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L. Asimow

Let E be a closed subset of the compact Hausdorff
X and let A be a closed separating subspace of C¢(X). Let
o0 be a dominator (strictly positive, l.s.c.) defined on XX T, T
the unit circle in C. Conditions, formulated in terms of
boundary measures, are discussed for approximate and exact
solutions to the problem of finding o-dominated extensions
in A of functions gec(Alz)” satisfying retg (x)=p(x, ) on
EXT. Various interpolation theorems of Rudin-Carleson
type for superharmonic dominators are incorporated into
this framework.

We do not assume that A contains the constant functions. We
denote M(X) = C(X)*, the space of regular Borel measures on X.

We consider N = M(E) as situated in M(X) as the range of
the projection =, ¢t = ¢|; and denote the complementary projection
7ot = ptlpg. Thus (A[p)* is identified with the subspace A*N N in
M(X).

We call e M(X) a boundary measure if |p] is maximal with
respect to the Choquet ordering as a measure of X (embedded by
evaluation) in the w* compact unit ball Af. If 1€ A then this is
the same as |#¢| being maximal on the state space S,, as Xc S,, a
w* closed face of AF.

For brevity we denote the boundary measures by o,M(X), or
oM(X), if A is understood, and in general, adopt the convention of
writing 9,8 for SNo,M(X). Thus, 0,A* refers to the boundary
measures annihilating A. The space A* is the quotient space
M(X)/A* and images under the quotient map are denoted @ for
peM(X). A subset Sc M(X) is called A-stable if § = (3,S)".

We call E an interpolation set if A}, is closed in C(&). Gamelin
[8] shows that & is an interpolation set if and only if there is a
k; 0 <k < o, such that for each mec 4+,

(1) lmm + A0 N < kl|mm]| .

The best value of k is called the extension comstant, e(A, E).

In [10] Roth introduces a general framework for interpolation
problems by means of a dominator, p, defined as a strictly positive
l.s.c. extended real-valued function on X x T (T the unit circle in
C). We let

U={feCX):retf (x)/p(x,t) =1 for all (x,t)e X x T}
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and write
[ £ llo = sup{retf(x)/o(z, t): (¢, t)e X x T}

for the Minkowski functional of U. Thus ||f|l, =1 if and only if
retf(x) < p(x, t), (®,t)e X X T. Then ||p¢]l,, e M(X), refers to the
polar functional given by

1 ello = sup{re(f, 1): fe U} .

Since p is l.s.c and positive there is a constant ¢ such that || f|[,<
cl| f|| (the uniform norm corresponding to o = 1) and if p is bounded
above the two are equivalent.

We say E is an approximate p-interpolation set for A if E is
an interpolation set and for each ge(Al;)” and & > 0 there is an
S eA such that fl; =9 and || fll, <ligll, + & We say E is an
exact p-interpolation set if f can be chosen with [|f]l, = llgll,- It
is shown in [5] that for bounded p, E is an approximate p-interpola-
tion set for A if and only if for each me 4+,

(2) lmm + A* N N, = || —7m ], .

If, in addition, the image U of U° under the quotient map is
decomposable by N then E is an exact p-interpolation set. If there
is an s, 0 < s < 1, such that for each me 4",

(3) lmm + A+ N N{l, = sl —mm|l,

then the above holds and E is p-exact for A. Gamelin’s results
[8] can be phrased as follows: Let G be a compact set in X\F
and let

1 for (z,t)e E x T
oG, k)(x, t) = {k for (x,t)eG X T
1V k otherwise.

Then E is lan approximate o(G, k)-interpolation set for all such G
if and only if (1) holds and if, in addition, e(A4, E) < 1 then E is an
exact p-interpolation set for any continuous T-invariant o such that
0>elA, E) on X x T. This was obtained in abstract form using
polar techniques by Ando [3].

In [6] Briem shows that if E is a subset of the Choquet
boundary, 0,X, then E is an interpolation set if and only if (1)
holds only for meo,A*. Further, if X is metrizable then (1) holds
for 0,A* if and only if E is an approximate o(G, k)-interpolation
set for each compact G c9,X\E. The A-stability of the unit ball
M/(X) (Hustad’s theorem [9]) and of N = M(E) (since £ d,X) are
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essential here. If (1) holds for (A, F) <1 (again, & is the smallest
k such that (1) holds for all mecdA*) then E is p(G, k) exact for
any GC o, X\E and k> €.

If (1) holds for all med, At with k& = 0 this can be expressed as

(4) mco At imples tme A .

The set E is called an M-set if M(F) is A-stable and (4) holds. Roth
[10] shows that if E is an M-set and p is a bounded A-super-
harmonic (if 1€ A this means po(z, t) = Sp(-, t)ydy for any pe M7 (X)
and ff = xe XC A}) dominator then E is an exact p-interpolation
set for A. This generalizes the Alfsen-Hirsberg theorem [2] which
deals with T-invariant o and Ecd,X.

In this note we consolidate these results by showing that for
E an interpolation set with M(Z) A-stable and o A-superharmonic
then K is an approximate p-interpolation set if and only if (2) holds
for med,A*. If in addition U is decomposable by N in A* then
the interpolation is exact. This is the case if o is bounded and (3)
holds for med,A*. (If p is bounded and (2) or (3) holds then E is
already an interpolation set.) We give a measure theoretic condition
for the decomposability of U and show by means of simple examples
of A(K) spaces that exactness of interpolation can be deduced in
this way even though equality holds in (2) which, of course,
precludes the use of (3).

1. Hustad-Roth stability theorems. Let A be a closed separat-
ing subspace of C(X). Define ¢:C(X)—-CX x T) by &f(z, t) =
tf(x). By separating we shall mean that the range of @], separates
the points of X x T. This assumption can be avoided, as is shown
in Fuhr-Phelps [7], but at the expense of additional technicalities.
If yve M(X x T) then the Hustad map is given by

p=0ve MOD); p(f) = | tf@dvia, 1)

If @ = @], has range BC C(X x T) and v is a maximal probability
measure on X x T C B* representing [ € B then Hustad’s theorem
says g = @*v belongs to 0,M(X), with 2 = L = ¢*L.. We combine
this with the following observations concerning T-invariant A-super-
harmonic dominators to obtain a general stability theorem due to
Roth [11].

Thus let o be a strictly positive l.s.c. extended real-valued
function on X such that for each € X and pe M7 (X) with fi=z¢

A*, we have p(x) = S odpy, that is, p is A-superharmonic. If U =
X
{f e C(X): reffjo <1} then U° is a w* compact convex subset of the
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positive cone M*(X), and we let U be the quotient image in A*.
Take R* to be the one-point-compactification of R* and

X,={,8)eX x R:px) <s < + =},
Y, = {(x, o(x)) € X;: p(x) < oo},
Y. = {(x, o(x)) € X;: p(x) = + o} .

Since p is l.s.c., Y,U Y, and Y, are both G; subsets of X, so that
Y, is a Borel set. Define

P C(X) — C(Xo); vf(w, 5) = f(x)/s ,

and let 6 = |, with (not necessarily closed) range Bc C(X,). Since
o is strictly positive 4 is bounded and #* is one-to-one from B*
into A*. Let

@0t Xo B B1*

be the evaluation map and let V = w* — cogy(X,).

PRrOPOSITION 1.1. Let o be a T-invariant A-superharmonic domi-
nator on X as above.

(1) ¢, s oneto-ome on X \(X X {o}), X X {=} = ¢;%0), and
6*V = U.

(2) If v is a maximal probability measure on V then Y[oo( Yo) U
{0}]] =1 and v may be identified with the measure on Y, given by
Yog.

(38) If v is as in (2) and pt = +*v then for any bounded Borel
Sunction h on X

| e = Syq(h(m)/p(w)dv@, (@) .

In particular, pte U°.
(4) Let pye M*(X) with g, = x,€ X C A} and define fi,€ M(X,)
by

Ao(F) = (l/p(xo))SXF (x, p(x)o(x)dt() -
Then for any bounded Borel function h on X

[, @)z, 9 = Wo@)| hdp .

In particular fi, =0, fi(X) = f(Y,) = 1, and fi, represents (x,, o(x,)) €
V.

(5) If v is maximal on V then ¢ =*v is maximal on K =
coX C A*.
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Proof. (1) The separation theorem shows U = w*co{x/s: (z, s) €
X,}. Now
0% oy(x, 5) = x/sc A*

so the rest of (1) follows from the fact that A separates points in
X. For 2) let p=1—X, on V and note that the lower envelope
0 is the Minkowski functional of V. Since v is maximal,

1 = sl{a: p() = p@)}] = vl{a: p(e) = L or O}] .
Now A = 1 implies ¢,(x, As) = (1/\)@y(2, s), so that
Yo(Y) U0} =1.
It feCWX) then v*u(f) = | (Fs)ivts, ») = | ()o@, o)

and so (3) holds.
(4): If FeC(X,) and 0 < F <1 then

0= A(F) = (Upe)| pdrm=1.

Thus fI, = 0, Z,(X,) <1 and g[{x: p(x) = + «}] =0. For F = +h,

A = | @i, s
= o)\ hdp .

(5): Let f be a continupus convex function of K and denote the
upper envelope of f by f(K), where [1,1. 3.6]

F(E)(x,) = sup{pe(f): pre M (X) and fi = x,€ A} .

If g =+4(f|y) then ge C(X,) with g =0 on XA>< {eo}. If f, = 2, and
gy is asAin (4) then fi, represents (x,, p(x,)) € V and the upper envel-
ope, §(V), satisfies

§(V) (@, 0(x,) Z sup{fi(9): fly = @} = (1/0(@)F(K)(x,)
by part (4). Thus, using part (8), and |1, I. 4.5],
| [F) = flag = | 17K) — fljodv={ 1a(7) — gl = 0
since v is maximal. Hence, ¢ is maximal on K.

We now consider the case where p is defined on X X T. We
say such a p is A-superharmonic if for each (x,t)e X X T and pe
M(X x T)/ with
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| Swsf (W)d(y, s) = tf(x) for all fe A

we have o(z, t) = S odge.

THEOREM 1.2 (Hustad-Roth). If o is an A-superharmonic domi-
nator then U°® is A-stable.

Proof. Let 0:C(X)—C(X x T); @f(x, t) = tf(x) and let
U'={FeCX X T):reF(z, t)/o(z, t) < 1}

and ¢ = @|, with range B.

Let 7: (X x T) — C(X,); TF(x, t, s) = F(x, t)/s, where X, is the
closed epigraph of p in (XX T)xR*. Now ®UcCU" and ¢(ANTU) =
BN U Given Le U, let Le(U) cB* and L'e V (as in Proposi-
tion 1.1) with ¢*L’ = L and ¢*L = L. We have Bf = w*co(X x T)
and the hypothesis says p on X X T is B-superharmonic. Hence
the results of Proposition 1.1 apply. Thus if »' is maximal on V
representing L’ then 1.1 (3) and (56) show vy = ¥*Y’ is maximal on
B representing L e(U')". Then p=g¢*velU® and fi=LeU.
Furthermore, Hustad’s theorem shows g is a boundary measure.

If 1e A then the condition for A-superharmonicity is somewhat
simpler.

ProPOSITION 1.8. If 1€ A then o ts A-superharmonic if and
only if for each pe M (X) with fi =z,

o, ) = | o, e

Proof. If p is A-superharmonic and pre M, (X) with g =2 we
can embed X as X X {t} c X X T so that the measure p satisfies
|, sF@dn = tf@)
XxXxT

and hence
oz, t) = S oz, tydy = S o(-, tdg .
X x{t} X

Conversely, if pge M, (X X T) and represents tx then, since le A,

we have tcoX = tS,(S, the state space of A) is a face of A. Hence

suppy C X X {t} and the measure p(f) = S f(x)dp represents «
XXT

so that
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o, ) = | o, tap = odn.
X XxT

2. Dominated interpolation. If E is a compact subset of X
we let

M={feCX): fl,=0

and denote M N A by E*. It is well known that E is an interpola-
tion set for A if and only if A + M is closed in C(X) and this in
turn is equivalent to N being w* (or norm) closed in A*. The
following characterization of approximate p-interpolation sets follows
from results in [5;4.2]. We denote N = M(E)c M(X).

THEOREM 2.1. Let o be a (strictly positive l.s.c) dominator on
X such that either p is bounded or E is an interpolation set. The
following are equivalent:

(i) E is an approximate p-interpolation set for A,

(ii) A+ M is closed in C(X) and

A+MNnU+M)=ANTU+ M),

(i) Un N =(U°n N)",
(iv) g+ A NN, =Ilp+ A", for all pe N,
V) llzm + A* N N, = || —mym]||, for all me A*.

For xe A* we write ||z||, for the Minkowski functional of U
so that if ff =«

Nl = Ilge + Al

The set U’ is split, that is, [|¢]l, = l|m.pll, + |i7.pl], [10, 5].

PROPOSITION 2.2. Let N and U°® be A-stable sets in M(X).
Then for peo,M(X),

(1) e+ At = llp + 04, = [I£1,,

(2) H# + N + ALHP = Hﬁzﬂ + ﬂzaALHp (772# = #IX\E)’

(8) If {[pll, = lI£ll, then

Hﬂiﬂ]]p = H(”iﬂ)AIIP (1=1,2).

Proof. If peoM(X) and ||/}, < then gt =7y +m with ve U°
and mec A*. The stability of U° shows we can assume v€dU? so
that meod*. Then (1) follows. If p=rv + 9 +{ with veolU",
nedN,{ec A", then (e€dA* and mpu=ry + mlecrm,U° + w,0A".

Conversely, if m,pu =rv + n,l,vedlU’ {€0A" then
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p=rv+ @y —nl)+ LerU + oN + 0A" .
For (3), we have

lmeelle = [(@)” M, = 7t + A%, = [[pt — Tt + A
z |lell, — lmapt + A8l = Nl el — Hmapelle = llmupel],

Since we do not assume 1€ 4, we take the Choquet boundary,
0,X, to be X NextAF. There are two main instances where the
A-stability of N can be deduced.

ProposiTION 2.3. Let E be a closed subset of X such that
either

(a) EFcoX or

b) E=FnX, Fa w* closed face of A}.
Then N is A-stable.

Proof. In the case (a) each probability measure on E is maximal
and so the result follows since coE spans N. In case (b) each
maximal probability measure g with fZccoE has its support on
(ext F')~ C K.

THEOREM 2.4. Let E be a closed subset of X such that either

(a) EcoX, or

(b) E=FnNX,F a closed face of A}.
Let o be an A-superharmonic dominator such that either p 1is
bounded or E is an interpolation set. Then the following are equi-
valent:

(i) K is an approximate p-interpolation set,

(i) g+ A* N NI, = ||t + 04*||, for all pedN,

(i) |lzm + A* N N, £ || —7ml], for all medA*.

Proof. The hypotheses imply that U® and N are A-stable and
so 2.2. (1) shows for peoM,
e + A*lo = [t + 04|, .

Thus (i) = (ii) < (iii) follows from 2.1. If (ii) holds and e UNn N
then choose pt€oN with Z£ =« and pte U’ + A*. Then

e+ AT Nl = [l +0A |l =l + A4 ], =1

so that £ =v +m; ve U’ meA* N N. Hence ve N and fl=x=Ve
(U°N N)Y'. Thus 2.1 (iii) holds and hence (i) is shown.

The exactness of p-interpolation is characterized by the sum
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AN U+ E~X(E* the ideal of functions in C(X) vanishing on E)
being closed in A, a condition which is implied by the decompo-
sability of Uby Nin A* [5; Theorem 3.2]. If E is an interpolation
set (so that N if w* closed in A*) then U is said to be decomposable
by N if there is an a =1 such that each z e U is a convex combina-
tion of elements y,z with ye UNN,ze U and ||z < aljz + N
(dual uniform norm).

The condition for decomposability, and hence exact interpolation,
can be formulated in terms of representing measures in M(X). We
illustrate this for boundary measures in the case where p is super-
harmonic.

THEOREM 2.5. Let E be a closed subset of X and A a closed
separating subspace such that either

(a) EcadX, or

(b) E=FnX,F a closed face of A},
and let o be an A-superharmonic dominator such that either o is
bounded or E is an interpolation set.

If for each xe U there is a ped, U° with fi =« and

|t + 0A" || < af[Topt + THA" |
(a a constant independent of () then E is an exact p-interpolation

set.)

Proof. Given ze U choose a boundary measure ¢ satisfying
g=uw, g, =Illpll, and |[[7p+ 0A*|| < allmp + 7oA |. Now
eell, = el + |lmott]l, shows that g is a convex combination of
1t,e U'N N and g,e U scalar multiples of 7z, w,/t respectively.
Thus, ||g + 0A* || < al|f, + THA* ]| and x is a convex combination
of ye(U'N N)" and ze U with (using 2.2 (1) and (2))

Nzl = [lp + 0A || = ||ty + T0A" || = a|[pt + N + A*|]
=allz + NJ| .
This shows that (U°N N)> = UN N and that U is decomposable by
N. Therefore E is an exact o-interpolation set.

If E is an M-set then w0A* C0A* so that
|7opt + THAM || = || 7ot + 0A* ||

and the condition of 2.5 is automatically satisfied (for A-stable U°).
More generally, if U° and N are A- stable and, for some s <1

lmm + AN N, < s||—nm||, for all medd*
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then a computation based on [5; 4.8] shows the condition of Theorem
2.5 holds, so that E is an exact p-interpolation set.

COROLLARY 2.6. If E 1is an M-set for the closed separating
subspace A CC(X) then E is an exact p-interpolation set for A for
any A-superharmonic dominator p.

Proof. If E is an M-set then N is the range of a projection in
A* so that E is an interpolation set for A. The conclusion then
follows from 2.5.

3. Examples. We illustrate the results of §2 with various
choices of p. First, let X be a compact metric space with E a
closed subset and M(E) A-stable for the closed separating subspace
AcC(X). Let G be the collection of compact subsets G <o, X\E
and let p = o(G, k) be the dominator mentioned in the introduction.
Then (for k < <o)

(1) l|mym + A* N N|| £ kl||z;m|| for all medA*

if and only if E is an approximate (G, k)-interpolation set for all
Gez. To see this we note that sinece G, X, U° is A-stable so
that the second property holds if and only if

(2) |lmm + A N N||, £ ||—nmll, for all meod',GC < .
It follows easily from [5;4.1] that if Y = X\(E N G) then
leello = llelell + Bl glell + AV E) | 22l |l
so that
l|lmm + A" N N|| = ||lzym + A* N N||,
and, since for boundary measures g, the metrizability of X gives
| |(X\E) = [p£]| (0, X\E) = sup{|¢|(G): Ge &},
we have

kllzm|| = sup{l|mm|lo: 0 = p(G, k), Ge &},

The equivalence of (1) and (2) is now immediate. If (1) holds for
k, <1 and k, <k =<1 then for p = p(G, k)

lmm + A* U N|l, = [[zm + A* 0 N|| < k(l[lmls]] + [|m]y 1)
= (ko/k)l|m|s]| + [lmlp]]) = (ko/k) 7m0 |
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so that E is an exact o(G, k)-interpolation set for A.

The study of sufficient conditions for the A-convex hull of F
to be a generalized peak set (we now assume 1€ A) has been shown
[4] to be related to an ordering on Cy(X) and M(X) induced by
choosing P to be a closed proper convex cone with nonempty interior
in C. Let a, 8 be the generators (of modulus one) of the dual cone
P* = {z:reaz = 0 for all a € P}. We denote by ¢ the element of P
such that 7reevy =1 (v =a,8). If feCi(X) we say f =O0(P) if
fX)CP and p = 0(P*) means p(B)e P* for all Borel sets BC X.
Then the function e = ¢ becomes an order unit for C(X) in which
the order unit norm ||-||. (equivalent to the uniform norm) is given
by

1 for t ==+v

o, ) = 1/e for t = + v, T=ap

where ¢ is a constant such that
cz| £ |reaz|\V |reBz| .

This provides an example of a o which is not 7T-invariant.
Let p* and o~ be strictly positive l.s.c. functions on X and
take

o (x) on X x {1}
o, t) = {07(@) on X x {L1)
+ o otherwise.

Then U={feCX): —p~ <ref <p*}. If pe U’ and f is real then
Nif e U for all real A so that

1 = rep(\ if) = — Nimp(f)

and hence imyu(f) = 0. Thus g is a real measure and U°C reM(X).

If A, is a real subspace of C(X) then we can apply the results
of §2 to the self-adjoint space A, + t4, = A. Then || fll, = [|refll,
and me A+ if and only if m = m, + im, with m,, m, real measures
in A*. Also m is a boundary measure if and only if m,, m, are
boundary. Hence E is an approximate (exact) p-interpolation set
for A if and only if it is for A4, = red, and the measure conditions
of §2 need only involve real measures in M(X). If X is a compact
convex subset of a locally convex space and A4, = A(X) (real affine
continuous functions) then p is A-superharmonic if and only if
ot = (0o*)" and p~ = (07)", that is, if and only if p* and o~ are
concave on X.

Let X be a square in R® with vertices denoted {1, 2, 8, 4} with
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E = {1, 2} diagonally opposite and A, = A(X), p*, 0~ = 1. Then 4"
is a one-dimensional subspace of the four-dimensional space oM(X)
spanned by the point-masses {d,}i—,. A generator for dA* is m=4,+
0, — 8, — 8,. Clearly A" N N = {0} sinece coF is a simplex and so

lmm + A* N N = [[zm]| = ||zm]|] .
This shows F is an approximate p-interpolation set for A(X).
Obviously E is in fact an exact interpolation set, but this cannot
be concluded from a condition such as (3) in the introduection.
Nevertheless, the condition of 2.5 holds, since if
©=3In\0,
then
el = 2N

and

7ot + 0 A || = inf{Ing — N + [N — A NER} = [N, — N .
If »; and A, are opposite in sign then

7ot + 0A | S llmopel] = Dl + 1] = [ = M| = [ + w04 ]|

If, say 0 < N <\, consider v = ¢ + A\ym. Then D = Z and

Il = 2N = N S (Nl A+ Nl + 2100 + [N = [N ] = [l
and

7T 4+ 0A* || S |||l = M — Ny = ||t + ToA* | .

We conclude with an example of an approximate interpolation
set which is not exact. Let X be the unit ball of the sequence
space ['(w* topology) and let p = 1. Then take A = ¢, the pre-dual
of I, so that |lall, = ||all. = sup{la,|]}. Let E be the singleton
{%, oy =1/2", n=1,2, ---. If (a,2) =1 then >7.,a./2"=1 so
that some a, must be greater than one. Clearly we can find such
an a with |ja]| £1 + ¢ for any ¢ > 0. Thus E is an approximate,
but not exact, p-interpolation set.
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