomplex L, can e.g. be found in [3], p. 49. If L = ¢,
then it is the ordinary barycentric subdivision of K. A refinement
of K is a complex obtained from K by means of a finite number of
subdivisions modulo subcomplexes. (K) denotes the mesh of | K|,
i.e., the maximum of the diameters of its simplexes.

LEMMA 1. Let P be a complex with |P| = |K| x I, let G:|P|—
| K| be simplicial and w.|P|— |K| be the first projection. If T is
a simplex of | P| for which w(t) is contained in a simplex p of | K'|,
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where K' is a refinement of K, if T NFixG # ¢ where FixG =
{(z, t) e |P||G(x, t) = w(x, L)}, and if G(t) is not maximal in |K|, then
there exists a simplicial map G':|P,| — |K|, with Q = P\stz, so
that

(1) zNFix G = ¢,

(2) G=G on |Q,

(3) d(G, @) = 2(K).

Proof. Let p* be a maximal simplex of K’ with o < p*, and
o* be a maximal simplex of K with p* Co¢*. Then

r(tycpcp*cao*.

If ¢ = G(z), then n(z) N o # ¢ implies o < o*.

Define G: |P,| — | K| on the vertices of P, as follows: If ve@,
let G'(w) = Gw). If t;estr\r and v is the vertex of P, contained
in z;, let G'(v) be any vertex of o, and if v is the vertex of P,
contained in 7, let G'(v) be any vertex of ¢* which is not a vertex
of ¢. (As ¢ is not maximal, such a vertex exists.) It can be
checked that G’ extends to a simplicial map G':|Py| — |K|. The
proof that G’ satisfies the conditions (1), (2), and (8) closely parallels
arguments in [1], p. 117-118, and is omitted.

C. The proof.

Step 1. Construction of fix-finite simplicial maps ¢, which are
fix-finitely homotopic to the given maps f;.

We begin with a simple lemma.

LEMMA 2. Let | K| be a connected polyhedron, xe|K|, and the
carrier ¢ of x in | K| maximal. Given & > 0, there exists a y€o
with d(z, y) < 6 whose carrier in any refinement of K is maximal.

Proof. | K| is connected, therefore ¢ is of dimension p > 0. As
the number of refinements of & is countable, the dimension of the
union A of the (p — 1)-skeletons of all refinements is p»p — 1, and
yeo\A with d(z, y) < 0 exists and satisfies the lemma.

The result of Step 1 is given as the next lemma, where
diam H = sup {d(H(x, t), H(x, t")) |z c | K|, t, t' e I}
denotes the diameter of a homotopy H:|K| x I — |K]|.
LemMmA 3. Let fi: | K| — | K|, 1 =0, 1, be two selfmaps of a poly-

hedron |K| which are fix-finite and have all their fixed points
located in maximal simplexes of |K|. Given ¢ > 0, there exist a
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refinement K' of K, refinements K;' of the first barycentric subdivi-
sion of K', simplicial maps g.: | K;|— |K'|, and homotopies H, from
Ji: to g, so that

(1) H; is fix-fintte and has all its fixed points located im the
maximal simplexes of | K|,

(2) the fixed points of g, are located in distimct maximal
simplexes of |K|,

(3) diam H; < ¢/4,

(4) (K < e/8(n + 1), where n = dim | K|.

Proof. We can assume that |K| is connected, otherwise the
construction is made on each component.

(i) We first construct two maps fi:|K|— |K| and homotopies
H; from f, to f; such that all carriers of fixed points of f; are
maximal in every. refinement of K, all carriers of fixed points of
H; are maximal in | K|, and diam H; < ¢/2.

Consider f,, and let Fix f, = {¢;} be its fixed point set. As f, is
uniformly continuous, we can select B with 0 < 8 < ¢/16 so that,
for all ¢; e Fix f;, the open g-balls U(c;, B) are pairwise disjoint and
each U(e;, B) is contained in the carrier of ¢; in |K|. Now select v
with 0 < v < B/2 such that d(x, fi(%)) < B/2 for all xe U {U(c;, 7)|c; €
Fix fi}. According to Lemma 2 each U(c;, v) contains a point ¢; whose
carrier in all refinements of | K| is maximal. If xe U(c;, v)\(c}}, let
Y be the point in which the ray from c; to z intersects the boundary
Bd U(e;, v), and z the point on the segment from ¢; to y for which

d(e;, ¥) ’
d(e;, 2) = ——2=£ . d(c}, x) .
( d(cj, y)
— —

To define a map f,; from U(c;, v) to Ulc;, B), denote by ab the (free)
vector from a to b in U(e;, B), and determine f.;(x) for = # ¢; by

TN T T

¢ifoi(®) = ¢ + 2fy() ;

also let fi; = ¢i. B
As we have for all ze Ule;, v)

d(f(’).f(x)i cj) _S_ d(féj(x)r x) + d(xy ci)
= d(fo(2), 2) + d(w, ¢;)) < B2+ 7 <8,

this construction is well defined.
Now define f;: |K|— | K| by

fou(x) if xe U{U(e, 7)le; e Fix fi} ,
) otherwise .

fo@) =

fo is continuous, and its fixed point set is Fix f; = {¢}}. Hence all
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carriers of its fixed points are maximal in every refinement of |K|.

If fo(x) # fi(x), then x € Ule;, v) for some ¢; € Fix f,. Denote, for
0<t=<1, by ¢;(t) the point which divides the segment from ¢; to
¢; in the ratio ¢: (1 — ¢), and define H;(x, ¢) as the point in U(c;, B)
which is obtained in a manner analogous to f;(x) but with the use
of ¢;(t) instead of ¢;. Also put Hg;(x, 0) = fi(x). Then a homotopy
H| from f, to f, can be constructed from the H,; in the same way
in which f; was constructed from the fi;. If fi(x) = fi(x), then H;
is the constant homotopy, if fi(x) = fi(x), then the set {H(x, t)|0 <
t <1} lies in some U(c;, B). Hence diam H, < 28 < ¢/8. The con-
struction of H, shows that all carriers of its fixed points are
maximal in K.

The map f; and the homotopy H, from f, to f: are obtained
analogously.

(ii) We now describe the construction of the maps ¢, and the
homotopies H; from f; to g,.

Choose p, with 0 < 0, < ¢/32 so that for each ¢;cFix f; with
carrier £; in | K| the set U(c}, 40,) C k;, and so that the U(c}, 40,) are
pairwise distinet. As f; is uniformly continuous, there exists a 4,
with 0 < d, < o, so that

£, 0 c T(e, o) for all ¢ eFix f;.
Furthermore choose 7, with 0 < 7, < o, so that
dx, folx)) =7, if d(x, Fix f3) = 4§, .

Determine p,, 8,, 7, analogously for fi, and select a refinement K’
of K so that p(K’) < min {3, 6,, 7,/@n + 1), ./(2n + 1)}, where n is
the dimension of K.

Let +, be a simplicial approximation of f; which maps a refine-
ment of the first barycentric subdivision of K’ into K’, and choose
9, as a2 map which is obtained from |+, by a succession of Hopf
constructions in the same way in which f’ is obtained from [+ in
the proof of Theorem 2 on p. 118 of [1]. Then g, is a simplicial
map | K| — |K’|, where K. again refines the first barycentric sub-
division of K’. It is fix-finite, has all its fixed points located in
distinet maximal simplexes of |K,|, and d(|vy], go) < 2npu(K'). As
d(fo, 19ol) = (K", we have d(f;, 90) = (2n + Dp(K") < 7).

Next, let us construct a homotopy H, from f; to g,, If x¢
U {U(c}, 85| c; e Fix fi}, then it follows from [1], p. 118 that g,(x) =
[4o|(). As 4, is a simplicial approximation of f;, it is possible to
define H,'(x, t) by

Hi(, t) = tfo@) + (1 — £)g4®) .
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From d(x, fi(x)) = n and d(fo, 9,) <n follows H/(x,t) == 2 for all
0t 1.

Now consider one of the sets Ul(c), §,) contained in a maximal
simplex k; of |K|. H, has already been defined on Bd U(c}, d,) x I
such that

(e, Hi'(x, 1)) = dlc;, fu(®)) + d(fo(@), 94(x)) < 20, .

Let further H!(z, 0) = fi(x) and H}(x, 1) = g,(@) for all x e U(c, §,).

Then H! is defined on Bd (U(c}, 8,) x I), has values in U(c}, 20,),
and its fixed point set consists of ¢; x {0} and finitely many points
in U}, 6,) x {1}. To extend H; over all of U(c} ) x I, let &; =
(¢}, 1/2), and determine for every point % = (z, t) € (U(c}, d)) x I)\{c,}
the point % = (y, s) as the one in which the ray from ¢&; to % inter-
sects Bd (T(c}, 8,) x I). Let d denote the product metric in | K| x I,
and define H,'(z, t) by

ciH{(x, 1) = cjw + My H{(y, 5)

where
(€5, ®)/d(C;, J) -
As d(c), ) <0, 0<NZ1, and d(y, Hi'(y, 8)) < 6, + 20, =< 40,, we obtain
in this way a point H.'(z, t) € U(c}, 40,). Finally, let H;'(c}, 1/2) = ¢
In this way H/ is extended over U{U(c}, d,) x I|c,eFix £},
yielding a homotopy H.:|K| X I —|K| from f] to g, which is fix-
finite and has all its fixed points located in the maximal simples «;
of |K|. If xe U{U(c, d,)|c;eFix fI}, then sup {H{'(z, t), H(x, t')|¢,
tel} <d(fl g) <7, and if xec U}, d,) for some c;eFix f!, then
{(H(z, t)|t e I} < Ulc, 40,), so sup {H(z, t), Hy(x, t)|t, t' e I} < 8p,.
Hence diam H; < ¢/4. The construction of H!:|K| x I—|K| is
analogous.
(iii) Define finally a homotopy H, from f; to g, by

Hi(x, 2t) for 0<t=<1/2,

t) =
Hi(x, t) H!(x,2t —1) for 12<t<1.

Then diam H; < diam H{ -+ diam H} < ¢/4, and H, and H, satisfy
Lemma 3.

Step 2. Construction of a fix-finite homotopy between two fix-
finite simplicial maps.

The aim of Step 2 is the construction of a fix-finite homotopy
between the fix-finite and simplicial maps ¢, of Lemma 3. It will
be achieved with the help of a succession of Hopf constructions for
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homotopies. For this purpose, we need to realise |K| x I as a
suitable simplicial complex P. If K’, K and K| are the complexes
obtained in Lemma 3, then we require that P is a simplicial complex
with |P| = | K| x I and satisfies the following two conditions:

(P1) K x {0} and K x {1} are subcomplexes of P,

(P2) if r€|P|is a simplex and =:|P|— | K| the first projection,
then n(r) C p, where p is a simplex of K.

P can easily be obtained by starting with the complex usually
associated with the polyhedron |K’| x I and then refining it modulo
the complements of the simplicial neighborhoods of those simplexes
in K’ x {0} and K’ x {1} which are subdivided in K} resp. K.

We state one more technical detail as a lemma.

LEMMA 4. Let P’ be a refinement of P, let G,.|P'|— |K'| be a
simplicial map, and z<|P'| so that  NFix G, + ¢. If T is neither
maximal nor a hyperface in |P'|, thn G,(t) is not maximal in | K'|.

Proof. Let G,(zr) =0, where ¢ is a simplex of | K’|, and 7(z)Cp,
where pe|K'|. As tNFixG, + ¢ implies n(r)No + ¢, we have p=o,
and dim p < dimz. By assumption there exists a simplex z*e|P’|
with 7 < z* and dim 7 < dim * — 2, therefore

dimp + 1= dim7* — 1 < dimzn(c¥),

so w(t*) ¢ p. But w(r) C o implies 7(T*) N p # ¢, hence p cannot be
maximal in |K'|. As p = g, G,(7r) cannot be maximal either.
The next lemma contains the result of Step 2.

LemMMA 5. Let K', K and g,:|K}'| = |K'| be as in Lemma 3.
If g, and g, are related by a homotopy G, then there exists a homotopy
G’ relating them such that

(1) G 1is fix-finite and has all its fized points located in
maximal simplexes or hyperfaces of | K|,

(ii) d(G, G") < ¢/4.

Proof. Again we can assume that |K| is connected. Let P
satisfy (P1) and (P2). We first select as a simplicial approximation
of G a simplicial map G,: |P’'| — | K’|, where P’ is a refinement of P
obtained by a finite number of subdivisions modulo (K{ x {0}) U
(K! x {1}), so that G, satisfies G, =G on ((K!| x {0}) U(K!]| x {1})
and d(G, G,) < #(K'). The existence of G, follows from (3], p. 55.

If %, = (,, t,) is a vertex of |P'| with G,(x, t,) = «, then z, is
a vertex of |K’'| and hence not maximal. Lemma 1 allows us to
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make a Hopf construction which results in a simplicial map G’
|P"|— |K'|, where P" refines P’, for which Gi(x,, t,) # %, and G, = G,
on |P'\st{%,}|. Hence any vertex Ze|P”|NFix G, must also be a
vertex of |P'\{Z,}|]. We can therefore make further Hopf construc-
tions for all such vertices until we arrive at a simplicial map,
denoted again by Gi:|P”|— |K'|, where P" refines P’, which is fixed
point free on all vertices of |P”|. As G, is fixed point free on the
vertices of (K| x {0h) U(K{| x {1}), we have G.= G, on this
subcomplex.

Next we carry out a succession of Hopf constructions for all
one-dimensional simplexes z € |P”| for which 7 N Fix G} + ¢ and G/(7)
is not maximal in |K’|, then for all two-dimensional simplexes with
the same property, and so on. According to (P2) and Lemmas 1
and 4 we can continue until we arrive at a simplicial map G/: |P"| —
| K'|, which equals G, on the subpolyhedron (| K}'| x {0}) U (| K'| X {1}
of |P"”| and is fixed point free on all simplexes of |P"”| which are
neither maximal nor hyperfaces.

If ¢ is a hyperface of |P"”| for which z N Fix G} # ¢, then it
follows (as in [1], pp. 118-119) from the fact that G| is linear on 7
and that Bd z N Fix G| = ¢ that G! has at most one fixed point on 7.
Now consider a maximal simplex 7€ |P”| with 7 N Fix G, = ¢. Then
Bdz N Fix G; is empty or a finite set {%;}. Let Z%; = (x;, ¢;), and
select X, = (x,, t,) €z so that t, = ¢; for all ¢;, For any % = (x,¢) €
T\{%,}, let ¥ = (y, u) be the point in which the ray from %, to % in-
tersects Bd z, and modify G| on 7 to G’ by defining G'(x, t) as the
point in & = GU(7) with

xOG’(x’ t) = ngz + )\ayG;(y, ’M/) ’ Where A= J(&'Jo, %)/J(%Oy /!7) .

As m(T)cd and & is convex, this yields a point G'(z,t)ea. Also
let G'(x,, t,) = 2,. Then 7 N Fix G’ consists of the union of the seg-
ments from Z, to all the %; if Bdz N Fix G # ¢, and otherwise of
the point %, alone. If we carry out this construction on 2ll maximal
simplexes of | P"| on which G, has fixed points, we obtain a fix-finite
homotopy G':|P"|—|K'|, where P” refines P’ and hence P. By
construetion G'(z, 0) = g,(x) and G'(x, 1) = g,(x) for all xe|K|. If
¥ =(x,t)cFix G, then % is contained in a maximal simplex or
hyperface of |P"”| and hence of |P|. It follows from (P2) that x is
contained in a maximal simplex or hyperface of |K’| and hence of

| K.

Each point Z¢|P| is moved during the succession of Hopf
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constructions at most » times, where again n is the dimension of
| K|, and by a distance of at most 2#(K’) on each move. During
the last change of G! to G’ it is moved by a distance of at most
t(K"). So we have

d@G,, G) = @2n + DK ,
and hence, according to (4) of Lemma 3,
d(G, G =2n + H(K') < g/4 .
We see that G’ satisfies Lemma 5.

Step 3. Construction of a fix-finite homotopy between the given
maps.

It remains to paste the constructed homotopies together in a
suitable way to find a homotopy F" satisfying Theorem 2. Given
F:|K| x I—|K| as in Theorem 2 and ¢ > 0, we can choose ¢ with
0<éd <1 so that d(F(z, t), F(z, t") < ¢/4 for all x¢|K| and ¢, t' el
with |[¢ — t'| < 6. Use the homotopies H,, H, obtained in Lemma 3
and define F"': | K| x I—| K| as a homotopy which equals H,H,'FH H*
apart from a scale change by

Hy(x, 2t/0) if 0t<4é/2,
Hy(zx, 21 — t/5)) if d2=t<4,
F'x,t) = F(x, t —6)/(1 —20) if 65t=1-—9,

H@, o +06—-1/2) if 1—o=t=1-6/2,
H,(z, 6(1 — 1)/2) if 1—-d25t<1.

Then d(F, F'") < ¢/2.

The homotopy G: | K| x I—| K| defined by G(z, t) = F"(x, t(1 — ) +
0/2) for all (x, t)e| K| x I equals H;'FH, apart from a scale change

and is hence a homotopy from g, to g,. Replace it by a homotopy
G’ according to Lemma 5, and define F": |K| x I — |K| by

H(x, 2t/6) if 0<t=d2,
F'(o,t) = 1G'(w, (t —6/2))(L —6) if 6)2<t=<1—5/2,
(Hix, 51 — 1)/2) it 1—s2<t<1.

It is easy to check that F” is a homotopy satisfying Theorem 2.

D. Some properties of the fix-finite homotopy. The proof of
Theorem 2 allows an easy description of Fix F”.

PROPOSITION 1. The homotopy F' in Theorem 2 can be chosen



FIX-FINITE HOMOTOPIES 541

so that Fix F' 18 a one-dimensional finite polyhedron in |K| x I
withowt horizontal edges.

Here a horizontal edge means an edge contained in a section
| K| x {t}, for some tel. Note that Fix F’, though constructed as
a polyhedron, was not constructed as a subpolyhedron of |P|, and
its projection n(Fix F’) is not a subpolyhedron of | K|.

As Fix F’ has a simple structure, it has simple properties. We
collect a few. The first two are immediate consequences of the
homotopy and additivity axioms of the fixed point index i(f, ) of
the selfmap f of a polyhedron at the isolated fixed point x.

PROPOSITION 2. Let ¢ be an edge of Fix F'. Then the index of
fi along e is constant, i.e.,

W, @) =d/Ly if (x,t)ece and (y,s)ce.

PROPOSITION 3. Let v = (x,t) be a vertex of Fix F'. Then the
index of f, at x is the sum of the indices of fixed points chosen on
all edges of Fix F' either leading towards v or awey from v, l.e.,

WS, @) = 2 i(flh, 2

where all (xy, t,) lie on edges e, st v, with e, distinct, and the sum
taken over all edges im stvN{| K| x [0, 1)} (resp. in ston {|{K| <
(&, 11}).

Finally we note that F’ is “uniformly” fix-finite.

PROPOSITION 4. There exists a positive integer M so that the
number of fixed points of fi is = M for all tel.

Proof. It suffices to choose M as the number of edges in Fix F”,
as no section | K| X {t} can intersect the closure of an edge of Fix F’
more than once.

E. Conclusion. For a single selfmap f of a polyhedron | K|
the construction of a fix-finite map which is arbitrarily close to f
and has all its fixed points contained in maximal simplexes is only
a first step on the road to the construction of a map homotopic
to f which has a minimal number of fixed points. It is, in fact,
possible to obtain a map ¢g homotopic to f which has exactly N(f)
fixed points, where N(f) is the Nielsen number of f, as long as
| K| satisfies the Shi condition, which is a somewhat stronger con-
nectedness condition. (See [5] or [1], p. 140.) Henece a similar
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question arises for homotopies.

Problem. If f, and f, are two selfmaps of a polyhedron |K]|
which satisfies the Shi condition, if f, and f, are homotopic and have
each exactly N(f,) fixed points, does there exist a homotopy F' from
fo to fi so that, for every telI, the map f, = F(-,t) has exactly
N(f,) fixed points?
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A GEOMETRIC INEQUALITY WITH APPLICATIONS
TO LINEAR FORMS

JEFFREY D. VAALER

Let Cy be a cube of volume one centered at the origin
in R” and let Py be a K-dimensional subspace of R*. We
prove that Cy N Px has K-dimensional volume greater than
or equal to one. As an application of this inequality we
obtain a precise version of Minkowski’s linear forms theorem.
We also state a conjecture which would allow our method
to be generalized.

1. Introduction. Let Cy =[—1/2, 1/2]" be the N-dimensional
cube of volume one centered at the origin in R™ and suppose that
P, is a K-dimensional linear subspace of RY. Dr. Anton Good has
conjectured that the K-dimensional volume of P, N C, is always
greater than or equal to one. In case K = N — 1 this has recently
been proved by Hensley [6], who also obtained upper bounds for this
volume. Our purpose in this paper is to prove the conjecture for
arbitrary K and to give some applications to Minkowski’s theorem
on linear forms. In fact we prove a more general inequality for
the product of spheres of various dimensions which contains the

conjecture as a special case.
z,
We write Z for the column vector < ..
Tn

) in R* and
n 1/2
71 = (2 @)
for its length. We define the sphere S, by
S, = {FeR" 7| < p,)

where 0, = 774 (n/2 + 1)}/". It follows that ,(S,) = 1 where g,
is Lebesgue measure on R". Also we let X,(%) denote the charac-
teristic function of a subset U in R".

Qur first main result is contained in the following theorem.

THEOREM 1. Suppose that n,, n, ---, n; are positive integers,
Qy =8, X Sy, X +++ X8, 18 RN, N=n,+n,+ -+ +ny, and A
s a real N x K matrix, rank(4A) = K. Then

1L.1) |det ATA|™2 < SRKXQN(Az)de(a‘:) ,

where AT 1s the transpose of A.

543
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We note that if rank(4) < K then each side of (1.1) is infinite.
From Theorem 1 we easily deduce a lower bound for p,.(Qy N Px).

COROLLARY. Let Qy be as in Theorem 1 and let P, be a K-
dimenstonal subspace of RY. Then p.(Qy N Py) = 1.

Proof. Choose A in Theorem 1 so that the columns of A form
an orthonormal basis for P, in RY. Then the left hand side of (1.1)
is 1 while the right hand side is x(Qy N Py).

The corollary clearly contains Good’s conjecture since @, = Cy
if n; =1 and J = N.

Next we suppose that L;Z), 5 =1,2, ---, N are N linear forms
in K variables,

K
LZ) = kzzlajkwk ’

so that A = (a;;) is an N X K matrix. We assume that the forms
L; are real for j = 1,2, ---, r and that the remaining forms consist
of s pairs of complex conjugate forms arranged so that L,,,;_, = L,,;

for 7=1,2, ---,s. Thus N=17 +2s. Let ¢,¢&, -+, ey be positive
with &,15;_, = &,45; for 7 =1,2, --.,s. We define the Nx N diagonal
matrix K by E = (¢;0;) wherec; = ¢e;'if j =1,2, -+, 7, ¢; = (2/n)"%;*

ifj=r+1,7r+2 ---, Nand §; is the Kronecker delta. Theorem
1 allows us to prove the following precise version of Minkowski’s
classical result on linear forms.

THEOREM 2. Let M be a positive integer and suppose that
(1.2) M|det A*E*A|'* < 1,

where A* is the complex conjugate transpose of the matrix A. Then
there exist at least M distinct pairs of monzero lattice points +7v,,
m=1,2, ---, M, such that

1.3) | Li(tv.)] = &

for each j and each m. In particular if |det A*A| > 0 then there
exists a pair of monzero lattice points +¥ such that

(1.4) |[Li(x7)| < |det A*A|"*X

for 5=1,2,---, 7, and

(1.5) |L(+7) < (%)”ﬂ det A*A 2%

for j=r+1L,r+2 ---, N.
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Theorem 2 was first proved in the case N< K and M =1 by
Minkowski [8, p. 104]. Subsequently the extension of Minkowski’s
convex body theorem by van der Corput [5] allowed Theorem 2 to
be proved for N < K and arbitrary M. Of course if N = K then
(1.2) becomes the more familiar condition

M(—i—)s[detAl <e& &y,

and if N < K then (1.2) is trivially satisfied since the left hand side
is zero. The novelty in our result is that Theorem 2 now holds for
1< K< N. Previously in the case 1 < K < N we knew only that
(1.3) held if

(16) 25M = #K({xeRK: [La(:k_)[ = € ‘7 = 1y 2y Tt N}) .

We prove Theorem 2 by showing that the right hand side of (1.6) is
bounded from below by 2%|det A*E*A|™2. As will be clear from the
proof, Theorem 2 could be generalized to include linear forms with
values in R™ for various m.

In §5 we state a conjecture which would allow us to obtain a
significant improvement in Theorem 1. Specifically, we deduce from
this conjecture an analogue of Theorem 1 in which @, is replaced
by an arbitrary closed, convex, symmetric subset of RY having N-
dimensional volume equal to one.

The author wishes to thank Professors Patrick Brockett, Douglas
Hensley, and Bruce Palka for several helpful discussions on the subject
of this paper.

2. Preliminary results. In this section we briefly summerize
some facts about logarithmically concave measures and functions. A
more detailed discription can be found in the papers of Kanter [7]
and Prékopa [9].

A function f: R — [0, ) is said to be log-concave if for every
pair of vectors T, %, in R™ and every A, 0 <X <1, we have

FOZ, + 1 —NZ) = (F@E)(f@) 7

A probability measure v defined on the measurable subsets of R" is
log-concave if for every pair of open convex sets U, and U, in R"
and every )\, 0 < A < 1, we have

2.1) (AU, + 1 = NT,) = (U)'(U))

where + on the left hand side of (2.1) indieates Minkowski addition
of sets. Clearly (2.1) holds for all open convex sets U, and U, if and
only if it holds for all closed convex sets U, and U,. The relationship
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between log-concave measures and log-concave functions is contained
in the following lemma.

LEMMA 3. Let v be a log-concave probability measure on R™ and
suppose that the support of v spans the k-dimensional subspace P,
in R*. Then there is a log-concave probability density function f
defined on P, such that dv = fdp,, where t, is k-dimensional Lebesgue
measure on P,. Conversely for any log-concave probability density
Sunction f defined on a k-dimensional subspace P, in R", the pro-
bability measure defined by dv = fdp, 1is log-concave, where , s
Lebesgue measure on P,.

The first part of Lemma 3 is a result of Borell [2, p. 123] while
the converse was proved by Prékopa [9], (see also Kanter [7, Lemma
2.1]).

Let v, and vy, be probability measures on R*. We say that v, is
more peaked than vy, if

v(U) < v(U)

for all closed, convex, symmetric subsets U in R". (We recall that
U < R" is symmetric if U = —U.) If f, and f, are probability density
functions on R we say that f, is more peaked than f; if the measure
fdp, is more peaked than the measure fidy,. The notion of peaked-
ness was introduced by Birnbaum [1] and Sherman [10]. A comple-
mentary relation is that of symmetric dominance in the sense of
Kanter [7]. If v, and vy, are measures on R" then v, symmetrically
dominates v, if

v(R"\U) = v(R"\U)

for all closed, convex, symmetric subsets U in R*. It is clear that
if v, and v, are both probability measures then vy, symmetrically
dominates v, if and only if v, is more peaked than y,. For our
purposes it is more convenient to work with the relation of peaked-
ness.

If v, and v, are log-concave probability measures on R" then the
convolution vfy, is also log-concave on R* (Kanter [7, Lemma 2.3]).
It follows that if v, and v, are log-concave probability measures on
R™ and R™ respectively then the product measure v, X v, is log-
concave on R™ X R™. Forming product measures also preserves the
peakedness relation.

LEMMA 4. Suppose that v, v, v, and v, are all log-concave
probability measures such that v, is mome peaked than v; on R™ and
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v, is more peaked than v, on R". Then v, X v, is more peaked than
v, X vy on R™ X R™.

For the proof of Lemma 4 we refer to Kanter [7, Corollary 3.2]
where the result is obtained for the more general class of unimodal
measures.

3. Proof of Theorem 1. We begin by proving the following
lemma.

LeMMA 5. Suppose that n,, ., ---, n, are positive integers and
Qy = 8, X8, x--+X8,, 18 im R, N=mn, + n,+---+mn,. Then %, (%)
1s more peaked than the normal density function exp {—7x|Z|*} on R>.

Proof. Since the measures Z,, (Z)d/y(%) and exp {—x|Z[*|dpy(Z)
are both product measures which factor in R™ X R" X --- x R" it
suffices to prove the peakedness relation in each factor space and
then apply Lemma 4. Thus we need only show that for each positive
integer m, X5, (%) is more peaked than exp{—x|Z[*} on R". Of course
it is trivial to verify that both of the density functions X (%) and
exp{—7|Z|*} are log-concave on R".

Let S,_, = {Te R*: |Z| = 1} so that for each Z + 0 in R" we have
the unique polar decomposition Z = 7% where » = |Z| and Z' ¢, ..
If U is a closed, convex, symmetric subset of R" then it follows that

3.1) S exp{—7|Z)dp(E) = gz S:’x,,(qm exp {— 1% drdF

n—1

where dz’ is the induced Lebesgue measure on >,,_,. Now for each
fixed 7' € 3.,_, we have either

(3.2) Lo(rE) < Xsﬂ(?‘.f') , 0= r < oo
or
(3.3) L, (%) S Xp(rZ), 07 < oo,

since S, and U are convex. If (3.2) holds at z’ then

g XU(’)’f') exp {_ﬁrz}?m_ld?'
0

(3.4) - o
< S LT )" dr = S Lo(r2 s, (rZ )" 'dr .
0 0

If (3.3) holds at " then
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SwXU(m?’) exp {—zwri}r"dr
0
= Swexp {—mr?}r dr = n“‘n'"“l’(% + 1>
. (3.5) :
:S Ls,(rZ")r""'dr
0

= Sw Xo(rZ)As (rZ)r" " dr .
Combining (3.1), (3.4) and (3.5) we obtain
|, exp(—zlamam@ | | neon,eeyards =\ 1@ @) .

Thus X, (%) is more peaked than exp{—=m|Z[} on R" and the lemma
is proved.

We now prove Theorem 1. If N = K then (1.1) is trivial so we
may suppose that K'=N— K is positive. Let P, be the K-dimensional
subspace of R”Y spanned by the columns of A. Next let W be an
Nx N matrix whose first K columns are the columns of A and whose
next K’ columns are the columns of an Nx K’ matrix B. We choose
the columns of B so that they form an orthonormal basis in R¥ of
the K’-dimensional subspace which is orthogonal to P,. Identifying
RY with RX X R we may write each Zc¢ R" as z = (Z/J) where
reRX and e RX'. For each ¢,0 < ¢ <1 we define

1S§SK’ 2

H, = {EGRN:Z = <%> , max |y;| gﬁ}
and

H! = {yeR"': max |y;| gi} .
15K’ 2
Clearly H. is a closed, convex, symmetric subset of R” and so is the
image of H, under the nonsingular linear transformation determined
by W. Thus by Lemma 5,

(3.6) | expl—ziWzrdm@ = | 2o, (Wadn,@) .

€

Multiplying each side of (3.6) by {¢x(H.)}™ = ¢ ¥ and factoring H,
into R¥ x H! we find that

| L\ exp(—7145 + BIdnc @i
3.7 RK Jm}

<o | | oA + BRduc@ipn@) .
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By the orthogonality condition |AZ + By|* = |AZ|* + |BY|* and so as
¢ — 0 + the left hand side of (3.7) clearly converges to

| exp(—71 4z (@) = |det ava | .

To evaluate the corresponding limit on the right hand side of (3.7)
we observe that for 0 < ¢ <1 and each 7 ¢ R%,

e\ 20,4 + BRdp@ = 1.
Since @y and H!. are both bounded we have
e SHIXQN(AE + By (i) = 0

for sufficiently large |z | independent of . Thus by dominated con-
vergence the limit on the right of (3.7) as ¢ —» 0+ is

(3.8) o flim e 2e,42 + B @] ditet@)

£ =04

Clearly

e—0+4

lim &% SH/XQN(AE + BR)dpe (@) = Lo, (AT)

except possibly when AZ is a boundary point of @, N P,, Since this
boundary has K-dimensional measure zero we see that (3.8) is equal to

[ Lo (AB)dp(@)

We have now shown that as e —» 0+ on each side of (8.7) we obtain
(1.1) and this proves the theorem.

4. Proof of Theorem 2. By van der Corput’s extension of
Minkowski’s convex body theorem [5] (see also Cassels [4, Chapter
III, Theorem II]) the condition (1.6) implies that there exist at least
M distinet pairs +7,, m =1, 2, ---, M, of nonzero lattice points such
that (1.3) holds. If rank(A4) < K then (1.2) and (1.6) are both trivially
satisfied. Thus to eatablish the first part of Theorem 2 it suffices
to show that if rank(4) = K then

(4.1) 2%|det A*E*A|™ = pr({Te R*: |L;@)| = €57 =12, .-+, N}) .

Let G;Z), 7 =1,2, --+, N be linear forms defined by G;(Z) = L,(%)
for 7=1,2, ---, » and
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GM-zj—l(E) = l/—z—Re{Lri—Zi*l(E)} ’
Gr+2j(9_5) = 1/—2-Im{Lr+zj—1(9—5>}

for j=1,2, ---,s. We write B = (b;,) for the corresponding real
N x K matrix so that

X
Gj@) = I_Zz“lbjkxk .

Next we let Qy =S, x S,, X --- X 8, , Wwhere n; =1 for j =
1,2 ---,7randn; =2forj=r+1,7+2, ---,+ + s. It follows that
|Ly(x)| < ¢; if and only if 1/2¢;'G;@)eS,;, i =1,2, ---,r, and

IL7'+2jf1(%)| = ILrI—Zj(i)] —g 87‘#2]‘

if and only if

’G'r+2j—1(§j>

o), S, ..,
(2m) e '(GH.M@) )e

j=12,---, 5. Therefore
(T e R | Li@)| <e,5=1,2,--+, N})
o (lsere Lrpreal) - P
= o {pe R7: 2 EBac ) =1 L EB®)dp(®)
!_1/2

> } det%EB)T(%EB){ — 25| det B'E*B| ™" .

An easy computation shows that BTE*B = A*E®A and so completes
the proof of (4.1).
To prove the second part of Theorem 2 we choose ¢; = |det A*A[/*¥
for ) =1,2, ---, 7 and ¢; = (2/n)"*|det A*A|"** for j=r + 1, » + 2,
-+, N. Then

|det A*E?A| =1
and so (1.4) and (1.5) follow from the first part of the theorem.
5. Lower bounds for arbitrary convex bodies. In this section
we suppose that @ is a closed, convex, symmetric subset of R with

ty(Qy) = 1. If A is an Nx K matrix, rank(4) = K, we will be inter-
ested in the problem of finding a lower bound for

(5.1) |, Fon(AD)Ap1s(@)

The method used to deduce Theorem 1 from Lemma 5 will also lead
to a lower bound in this more general situation, provided that we
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can find a suitable normal density function on R which is less peaked
than X, (%). We succeeded in proving Lemma 5 because the special
structure imposed on @, allowed us to appeal to Lemma 4. We now
describe an alternative method which leads to a conjectured lower
bound for (5.1).

We write @ for @, and we assume that @ is a fixed, closed,
convex, symmetric subset of R”, 1y(Q) = 1. For each positive integer
m let

K@) = XGKG - - - Xo(®)

be the m-fold convolution of X,. We define the dilation operator D,
for » > 0 and for integrable real valued functions f on R by

Di(f)(@) = M f(\T) -
Next we define a sequence of positive numbers ), m = 1,2, --- by
)XER(0) = 1.
With this notation we have the following

CONJECTURE 6. For each positive integer m, Xo(Z) is more peaked
than D, (X§")(Z).

Now let 2 be the N X N covariance matrix determined by a
random vector which is uniformly distributed on the convex body
Q. That is 2 = (w,,) is the N x N matrix defined by

0 = | 10X@DAp(@) ,

where y, and y, are the rth and sth co-ordinate functions of 7, » =
1,2,---,N,and s =1,2, ---, N. It is clear that 2 is symmetric and
nonsingular since @ has a nonempty interior. By the Central Limit
Theorem (Breiman [3, Theorem 11.10]) we have

lim Dua(X$™)(@) = (1) (det 2)™ exp {— %ET.Q—%}

uniformly for x e RY. It follows that

lim 1}% = (21)*(det Q)2

and hence

lim D, (X§")(@) = exp{—nr(det Q)"z"Q27'x}

uniformly for xeRY. If the Conjecture 6 is true then for each
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positive integer m and each closed, convex, symmetric subset U of RY
(5.2) | DLt @ap @ = | t@dm@ .

Letting m — o on the left hand side of (5.2) and we have proved

that X,(#) is more peaked than exp{—m(det 2)"*z"Q2 "'z} on R". By
the same method used to prove Theorem 1 we obtain

THEOREM 7. Assume that the Conjecture 6 holds and let A be
a real N X K matrixz, rank(A) = K. Then

(5.3) (det @)%

det ATQ A < SRKXQ(A%)d/LK(E) .

If the set @ in Theorem 7 is such that £ is a constant multiple
of the identity matrix then the left hand side of (5.3) is simply
|det ATA|™*2. Just as in our proof of the corollary to Theorem 1,
we deduce that in this case p.(Q N Py) = 1, where P, is a K-dimen-
sional subspace of RY. There is also an application of Theorem 7 to
linear forms. If L;%),7j =12, ---, N, are N linear forms in K-
variables we could determine precise conditions under which

(Z1Lor)” se

at a nonzero lattice point ¥ for any »p =1 and ¢ > 0. At present,
however, these results remain hypothetical since they depend on the
open problem stated in Conjecture 6.
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T AS AN ¥ SUBMODULE OF G

W. J. WICKLESS

Let G be a mixed abelian group with torsion subgroup
T. T is viewed as an € submodule of G, where &€ =EndG.
It is shown that 7T is superfluous in G if and only if, v,
either 7', is divisible or G/T, is not p divisible. If G is not
reduced, 7 is essential in G if and only if T contains a Z(p~).
Let I(G) [I(T)] be the & injective hull of G [T']. Then I(G) =
I(T)® X with X torsion free divisible and 7T is a pure sub-
group of I(G). This can be used to obtain several results;
for example, if Q Z I(T), TFAE: 1. Tess G, 2. I(G) = I(T) as
abelian groups, 3. @ £ I(G). The condition T ess G is charac-
terized if 7 is a summand or if G is algebraically compact.
If T is bounded or if T is a p-group, 7' = (0) and G is re-
duced cotorsion, 7T is not essential. In fact, for bounded 7T
there is an & isomorphism I(G) = I(T')® I(G/T). Some in-
formation is obtained on the p-basic subgroups of I(T') as a
function of those of 7. A condition is given for I(T) 2 @, Q.
These last theorems specialize to I(z:T), where £ = End T.

Preliminaries. In the last fifteen years several authors have
written papers concerning an abelian group G viewed as a module
over £, its ring of endomorphisms.

Let G be a mixed abelian group with maximal torsion subgroup
T. In this paper we consider 7 as an & submodule of G. We
determine when T is superfluous in G and then study the more dif-
ficult question of determining when T is essential in G. (If (0) =
T + G, it is easy to prove that T is neither essential nor superfluous
as a Z submodule of G.)

The latter question leads to consideration of the injective hulls
I(T), I(G)—taken with respect to &.

Our notation, with minor exceptions, is that of [1].

1. T as a superfluous submodule of G. Henceforth, let G be
a mixed abelian group, T = t(G) its torsion subgroup and & = End G.
To avoid stating the trivial cases of our results we always assume
(0) = T+ G. We begin by characterizing those mixed G for which
»T is superfluous in G (T'< G). In our context T < G if and only
if whenever K is a fully invariant subgroup of G with K + T = G,
then K = G.

LeMMA 1. Let T=@ T, be a decomposition of T into its p
components. Then T < G if and only if T, < G, Vp.

555



556 W. J. WICKLESS

Proof. The only if part of the implication is immediate since
submodules of superfluous submodules are superfluous.

Suppose T, € G, Vp,and T' ¢ G. Then we must have T + K = G
for some fully invariant K = G. Clearly, K 2 T, for some p. Let
K =K+ >4 T,. Since K’ is fully invariant with K’' + T, = G,
K' =Q@G.

Let te T, and suppose that ¢ has order o(t) = p'. Writet =z +y
with x€ K, o(y) =n, (n,p) =1. If a, b€ Z with ap’ + bn = 1, then
t = (ap' + bn)t = bnt = bnxc K. Thus, T,< K, a contradiction.

THEOREM 1. T < G if and only if, Vp, either T, is divisible or
G/T, is mot p divisible.

We prove the contrapositive in both directions.

Proof. Suppose Ip with T, not divisible and G/T, p divisible.
Then T,ZpG and G = pG + T,. Thus, T, < G and, by Lemma 1,
T« G.

Conversely, suppose T ¢ G. Then 3p with T, € G. Let K be
a proper fully invariant subgroup with K+ T, =G. We cannot
have T, divisible, for then K2 Hom (G, T,)K = T,. (If z € K, o(x) = <o,
and te T,, the map Zx — Zt extends to G.)

G/T, is p divisible if and only if K< pG + T,. Assume that
G/T, is not p divisible. Then there is an x € K\pG + T,. Therefore,
vte T,, the p-height of 2 + ¢ in G, hi(x + t), is zero.

Thus, for every positive integer I, T = x + p'G must have order
exactly »' in G/p'G. But then, vie T,, we can construct an endo-
morphism of G mapping ¢ —Z — ¢t. This implies K2 T,, a contra-
diction. The theorem follows.

2. T as an essential submodule of G-basic results. We next
consider the more difficult problem of deciding when . T is essential
in .G(TessG). We first dispose of the nonreduced case.

THEOREM 2. Let G be a nonreduced group. Then TessG if and
only if T contains a Z(p~).

Proof. If T2 Z(p”) then, Vx€G with o(x) = «, ¢ & with
0 # a(x) € Z(p~). This, clearly, is enough to imply TessG.

Conversely, suppose T contains no Z(p©). Then, since G is not
reduced, the maximum divisible subgroup D of G is nontrivial and
torsion free. Hence TN D =0, so T is not essential in G.

From now on we assume G is reduced.

To investigate the question of when Tess G, it is natural to
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consider the & injective hulls. Let I(G) be the injective hull of the
module ,G. Since .T < .G we can regard I(T), the injective hull
of .T, as a maximal & essential extension of T in I(G). If I(T) is
constructed in this way we have an & decomposition: I(G) = I(T) D
X. Clearly, TessG if and only if X = (0).

THEOREM 3. Let X be as above. Then X is torsion free divisi-
ble as an abelian group.

Proof. If t¢(X), the torsion subgroup of X, were nonzero, then
I(T)Pt(X) would be an & essential extension of T in I(G) properly
containing I(T)—a contradiction. Thus, X is torsion free. Since X
is an injective module, X must also be divisible.

COROLLARY. Tess G if and only if I(T) and I(G) are isomorphic
& modules.

Proof. Suppose 0:I(T)— I(G) is an & isomorphism. Then
0(T)ess I(G). By Theorem 38, O(T)N X = (0). Thus, X = (0) and
TessG.

The next theorem is central for our results.
THEOREM 4. T is a pure subgroup of I(G) (T < I(@)).

Proof. Let D(G) be the Z injective hull of G and let A be the
injective left & module Hom, (%, D(G)). Regard GS A via G =
Hom, (%, G) and take I(G) to be a maximal & essential extension
of G in A. It suffices to show T <] A. Let 6 € T with po = 0. Suppose
hi(0) = m < o, but § = p™'a, ac A.

Write 6 = p™d’, 0’eT. Then T = {¢'> @ T’ ([1], Corollary 27.2).
Let we & be projection onto (¢’>. Then o6(n) = w(0) = 0 = p"'a(x) =

a(p™'r) = 0—a contradiction. Thus, we have proved: de T[p] -~
hi(0) = hi(0). This shows T <] A ([1], (b), p. 114).

COROLLARY 1. If T is a torsion group, E = End T, then T <]
IG:T).

This is proved by putting G = T in the above.

COROLLARY 2. Suppose T G with T' = G*, G/T divisible. Then
TessG. (Here T [G'] denotes the first Ulm subgroup of T [G].)

Proof. Since T <]{I(G), G/T divisible, we have G <{I(G). If
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G' = T*' and X is as in Theorem 3, X NG = (0), so X = (0). Thus,
Tess@G.

COROLLARY 3. Let TC G with T* = (0). Then I(T)' = (0).

Proof. I(T)' is an & submodule of I(T). Since T* = (0) and
TAKT), (TYNT = (0). Thus, I(T) = (0).

THEOREM 5. Let TC G with QL I(T). Then TFAE:. 1. TessG;
2. I(T) = I(G) as abelian groups; 3. QL I(G). Moreover, if 1—38
hold, then T'= G

Proof. The implications 1-»2, 2— 3 are obvious. If Q<& I(G),
then the X of Theorem 3 is zero, so TessG.

To prove the additional statement, note that I(T) is an algebrai-
cally compact group ([1], p. 178) which, by assumption, contains no
@’s. Thus, there can be no elements of infinite order in I(T). If
1—3 hold, the same is true for I(G). Thus, in this case, G' = T.

COROLLARY. Let TC G with T* = (0). Then conditions 1—3 are
equivalent. Moreover, if 1—3 hold, then G*' = (0).

Proof. If T* = (0), then I(T)' = (0), so Q€ I(T).

Theorem 5 raises the questions: When are I(T) and I(@) isomorphic
as abelian groups? Is this sufficient for Tess G? Here is a partial
result.

THEOREM 6. Let I be the & imjective hull of the factor module
G/T. Write I(T) = HPD K, where H 1is the maximal torsion free
divisible subgroup of I(T). Let r =rank H, # =rankI. If r is
infinite and r = 7, then I(G) E .

Proof. Embed I(G) into I(T) @ I in the standard way (via a @ 8
where a and B are the extensions to I(G) of TcI(T) and G —
G/Tc I respectively). Then, as & modules, I[(G)P Y = I(T)PI.
Since I(G) = I(T) P X, we have:

(%) IMeXPdY=IT)DI.

The additive group of I is torsion free divisible, since I is the
injective hull of a module whose additive group is torsion free. Thus,
the number of @’s on the right-hand side of (x) is » + 7 =», so

rank X < . But then, I(G) = I(T) EBX; I(T).
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ExAMPLE. For each prime p, let T, be the group generated by
{¢;11=0,1,2,3, ...} with relations {pa, =0, p"a, =@, n =128,
--}. Let T=@,T, and let G=Q@PT. Then =1 and (as we
will see in Theorem 13) » = ¢. Thus, I(G) 2 I(T). Since T is reduced,
T is not essential in G.

3. T as an essential submodule of G—some special cases. In
this section we consider the essentiality of T in G in some special
cases. First we consider the situation for bounded 7. The following
theorem shows if T is bounded, then T is never essential in G.

THEOREM 7. Let TC G with nT = (0) and let I = I(G/T). Then:
1. »I(T) = (0);
2. IG) is & isomorphic to I(T)PI.

Proof. Let D(@), D(T), D(G/T) be the Z injective hulls of G,
T, G/T and let A, B, C be the injective left & modules Hom, (&, D(M))
where M = G, T, G/T, respectively. As in Theorem 4, regard TC
GSI(G)S A. Suppressing the obvious isomorphism, write A = B@®
C—an & direct sum. Under these identifications T'= BN G.

To prove (1), recall T'<] 4, so in this case, TN nA = nT = (0).
Thus, if xe I(T) with nx # 0, then, for some A€ &, 0 \(nx)e
T N nA—a contradiction.

To prove (2), first note that BN I(G) is an essential extension of
T=BNG. Choose I(T)Z I(G) as before—with the additional re-
quirement I(T)2 BN I(G).

Let xeI(T), say x =b + ¢, be B, ceC. Since C is torsion free
and nx = 0, we must have ¢ = 0. Thus, I(T)S B. It follows that
I(T) = BN I(G).

Let weHomg (A4, C) be projection onto C and let 7’ = 7 |; .
Clearly, Kern' = BN I(G) = I(T), so write I(G) = I(T)P Y with =’
a monomorphism on Y.

To finish the proof of (2), we claim #’(Y) is an & injective hull
of G/T. To see this, first note that if G/T is embedded in C via
e: 9 + T — evaluation at g + T, we have ¢(G/T) =7'(G)S7'(Y), so
7'(Y) is an injective containing e¢(G/T) = G/T. Furthermore, if 0 +=
7'(y)ern'(Y), then Ine & with 0 = My)eGNY. Thus, 0= 7'\y) =
A'(y) e o'(G) = e(G/T). This proves that e(G/T) ess #’(Y). The theorem
follows.

ExamMpPLE. Let T =@,.»Z(p), where P is an infinite set of
primes, and let G =Z@T. Then TessG, so I(G) = I(T) and, in
view of Theorem 4, I(T)' = (0). Moreover, it is easy to see that I=,Q.
Thus, if T is an unbounded group direct summand of G, we need
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not have the decomposition of I(G) given in (2).

The following gives one characterization of T ess G in the splitting
case.

THEOREM 8. Let T=@T,cG. Letk,=1ub.{l|G has a Z(p")
summand} and let H = {xeG|o(x) = o, hi(x) = k,Vp}. Then:

(1) If H=(0), TessG;

(2) If G=TEHF and TessG, then H = (0).

Proof. (1) is clear. To prove (2) suppose G = TP F and 0 #
x € H. Then, for some positive integer »n, 0 = nee HN F. Clearly,
ne cannot be mapped by an endomorphism of G onto any nonzero
element of a bounded T,.

If T, is unbounded, then G has an unbounded p-basic subgroup,
S0 k, = . Thus, hf(nx) = hi(nx) = . If Ae & with 0 = Mnx)e T,
then M restricts to a nonzero map of the subgroup {m/p*(nx)|m, ke
Z}<S F into T,. This is impossible since T, is reduced. Thus, nx
cannot be mapped by an endomorphism of G onto a nonzero element
of any T,. The result follows. ‘

It is easy to describe when Tess G for algebraically compact G.

THEOREM 9. Let T=DT,CcG with G (reduced) algebraically
compact. Write G as a product of p-adic modules, G = IIG,. Then
TessG if and only if, Vp, either T, =G, or T, is unbounded.

Proof. It is immediate that T ess G if and only if, vp, T,ess G,.
If 3p with T, # G, and T, bounded, then T, is not essential in G,.
Conversely, by considering projections onto summands of a p-adic
basis for G,, it is easy to see that T, unbounded implies T,ess G,.

We close this section with:

THEOREM 10. Let TC G with G (reduced) cotorsion, T a p-group,
T = (0). Then T is not essential in G.

Proof. If T is bounded, T is not essential. If T is an unbounded
p-group, (0) = Pext (Q/Z, T) = [Ext (Q/Z, T)]*. Since G is reduced
cotorsion, G = Ext (Q/Z, G) = Ext (Q/Z, T) P Ext (Q/Z, G/T) ([1] H,
p. 234 and Lemma 55.2). Thus G* = (0), T' = (0) and T cannot be
essential in G.

4. The structure of I(T). In this section we prove three
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theorems concerning the structure of I(7T). With trivial modification,
each of these theorems can be rewritten to give the same result for
the injective hull of a torsion group over its own endomorphism
ring.

Since I(T) is algebraically compact, it is natural to try to find
out what its p-basic subgroups look like as a function of the p-basic
subgroups of T. In the case T* = (0), this information would charac-
terize I(T') as an abelian group. The next result shows that I(T) is
generally large with respect to 7.

THEOREM 11. Let B [B'] be a p-basic subgroup of T [I(T)]. Let
f = final rank B. If Z(p*) occurs in B, then B contains @;..; {zr)
with | .7 | = 2¥, o(z;) = p*, V7.

Proof. Suppose B contains a Z(p*). Write G = (b) @ Y, o(b) = p*,
and let @,.,<b,>) & B with | A| = f, o(b,) = p"Ve.

Choose {4;|B8¢c .o} a collection of subsets of A such that:
| &7 | =2f, if F is any finite subset of .% and g, F then
[As\Usss,5cr As] = @. (See [1], Lemma 46.2.)

For Be.or define 6, € Hom(@ <b.), b)) by 05(b,) = Xs(a)b— X, the
characteristic function of A4;. Extend each 6, to & .

It is clear that the left ideals &6, form a direct sum s in &.
Let {C;|v e .57} be a family of subsets of .o~ with the above
independence property, |.o7| = 2. Consider:
0—S— &
J«ZT u'/(/‘:;
T

Here ), is the & map defined by M(d;) = X, (B)b, X, the charac-
teristic function of the subset C;, and A, is the map obtained by in-
jectively.

Let z, = A (1). We have 0,(2;) = X (8)b. It is easy to see from
this equation that {z; | X €.97} is a » independent set of elements of
order = p*. This can be included as a summand of B. The result
follows.

Continuing with the same notation we have:
THEOREM 12. If B’ contains a Z(p*) so does B.

Proof. If B contains Z(p*) then I(T) has a Z(p*) summand.
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Therefore, so does Hom (&, D(T)). (I(T) can be regarded as a direct
summand of Hom (&, D(T')). Therefore, so does Hom (&, I(T),).

The pure exact sequence 0 — (&) > & — E[H(L) — 0 yields 0 —
[Z /(&N — E* - t(E)* — 0, where M* = Hom, (M, D(T),). This
sequence is pure exact, so splits, since all its terms are algebraically
compact. (In this proof “splits” means splits as an exact sequence
of abelian groups.) Since [&/{(&)]* is torsion free, t(&)* must have
a Z(p*) summand.

Now #(&)* = [t(&),]*. Let B, be a basic subgroup for #&),.
Repeat the above procedure with 0 — B, — {(&), -~ t(&),/B,— 0 to
conclude that By must have a Z(p*) summand.

Since B, is a direct sum of cyclics, B, itself must have a Z(p*)
summand. Thus, & and, therefore, Hom (G, T,) have Z(p*) summands.

Let B be a p-basic subgroup for G. The p-pure exact sequence
0 — B— G— G/B— 0 yields the p-pure exact sequence 0 — (G/B)” —
G*— (B)* where M*=Hom, (M, T,). Since (G/B)* =W @ @: @, where
W is the p-adic completion of a direct sum of copies of the p-adic
integers, this sequence also splits. It’s not hard to show that (B)?
must have a Z(p*) summand.

Say B = B, ® B,, where B, = @. Z(p'<) is a direct sum of finite
p-power cyclics and B, = @; Z, is free. Then B‘ = (B))*® (B’ so
one of these groups must contain a Z(p*) summand.

If (B)? = Il. T,[p'] has a Z(p*) summand, then B, itself must,
so T does.

If (B)! = II = II;(T,); has a Z(p*) summand, again T does. (If
I[ =<y DY, oly) = p*, then hy(@*'y) =k — 1. If y = [y;], ys € (T})s,
then, for some S8, hy»?(p*"'y,) = k — 1 and, therefore, o(»* 'y;) = p.
Thus, ys, is contained in a Z(p*) summand of (T,);,.)

Thus, in either of the above cases, B contains a Z(p*).

In view of Theorem 5, it is of interest to discover when Q < I(T).
(Obviously, we must have T' = (0).) We are unable to decide if
T* + (0) is also sufficient for Q S I(T). We close the paper with a
result in this direction. First, we need two lemmas.

LEMMA 2. Let T=@T,cG and suppose T: =+ (0) whenever
T,+#(0). Then ,T'ess T.

Proof. If teT\T', then II(t) # 0, Il the projection onto {(a),
some Z(p*) summand of G. It is easy to construct 6 ¢ Hom, ({a), T%)
with 67I(t) = 0. Thus, T ess T.

Let & = & /t(&). Since t(&)T* = (0) we can regard T" as an &
module.

LEMMA 8. Let 7 be the & injective hull of T and let D be
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the maximal divisible subgroup of I(T). Then, under the assumpiion
of Lemma 2, .7 = D.

Proof. By Lemma 2, ,T'ess T, so I.(T") = I(T).

Now .~ is an & essential extension of T, so we can regard
S cI.(TY) = I(T). Since _“ is an injective module over a ring
with torsion free additive group, .# = D. But D is an & essential
extension of T*'. Thus, . = D.

THEOREM 13. Let E = EndT, E = E/t(E) and suppose R: & —
E is onto, where R is the restriction map. Then, if T* is unbounded,

I(T)2. Q.

Proof. Let T,={PT,|T,+0}, T.={PT,|T:=(0). Clearly,
T, and T, are & submodules and I(T) = I(T,) @ I(T,). It suffices to
show I(T,)2@. Q, so, without loss of generality, assume T = T.,.
Then Lemma 3 applies, so it is enough to construct ¢ independent
elements of infinite order in .# = D.

Choose {x;|7=1,2,3, ---} = T* with {o(x;) = pi} unbounded. For
each fixed ¢, choose distinet @7, <b,;> part of a p,-basic subgroup of
T such that 33, ;<b;;) is direct and such that o(b,;) = pi*. (Each T, is
reduced with T} = (0), thus has an unbounded basic.) Finally, choose
{x;;} ST with pgww’ = ;.

Now define 0, € Hom, (B, <b;;», T,,) by 0,b,;) = ,;. Each 6, is a
small homomorphism (see [1], Lemma 46.3) so each 0, extends to an
endomorphism of T, and, thus, to an endomorphism of 7. Still call
this extension 0,.

LEMMA 4. 3. &0, is an & direct sum in E. Here d, = 8, + t(E)
and E is regarded as a left & module in the natural way.

The proof of Lemma 4 is not difficult and is left to the reader.

Let {N.|ae A} be a family of subsets of the natural numbers
with | A|=c such that if F'C A is finite and e, € F' then [No\Uze r,azay Vel
is countable.

For all @€ A4, consider the diagram of E modules:

0— D ggz — K
j"za //:z(;
v

Here A, is the & map defined by 2\, (3,) = Xy (D)x;, Xy, the charac-
teristic function of N,, and A, the & map obtained by injectivity.
Set z, = A (1), 1 the identity of the ring E. Since R: & — E
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is onto, choose G,€ & with R(G,) = 0,.

Then G,(2.) = M(d.1) = My(0,) = Xy (4)x,. This equation, together
with {o(z,)} unbounded, easily implies that {z, |« € A} is an independent
set of elements of infinite order. Thus, I(T)2@. Q.

COROLLARY. Let T be a torsion group with T' unbounded and
E=EndT. Then I(TY26.Q.

Added in proof. The proof of Theorem 138 can be modified, using
a procedure similar to that of Theorem 11, to construct @, Q@< I(T).
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THE CLASS NUMBER OF Q(1”—5) MODULO 4,
FOR p=3 (MOD 4) A PRIME

KENNETH S. WILLIAMS

If p is a prime congruent to 3 modulo 4, it is well-
known that the class number A(—p) of the imaginary quad-
ratic field Q(~—p) is odd. In this paper we determine A(—p)
modulo 4.

The class number of Q(1/—p) is odd, if p is a prime congruent to
3 modulo 4 (see for example [3:p.413]. D.H. Lehmer [4: p. 9] has
posed the problem of determining the Jacobi symbol (—1/A(—p))=
(=202 that is, of determining A(—p) modulo 4. In this paper
we evaluate h(—p) modulo 4 in terms of the class number A(p) and
the fundamental unit ¢, = T+ UV 'p of the corresponding real
quadratic field Qv p). It is known that T and U are positive in-
tegers which satisfy 7'= 0 (mod 2), U = 1 (mod 2), N(e,) = T? — pU*=
+1. We prove

THEOREM. If » > 3 is a prime congruent to 3 modulo 4 then
(1) h(—p) = h(p) + U + L(mod 4) .

It is easily checked that (1) does not hold for p =3 (A(—8)=
h(3)=U=1). (p =3 is a special case as this is the only value of
p = 3(mod 4) for which the ring of integers of Q(1/—p) has more
than 2 units.) The method of proof is purely analytic in nature, it
uses Dirichlet’s class number formula (in various forms) for both
real and imaginary quadratic fields and also some results from cy-
clotomy. It would be of interest to give a purely algebraic proof.

Proof. Let p > 38 be a prime congruent to 8 modulo 4 and set
o = exp(2ri/p). For z a complex variable, we let

(2) F@ =1 ¢-0)F@= I -0,
so that
(3) F.()F_(5) = F2),

where F(2) is the cyclotomic polynomial of index p, that is,

565
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2F —1
—1

(4) F(z)zili(z—pf): =2+ 2P 2+ 1.

F. and F_ are polynomials in z o_f_degree (p — 1)/2 with coefficients
in the ring of integers of Q(1V—p) (see for example [6:p.215]).
Hence we can write

(5) Fi(2) = —;— (Y@ — Z@n/—p), F_(2) = —;—i(Y(Z) + Z@WV ~»),

where Y and Z are polynomials with rational integral coefficients.
From (3) and (5) we have

(6) Y(2)* + pZ(2)* = 4F(z) .
It is also known [6:p.216] or [7:p.209] that ¥ and Z have the
symmetry properties expressed by

(p=3) 14 (p—3) /4

(1) Y@ =" """ =2, Z@)= 5 b +2),

where the a, and b, are integers with
a0=2,a1=1,a2=(3—p)/4,---

and

b0=O,b1=1,b2=%<1+<%)>,

(see [7] for further values of «a, and b,: see [6] for a table of values

of Y and Z for p < 29).
Differentiating the expressions in (7) and (6) with respect to z,

we obtain respectively

(8) Y'(e) = (:ij“ a, <<p ; 1 n)z“’_am_” _ nzn—x) ,
Z'(z) = (pg)“ b, <<p ; 1 _ ,n) LIRS nzn—l) ,

and

(9) Y()Y'(2) + pZ()Z'(z) = 2F'(z) .

Taking z = 4 in (7) and (8) we obtain

A, (1 —1),if p =38 (mod 8),
A1+ 1),if »p =17 (mod 8),
—By(1 +1),if »p =3 (mod 8),
B,(1 —1),if p =17 (mod 8),

Y(7) = {
(10)
Z() = {
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and
Y'(i) = {Ca + 2Dy1,if p =3 (mod 8),
(11) C, + 2Dy, if p =T (mod 8),
70 = {Es + 2F,,if p =3 (mod 8),
E, +2F4,if p =17 (mod 8),
where A4,, ---, F, are rational integers (given in terms of the a, and

b,). Using (10) and (11) in (6) and (9) with z = ¢, we obtain

12) {Ai — pBi=—2,if p =3 (mod 8),
A — pBi=+42,if p =7 (mod 8),
and
(13) {AsC.», + 2pBF,=—1,24,D, — pB,E, = p,if p =3 (mod 8),
AC, + 2B F, = p, 24,D, — pB:E, = 1, if p =7 (mod 8) .

Clearly from (12) and (13) we see that 4,, B,, C,, E,, 4,, B, C; and E,
are all odd. Now Liouville [5: p. 415] has shown that

(14) ZR)Y'(Z) — Z(@)Y(z) = ___1 z( )z ol
Taking z = ¢ in (14) we obtain

(15) Z@Y'(@) — Z'@)YE) = (L + M) + (L — M),
where

,_(p 1)/2 ; »_(:0—1)/2 . ; y 1
L= F ), ae g e ().

Applying the transformation 7 — (p — 1)/2 — 7 to L. or M we obtain
L =M. Also we have

b= )
(p—3)/4 (p—1) /2 _ A
- (;_ )- S oDR -5 +2)

i=(p+1)/4 P
— i) (p—1)/2 <L> _ (ﬂ~}‘)12 <_;7__>

so0, by Dirichlet’s class number formula (as » = 3(mod 4), » < 3) see
for example [2: p. 346], we have

(16) L=M= {z — (%)}h(—p) .
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Hence from (15) and (16) we have
amn ZG)Y'(3) — Z'6G) Y () = 2 {2 — (3)}h<~p) .
v

Using (10) and (11) in (17), after equating real and imaginary parts,
we obtain

3h(—p) = 2B,D, — AE,, if p = ,
18) { (—») s AE,, if p =3 (mod 8)

h(—p) =2B,D, — A,E,, if p =17 (mod 8).
Now from (13) we have

(19) {E .= —2A,B;D, — B, (mod 8),if » = 3 (mod 8),

=—2A4,B,D, + B, (mod 8),if »p =7 (mod 8) .
Using (19) in (18) we have

_ (—4;B; (mod 4),if p =8 (mod 8),
@0) M=p) = {—A,B, (mod 4), if p =7 (mod 8) .

From (4) we have F(i) = ¢, and so taking z = ¢ in (2) and (3)
we obtain

—iFL ) = = = [T+ i

= exp <_2< >log 1+ zp’))
= exp i (— %)”” <j>pm)

5S
(VTSN

(P2 et G
= exp (h(p)log(T +UV'p) + m< - <%)> h(—p))

— (T + U1/p )h(m,b(l—w/p))h(—p)
= (—1)®+0A(T + UV?)“‘” ,

= exp

where we have made use of the Gauss sum

5(3)o0 = (2)or

and the two results
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s (M=) T (.2_ VY
2G5 = A(G) e

S 2m 41\ (=)™ _ h(p) —
mgo( . /2m+1—1/510g(T—|—U1/p),

and

which follow easily by standard arguments from Dirichlet’s class
number formula (see for example [2: p. 343]). Hence we have (using

(10))
(T + UV PP = (—1)e=045F_(5)
- (—1)w—3>/*7:%<Y(i) + Z(fi)m/?)}z

%<A3 + BV P),if p=3 (mod 8),

LA, +BVp)yif p=1T (mod 8).
2

This is essentially a result of Arndt [1].
Expanding (T + U1 p)*® by the binomial theorem and equat-
ing coefficients of 1/ p, we have as h(p) =1 (mod 2),

Uh(i”)p(h(p)—qu + <h(210)

) Uh(P)”szp(h(p)—ﬁ)/Z 4.

_ {A3B3, if p =3 (mod 8),
~ |A4,B,, if p =17 (mod 8).

As T=0 (mod 2), U =1 (mod 2), this gives

U(—1)hw-vr = {A3B3 (mod 4),if »p = 3 (mod 8),
(4B, (mod 4),if p =7 (mod 8),
so that
21) h(p) = {AsBs — U+1 (mod 4),if p =3 (mod 8),
P= AB, — U+ 1 (mod 4),if p =7 (mod 8).

Putting (20) and (21) together, we obtain (1) as required.

From (1) we have (—1/h(—p)) = (=120 = (_ 1)@+ Ip
particular whenever A(p) =1 (a common occurrence) we have
(—=1/h(—=p)) = (—1)THV2

In [8] the author has treated, in a similar way, Lehmer’s ques-
tion [4:p. 10] regarding A(—2p) modulo 8, when p» is a prime con-
gruent to 5 modulo 8.
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ON TOPOLOGICAL ANALOGUES OF LEFT THICK
SUBSETS IN SEMIGROUPS

JAMES C. S. WoONG

We discuss the relation among various topological
analogues of left thickness in semigroups and their connec-
tion with left invariant means for locally compaect separately
continuous semigroups. Until now, most results in this
direction have been obtained for only jointly continuous
semigroups. However, an important convolution formula
found recently by this author made the transition to sepa-
rately continuous cases possible.

1. Introduction. Let S be a semigroup and T a subset of S.
T is called left thick if for each finite set F'— S, there is some s¢ S
such that Fsc T. In 1965, T. Mitchell obtained the following in-
teresting results:

THEOREM 1.1 (Mitchell [7]). Let S be a left amenable semigroup
and T a subset of S, then T is left thick iff there is a left invariant
mean m on S such that m(&,) =1 where & s the characteristic
function of T.

THEOREM 1.2 (Mitchell [7]). If T is a left thick subsemigroup
of a semigroup S, then S is left amenable iff T is left amenable.

Sinece then, various attempts have been made to obtain topo-
logical analogues and extensions of these concepts and results to
locally compact semigroups (with jointly continuous multiplication)
with only partial success (see Day [3], [4] and Wong [10], [11]). In
fact, in these attempts, a topological analogue of one or the other
(but not both) of Mitchell’s theorems was found. The purpose of
this paper is two-fold. First, we introduce a “suitable” topological
analogue of left thickness and extend both of Mitchell’s results.
Second, we shall do it in the more general setting of locally compact
separately continuous semigroups because of an important convolu-
tion formula obtained recently by this author for such semigroups
(see Wong [12] and §2 below).

§ 2. Notations and background. For notations and definitions
in analysis on locally compact (Hausdorff) semigroups, we shall
follow [11] (to which the present paper is a sequel) except that we
are now dealing with a locally compact separately continuous semi-
group S. Although all the results cited in the references here are

571
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for jointly continuous semigroups (or compact separately continuous
ones), many of them (in particular, those we are going to need
here) can be carried over to general separately continuous semigroups.
We shall discuss this briefly here and where appropriate, special
remarks with respect to this will be made below.

As usual, let M(S) be the measure algebra with convolution
product and M,(S) the probability measures. Recently, this author
has obtained the following convolution formula:

| rapy = (| renar@aw = |[renismine)

for all feL,(pl=lv)), #,ve M(S). (See Wong [12].) It follows
that M,(S) is a convolution semigroup (algebraically) and that

support (p+v) = [support ¢-support v]”

if o, ve M(S).

As a result, if S is jointly continuous, p+v has compact support
whenever g, v do. In general, this may not be the case except for
example when g = g, is the Dirac measure and v has compact sup-
port. Then d,xv has compact support (=a-support v).

Also, the functions z— f(zy), ¥ fixed and z— S flxy)dy(y), though

continuous, need not be in Cy(S) if f is in C,S), the continuous
functions on S which vanish at infinity. Thus M,(S) need not be a
topological semigroup under the weak* topology of M(S) = C«(S)*.
Despite this apparent setback for separately continuous semigroups,
it should however be remarked that for example the construction
used in Wong [11, Lemma 8.1, p. 296] is valid for separately con-
tinuous semigroups since it requires only that M,(S) be a semigroup.

Now let -T" be a Borel subset of S. Consider the following
conditions on T:

(TLS) For 'each K S compact, there is some zte My(S) such
that vxp(T) =1 for any veM(S) with »(K)=1. [Can assume
w(T) = 1.]

(TLT) For each ¢ > 0, K< S compact, there is some e My(S)
such that v+u(7T)>1 —¢ for any ve M(S) with »(K)=1. [Can
assume that g has compact support and p(T) > 1 — ¢.]

(TLL,) For each ¢ >0 and ve M (S) with compact support,
there is some g in M(S) with compact support such that v=u(T) >
1—e.

(TLL) For each e¢< 0 and ve M, (S) with compact support,
there is some s S such that v=6,(T) > 1 — ¢ where 6, is the Dirac
measure at s.

(LLT) For each F S finite, there is some s& S such that Fsc
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T [Can assume se T.] (This is Mitchell’s definition of left thickness.)
and

(*) For each ¢ > 0 and yve M(S) with compact support, there
is some pte M,(S) with compact support such that p#(T) > 1 — ¢ and
vep(T) > 1 — e.

T is called topological left substantial if T satisfies (TLS). In
Wong [10], it is proved that if T is a (locally compact Borel)
topological left substantial subsemigroup of S, then T is topological
left amenable iff S is. This is a topological analogue and extension
of Theorem 1.2. Also condition (TLS) remains unchanged if we
require the measure g to satisfy the additional assumption that
p(T) =1. The proof can be found in [10]. Since similar situations
will frequently occur again below, we present the proof here for
completeness. As in [10], if ¢ # KC S compact is given, choose
ke K and let K, = Kk U {k} which is also compact. There is some
P € My(S) such that vxp(T) =1 if v, e M(S) and y(K,) =1. Con-
sider ¢ =d,xp, € My(S). wp(T)=1 since 0,(K;) =1. Moreover, if
ye My(S) and v(K) = 1, then

vpU(T) = (wx0,)xp4(T) =1 since v*0,(K))
- S Ex (@h)dv(@) = v(K) = 1.

On the other hand, 7 is called towological left thick if T satisfies
(TLT). It is proved in Wong [11] that if S is uniform strong
topological left amenable (hence topological left amenable), then T
is topological left thick iff there is a topological left invariant mean
M on M(S)* such that M(X;) =1 where X, is the characteristic
functional of T in S (see [11] for more details). This is a topolo-
gical analogue and extension of Theorem 1.2. Condition (7TLT)
remains unchanged if we require the measure p to satisfy the
additional assumptions that g has compact support and p(7T) > 1—e.
For if ¢ >0 and KC S compact are given, there is some x e MS)
such that v=u(T) > 1 —¢/2 for all ve M(S) with »(K) =1. Since
the measures in M,(S) with compact supports are norm dense in
M(S), we can choose € M,(S) with compact support such that
It — ] < ¢f2, then

(g, — vep)(T)| < [Jweps — vepell < 2
and yxp(T) > 1 — ¢ for all ve M(S) with »(K) = 1. Next, suppose
the pair (¢, K) is given and K # ¢. Choose ke K and let K,=Kk U
{k} which is compact. By the above argument, there is some g, e
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M,(S) with compact support such that
Txo(T) > 1 — ¢ for all v e M(S)

with 7(K,) = 1. Consider p, = d,x, € My(S), which has compact sup-
port (=k-support p,), (T) = 6.x(T) > 1 —¢& since 0,(K,) = 1.
Moreover, if ve M(S) and v(K) = 1, then vxt,(T) = (vxd,)*t(T) >
1 — & since v#i,(K) = g Ex,(wh)dv(@) = v(K) = 1.

Later, M. Day [4]Kimproves the result in Wong [11, Theorem
4.1, p. 297] by calling T topological left lumpy if T satisfies (TLL)
and proves that if S is topological left amenable, then T is topolo-
gical left lumpy iff there is a topological left invariant mean M on
M(S)* such that M(X;) =1. Thus for uniform strong topological
left amenable semigroups (in particular, any left amenable locally
compact group), the concepts of (TLT) and (TLL) are the same.

In general, of course (TLS) implies (TLT) which in turn implies
(TLL,). Also (TLL) and (TLL,) are equivalent. This is due to Day
[4] (under further but redundant assumption). Clearly (TLL) implies
(TLL,). Conversely, if ve M,(S) has compact support and v=is(T)=
1—¢for all s in S, then vsu(T) = Sv(Ts“l)d;c(s) - Su*Bs(T)dy(s) <
1 —¢ for all e M(S). Hence (TLL, and (TLL) are equivalent.

Also (TLL) implies (LT). The proof is implicit in Day [4].
For given any finite F S with & elements, consider v=1/k >},.»0,¢
M,S) with compact support. By (TLL), there is some s€S such
that v+6,(T) > 1 — 1/k. Hence 6,,(T) =1 for all 6 F or FscC T.

Finally, condition (*) is somewhere between topological left
thickness and topological left lumpiness. Clearly (*) is formally
stronger than (TLL,). Also (TLT) implies (*) in view of the above
remarks concerning the additional assumptions at the end of the
condition (TLT).

This condition (*) is precisely the “suitable” condition we are
looking for in order to extend both Mitchell’s results.

3. Main results.

THEOREM 3.1. Let T be a Borel subset of a locally compact
semigroup S such that M(S)* has a topological left invariant mean.
Then the following statements are equivalent:

(1) There is a topological left invariant mean M on M(S)*
such that M(X;) = 1.

(2) T 1is topological left lumpy (i.e., T satisfies (TLL) or
(TLLy)).

(8) T satisfies (*).
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Proof. Equivalence of (1) and (2) is due to Day [4, Theorem,
p. 89]. Since the only difference between conditions (TLL,) and (*)
is that the measure g in (*) must satisfy the additional assumption
that #(T) > 1 — ¢, Day’s original proof in [4] can easily be adapted
to show (1) implies (8). However, we shall present a modification
of Day’s argument to show that Theorem 3.1 remains valid if the
measure g in condition (*) is required to satisfy p(T) = 1. Suppose
(1) holds and M is a topological left invariant mean such that
M@, =1. Let g, be a net in M(S) with compact supports such
that p¢, — M weak™ in M(S)**. Then lim, ¢(7T) =1 and for each
v e M,(S) with compact support,

vipe(T) = XT(”*#a) = (v (® Ae) —> My @ Xp) = M) =1,

since M is topological left invariant.
Define z,€ M*(S) by

[rdz. = \eardp, £ eCS) .

Then z,B) = p,(BN T) for any Borel set B in S. In particular,
7(T) = p,(T) — 1. Hence we can assume 7,(T) = 0. Let v,e M(S)
be defined by v, = 7./t(T) = 7./ tt.(T). Then for any feCyS), we
have

\[rav. = (rape | = | #a(lT) [, — \rap.
< |y S = san |+ | s
S 151k | = 1] +17 lT)
Hence
Ive — tall = ! 1 1[ + s (T")— 0.

1(T)

Let ¢ > 0 and v e M(S) with compact support be given, there
is some «, (depending on ¢ and ») such that

5
H”a - #a” <—2‘

and
v Ty >1 —¢f2if aza,.

Hence
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[V50(T) — vrpee(T)|
= [vwve — v [(T)

é”va_#a||<’§‘ifagao~

Consequently

vy, (T) > 1— — =1—c.

£ _ £
2 2
The measure ¢t = v, € M,(S) has (compact) support < K, N T~ where
K, is the (compact) support of f, and g satisfies the requirements

w(T)=1and vsp(T)>1—¢.

This completes the proof.

REMARKS. It should be remarked that Day’s result [4, Theorem,
p. 89] is for jointly continuous semigroups. However, his proof
(and the above adaptation) is actually valid for separately continu-
ous semigroups (see also discussions at the beginning of § 2).

Theorem 3.1 is a topological analogue and extension of Theorem
1.1. It is also an improvement of Day’s result in [4, Theorem, p.
89] (from joint continuity to separate continuity). It also shows
that for topological left amenable semigroups conditions (TLL) and
(*) are the same. It is not known in general whether condition (*)
remains unchanged if we require the measure g in (*) to satisfy
w(T) = 1.

To obtain the analogue of Mitchell’s second result, we need
the following lemmas. From now on, unless otherwise stated
explicitly, T is a locally compact Borel subsemigroup of S. It is
known that if pe M(S), then the restriction g, = g£|, of # to the
Borel subsets of T is a measure in M(T). In fact the correspondence
¢t — ttp is an isometric order preserving isomorphism between the
subalgebra of all measures e M(S) with |¢|(T") = 0 and the algebra
M(T). Moreover p,eM(T) if peMy(S) and p#(T) =1 (see Wong
[9] and [4] for details).

LEMMA 3.2. Let p, ve My(S) with ,(T") =< ¢ and »(T)=1. Then
(1) |pxw —v[(T) = ¢
(2) |pxv —o|(T) = |pr*vr — v |(T) + e.
Consequently
[[pxy — v|| < (| ftrvr — vr|| + 2¢ .

Proof.
(1) Since g, v =0 and »(7') = 0, we have
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vy — W |(T) = | (T7) + |9 ](T")
= A T") = |\ (andp@any)

- STST&,,(xwd;c(x)d»(y) + uyv,&f(xznd#(x)dv(y) :

Since T is a subsemigroup, TN T’y ' = ¢ if ye T and the first
integral vanishes. Thus

Ly — v |(T7) = (1) (U(T") = ¢ .

(2) If Bc T is Borel in S then B is Borel in 7T and

p(B) = SSE,B(x?J)d#(DC)dD(y)
= | | aenar@aw + | | swepduadm
= oy (B) + | | as@ndp@ian)

since T is a subsemigroup and v(7’) = 0.
Hence if {B, B,, ---, B,} is a partition of T into Borel sets in
S, we have

(s = 9B = (o = 2B + | | entonpdperaniy)

and
| sy — v|(T)
= sup { 3 [(¢r+» — »)(BY[: (B, B, -+, B,} a Borel

partition of 7T in S}

IA

v = 2(T) + | | sapau@in)
= [ ppvy — 02 |(T) + €.
The last part of the lemma is now trivial.
LEMMA 3.3.
(1) Let v, be a net in M(T) such that ||vzv, — v,||— 0 for
each veM(T). If 0<e<1 and 7 is a measure in M*(T) such

that 1 —e<o(T) =||t]| £ 1, then there is some «, (depending on
T and €) such that

7oy, — vl £ 26 if a =« .
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(2) Let v, be a net in My(T) such that for each F C T compact,
[|v*v, — Yu|] — 0 wuniformly for all ve M(T) with v(F)=1. Let
0<e<1l and F a compact subset of T be given. Then there is
some o, (depending on ¢ and F') such that for any ze M*(T) with
(T\F)=0and 1 —e<o(T)=|ltl| £1, we have

HTxp, — vl < 26 for a = «, .

Proof.
(1) Let ¢=1||tr]| # 0 and write 7 = ¢v with ve M(T). Then
0<1-¢<eand

T#ve — ol = [[e(wr, — ) + v, — V.l
é H”*ua - ”a” + IC - 11
<2 if a =z a,.

(2) Let 0<e<1l and FC T compact be given. There is
some «, (depending on ¢ and F') such that

[lysv, — v/l < e if a = a, and ve M(T)

such that v(T\F') = 0. Let ce M*(T) with «(T\F)=0and 1 —¢<
o(T)=||z]|£1. Write ¢ =cv where ¢ =||7]|| 0 and ve M(T).
Then as before 0 <1 — ¢ < ¢ and »(T\F') =0, and

[T2ve — voll = [lv#v, — voll + ¢ — 1]
<2 if aza.

THEOREM 3.4. Let S be a locally compact semigroup and T a
locally compact Borel subsemigroup of S satisfying condition (*)
of §2, then S is topological left amenable +ff T is topological left
amenable.

Proof. Assume that S is topological left amenable (i.e., M(S)*
has a topological left invariant mean). Since 7T satisfies (*), by
Theorem 3.1, there is a topological left invariant mean M on M(S)*
such that M(X;) = 1. Therefore M(T)* also has a topological left
invariant mean by a topological analogue (separately continuous
version) of Day’s well-known criterion for amenability of (discrete)
subsemigroups (Day [1] and Wong [14, Theorem 4.1]).

Conversely, suppose M(T)* has a topological left invariant mean.
Then there is a net v, in M(T) such that [|zxy, — v,|] — 0 for each
7€ My(T). Let p, be the unique measure in My(T) with p,(T") =0
and ft; = v,. Suppose now ve M(S) has compact support. We
claim that ||y=pg, — .l — 0. By (*), given 0 < e < 1, there is some
¢ e M(S) with compact support such that
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MTYy>1 —¢and veu(T) > 1 —¢

(i.e., ((T") < e and vxu(T') < ¢€).
Now apply Lemma 3.3 (1) to the measures 7 = g, and (vxg),,
there is some «, such that if a = «a,

| tr#ve — vl < 2e
and
[ () oy, — vl < 2¢ .

By Lemma 3.2, if a = «,

lpextte — o]l < || o ftair — Parll + 2¢
< [l prxve — vell + 26 < 4e
and similarly
Hsspte — pall = || r* iz — fair ||
S | (rtrve — val| + 26
< 4e.
Consequently,
[vxtte — ]
= [lostty — vx(prpr) || + || (xf)xfte — ]
S lpertte — tall + [ () 5te — tall
<R ifaza,.

Therefore S is topological left amenable and this completes the
proof.

REMARKS. Theorem 3.4 is an extension of Wong [10, Theorem
3.2, p. 233].

4. Uniform strong topological left amenability. It is quite
natural to ask whether Mitchell’s second result has also an analogue
for uniform strong topological left amenability. To answer this in
affirmative, we need the following concept of left lumpiness first
introduced by Day [4] for a Borel subset T in S (not necessarily a
subsemigroup):

(LL) For each K< S compact, there is some
se S such that KscT.

Like Mitchell’s concept of left thickness, there is no loss of
generality here in assuming that se€T. Thus we have the follow-
ing string of implications

(LI) == (LL) == (TLS) == (TLT) = (¥) =— (TLL) = (LT)
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with (LI) which stands for left ideal being the strongest and
Mitchell’s (LT) the weakest of all these conditions.

THEOREM 4.1. Let T be a locally compact Borel subsemigroup
of a locally compact semigroup S. Consider the following statements:

(@) S is uniform strong topological left amenable

(b) T is uniform strong topological left amenable.

If T satisfies (*), then (a) implies (b). If T is left lumpy, then
(a) and (b) are equivalent.

Proof. Suppose T satisfies (*) and S is uniform strong topo-
logical left amenable. Then by Theorem 3.1, there is a topological
left invariant mean M such that M(X;) = 1. By [11, Lemma 3.1, p.
296, (separately continuous version, same proof)], we can assume
that there is a net g, e M(S) such that for each compact set KCS,
Il sty — te|] = 0 uniformly for pe M,(S) with #(K) =1 and that
ste — M weak* in M(S)**. Define 7, and v, as in the proof of
Lemma 8.1 above and let 6,¢ M(T) be defined by

Sgdﬁa = Sg'dva, geC(T)

where ¢g'(s) = g(s) if seT and ¢g'(s) =0 if s¢ T. Then 6, =v,r€
M(T). (See Wong [9] and [14, Lemma 3.1] (separately continuous
versions).) Now let FC T be compact and ve M,(T) with v(¥) =1.
Then there is a unique pe M(S) with #(7T')=0 and g|,=y. Clearly
pF) =1. Since p(T") = 0, v.(T") = 0, we have

V50, — 0] = || tr#Vair — Yarrll = | (v — v2) 7]
= || ptxv, — V||
= ([ prve — prfle|| + [0t — ol + [t — Yell -

Now || fte — vo|| — 0 and ||g]| =1, this last sum tends to zero uni-
formly for v e M(T) with »(F') = 1. Hence (a) implies (b).

If T satisfies (I.L) which is stronger than (*), then (a) certainly
implies (b). Conversely, suppose T is uniform strong topological
left amenable. Let v,e M,(T) be such that for any F < T compact,
[|v+y, — V.|| — 0 uniformly for ve M(T) with v(F) = 1. Let p, be
the unique measure in M, (S) such that g, =v,, and p(7") = 0.
We claim that the net g, converges strongly to topological left
invariance uniformly on compacta in S. Let Kc S be compact.
By (LL), there is some a€ T such that Kac T. Then F = Ka U
{a} is a compact subset of 7. Given ¢ > 0, there is some «, depend-
ing on (g, F') such that

[|0s%vy — V.|| < e if a = a, and it e Ko U {a} .
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Therefore for any a = «,, ke K, we have ka ¢ Ka and

0 lte — fall
= [0k e — 04%0u* el + || Opat e — fhal]
= (100t fte — Pall + || Okarfta — Hall
= [[007Va — Yal| + |[0ra#ve — val| < 2¢.

This implies that S is uniform strong topological left amenable
(See Day [4, (1sau) = (W) pp. 88-89].) and the proof is complete.

If the semigroup S is jointly continuous, then the result can
be partially strengthened.

THEOREM 4.2. Let T be a closed topological left thick subsemi-
group of a jointly continuous semigroup S. Then T 1is uniform
strong topological left amenable iff S is.

Proof. Since T is closed, T is necessarily locally compact Borel.
Sufficiency is eclear by Theorem 4.1. On the other hand, if T is
uniform strong topological left amenable, there is a net v, e M,(T)
such that for each compact Fc T, |[vxv, — v.|| — 0 uniformly for
all ye M(T) with v(F) = 1. Again let p, e M(S) satisfy p,(T")=0
and ft,, =v,. We claim that g, converges strongly to topological
left invariance uniformly on compacta. Let K< S be compact and
0 <e<1. By (TLT), there is some g, € M(S) with compact support
K, < S such that g(T)>1—¢ and pxp(T) > 1 — ¢ for all pe M(S)
with p(K) = 1. Since T is closed and S is jointly continuous, both
F,=KNT and F,=K,NT where K, = KK, are compact subsets
of T So is F=F,UF, By Lemma 3.3 (2), there is some «,,
depending on (¢, F') such that for any ze M*(T) with «(T\E) =0
and 1 —e < 7(T) = ||z]| £ 1, we have

NTxv, — vl < 2 if a = «a,.

Now apply this to the measures 7 = g, and (pxpt,), where
preM(S), (K)=1. We have

1= pye(T) = p(T) > 1~ ¢
and
tur(T\F) = p(T\F) £ p(T\F) = (T 0 K)) = (K)) =0,

since support y, = K,.
Similarly,

1= (prp)o(T) = poxpe(T) > 1 — €
and
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(e ft)o(T\F) = poxpts(T\F) < poxpts(T\F)
= prp(T N K,) < pepy(K)
=0,

since
() = \(eum@udu@ap@) = 1.

Hence by Lemma 3.3 (2),
I t17%06 — val] < 26
and

N (eepe) oy, — ve|| < 2e for all & = a,, pre M(S) with #(K)=1.
Consequently, for all a = a,, e M,(S), w(K) =1, we have

[ttt — pho||
= [[ponfte — por(phxpta) || 4 1] () * e — fo]|
S [lpttte — tall + [ ()5 tte — ol
= [t ve — vall + || () rxve — Vo] + 4e < 8¢,

by Lemma 3.2 and above. This completes the proof.

5. Pointwise strong left amenability. As mentioned in Day
[4], an analogue of Theorem 1.1 is still needed for left amenable
locally compact semigroups which characterizes those subsets on
which some left invariant mean can be concentrated. He also
remarked without proof that to obtain a left invariant mean which
concentrates on a Borel subset 7, under the assumption that T
is left thick, would require something like left amenability of S
regarded as a discrete semigroup which is not a common property
of left amenable locally compact semigroups.

In this section, we shall first show that if S is left amenable
as a discrete semigroup, then S is left amenable as a locally compact
semigroup and then supply a proof of Day’s remark, using an
elegant application of the fixed point property for left amenable
discrete semigroups. Also we shall obtain an analogue of Mitchell’s
second result (Theorem 1.2).

THEOREM 5.1. Let S be a locally compact semigroup which is
left amenable as a discrete semigroup, them S is left amenable. In
this case, if T is a Borel subset of S, then the following statements
are equivalent:
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(1) There vs a left imvariant mean M on M(S)* such that
M) = 1.

(2) T is left thick.

(38) There is a left imvariant mean m on m(S) such that
m(&r) = L.

Proof. Suppose S is left amenable as a discrete semigroup.
Let @: BM(S) — M(S)* be the natural embedding of the bounded
Borel measurable functions BM(S) into M(S)* defined by o(f)(») =

S fdp, pre M(S). It is known that @ is an order preserving isometric

isomorphism (into) which commutes with left translations and @(1)=
1. Let m be a left invariant mean on m(S) and n its restriction
to BM(S). Then n is left invariant on BM(S). Let K be the set
of means N on M(S)* which extends n. (In other words @*(N) =
n.) By Hahn-Banach Extension Theorem, K # ¢. (A mean M on
M(S)* can be defined equivalently as MQ1) =||M||=1) K is a
compact convex subset of the separated locally convex space M(S)**
with the weak* topology. Moreover, if aeS and NecK, then
l¥*Ne K where 1,; M(S)* — M(S)* is the left translation operator in
M(S)* defined by [,F =6, F. Therefore the map (s, N)— l}N is
an action of S as continuous affine maps in K. By Day’s Fixed
Point Theorem (Day [2, Theorem 1] or Mitchell [7, Theorem 5]),
this action has a fixed point N which is a left invariant mean on
M(S)* (extending %). By Day [4, Theorem, p. 91], (1) implies (2)
which is equivalent to (8) by Mitchell [7, Theorem 7, p. 257]. It
remains to show that (8) implies (1). This however follows from
the above arguments since we can assume in the definition of K,
the mean n to satisfy n(&;) = 1, then any fixed point N has the
property that N(X;) =1 because @(¢;) = X,. This completes the
proof.

REMARKS. Theorem 5.1 is an analogue of a result in Wong
[11, Theorem 5.2, p. 301] for locally compact groups.

THEOREM 5.2. Let T be a locally compact Borel subsemigroup
of a locally compact semigroup S. If T satisfies (TLL), then T 1is
left amenable iff S 1s.

Proof. Suppose S is left amenable and T satisfies (TLL).
Then there is a left invariant mean M on M(S)* such that M(X,) =
1 by Day [4, Theorem, p. 91]. Hence M(T)* also has a left
invariant mean (Wong [14, Theorem 4.2, separately continuous
version]).
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Conversely, suppose T is left amenable, and v, is a net in
M(T) such that [[d,*v, — v.|| — 0 for each te T. Let p,e M(S) be
such that p(7') =0 and f,, =v,. Since T satisfies (TLL), T is
left thick. For seS, there is some te T such that steT. Con-
sequently

[0 e — tall
= [|0.40 % e — Ok flall + 1|00t lle — Hall
S 100 — fall + 1|00 te — tell
= []0Ve — Vul| + [|0,4¥0 — Ve[ — 0 .

Hence S is left amenable.

6. Some examples.

(1) Let S =R be the real numbers under addition and usual
topology. Then S is a locally compact abelian group. S is amena-
ble in every sense we have considered. Let T be either [0, ) or
(0, ), then T is a locally compact Borel subsemigroup of S which
is clearly left lumpy in S. Therefore by Theorem 4.1, T is uniform
strong topological left amenable.

(2) Let S be a compact semigroup with identity. Suppose
CB(S), the continuous bounded functions on S has a left invariant
mean. By DeLeeuw and Glicksberg [5, Lemma 2.8, p. 70], S has a
unique minimal right ideal, the kernel K(S) of S which is a disjoint
union of minimal left ideals of S that are compact topological
groups. Let T be any one of these. Then T is left lumpy. Being
a compact group, T is uniform strong topological left amenable.
By Theorem 4.1, so is S. On the other hand if M(S)* has a left
invariant mean, so does CB(S) by restriction. It follows that for
compact semigroups with identity, uniform strong topological left
amenability, the existence of topological left invariant mean or left
invariant mean on M(S)* or CB(S) are all equivalent. [Note that
the restriction of the natural embedding ¢: BM(S)—M(S)* to CB(S)
commutes (besides with left translations) also with left convolutions:
pr® f)=p®o(f) if feCB(S) and pe M(S), while if fe BM(S)
and peM(S), p® f need not be in BM(S) but is in GL(S), the
generalized functions on S (See Wong [13] for details).] In fact,
we can show that any left invariant mean m on CB(S) is always
topological left invariant. For with notations as above, let v be
the normalised left Haar measure in 7. Again by [5, Lemma 2.8,

p. 701, m(f) = S Fudy, £ €CB(S). Let pe MyS) be such that p(T")=

0 and zt, =v. By Wong [9, Lemma 3.3, p. 129], §,*¢ = ¢ for all
acT. Since T is a left ideal in S, o,x¢¢ = p for all seS. It follows
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that z+x¢ = ¢ for all e M(S). Moreover m(z @ f) = S(r@f)Tdv =
Sz‘ ® fdp = Sfd?,'*{! = Sfd;c = Sf,Tdv = m(f) for any zeM(S) and
m is topological left invariant. [Recall that z ® f(x) = S Flyx)dr(y)
for feCB(S), t € M(S).]

Addendum. After the submission of the present paper, we
have been informed by M.M. Day that in general the measure ¢ in
condition (x) can be chosen such that y#(T) =1 and that as a con-
sequence, topological left lumpiness is equivalent to condition ().
This latter result was also communicated to us independently by
H. Junghenn.

M. M. Day also claims that if a Borel subset T is topological
left substantial, then T~ is left lumpy and as a consequence, these
two concepts coincide for closed sets.
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