FINITENESS OF LOWER SPECTRA OF A CLASS OF HIGHER ORDER ELLIPTIC OPERATORS

WALTER ALLEGRETTI
FINITENESS OF LOWER SPECTRA OF A CLASS OF HIGHER ORDER ELLIPTIC OPERATORS

W. ALLEGRETTO

Finiteness criteria are established for the lower spectrum of a class of higher order elliptic operators. The results are obtained by the introduction and consideration of a suitable second order operator. Examples are given to show that the method can yield optimal results.

Let G denote a domain of Euclidean m-space E^m. We always consider the topology of one point compactification of E^m, so that if G is unbounded, then ∞ is a point of ∂G, the boundary of G. This note deals with the spectrum of the Friedrich's extension L of the operation \mathcal{L} defined on $C^\infty(G)$ by:

$$\mathcal{L}u = (-1)^n a^n u - qu.$$

Here we denote by a^n the n-times iterated Laplacian and we assume that q is a real function defined in G.

In the case $n = 1$ there is a well known connection between the spectrum $S(L)$ of L and its oscillation properties, [1], [2], [6], [7], [8]. Basically, it is shown that, under suitable regularity conditions, the oscillation constant of L is the least point μ of the essential spectrum of L and that $(-\infty, \mu) \cap S(L)$ is finite iff $L - \mu$ is nonoscillatory. It is our purpose to obtain conditions, based on oscillation theory, which guarantee that $(-\infty, 0) \cap S(L)$ is a finite set, where δ is a constant which is assumed hereafter to be zero. We observe that, given the monotonic dependence of the least eigenvalue as a domain function, the same proof as in [6], for the case $n = 1$, shows that if L is oscillatory then $(-\infty, 0) \cap S(L)$ is infinite. It does not appear known, however, whether there is a higher order version of the arguments used in [7] to show that if L is nonoscillatory then $(-\infty, 0) \cap S(L)$ is finite. This observation is the main reason behind our attempt to relate L to a second order operator.

Basically, our method consists in introducing a second order expression \mathcal{L}', related to \mathcal{L}, and in then obtaining finiteness conditions for $(-\infty, 0) \cap S(L)$ by examining the nonoscillation properties of \mathcal{L}. It may intuitively appear that the introduction of a second order expression implies that the results obtainable in this way are not optimal. This indeed can happen, but we show by example that our method may yield best possible results in the sense that the constants appearing in the expressions can not be improved.

After some preliminary results we shall consider (1) only for
the case \(n = 2 \), and merely indicate how the formulas are to be modified for the cases \(n > 2 \). We do this because our method remains unchanged in the general case, while the expressions involved can become quite lengthy and complicated (depending on \(n, m, G \)).

We now state our assumptions on \(\gamma \). We shall assume that:

(i) \(q \in C^\infty_{\text{loc}} \) (i.e., \(q \) is locally Holder continuous) in a neighborhood of \(\partial G \) and \(q \in L^2_{\text{loc}}(G) \);

(ii) \(\gamma \) is bounded below on \(C^\infty(G) \) so that \(L \) is well defined.

Consider a real second order elliptic expression \(\gamma \), given by

\[
\gamma u = -\sum D_i(a_{ij}D_j u),
\]

with \(a_{ij} = a_{ji} \). We shall say that \(\gamma \) is admissible iff the following condition is satisfied:

(iii) if \(G_i \) is any bounded smooth subdomain of \(G \) with \(\bar{G}_i \subset G \) and \(\sigma \in L^\infty(\partial G_i) \), then the form \(B(u, v) \) given by:

\[
B(u, v) = \int_{\partial G_i} \left(\sum a_{ij}D_i u D_j v - quv \right) + \int_{\sigma} \sigma u v
\]

on \(C^\infty(\bar{G}_i) \) gives rise, by extension, to a self-adjoint operator in \(L^2(G_i) \) with finite negative spectrum.

Explicit conditions on \(q, a_{ij} \) which are sufficient in special cases for (ii), (iii) to hold may be found in \([9], [11]\). We observe that our assumptions allow the possibility that \(q \) become singular on parts of (possibly all of) \(\partial G \).

We also recall the following definition of nonoscillation at \(\partial G \) (see \([1]\)):

The operator \(L \) (or the expression \(\gamma \)) is nonoscillatory at \(\partial G \) iff there exists a neighborhood \(N \) of \(\partial G \) (i.e., \(N \) is open in \(E^m \cup \{\infty\} \) and \(\partial G \subset N \)) such that if \(F \) is a bounded domain in \(N \cap G \) then \((-\infty, 0] \cap S(L(F)) = \emptyset \). Here \(L(F) \) denotes the extension of \(\gamma \) defined on \(C^\infty(F) \). The definition of \(L \) oscillatory at parts of \(\partial G \) is analogous.

Finally, we shall say that \(G \) satisfies condition (A) iff: there exists a family of nested bounded smooth closed surfaces \(\{S_j\}_{j=0}^{\infty} \) and associated domains \(\{G_j\} \) (\(j > i \)) such that: \(\bar{G}_j \subset G \), \(\partial G_j = S_i \cup S_j \), \(j = i + 1, \ldots, \infty \); \(\bigcup_{j=i+1}^\infty G_j \) is a deleted neighborhood base of \(\partial G \) (in the induced topology on \(\bar{G} \)). Condition (A) is usually satisfied by the regular domains considered in oscillation theory.

Theorem 1. Assume that \(G \) satisfies condition (A) and that there exists an admissible second order expression \(\gamma \) with \(C^\infty \) coefficients such that:

\[
(\phi, (-1)^s D^s \phi) \geq (\phi, \gamma \phi),
\]
for all $\phi \in C^0_0(G)$. Assume further that $\lambda - q$ is nonoscillatory at ∂G. Then $S(L) \cap (-\infty, 0)$ is a finite set.

Proof. Since $\lambda - q$ is nonoscillatory at ∂G, it follows from our assumptions that there exists a positive solution v of $(\lambda - q)v = 0$ in a neighborhood N of ∂G. A suitable form B, as given in (iii), may then be constructed using v so that if $\phi \in C^0_0(G)$ is perpendicular (in L^2) to a finite dimensional subspace (determined by B) of L^2 we then have:

$$(\phi, \lambda - \phi) - (q\phi, \phi) \geq 0.$$

Detailed proofs of the above statements follow by trivially modifying the arguments given in [6 - 9]. The conclusion now follows from inequality (2) and the spectral theorem.

We remark that if G is an exterior domain with smooth boundary then Theorem 1 remains valid if “nonoscillatory at ∞” is substituted for “nonoscillatory at ∂G”. Furthermore it is now sufficient that $q \in C^0_{\text{loc}}$ near ∞. In the definition of admissible we substitute here for the form B of (iii) the form B' defined on $\{u | u \in C^0(G) \wedge \{ |x| \leq R \}, u = 0 \text{ near } \partial G - \{ \infty \} \}$ by:

$$B'(u, v) = \int_{G \wedge \{|x| < R\}} \left(\sum a_{i,j}D_iuD_jv - quv \right) + \int_{|x| = R} \sigma uv \ .$$

The proof of this remark is essentially identical to that of Theorem 1. We remark that an essential requirement is that ∞ be an isolated point of ∂G. Analogous results are possible for problems on bounded domains G with singularities on isolated parts of ∂G.

Corollary 1. Assume that for some function $w > 0$, $w \in C^0(G)$ we have $(\phi, (-1)^{n-1}D^{n-1}\phi) \geq (w\phi, \phi)$ for all $\phi \in C^0_0(G)$, and let λ_i denote the expression: $\lambda_i = -\sum_{k=1}^{n-1}D_k(wD_k\phi)$. If λ_i is admissible and $\lambda_i - q$ is nonoscillatory at ∂G then $S(L) \cap (-\infty, 0)$ is a finite set.

Corollary 2. Let G be contained in an exterior domain. Then there exists constant C, α, β (which depend on n, m) such that for any $\phi \in C^0_0(G)$ we have $(\phi, (-1)^{n-1}D^{n-1}\phi) \geq (w\phi, \phi)$, where $w = C|x|^{\alpha}(\log |x|)^\beta$.

The proof of Corollary 1 is immediate from the observation:

$$(\phi, (-1)^nD^n\phi) = \sum_k (D_k\phi, (-1)^{n-1}D^{n-1}_kD_\phi) \geq \sum_k (wD_k\phi, D_\phi) \ .$$

Corollary 2 is a summary of results found in [3], [4] where explicit,
but often lengthy, expressions are given for suitable C, α, β in terms of n, m.

The general operator L may now be considered by using Corollaries 1 and 2. As mentioned above, however, we proceed by explicitly considering only the case $n = 2$, and by showing that in this case Theorem 1 can lead to optimal results. We do this by first obtaining a lemma which gives better results than those obtainable from Corollaries 1 and 2.

Lemma 1. Let G be an exterior domain, $m > 4$ and let $\phi \in C^\infty_0(G)$. It follows that:

\[(\Delta \phi, \Delta \phi) \geq \frac{m^2}{4} \int \frac{1}{|x|^2} \sum (D_i \phi)^2.\]

Proof. We adopt the procedure used in [3], [10] for similar estimates. Let Y_i denote a system of complete orthonormal spherical harmonics and let $k = k(i)$ denote the order of Y_i. For a given $\phi \in C^\infty_0(G)$ we set $f_i = \int \phi Y_i dw$ where Φ is the full range of the angular variables and dw denotes the angular component of the volume element in polar coordinates. It follows that:

\[
\int (\Delta \phi)^2 = \sum_{i=0}^{\infty} \int_0^\infty r^{m-1} \left(f_i'' + \frac{(m-1)f'_i}{r} - \frac{k(k + m - 2)}{r^2} f_i \right)^2 dr,
\]

and:

\[
\int \frac{1}{r^2} \sum (D_i \phi)^2 = \sum_{i=0}^{\infty} \int_0^\infty \{r^{m-3} f_i'' + \frac{k^2}{r^2} r^{m-3} k(k + m - 2) \} dr.
\]

Consequently, (3) will be satisfied if we can show that for all k:

\[
\int_0^\infty r^{m-1} \left(f'' + \frac{(m-1)f'}{r} - \frac{k(k + m - 2)}{r^2} f \right)^2 \geq \frac{m^2}{4} \int_0^\infty \{r^{m-3} (f'')^2 + \frac{k^2}{r^2} r^{m-3} k(k + m - 2) \} dr,
\]

where we have set $f_i = f$. We first expand and integrate by parts the left hand side of (4) and then estimate the $(f'')^2$ term by Formula (9) of [5, p. 83]. This procedure shows that for (4) to hold it is sufficient that:

\[
\int_0^\infty \left(r^{m-3} (f')^2 + r^{m-5} \right) 2k(k + m - 2) + r^{m-5} \times f^2 \left[k^2(k + m - 2)^2 + k(k + m - 2) \left(2m - 8 - \frac{m^3}{4} \right) \right] \geq 0.
\]
Estimating the $(f')^2$ term by the results of [3] reduces (5) to showing that, for each possible value of k, we have:

$$\int_0^\infty r^{m-5} f^2 \left[2k(k+m-2) \frac{(m-4)^2}{4} + k^2(k+m-2)^2 + k(k+m-2) \left(2m - 8 - \frac{m^2}{4} \right) \right] \geq 0 .$$

But this inequality is easily seen to be valid by direct examination, and the result follows.

We remark that if $m \leq 4$ the above procedure apparently leads to worse constants than $m^2/4$.

To apply the lemma we first recall that, by [3], [10], the operator L generated by

$$\omega = \Delta u - qu$$

in $G \subset E^m$, $m > 4$, is oscillatory (resp. nonoscillatory) if $16|\omega|^2 q \geq m^2(m - 4)^2 + \delta$ (resp. $\leq m^2(m - 4)^2$) near infinity, where $\delta > 0$.

Corollary 3. Let $n = 2$, $m > 4$ and let G be an exterior domain with smooth boundary. Assume that $-4^{-1} \sum D_i(m^2|x|^{-2}D_i\phi)$ is admissible and that for all $|x|$ sufficiently large we have $16|x|^2 q(x) \leq m^2(m - 4)^2$. Then $S(L) \cap (-\infty, 0)$ is finite. Furthermore $m^2(m - 4)^2$ is the largest possible constant.

Proof. By the remark following Theorem 1 and by Lemma 1 it is sufficient to show that the operator generated by:

$$\omega = -4^{-1} \sum D_i(m^2|x|^{-2}D_i\phi) - q\phi$$

is nonoscillatory at $\{\infty\}$. Since $16|x|^2 q(x) \leq m^2(m - 4)^2$ near ∞, this is the case by the results in [3]. Finally that $m^2(m - 4)^2$ is optimal follows from the above remarks.

As another simple example where "optimal" results are obtained, let us consider the case where G is the $1/2$ plane in E^2 given by $x > 0$ and q has singularities on $x_2 = 0$. In this case the analogue of Corollary 3 is:

Corollary 4. Let $-\sum D_i((1/4x_2^2)D_i\phi)$ be admissible. Assume further that near ∂G we have $x_2^2 q(x) \leq 9/16$. Then $S(L) \cap (-\infty, 0)$ is finite. Furthermore $9/16$ is the optimal constant.

Proof. In this case we have (see [1])

$$(\phi, -\Delta \phi) \geq \left(\frac{1}{4x_2^2}, \phi \right) ,$$
and it is therefore sufficient to show that the operator generated by the expression:

$$- \sum_{i=1}^{2} D_i \left[\frac{1}{4x_i^2} D_i \phi \right] - q \phi$$

is nonoscillatory at ∂G. Again from [1] it follows that the condition $x^2 q(x) \leq 9/16$ is sufficient for nonoscillation at ∂G. That this constant is best possible follows from a separation of variables argument which makes use of the observation that $9/16$ is optimal in one dimension (by a theorem of Leighton and Nehari [12, p. 143]).

In conclusion we remark that other second order nonoscillation theorems (for example those involving integral and/or logarithmic estimates, which are explicitly given in [1], [3], [4], [12]) could be used in place of the simple criteria we employed. It is also evident that other regions could be substituted for the exterior domains and $1/2$ plane case which we explicitly considered. By these means, several variants of our results can easily be stated.

Finally, we note that the regularity requirement "$q \in C^\infty_{\text{loc}}$" of condition (1) can be modified. It is also sufficient, by the spectral theorem, that the expression $\zeta u + qu$ "majorize" (in the sense of forms) a nonoscillating second order expression with regular coefficients.

REFERENCES

Received August 21, 1978 and in revised form February 15, 1979.

University of Alberta
Edmonton, Alberta, Canada
T6G 2G1
Patrick Robert Ahern, *On a theorem of Hayman concerning the derivative of a function of bounded characteristic* .. 297
Walter Allegretto, *Finiteness of lower spectra of a class of higher order elliptic operators* .. 303
Leonard Asimow, *Superharmonic interpolation in subspaces of \(C_0(X) \) .. 311
Steven F. Bellenot, *An anti-open mapping theorem for Fréchet spaces* .. 325
B. J. Day, *Locale geometry* .. 333
John Erik Fornaess and Steven Krantz, *Continuously varying peaking functions* .. 341
Joseph Leonide Gerver, *Long walks in the plane with few collinear points* .. 349
Joseph Leonide Gerver and Lawrence Thom Ramsey, *On certain sequences of lattice points* .. 357
James A. Huckaba and James M. Keller, *Annilhilation of ideals in commutative rings* .. 375
Anzelm Iwanik, *Norm attaining operators on Lebesgue spaces* .. 381
Surjit Singh Khurana, *Pointwise compactness and measurability* .. 387
Charles Philip Lanski, *Commutation with skew elements in rings with involution* .. 393
Hugh Bardeen Maynard, *A Radon-Nikodým theorem for finitely additive bounded measures* .. 401
Kevin Mor McCrimmon, *Peirce ideals in Jordan triple systems* .. 415
Sam Bernard Nadler, Jr., Joseph E. Quinn and N. Stavrakas, *Hyperspaces of compact convex sets* .. 441
Ken Nakamula, *An explicit formula for the fundamental units of a real pure sextic number field and its Galois closure* .. 463
Vassili Nestoridis, *Inner functions invariant connected components* .. 473
Vladimir I. Oliker, *On compact submanifolds with nondegenerate parallel normal vector fields* .. 481
Lex Gerard Oversteegen, *Fans and embeddings in the plane* .. 495
Shlomo Reisner, *On Banach spaces having the property G.L* .. 505
Gideon Schechtman, *A tree-like Tsirelson space* .. 523
Helga Schirmer, *Fix-finite homotopies* .. 531
Jeffrey D. Vaaler, *A geometric inequality with applications to linear forms* .. 543
William Jennings Wickless, *\(T \) as an \(\mathfrak{g} \) submodule of \(G \) .. 555
Kenneth S. Williams, *The class number of \(\mathbb{Q}(\sqrt{-p}) \) modulo 4, for \(p \equiv 3 \pmod{4} \) a prime* .. 565
James Chin-Sze Wong, *On topological analogues of left thick subsets in semigroups* .. 571