ON A THEOREM OF HAYMAN CONCERNING THE
DERIVATIVE OF A FUNCTION OF BOUNDED
CHARACTERISTIC

PATRICK ROBERT AHERN
ON A THEOREM OF HAYMAN CONCERNING THE
DERIVATIVE OF A FUNCTION OF
BOUNDED CHARACTERISTIC

PATRICK AHERN

W. Hayman [On Nevanlinna’s second theorem and extensions, Rend. Circ. Mat. Palermo, Ser. II, II (1953).] has given sufficient conditions on a function, \(f \), of bounded characteristic in the unit disc, in order that \(f' \) also have bounded characteristic. In this paper it is shown that one of these conditions is also necessary for the conclusion of the theorem to hold.

Let \(U \) be the open unit disc in the complex plane and let \(T \) be its boundary. It is well known that there are functions \(f \), that are bounded and holomorphic in \(U \), such that \(f' \notin \mathcal{N}(U) \). Here \(\mathcal{N}(U) \) is the Nevanlinna class. In fact, O. Frostman, [1, Théorème IX], has shown that there are Blaschke products with some degree of “smoothness” whose derivatives fail to lie in \(\mathcal{N}(U) \). More precisely, he shows that there is a Blaschke product \(B \), whose zeros \(\{a_n\} \) satisfy the condition,

\[
\sum_n (1 - |a_n|)^\alpha < \infty, \quad \text{for all } \alpha > \frac{1}{2},
\]

but \(B' \notin \mathcal{N}(U) \). In Frostman’s example, every point of \(T \) is a limit point of the sequence \(\{a_n\} \).

W. Hayman, [2, Theorem IV], has proved a result in the positive direction. A function \(f \), that is holomorphic in a bounded domain \(D \), is said to be of order \(K \) if, for every complex number \(a \), the number of solutions of the equation, \(f(z) = a \), that are at a distance of at least \(\varepsilon \) from the boundary of \(D \) is at most \(C e^{-K} \), for some constant \(C \). \(C \) may depend on \(a \) but not on \(\varepsilon \). We say \(f \) has finite order if it has order \(K \) for some \(K \). Now let \(D \) be a bounded open set such that \(U \subseteq D \), and let \(D \cap T = \bigcup_n I_n \), where \(I_n = \{e^{i\theta} : \alpha_n < \theta < \beta_n \} \).

Theorem A (Hayman). Suppose that

(i) \(a \sum_n (\beta_n - \alpha_n) = 2\pi \)

(b) \(\sum_n (\beta_n - \alpha_n) \log 1/(\beta_n - \alpha_n) < \infty \).

(ii) there are constants \(\varepsilon, C > 0 \) such that if \(\alpha_n < \theta < \beta_n \), then

\[
\text{dist}(e^{i\theta}, \partial D) \geq \varepsilon(|\theta - \alpha_n| - |\theta - \beta_n|)^+.
\]

(iii) \(f \) is holomorphic and of finite order in \(D \) and \(f \in \mathcal{N}(U) \).
Then $f^{(k)} \in N(U)$ for $k = 1, 2, 3, \ldots$.

The conditions (i)(a) and (i)(b) just mean that the set $E = T \cup I_n$ is what is usually called a Carleson set.

In [4], P. Kennedy investigates the necessity of condition (i)(b). He shows that if (i)(a) holds but
\begin{equation}
\liminf_{n \to \infty} \left(\sum_{j=n}^{\infty} (\beta_j - \alpha_j) \right) \log \frac{1}{(\beta_n - \alpha_n)} = \infty,
\end{equation}
then there is a bounded open set $D \supseteq U$ such that $D \cap T = \bigcup I_n$, $I_n = \{e^{i\theta} : \alpha_n < \theta < \beta_n\}$, and a function f that is bounded and holomorphic in D such that $f' \in N(U)$. He observes that condition (*) does not follow from the condition
\begin{equation}
\sum_{n} (\beta_n - \alpha_n) \log \frac{1}{\beta_n - \alpha_n} = \infty,
\end{equation}
and writes that "there is still a gap between the positive information given by Hayman's theorem and the negative information" given by his example.

In this note we close the gap by showing that condition (i)(b) is the right one. Our example is a Blaschke product that retains the same degree of smoothness as the one of Frostman's example.

Theorem. To each sequence of arcs $\{I_n\}, I_n = \{e^{i\theta} : \alpha_n < \theta < \beta_n\},$ that satisfies (i)(a) but not (i)(b), there corresponds a Blaschke product, B, whose zero sequence, $\{a_n\}$, clusters only on $T \cup I_n$, such that $B' \in N(U)$ and \(\sum (1 - |a_n|^2)\alpha < \infty \) for all $\alpha > 1/2$. Moreover, there is a bounded open set D, such that $D \supseteq U$, $D \cap T = \bigcup I_n$, D satisfies condition (i)(c) with $C = 2$, and B extends to be bounded and of order 1 in D.

Proof. Let $\varepsilon_n = \beta_n - \alpha_n$. We are assuming that $\sum_n \varepsilon_n \log (1/\varepsilon_n) = \infty$. We may choose numbers δ_n, $0 < \delta_n < 1$, such that $\lim_{n \to \infty} \delta_n = 0$, and $\sum_n \delta_n \varepsilon_n \log 1/\varepsilon_n = \infty$. Now define $d_n = e^{i\varepsilon_n}$ and $c_n = (1 - d_n)e^{i\alpha n}$ and $\gamma_n = (1 - d_n)e^{i\beta n}$. Let B be the Blaschke product whose zeros are $\{c_n\} \cup \{\gamma_n\}$. The zeros of B cluster only on the set $E = T \cup I_n$ so B is holomorphic on I_n for every n. We calculate that
\[B'(z) = B(z) \left\{ \sum_n \frac{1 - |c_n|^2}{(z - c_n)(1 - \overline{c}_n z)} + \sum_n \frac{1 - |\gamma_n|^2}{(z - \gamma_n)(1 - \overline{\gamma}_n z)} \right\}, \]
so that when $e^{i\theta} \in I_n$ we get
\[e^{i\theta} B'(e^{i\theta}) = B(e^{i\theta}) \left\{ \sum_k \frac{1 - |c_k|^2}{|e^{i\theta} - c_k|^2} + \sum_k \frac{1 - |\gamma_k|^2}{|e^{i\theta} - \gamma_k|^2} \right\}. \]
ON A THEOREM OF HAYMAN

If \(B' \) were in \(N(U) \) it would follow that

\[
\sum_n \int_{I_n} \log^+ \left(\frac{1 - |c_k|^2}{|e^{i\theta} - c_k|^2} \right) d\theta < \infty.
\]

Now,

\[
|e^{i\theta} - c_n|^2 = (1 - |c_n|^2) + 4|c_n| \sin^2 \left(\frac{\theta - \alpha_n}{2} \right)
\]

\[\leq d_n^2 + (\theta - \alpha_n)^2\]

and hence

\[
\frac{1 - |c_n|^2}{|e^{i\theta} - c_n|^2} \geq \frac{d_n}{d_n^2 + (\theta - \alpha_n)^2}.
\]

If \(e^{i\theta} \in I_n \), then

\[
\log^+ \left(\frac{1 - |c_k|^2}{|e^{i\theta} - c_k|^2} \right) \geq \log \left(\frac{1 - |c_k|^2}{|e^{i\theta} - c_k|^2} \right) \geq \log \frac{1 - |c_n|}{d_n^2 + (\theta - \alpha_n)^2}.
\]

So we see that

\[
\sum_n \int_{I_n} \log^+ \left(\frac{1 - |c_k|^2}{|e^{i\theta} - c_k|^2} \right) \geq \sum_n \int_{I_n} \log \frac{d_n}{d_n^2 + (\theta - \alpha_n)^2} d\theta \geq \sum_n \varepsilon_n \log \frac{d_n}{d_n^2 + \varepsilon_n^2}.
\]

Since \(\delta_n < 1 \), we see that \(d_n = \varepsilon_n^{1-\delta_n} \leq \varepsilon_n \) (assuming \(\varepsilon_n < 1 \)), so

\[
\log \frac{d_n}{d_n^2 + \varepsilon_n^2} \geq \log \frac{d_n}{2\varepsilon_n^2} = \log \frac{1}{2\varepsilon_n^{1-\delta_n}} = \log \frac{1}{2} + \delta_n \log \frac{1}{\varepsilon_n}.
\]

Hence,

\[
\sum_n \int_{I_n} \log^+ \left(\frac{1 - |c_k|^2}{|e^{i\theta} - c_k|^2} \right) d\theta \geq 2\pi \log \frac{1}{2} + \sum_n \delta_n \varepsilon_n \log \frac{1}{\varepsilon_n} = \infty.
\]

So \(B' \in N(U) \). Also we see that

\[
\sum_n (1 - |\alpha_n|)^\alpha = 2 \sum_n d_n^\alpha = \sum_n \varepsilon_n^{(2 - \delta_n)\alpha} < \infty
\]

if \(\alpha > 1/2 \) because \((2 - \delta_n)\alpha \geq 1 \) for all sufficiently large \(n \).

It remains to construct the domain \(D \). We have the inequality,
\[|B(re^{i\theta})|^2 \geq 1 - (1 - r^2) \left(\sum_k \frac{1 - |c_k|^2}{|1 - re^{i\theta}c_k|^2} + \sum_k \frac{1 - |\gamma_k|^2}{|1 - re^{i\theta}\gamma_k|^2} \right) \]

\[\geq 1 - 4(1 - r^2) \left(\sum_k \frac{1 - |c_k|^2}{|re^{i\theta} - \frac{1}{\sigma_k}|^2} + \sum_k \frac{1 - |\gamma_k|^2}{|re^{i\theta} - \frac{1}{\sigma_k}|^2} \right). \]

(We may assume \(|c_k| \geq 1/2, |\gamma_k| \geq 1/2.|)

Now suppose \(\alpha_n \leq \theta \leq (\alpha_n + \beta_n)/2\) and \(|z| \leq 1\), then

\[|B(re^{i\theta})|^2 \geq 1 - \frac{4(1 - r^2)}{|re^{i\theta} - e^{i\sigma_n}|^2} \left(\sum_k (1 - |c_k|^2) + \sum_k (1 - |\gamma_k|^2) \right). \]

So, \(|B(re^{i\theta})|^2 \geq 1/4\) if

\[\frac{1 - r^2}{|re^{i\theta} - e^{i\sigma_n}|^2} \leq \frac{3}{16} \sum_k (1 - |c_k|^2) + \sum_k (1 - |\gamma_k|^2) = C. \]

Note that \(C\) is independent of \(\theta\) and \(n\). Similarly we see that if \((\alpha_n + \beta_n)/2 \leq \theta \leq \beta_n\) and

\[\frac{1 - r^2}{|re^{i\theta} - e^{i\beta_n}|^2} \leq \frac{3}{16} \sum_k (1 - |c_k|^2) + \sum_k (1 - |\gamma_k|^2) = C, \]

then \(|B(re^{i\theta})|^2 \geq 1/4\). We may calculate that, for \(C > 0\),

\[\{re^{i\theta}: \frac{1 - r^2}{|re^{i\theta} - e^{i\sigma_n}|^2} < C \} = \{re^{i\theta}: |re^{i\theta} - e^{i\varphi}| > 1 - \rho \}, \]

where \(\rho = C/(1 + C)\).

So, if

\[\Delta_n = \{re^{i\theta}: r \leq 1, \alpha_n < \theta < \beta_n, |re^{i\theta} - e^{i\varphi}| > 1 - \rho \}, \]

and \(|re^{i\theta} - e^{i\beta_n}| > 1 - \rho\) and \(\mathcal{A} = \bigcup_n \Delta_n\), then \(|B(z)| \leq 2\) for \(z \in \mathcal{A}\).

Now for \(|z| > 1\), \(B(z) = 1/B(1/z)\), so \(|B(z)| \leq 2\) if \(1/z \in \Delta\). Assuming, as we may, that \(C < 1\), we see that \(\Gamma_n = \{z: 1/z \in \Delta_n\} = \{z: |z| \geq 1, |z + \delta e^{i\alpha_n}| < 1 + \delta\} \) and \(|z + \delta e^{i\beta_n}| < 1 + \delta\), where \(\delta = C/(1 - C)\). Finally, if we let \(\mathcal{C}' = U \cup \bigcup_n \Gamma_n\) then \(\mathcal{C}'\) is an open set and \(|B(z)| \leq 2\) for \(z \in \mathcal{C}'\).

Now we define a function

\[\psi(\theta) = \begin{cases} (\theta - \alpha_n)^2(\theta - \beta_n)^2 & \text{if } \alpha_n < \theta < \beta_n \text{ for some } n \\ 0 & \text{otherwise} \end{cases}. \]

We check that \(\psi(\theta)\) exists for all \(\theta\) and that there is a constant \(K\) such that
(See [4, Lemma 1] for a similar calculation.) For \(\varepsilon > 0 \) we define
\[
D_{\varepsilon} = \{ r e^{i\theta} : r < e^{\varepsilon \theta} \}.
\]
Then \(D_{\varepsilon} \) satisfies condition (ii). of Theorem A
with \(C = 2 \). (Again, see [4, Lemma 2], for a similar calculation.)
Also, it is not hard to that \(D_{\varepsilon} \subseteq \mathcal{O} \)
for all sufficiently small \(\varepsilon > 0 \).
So we fix some \(\varepsilon > 0 \) such that \(D_{\varepsilon} \subseteq \mathcal{O} \) and let \(D = D_{\varepsilon} \). Since \(D \subseteq \mathcal{O} \), \(B \) is bounded in \(D \). It remains to show that \(B \) has order 1 in \(D \).
Let \(\varphi : D \rightarrow U \) be a conformal map. Since \(\varphi' \) satisfies a Lipschitz
condition it follows from a theorem of Kellogg [3], that \(\varphi' \) extends
to be continuous and nonvanishing on \(\overline{D} \). From this we can conclude
that there is a \(\delta > 0 \) such that \(1 - |\varphi(z)| \geq \delta \operatorname{dist}(z, \partial D) \) for all \(z \in D \).
Fix \(a \in \mathcal{C} \) and let \(f = B - a \) and let \(\{a_n\} \) be the zero sequence of \(f \).
Then \(\{\varphi(a_n)\} \) is the zero sequence of the bounded function \(f \circ \varphi^{-1} \) so
\[
\sum_n (1 - |\varphi(a_n)|) < \infty
\]
and hence \(\sum_n \operatorname{dist}(a_n, \partial D) < \infty \). From this we
may conclude that \(B \) has order 1 in \(D \).

As a final remark we point out that we may choose the arcs \(I_n \)
in such a way that \(E = T \setminus \bigcup_n I_n \) is a countable set with only one
limit point, and such that (i)\((b) \) fails. If we apply the theorem to
this situation we get a Blaschke product \(B \) whose zeros converge to
a single point such that \(B' \in \mathcal{N}(U) \), while the zeros sequence, \(\{a_n\} \),
satisfies \(\sum(1 - |a_n|)^\alpha < \infty \) for all \(\alpha > 1/2 \).

REFERENCES

Received January 1, 1979.
UNIVERSITY OF WISCONSIN
MADISON, WI 53706
Patrick Robert Ahern, *On a theorem of Hayman concerning the derivative of a function of bounded characteristic* ... 297
Walter Allegretto, *Finiteness of lower spectra of a class of higher order elliptic operators* ... 303
Leonard Asimow, *Superharmonic interpolation in subspaces of \(C_c(X) \) ... 311
Steven F. Bellenot, *An anti-open mapping theorem for Fréchet spaces* .. 325
B. J. Day, *Locale geometry* ... 333
John Erik Fornaess and Steven Krantz, *Continuously varying peaking functions* .. 341
Joseph Leonide Gerver, *Long walks in the plane with few collinear points* .. 349
Joseph Leonide Gerver and Lawrence Thom Ramsey, *On certain sequences of lattice points* .. 357
James A. Huckaba and James M. Keller, *Annihilation of ideals in commutative rings* .. 375
Anzelm Iwanik, *Norm attaining operators on Lebesgue spaces* .. 381
Surjit Singh Khurana, *Pointwise compactness and measurability* .. 387
Charles Philip Lanski, *Commutation with skew elements in rings with involution* .. 393
Hugh Bardeen Maynard, *A Radon-Nikodým theorem for finitely additive bounded measures* .. 401
Kevin Mor McCrimmon, *Peirce ideals in Jordan triple systems* .. 415
Sam Bernard Nadler, Jr., Joseph E. Quinn and N. Stavrakas, *Hyperspaces of compact convex sets* .. 441
Ken Nakamula, *An explicit formula for the fundamental units of a real pure sextic number field and its Galois closure* .. 463
Vassili Nestoridis, *Inner functions invariant connected components* .. 473
Vladimir I. Oliker, *On compact submanifolds with nondegenerate parallel normal vector fields* .. 481
Lex Gerard Oversteegen, *Fans and embeddings in the plane* .. 495
Shlomo Reisner, *On Banach spaces having the property G.L* .. 505
Gideon Schechtman, *A tree-like Tsirelson space* .. 523
Helga Schirmer, *Fix-finite homotopies* .. 531
Jeffrey D. Vaaler, *A geometric inequality with applications to linear forms* .. 543
William Jennings Wickless, *\(T \) as an \(\mathcal{H}_5 \) submodule of \(G \)* .. 555
Kenneth S. Williams, *The class number of \(\mathbb{Q}(\sqrt{-p}) \) modulo 4, for \(p \equiv 3 \pmod{4} \) a prime* .. 565
James Chin-Sze Wong, *On topological analogues of left thick subsets in semigroups* .. 571