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The purpose of this paper is te develop in detail certain
aspects of the space of nonempty compact convex subsets of
a subset X (denoted cc(X)) of a metric locally convex T.V.S.
It is shown that if X is compact and dim (X)=2 then ce(X)
is homeomorphic with the Hilbert cube (denoted cc(X)=1I ).
It is shown that if #n=2, then cc(R") is homeomorphic to I
with a point removed. More specialized results are that if
XC R? is such that ce(X)=I_ then X is a two cell; and that
if XC R? is such that ce(X)=I_ and X is not contained in a
hyperplane then X must contain a three cell.

For the most part we will be restricting ourselves to
compact spaces X although in the last section of the paper,
§7, we consider some fundamental noncompact spaces.

We will be using the following definitions and notation. For
each # =12, ---,R* will denote FEuclidean #n-space, S"'=
{xeR" ||z|| =1}, B» = {xe R" [|z|| <1}, and °B" = {x ¢ R™: ||z ]||<1}.
A continuum is a nonempty, compact, connected metric space. An
n-cell is a continuum homeomorphic to B*. The symbol I, denotes
the Hilbert cube, i.e., I, = I, [ —1/2% 1/2°]. By I we will denote
the pseudo interior of the Hilbert cube, IS = 12, (—1/2% 1/2°). We
let I™ denote the set of natural numbers. We use ¢l and co, re-
spectively, to denote closure and closed convex hull. If Y is a
subset of a space Z, then int{Y] means the union of all open sub-
sets of Z which are contained in Y. The notation X = Y will
mean that the space X is homeomorphic to the space Y.

All spaces are considered in this paper to be subsets of a real
topological vector space. Since we are restricting our attention in
this paper to separable metric spaces this is no restriction topolog-
ically or geometrically (cf. Vol. I of [14, p.242]). If X is a space,
by ce(X) we will mean the hyperspace of all nonempty compact
convex subsets of X (with the Hausdorff metric). We will call
ce(X) the ce-hyperspace of X.

If x and y are points in a real topological vector space V,
then %y or [z, y] denotes the convex segment or point (if x = y)
determined by x and v, i.e., 2y = {fte + 1 —0ty: 0=t =1} = [z, y].
Let Xc V. If zeX, we let S(x) denote {ye X: x’y\cX}, and we let
Ker(X) denote (),.x S(x); the set Ker(X) is called the kernel of X.
We say X is starshaped if and only if Ker(X)+# @. For ACY, a
point p in A is called an extreme point of A if and only if no
convex segment lying in A has p in its (relative) interior. The
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symbol ext[A] denotes the set of all extreme points of A. If X is
a subset of R*, for some =, a point pe X is said to be a point of
local nonconvexity of X if every neighborhood of » in X fails to
be convex. We will denote the set of all points of local nonconvex-
ity of a set X by LN(X). For spaces X and Y with XC Y the
boundary of X, denoted Fr(X), is defined by Fr(X) =-cl(X)N
el(Y — X). A closed subset A of a metric space X is a Z-set
in X if for any nonnull and homotopically trivial open set UcC X
it is true that U — A is nonnull and homotopically trivial (see
[1]).

The paper is organized as follows: In §2 we give some general
results which are closely related to early work of Klee. One of the
results of this section establishes that if K is a compact convex
subset of a metrizable locally convex topological vector space and
dim[K] = 2, then ce(K) = I,. This sets the stage for the remainder
of the paper, as one of our major concerns becomes obtaining ans-
wers to the following question:

(1.1) For what continua K is ce(K)= 1,7 In §3, we show
that if KC R? is as in (1.1), then K is a 2-cell. Thus, for R? a
complete answer to (1.1) becomes a matter of determining which
2-cells K in R? have their cc-hyperspace homeomorphic to I_.. Re-
sults about this are in §5, where we show that there is a 2-cell in
R? whose cc-hyperspace is not homeomorphic to I, and we obtain
some geometric results which give sufficient conditions on a continu-
um X in order that ce(X) = I,. Many of the results in §5 are for
continua more general than 2-cells in the plane.

Though KC R* as in (1.1) must be a 2-cell, KC R® as in (1.1)
need not be a 2-cell or 3-cell (see (4.7)). However, in §4, we show
that if K R® is as in (1.1) and K is not contained in a 2-dim hy-
perplane in R® then K must contain a 3-cell (see (4.1)). Some
lemmas about arcs of convex ares in R? and arcs of convex 2-cells
in R® which we use to prove (4.1), seem to be of interest in them-

selves.
In §6 we give some examples and state some problems. Many

of these help to delineate the status of the problem of which 2-cells
in R? have their cc-hyperspace homeomorphic to I.. The technique
used in (6.4) is particularly noteworthy since using it in combina-
tion with suitable results for 2-cells with polygonal boundary can,
perhaps, lead to a satisfactory solution of (1.1).

The final section, §7, begins to touch on the problems connected
with determining the topological type of the cc-hyperspace of some
noncompact subsets of topological vector spaces. The main result
of this section is that, for n = 2, ce(R") = I, — {p} for pecl..
Several open questions are also posed in this section.
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2. Some basic results.

(2.1) LeMMA. Let K be a compact convex subset of a metriz-
able locally conwvex real topological vector space L, dim[K]| = 2. Then
there exists a countable family {{;:1 = 1,2, ---} of continuous linear
Sunctionals C; such that given Acce(K) and xc[K — Al, there ex-
ists @ je It such that C;(x)¢ C;(A).

Proof. The compact metric space K in the relative topology
has a countable base of convex sets Q = {V}<,. Define a family
F by F={V,V,-, V)nel, V,e@Qand colUi=! V)Nl V,]=0}.
Given any (V,, V,, ---, V,) e F, by a (well known) separation theorem
there exists a continuous linear functional strictly separating
co(Ur! V,) and cl[V,]. For each member of F, select one such
functional thus obtaining a countable family {{,}i, of functionals.
The proof is completed by noting that for £ <€ K and A ¢ ce(K) with
x¢ A there exists a (V,V, ---, V.)eF with 4 ceco(Us' V) and
zecllY,].

(2.2) THEOREM. Let K be a compact convex subset of a metriz-
able locally conwvex real topological vector space L, dim[K ]| = 2. Then
ce(K) = L.

Proof. For each Acce(K), let {,(4) = [a,, b;] where the {, are
as in (2.1) such that, without loss of generality, sup{|{;(x):x e K}<1
for each 7. Let F:ce(K)— I, be defined by

F(A) = (QI/Z, bl/zz’ a2/23y b21/24’ ) a/n/zzn—ly bn/zzny ° ') .

Since {{*}2, is a separating family, F' is one-to-one. Furthermore,
for each j, the co-ordinate functions F,; , = a;/2%* and F,; = b;/2¥
are continuous since {; is continuous. Thus, F is continuous (we
are mapping into I.). Let A', A*cce(K), ve[0,1], and jc I*; then,

using the linearity of (;,

GOWAT + (1 = MAY) = 2(A) + (1 = MN((AY)
= Maj, b3] + (1 — Mlaj, b3
= [naj + (I — Maj, Mbj + (1 — \)b3 ,

where [af, bY] = {;(A*) for k =1 and 2. Thus, F,(LA" + (1 — V4% =
MFL(AY) + (1 — M)F,(A?) where t = 1,2, ---,. This says that the set
F(ee(K)) is convex. Now, since dim[K] =2 K contains a convex
2-cell, say D. Thus, for each n, K contains a regular n-sided
polygon P, with sides s, s,, --+, s, which lies in the “interior” of
the 2-cell D. For each 7, let 4, be a convex arc which lies in the
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exterior of P, along the perpendicular bisector of s, in D. For
each n'tuple (tu Loy ooy tw) in H’?’Zl A1 let G((tlr oy o0y t-n)) = C‘O({tl,
ty, <<+, t,}). It is clear that the mapping G is a homeomorphism of
the n-cell 1, A; into ce(K). Thus, ce(K) contains an n-cell for
every n and, tnerefore, is infinite dimensional. Thus, F(ce(K)) is a
compact and infinite dimensional convex subset of [,. Hence, by
Keller’s theorem [10], F(ce(K)) = I... Therefore, ce(K) = IL,.

We point out that the proof of Theorem 2.2 is a slight modi-
fication of a proof used by Klee [12] to generalize Keller’s theorem.
Also Klee, in a conversation with the authors, has pointed out a
different proof of Theorem 2.2 in the case when L is a normed
linear space. This consists of using a theorem in [17] to embed
the compact convex subsets of a normed linear space into a normed
linear space, noting that for a fixed Kc L,ce(K) is embedded
convexly, and then using Klee’s generalization [12] of Keller’s
theorem.

Let L be as in (2.2) and let F'cece(L). We say that the family
F is conver if and only if for all A, BeF and )0\ <1,
(MA 4+ (1 — N)B)e F' (where MA means {M-a: ac A}).

(2.3) THEOREM. Let L be as in (2.2) and let F Cce(L) be such
that F is compact, convex, and infinite dimensional. Then, F = 1.

Proof. By (2.2) ce(L) and hence F' can be affinely embedded
into I,. But then F' is a compact, convex, infinite dimensional subset
of I, and Keller’s theorem applies to give F = I, (see [10]).

As a consequence of (2.3) and the part of the proof of (2.2)
showing that cc(K) is infinite dimensional, we have the following
two corollaries.

(2.4) COROLLARY. Let K and L be as in (2.2). Let Q be a
given compact subset of K such that co[@Q] = K. Then, {Accc(K):
QCAl=I..

(2.5) COROLLARY. Let K and L be as in (2.2). Let K, be a
given nonempdty compact convex subset of K. Then {Acce(K):
ANK,= @} = I..

It follows, in particular, from (2.3) or (2.4) that the space of
compact convex subsets of the unit disc in R* which contain the
origin is homeomorphic to I..

3. A topological converse to (2.2) for the plane. In the
plane, (2.2) says that the cc-hyperspace of a convex 2-cell is homeo-



HYPERSPACES OF COMPACT CONVEX SETS 445

morphic to the Hilbert cube. The question arises as to which sub-
sets of the plane have their ce-hyperspaces homeomorphic to I.. A
complete answer to this problem will involve both topological and
geometric considerations. The topological considerations are the
subject of this seetion. Our result is

(8.1) THEOREM. If X is a continuum in R* such that
ce(X) = I, then X 1s a two cell.

To prove (3.1) we will make use of the following lemmas. The
first three lemmas are stated in more generality than explicitly
needed for proving (3.1).

(3.2) LEMMA. Let E be a Banach space which admits a topo-
logically equivalent norm that is strictly convex. Then there is a
continuous selection from cc(E) to K. Thus, for any separable
Banach space, there is such a selection.

Proof. Let ||-]| denote a strictly convex norm on K and let
pe E. Define 7: ce(E)— K by letting 7(A) denote the unique point
a,€ A such that inf{||p —allac A} =||p — a,|| (see [3, p.19]). It is
easy to see that » is continuous and is a selection. The second
part of (3.2) follows from the fact that any separable Banach space
admits an equivalent strictly convex norm [3, p. 18].

(3.3) LEMMA. Let X be a dendrite. Then dim[ce(X)] < 2.

Proof. Let X be a dendrite (in some real topological vector
space) and note that any member of cc(X) is either a (convex) arc
or a singleton. Hence, the barycenter map g¢:ce(X)— X is contin-
uous where ¢ is defined by: if a and & are the endpoints of a con-
vex arc A in X or if a =0, in which case let A = {a}, then
g(A) = (o + b)/2. Let pe X. Since p belongs to arbitrarily small
open subsets of X with finite boundaries [21, p.99], there are at
most countably many convex arcs 4; = [a,;, ;], 7 =1, 2, -+, maximal
with respect to the property that g¢g(4,) =». For each p let
D, = {[s, tJCA;: 9(s;, t;]) = p}. Since the map s; — [s;, ;] is a home-
omorphism of [a,, p] onto D,, D, = [a,, p] (note: D, could be just {p}).
Also, it is clear that ¢g7'(p) = U, D,. Hence, by III 2 of [9],
dim[g™*(p)] < 1. Therefore, from the statement on p.92 of [9]
which is verified in order to prove VI 7 of [9], dim[ee(X)] <1+
dim[X] = 2.

(3.4) LEMMA. Let X be a continuum lying in a Banach space
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E. If ce(X)=1I, then X is an absolute retract and dim[X] = 2.

Proof. Let F denote the closed linear span of X. Since X is
separable, F' is a separable subspace of E. Hence, by (3.2), we
have a continuous selection 7:cc(F')— F. Since the restriction of
7 to ce(X) is a retraction of ce(X) onto X, the fact that X is an
AR now follows from the well known fact that [14, Vol. II, Th. 7,
p. 341] a retract of I, is an AR. For the remainder of the proof,
suppose dim[X] < 1. If dim[X] =0, in which case X consists of
only one point, then ce(X) = X. So, for the purpose of proof, as-
sume dim[X] = 1. Then X is a one-dimensional AR and, hence, a
dendrite (cf. Brosuk’s “Theory of Retracts” p.138). By (3.3) this
implies dim[ece(X)] £2 which contradicts the assumption that
ce(X)=1..

(8.5) Conjecture. If A is a dendrite, then cc(A) is embeddable
in the plane.

(3.6) LEMMA. The space of singletons and convex arcs in
R*(n = 2) denoted AS(R"), is homeomorphic to R"X ([0, «)x P!/
0x P*%). In the special case that n = 2, AS(R*) = R*.

Proof. We note that the space of lines through the origin in
R* is homeomorphic to projective » — 1 space P'. For each con-
vex arc or point ab in R* define F((ﬁ)) in R*X ([0, o)X p /0 x p™7")
by F(ab) = (a + b)/2, [(J|]b — a]|, s)] where s is the point of p~~* de-
termined by the line parallel to ab if ab is nondegenerate and s is
the point of p"* determined by the first axis if ab is a singleton.
In this proof we have used [o] to denote “equivalence class.” It is
a straightforward matter to check that F' is a homeomorphism. If
n = 2,then R*X ([0, o)X p'/0X p" )= R*X ([0, <)X S*/0X SH= R*X R*= R*.
The lemma is proved.

(8.7 LEMMA. If X s a continuum in K* such that ce(X) = I,
then Iint[X] # @ and X = cl(int[X]).

Proof. Suppose there is a point p in X — cl(int(X)). Clearly,
we may then choose a neighborhood N in ce(X) about {p} such that
N consists only of singletons and convex arcs. Hence, N is embedd-
able in R* (by (3.6)) and, therefore, finite dimensional. This con-
tradicts the assumption that ce(X) = I...

(3.8) LEMMA. If X is a continuum in R* such that ce(X)=1,,
then int[X] is connected.
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Proof. Let p and ¢ be distinct points of int[X]. We show
that there is an arc in int[X] from p to q. Let 4 = {Aecce(X)|A
is a singleton or a convex arc}. By virtue of (3.6), 4 is finite
dimensional. Therefore, since ce(X) = I, and 4 is compact, ce(X) — 4
is arcwise connected (that no finite dimensional continuum can
separate I.) (arc separate is equivalent to separate for locally con-
nected continua) follows from the fact that, for each =, I, is a
Cantor manifold (see Corollary 2 on p.48 of [9]) and the set of all
points of the form U;., I, is dense in I, (here I, = []r, I, x(1/2,
1/2, --+)). Let K, Lece(X) be 2-cells with [KU L]jcint|X] and
B(K) = p and B(L) = ¢ (where 5:ce(X)— X is the barycenter map).
Now, let @ be an arc in ce(X) — 4 with endpoints K and L. Since
aCfee(X) — A] each point of @ is a 2-cell and thus, the restriction
of B to « is continuous. Thus, B(e) is a locally connected continu-
um and hence G(a) is arcwise connected. Since X C R* and each
member M of a is a 2-cell, it follows that B(M)eint(M) Cint[X].
Therefore, we now have that g8(a) is arcwise connected and p, ¢ge
Bla) cint[X]. The lemma follows.

Proof of Theorem 3.1. By (3.4), X is an absolute retract and
therefore R* — X is connected [7, p.364]. Therefore, (since X is
a locally connected continuum in R?), BA[R* — X] is a locally con-
nected continuum (see 2.2 of [21, p. 106]). Let N denote Bd[R* — X].
Direct computation using only definitions yields

() R — N=[R - X]Uint X.

Thus we have that N is a locally connected continuum and, by
3.9), and (») E* — X and int[X] are the components of E* — N. It
now follows from 2.51 of [21, p.107] that there is a simple closed
curve JCN. Let G denote the bounded component of E* — J. By
(3.8), int[X]<G, and hence, cl(int[X])C[GUJ]. Therefore, by (3.7),
Xc[GUJ]. However, since E* — X is connected and JcC X, we
have G C X, i.e., [GU J]cX. This proves X = G U J and, thus, X
is a 2-cell. This proves (3.1).

REMARK. The part of the proof of Theorem 3.1 which follows
the lemmas is devoted entirely to showing that if Z is a planar
compact absolute retract such that Z = cl(int[Z]) and int[Z] is con-
nected, then Z is a 2-cell. This characterization of 2-cells among
continua in the plane does not seem to be explicitly stated in the
literature.

4. Analogue to the 2-cell theorem for 3-space. In this section
we will establish
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(4.1) THEOREM. If X is a continuum in R® such that ce(X) =1,
and X 18 mot contained im any 2-dimensional hyperplane, then
int[X] = @.

We use the following lemmas to prove (4.1).

(4.2) LEMMA. Let 0:[0,1] — cc(R?) be an arc of convex arcs in
R Suppose that L 1is a straight line in R® such that, for 0 <t <s
where s > 0, LNa(t) consists of only one point. Then the convex
segment with noncut points d(0) N L and o(s) N L is contained in

Ubose<s 0(2)-

(4.3) REMARK. It is easy using (4.2) to prove that if ¢[0, 1] —
ce(R?) is a one-to-one continuous mapping such that, for each ze
[0, 1], 6(s) is a convex arc and such that there exist s, and s, such
that o(s,) and o(s,) are not co-linear, then U,cp,10(s) contains a
2-cell.

Proof. Consider the mapping &: [0, s] - L defined by &(¢t)=
oc@t)NL. Using the single valuedness of &, it is easy to show that
& is continuous. Thus, ([0, s]) is connected in L and the result
follows.

(4.4) LEMMA. Let 0:[0,1] — ce(R?) be an arc of convex 2-cells
in R® such that there is a sequence s,.— 0 such that o(s,) and o(0)
are not co-planar. Then, U,cwn..1 0(s) contains a 3-cell.

Proof. Let II, (1 =1,2,3) be the standard projection onto the
1th factor of R®. Since 0(0) is nondegenerate, there exist 7, and 1,
such that neither [[;[0(0)] nor [I,[0(0)] is a single point. Without
loss of generality, we will assume that 4, =1 and ¢, =2. Let
[a,, a,]Cint[I],(c(0))]. Note that, for xela, a,), IIi'(x)N c(0) is a
nondegenerate arc. Let ¢ be chosen so that [I;'(¢) N I ((a, + a,)/2)N
0(0) is an interior point of the arc ¢(0) N II:*((a, + @,)/2). Let
a, < ai < (a, — a,)/2 < a) < a, be chosen so that, for each z¢€[al, ai],
Iz e) N TI7' (%) N 6(0) is an interior point of the arc [I:7'(x) N d(0).
Let ¢, < ¢ < ¢, be chosen so that, for ye[e, ¢,] and z € [a;, a;] it is
true that [[;%(y) N [I7*x) N o(0) is an interior point of the arc
% (x) N 6(0). Let ¢t > 0 be chosen so that:

(1) for se|0,t] and x € [a;, as], II7'(z) N o(s) cuts o(s), and

(2) for se|0,t], x€la;, a:] and ye[c, ¢}, II:*(y) N 117 (@) N a(s)
is an interior point of the arc [];*(x) N o(s).

Let 0 < ¢ < t be chosen so that ¢(0) and o(¢’) arc not co-planar.
Note, since there can be at most one x in [ai, a;] for which a(0)N
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42 and o) N [I7'(x) are co-linear, we may assume without loss
of generality that, for xz € [a;, a:], II7* ()N a(0) and [l (x)Na(t) are
not co-linear. Since, for each « ¢ [a;, a;], there can be at most one
y € ey, ¢,] such that JI;%(w) N II7'@) N a(0) N o@) = @, we may now
choose a; < a;/ < a) £ a, and ¢, < ¢ < ¢; < ¢, so that, for x ¢ [al, a;']
and yele, e, ) TN T 2) Ne0) Ne(t’) = @. Consider now the
set of points D = {II;'(c) NI a;)No(z): 4,5 =1,2,z=00r z = t}.
We claim that co(D) € U,cp,10(s). To see this, note first that if
D, = {Il:'(e;) N II:*(af) N 0(0)} where 4, j =1, 2} and D, = {Il.*(c)N
i) na(t): 2, 5 = 1, 2} then co(D,) C 6(2) C [Uscp,110(s)] where ze
{0, ¢'}. Now, if peco(D) then, for some x¢]a/, a;’], we have that
pelli(x). Also, for some yejc,c.] we have that pe[l:;'(w).
Sinece p eco(D) we have that p is on the convex segment in [[;' ()N
II7(») which joins JI:'(») N II:%(@) N a(0) and Iz () N II7(®) N a(?).
This is true because co(D,)Nco(D, = @& (otherwise we would con-
tradict (*)). Now, the mapping o,: [0, '] — cc(Il;'(x)) defined by
o,(s) = o(s)N 1l (x) is easily seen to be continuous. Also, ¢,(0) and
o,(t") are not co-linear and the line [J];'(y) N II7'(x) in II7'(x) cuts
each of the arcs o,(s) for s<[0,t']. It now follows from (4.2) that
D€ Usern,e10.(8). The lemma is proved.
The following lemma is a simple consequence of (4.4).

(4.5) LEMMA. Let 0:]0, 1] — cc(R?) be a one-to-one continuous
mapping of [0, 1] into cc(R®) such that o(s) is a (convex) 2-cell for
each s and such that there exist s, and s, such that o(s,) and o(s,)
are not co-planar. Then, U, .. 0(s) contains a 3-cell. We are now
ready to establish (4.1).

Proof of (4.1). It can be seen that the space of convex arcs
and points in a compact subset of R® is of dimension less than or
equal to 6 (see (3.6)). If X satisfies the conditions of (4.1) and
AS(X) denotes the space of ares and singletons in cc(X) then
ce(X) — AS(X) must be arcwise connected (see the remark in the
proof of (3.8)). Let p», and p, be points in X which lie in the
interior of two cells P, and P,, respectively, such that P, and P,
are not co-planar. Now, [ec(X) — AS(X)]D{P,, P,} and, hence, there
is a one-to-one continuous mapping o:[0, 1] — [ee(X) — AS(X)] such
that ¢(0) = P, and o(1) = P,. If o(s) is not a 2-cell for some s, then
o(s) is a 38-cell and we are done. Hence, without loss of generality,
we may assume o(s) is a 2-cell for each s<[0,1]. Thus, by virtue
of (4.5), XD U,cp,110(s) contains a 3-cell. The theorem is proved.

(4.6) ExAMPLE. We show that the natural analogue to (4.1)
does not hold in R*, n > 8. Let Y be the continuum in R* defined
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by Y=Y, UY,whereY, ={(x,y, 2, w:lz| =1, |y =1, (2| =1, w=0}
and Y, ={x, ¥,z w:|z| =Ly £1,2=0,|w| £1}. Now, ce(Y)=
ce(Y,)Ucee(Y, and ce(Y,NY, =ce(Y,)Nee(Y, = I.,. A theorem of
Anderson [20] asserts that the union of two Hilbert cubes which
intersect in a Hilbert cube is a Hilbert cube provided the intersection
has property Z in each. We thus want to see that ce(Y,NY, has
property Z in cc(Y,) and cc(Y,).

To this end, let U be a homotopically trivial subset of cc(Y)).
Let g: S**'— U —ec(Y,NY,) and let g: B* — U be an extension of g.
For each pe U let d(p) = inf{d(p, ¢):qcece(Y,) — U}. For each
te[0,1] and each b in the sphere of radius ¢ in Bf, let G(b)=
co(N((1 — t)(d(g(b)))/2, g(b)))(N(e, g(b))) = {x: for some ae€g(b), || —all
<e}). Clearly G(b)e U for each bec B* and, even more, since G(b) is
a 3-cell for each b, we have G(b)e U —ce(Y,NY,). Also G|S** =g.
We have established that ce(Y)) Nce(Y, has property Z in ce(Y)).
The proof for cc(Y,) is the same. It now follows that ce(Y) = I...
This shows that the analogue to (4.1) does wmot hold in R'. Actu-
ally, it is clear that similar examples exist in dimensions n > 4 as
well.

This next example is of a 3-dimensional continuum in R*® which
is not a 38-cell but whose cc-hyperspace is homeomorphic to I_.

(4.7 ExAMPLE. Let X be the continuum in R® defined by
X = X, U X, where

X, =1y 2: ||z, 9, 2)]] =1}
and

X, = {(, ¥, 0): max{[z|, [y]} = 1}.

Now, ce(X) = ce(X,)Uce(X,) is a union of two convex Hilbert cubes.
Also, ce(X)) Nee(X,) = ce(X, N X;) is a convex Hilbert cube. Using
the same techniques as were used in Example (4.6) one can easily
show that ce(X,) Nce(X,) is a Z-set in ce(X,). By Handel’s result
[8], it follows that ce(X;) N ce(X,) = ce(X) is a Hilbert cube.

5. Some geometric considerations. In view of Theorem (3.1),
it is natural to ask the question:

Which 2-cells X in R? have the property that ce(X) = I.?

The following example shows that not every 2-cell in R? has
this property.

(5.1) ExaMPLE. Let X be the 2-cell in R* pictured below.
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d T \/ Il
T /\ A 1

The three points a, b and ¢ of local nonconvexity of X all lie
on the convex arc de. It is clear that any compact convex subset
of X which is within ¢ of the are de (in the Hausdorff metric)
must be a subarc of de. Hence, it follows that de has small 2-cell
neighborhoods in ce(X). Therefore, ce(X) is 2-dimensional at de
and, thus, ce(X) % I..

The remainder of this section is devoted to proving two results
which can be used to establish that some rather wide classes of
2-cells do have the property that their hyperspaces of nonempty
compact convex subsets are topologically I.. We begin with some

definitions.

(5.2) DEFINITION. Let K be a starshaphed subset of I* and let
peKer(K). The point xe€ K will be called a p-relative interior
point of K if there exists an x*¢ K such that, for some A€ (0, 1),
aMe* 4+ (1 — A)p = 2. A point in K which is not a p-relative interior
point will be called a p-relative extreme point of K.

(5.3) DEFINITION. Let K,CK, be two starshaped subsets of I,
such that Ker(K,)NKer(K,) + @. Let pec[Ker(K,) N Ker(K,)]. Then
p is called a K, inside point of K, if, for every xz e K,, \p+ (1 —N\)x:
re(0, 1N K+ @.

(5.4) THEOREM. Let K, K, be two compact, starshaped sub-
sets of I, and suppose that there exists a point p <€ K, such that:

(1) peKer(K,) N Ker(K,),

(i) p is o K,-inside point of K,

(iii) the set of all p-relative interior points of K, (resp., K,)
is an open subset of K, (resp., K,). Then, K, and K, are homeo-
morphic.

Proof. Let the hypothesis of the theorem be satisfied. We
will assume without loss of generality that »p =(0,0,0, --:). For
each point x € K, — {p} (clearly, the theorem is valid if K, — {p} = @)
let # be that p-relative extreme point of K, defined by = = a.x
where «, =sup{ae(0, «): axec K,}. To each p-relative extreme
point y of K,, let A, = sup{n €0, 1]: Myc K,}. Let f: K, — K, be the
function defined by
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N, if ve Ky — {p);
f(x)—Kp, if z=p.

It is easy to see that f is one-to-one. We wish now to show that
f is onto and continuous. To see that f is onto, let zeK,. If
x = p, we are done since f(p)=p. If x=p, then 1/, Z ¢,
Hence, y = 2/n, € K, and, clearly, f(y) = «. We have seen that f is
onto. To see that f is continuous, let {,};, be a sequence in K, such
that lim,.. z,=2 ¢ K,. If x=p, it is clear that lim,.. f(z,)=f(p)="p.
So, assume that x % p. We may then assume that x, = p for all 7.
We will first show that lim, . Z,=Z. Since K, is compact, we must
have that some subsequence {Z,}7., of the sequence {Z}iZ, converges
to an z,€ K,. Without loss of generality, we may assume that the
sequence {T.}, converges to x,. Now, it follows from condition
(iii) that x, must be a p-relative extreme point of K,. To see that
x, = %, we need now only show that, for some X\ > 0, Aax, = x. Let
N, be such that ax, = % and consider . Now, the )\,’s are boun-
ded and since ||nx — Mzl = [N || 22—, we have that lim, .. v x=2x,.
It is now not difficult to see that, for some A, >0, lim, .. \; = N, and
Nt = %, = %. To establish the continuity of f, we need now only
show that lim,..\;,=)\;. First consider {\;¥;};>,. Since, for each 1,
\;, @, is a p-relative extreme point of K,, we have that some sub-
sequence converges to a p-relative extreme point of K,. Without
loss of generality, we will assume that lim,.. \; %, =2" where 2’ is a
p-relative extreme point of K,. But, M7 — N 2[ = (X5, ] [T — 7, =
||z — Z,|l. Hence, lim,_..\; Z = 2’. But, the fact that the sequence
{\z,Z}:Z, is Cauchy implies that {r;}iZ, is Cauchy and, hence, that
there exists a A’ such that lim,..; =)'. Thus, M'Z=2" which says
that M = \;. We have now established the continuity of f. Since
K, and K, are compact, it follows that f is a homeomorphism.

(5.5) COROLLARY. Let X be a compact starshaped subset of R”
such that int[Ker(X)] = @. Then, ce(X) = I_.

Proof. For simplicity, we will assume that the origin 0c
int|[Ker(X)]. Let ¢ > 0 be such that B, = {xc R™ {|z|| < ¢} is con-
tained in Ker(X). Since X is compact, there exists an + > 0 such
that X © B,. Let F be an affine embedding of ce(B,) into I, such
that F(0) = 0 (as in the proof of (2.2)). Let K, = F(ce(B.)) and let
K, = F(ce(X)). Then, K, S K,. Since we have already seen that
ce(B.) = I, (Theorem (2.2)), the result will now follow provided
conditions (i), (ii) and (iii) of (4.4) are shown to be satisfied for
p=0. It is easy to see that conditions (i) and (ii) are satisfied.
That condition (iii) is satisfied will follow if we can show that the
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p-relative extreme points of K, (resp., K,) are precisely those ele-
ments of the form F(G) where GNFr(B.) # @ (resp., GNFr(X) = @).
We will show this only for K, since it is obvious for K,. It is
clear that if Gece(X) is such that GNFr(X) = @ then F(G) is not
a p-relative extreme point of K,. It remains only to show that if
Gece(X) is such that GNFr(X) =+ @ then F(G) is a p-relative ex-
treme point of K,. Suppose not, then there exists a N\ > 1 such
that MF(G)e K,. Let G'ece(X) be such that F(G') = MF(G). By
the one-to-oneness and the convexity of F', it follows that G = G'.
If ceGNFr(X), then xce X. But co(he, B,)c X and contains ¢ as
an interior point. This contradicts the fact that c¢e Fr(X). The
corollary now follows. T. A. Chapman showed (see Theorem 10 of
[5]) that a compact Hilbert cube manifold is homeomorphic to the
Hilbert cube if and only if it is homotopically trivial. This enables
one to “localize” the problem of showing the cc-hyperspace of a
given 2-cell is homeomorphic to I..

(6.6) THEOREM. (1) If X is a contractible continuum lying
in a Banach space, then cc(X) is contractible.

(2) Thus, in particular, if X is a 2-cell (or n-cell), ce(X)=1I_,
if and only if ce(X) 1s a Hilbert cube manifold.

Proof. The closed linear span L of X is a separable Banach
space. By (8.2), there is a continuous selection 7 from ce(X) to X.
Define g:ce(X)x[0,1] - ce(X) by g(4,t) =t{n(A)} + A —HA. It
follows using ¢ and the contractibility of X that ce(X) is con-
tractible. This proves (1). The proof of (2) uses (1) and Theorem 10
of [5].

These next results will show that a fairly large class of 2-cells
have the property that their hyperspaces of compact convex subsets
are homeomorphic to I,. We begin with a notational agreement
and a definition.

If A is a nondegenerate, convex arc in the plane then by 4~
we will denote the unique line in R? which contains A. If pec R”
and ¢ > 0 then B(g, p) = {x e R*: ||z — p|l < &l

(5.7) DEFINITION. Let X be a 2-cell in R? and let Aecece(X)
be an arc. Suppose that one complementary domain of A~ has been
designated the right side of A~ and the other the left side of A~.
A point pe LN(X) N A will be said to lie on the left side (right
side) of A if, for every ¢ >0, B(g, p) — X contains points on the
left side (right side) of A~. If for some ¢ > 0, B(e, p) — X contains
no points on the right side (left side) of A~ then p will be said to
lie strictly on the left side (right side) of A.
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(5.8) LEMMA. Let X be an n-cell. If Acce(X) is an n-cell
then A 1is contained in a closed starshaped subset N of X with
int[Ker(N)] = @ such that ce(N) is a neighborhood of A in ce(X).

Proof. Let Acce(X) be an n-cell and let geint[A]. Let ¢ >0
be chosen so that cl(B(e, q)) Cint[A]. Let I' = {K € ce(X): cl(B(e, q)) K}
and let D= UI’. It is not difficult to see that D is a closed
starshaped subset of X and that Ker(D) 2 cl(B(e, ¢q)). It is also not
difficult to see that ce(D) is a neighborhood of A in ce(X). The
lemma is proved.

(56.9) LEMMA. If X is an n-cell in R" then the following are
equivalent:

(1) Ewvery Acce(X) lies in a starshaped subset of X whose
kernel has momvoid interior.

(ii) Ewvery maximal convex subset of X is an m-cell.

Proof. Suppose (i) is satisfied. Let Aecce(X) be maximal. By
(i) there exists an m-ball BC X such that co{B, A}c X. But, by
maximality of A4, €o{B, A} = A. Hence A is an n-dimensional com-
pact convex subset of R and thus must be an n-cell. We have
that (i) implies (ii). Now, if (ii) holds and A e ce(X), then let M(A4)
be a maximal convex subset of X which contains A. As M(A) is a
starshaped set whose kernel has nonvoid interior, we are done.

(5.10) LEMMA. Let X be a 2-cell in K. Let Acce(X) be an
arc with noncut points p and q. Suppose there exists a closed ball
Dc X and neighborhoods P of » and @ of q in X such that for
each de D we have PUQ C S(d). Then A is contained in a closed
starshaped subset Y of X with int[Ker(Y)] = @ such that ce(Y) is
a neighborhood of A in ce(X).

Proof. We can assume that D lies in the interior of a convex
2-cell BC X such that A is on the boundary of B. We may also
assume that A — (PUQ) = @ (we would be done in this case any-
way as will become evident at the end of the proof). Let P’ and
@' be balls in R? centered at p and ¢, respectively, which satisfy

(a) the radii of P’ and @' are less than 1/2 min {radius of P,
radius of @}, and

(b) for each ac[d — (PUQ)], reecl(P),sccl(®) and de D, the
ray through o from d must intersect the segment 7s in a cut point.
Now, for each a € A — (P U Q), choose a ball B, about a such that

(**) if recl(P’),secl(®),te B, and de D, then the ray from
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d through ¢ must intersect the segment rs in a cut point.

Let > be the collection of all convex sets C in X such that C inter
sects both P’ and @’ and is contained in the union of P, @ and the
balls B, for ac A — (PU Q). It is clear that 3 is a neighborhood
of A in ec(X). We wish to show now that if de D, then d sees
each point of any C in >,. So, let Ce > and let re[P'NC] and
se[@NCl. Let acC — (PURQ) (note, if ac[PUQ] we are done)
and let ae A — (PUQ) be such that ac B,. Since acB,, by (**)
we have that the ray from d through «(d € D) must intersect rs.
By simple connectivity of X, it follows that the 2-cell (rds) and
(rsa)((rsa) may be an arc) lie in X. If the segment da intersects
rs then da = [da N (rsd)]U [da N (rsa)] © X. If the segment dea does
not intersect »s, then d’c\xc(rsd) — X. Thus, da — X and we have
the desired conclusion. Now, let I' = {Keece(X): KD D}. Let
Y = UI'. We have just seen that the starshaped set Y has the
property that cc(Y)> >.. Also, we have that Ker[Y] D int[D] and
hence int[Ker(Y)] + @. The lemma is proved.

(5.11) LEMMA. Let X be a polygonal 2-cell in R* and let
Acce(X) be an arc such that mo two points in LN(X)N A lie
strictly on opposite sides of A. Then there exists a closed starshap-
ed subset N of X with int[Ker(N)] + @ such that ce(N) is a neigh-
borhood of A in cc(X).

Proof. Let A be an arc in ce(X) such that no two points of
LN(X)n A lie strictly on opposite sides of A. Consider the noncut
points, say » and ¢, of A. If at least one of p and ¢ is not a
point in LN(X) which lies strictly on one side of A then it can be
seen that there is a closed ball D in X and neighborhoods
B(e, p) N X and B(v, ¢) N X such that, for any d e D, (B(«, p) UB(r, ¢))N
X cS(d). The result now follows from (5.10). Suppose now that
both » and g are points in LN(X) which lie strictly on one side of
A. 1t is geometrically clear that, in this event, ono can obtain balls
P, @ and M such that

(a) peP,qe@ and cl(M)Cint[X],

(b)) elM)NA =@, and

(¢) if C is a convex set in X such that CNP=+ @ and
CNQ = @ then CN(PURQR)S(m) for every m ecl(M).

The proof from here proceeds as it did in the proof of (5.10).

(5.12) THEOREM. Let X be a polygonal 2-cell in R*. Then the
following are equivalent:
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(1) Every maximal convex subset of X is a 2-cell.

(ii) Fach Acce(X) is contained in a closed starshaped subset
N of X for which int[Ker(N)] = @ and ce(N) is a neighborhood of
A in ce(X).

Furthermore, if (1) or (ii) holds then ce(X) = I_.

Proof. That condition (ii) implies condition (i) follows from
(5.9). Now, assume that (i) holds. If Ae€cc(X) is a singleton then
it is easy to see that A 1is contained in a closed starshaped neigh-
borhood N in X. But then ce(N) is a neighborhood of A in ce(X)
and we are done in this case. If Aeccc(X) is a 2-cell, then we are
done by virtue of (5.8). If A is an are, then by (5.11) we will be
done if we can show that no two points in LN(X)N A lie strictly
on opposite sides of A. Let p, p,c LN(X)N A lie strictly on op-
posite sides of A. If both p, and p, are cut points of A then it is
clear that no convex 2-cell in X can contain 4 and this contradicts
(i). If one or more of p, and p, are noncut points of A then one
can obtain an arc A’ > A with A’€cce(X) for which both p, and p,
are cut points. This again leads to a contradiction of condition (i).
Thus, no two points of LN(X) N A can lie strictly on opposite sides
of A and we have the desired result. We have now established the
equivalence of (i) and (ii).

To complete the proof we need only see that if (ii) holds then
ce(X)=I.. So, suppose that (ii) holds. Let Acce(X) by virtue
of (ii) there exists a closed starshaped subset N of X with
int[Ker(N)] = @ for which cc(N) is a neighborhood of A4 in ce(X).
But, ce(N) = I, by (5.5). Thus, cc(X) is homeomorphic to I, by
virtue of (5.6). The theorem is proved.

(5.13) THEOREM. Let X be a 2-cell in R* such that (x) when-
ever p, g€ X are such that peS(q) and N is a neighborhood of p in
X, then there exists an open set M C N and a meighborhood Q of ¢
such that for each point m in M we have S(m)D Q.

The following are equivalent:

(i) Every maximal convex subset of X is a 2-cell.

(ii) FEach Acce(X) is contained in a starshaped subset N of
X for which int[Ker(N)] = @ and cc(N) is a neighborhood of A in
ce(X).

Furthermore, if (i) or (ii) holds then ce(X) = I.

Proof. All aspects of the proof for this result are the same as
the proof of (5.12) with the exception of showing that condition (i)
implies condition (ii). So, suppose that condition (i) holds and let
Acece(X). If A is a singleton, it is easy to use (x) to obtain the
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desired set N. If A is a 2-cell we are again done by virtue of (5.8).
Suppose, that 4 = [p, q] is an arc. Let B be a 2-cell in ce(X) which
contains A (condition (i) implies B exists). Let becint(B). Since
p € S(b) there is by (+) a ball Cc B and a neighborhood P of p such
that for each meC we have S(m)>DP. Let m,eC. Since m,cB
we have S(m,)D>q. Thus, by (x), there exists a closed ball DcC
and a neighborhood @ of ¢ such that, for any de D. S(d)DQ. Now
application of (5.10) gives the existence of the starshaped subset N
of X with the desired properties. The result is established.

6. Some problems and examples. While at present we have
some large classes of nonconvex 2-cells whose cc-hyperspaces are
homeomorphic to I, we still do not know exactly which 2-cells
have their cc-hyperspaces homeomorphic ‘to I,. The following pro-
blems are connected with this.

(6.1) Problem. Let X be a 2-cell in R®. If every point of
ce(X) has arbitrarily small infinite dimensional neighborhoods, is it
true that ce(X) = .7

(6.2) Problem. Let X be a 2-cell in R*. If every maximal
convex subset of X is either a point or a 2-cell, is it true that
ce(X) =17

(6.83) Problem. Let X be a 2-cell in R®. If every maximal
convex subset of X is a 2-cell, is it true that cc(X) = I.?

An affirmative answer to (6.1) would provide a satisfactory
characterization. This is true since it would then follow that
Example 5.1 is, in a sense, canonical. An affirmative answer to
(6.1) would imply an affirmative answer to (6.2) and an affirmative
answer to (6.2) would imply an affirmative answer to (6.3).

The following two examples give a bit more insight into the
above problems. The technique used in this next example is one
which has become standard in infinite dimensional topology. It was
first used by Schori and West in [18]. For the difinition of shape
see [4]. An onto map f: X — Y where X and Y are homeomorphic
metric spaces, is a near homeomorphism if f can be uniformly ap-
proximated by homeomorphisms. For terminology related to inverse
limits it is suggested that the reader see [13] or [18]. In the dis-
cussion of the example we use a characterization by T. A. Chapman
of near homeomorphisms between Hilbert cubes as being those con-
tinuous surjections for which point inverses have trivial shape.

(6.4) ExampLE. Consider the planar 2-cell X formed by inter-
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secting the planar regions A, Band C where A = {(x, ¥): ©<1/2, y=0},
B = {(», ¥): (x + 1/2) + y*= 1/4} and C = {(», ¥): " + ¥* < 1} (see Fig.
6.6 below).

(=1,0) L1/2

N
Lé @, 0)
(-1, ET%?’

(0, 1)

FIGURE 6.7

Note that the point (—1, 0) is a maximal convex subset of X. Now,
for each 3n/4 <0 =<7 let Xy =XN{(r, @):7/2 <9 <0}). For each
pair (0, 0,) with 7/2 <6, <0, <, let the mapping Go,0,2 Xg, — Xo,
be defined by gy, (7, @) = (7, 6,) for 6, < ¢ < 6,, and Go,0,(7, @) = (7, P)
if 7/2 <o <6,. Define, for (6,,0,) as above, the retraction T0,0,%
ce(Xy,) — ce(Xy,) by 74,0,(A) = co(gs,0,(A)). Also, for a compact convex
subset A of X, which intersects {(», 6):7 = 0} define 9,(4,6)=
inf{r: (r,0)e A}. For each n=1,2, ..., let 6, =7 — 7/2*** and let
7w =179,,., and X, = X, . For Aece(X,), let Yer,(4) and define
0y = sup{0: r,(ry,,,(Y)) = A}. For each 6¢[d,,0,.,], let

H(Y,0) = 7'0”+1,0(Y) if 0, =6= Onis s
€074, ,,0,( Y ) N Xo) U{(D:(70, ,10(70, ,,0,(Y)), 0)} if 6,<6=<Z6,.

It is geometrically clear that H:»;%(A) X [6,, 0..,]— ri'(4) is a
homotopy of the identity on 7;'(4) to a constant map. Thus, for
each 4 ece(X,), r,'(4) is contractible and, hence [4, (5.5) p. 28], of
trivial shape. It now follows that #, is a near homeomorphism and,
hence, (since each X, satisfies the conditions of Theorem 5.13) that
lim(ce(X,), 7,) = ce(X,) = I,. Furthermore, the inverse sequence

n
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{(ce(X,), r,)} also satisfies the conditions that

(a) ce(X,) cee(X,,,) and U, ce(X,) = ce(X),

(b> D=y ATy ":dcc(xnﬂ)) < oo,

(¢) for each j, {rjo---or:ce(X,y,)— ce(X;)|i = j}
is an equi-uniformly continuous family of functions.

That condition (a) holds is immediate. The fact that condition
(b) holds rests on the fact that if d(A, B) < ¢ and B is convex then
d(co(4), A) < e.

To see that (¢) holds, let, for each #, r": X — X, be the retrac-
tion gy,

Let jeI' be given and let ¢ > 0. Choose j, so that if
A ¢ ce(int[ X, ,,]) then ANX; = @. Choosed, > 0 so that if d(4, B) <4,
then d(r"(A), »(B))<e. Let §,>0 be chosen so that, if d(4, B)<d, and
A, Bece(X;.y), then d(rjo---or;(A), rjo---or;(B)) <e. Let o, be
chosen so that, if A¢ece(int[X; ,]) and d(4, B)<d,, then BNX;= .
Now, if ¢ = min{d,, d,, 0;} and d(4, B) <0 then, either A, Bece(X;,,)
in which case d(rjo--cor(A), v 0y (B)) S d(rjor--or;(4),
rijocceor;(B)<e or ANX; =@ and BN X; = @ in which case
pioeeeor(A) =1i(A) and r;e---09,(B)=iB) and, hence,
d(rjorscory(A), rjo---0r(B)) <e. We have established that condi-
tion (¢) holds. Thus, by [13, Lemma B], ce(X) = lim,(ce(X,), »,) and
thus ce(X) = I...

(6.5) ExAMPLE. Consider the 2-cell X in R®* which is the
closure of the bounded complementary domain of |Ji_, C;,, where

Ci={@: @1+ w-1=1}, C={y: (-1 + @y +17 =1}
Co = {(=, v): @+ 1)+ (y+17=1} and C, = {(z, ¥): (x+1)* + (y—17=1}.

(Fig. 6.7.) Note, the convex segment with noncut points (0, —1)
and (0,1) is a maximal convex subset of X and the kernel of X
consists only of the origin (0,0). In spite of this, if one takes
Y= {xy):2*+9y*<1/4) and sets K, =cc(Y), K, =ce(X) and
p = (0, 0) then all the conditions of Theorem 4.4 are satisfied. It
follows that ce(X) = ce(Y) = I..

The 2-cell of Example (6.4) illustrates the validity of (6.1) and
(6.2) for a specific 2-cell. The 2-cell of Example (6.5) illustrates
that though the hypotheses in (6.2) and (6.3) may be sufficient, they
are definitely not necessary.

7. The cc-hyperspaces of °B” and R", n = 2. In this section
we show that ce(®B*) and ce(R™), » = 2, are homeomorphic to the
Hilbert cube with a point removed. We also state some problems.

Let U be a nonempty proper open subset of cc(B"). For each
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Ac U let A4 = inf{d(4, D)|De[ee(X) — U]}, where d denotes the
Hausdorff metric. Note that 0 < Au < 2.

(7.1) LEMMA. Let U be a proper open subset of ce(B"). Let
AcUandleta bereal, 0 < @« < 1. Then (1 — aAu/2)A € [UnNce(’B")].

Proof. For any a€ A and £ >0, 8 +# 1, note that |ja — Ba||=
11 —gllla]| £]1 —B| < 2|1 —pB|. Thus, setting 8 =1 — adu/2, it
follows that

d(A, (1 — “g“)A) <2‘1 — (1 —v“‘;“)) = adAu < Au,

which implies (1 — a@Au/2)Ac U. Note that (1 — adu/2)A €cc(°B)
since (1 — @wAu/2) < 1.

(7.2) THEOREM. If n = 2, then cc(*B") = I, — {p} for pel..

Proof. Let K ={Accec(B")|ANS""'# @}. We show K has
property Z in cc(B"). Let U be a nonempty homotopically trivial
open subset of ce(B*). Let f:S*'— U — K be continuous, and let
F: B*— U be a continuous extension of f. Let h:[0,1]— [0, 1] be
a homeomorphism such that %(0) =1 and A(1) = 0. Define a func-
tion F'* on B* by F*(x) =1 — [h(||z]] F(x)u/2)])F(x). Note F* is
continuous and F'* extends f since if ||z|| = 1, F*(x) = F(x) = f(x).
If ||z|| < 1 note that F *(x) e [UNee(’B*)] by (7.1), and hence F*(x) e
[U— K]. Thus, K has property Z in cc(B"). Hence, by (2.2)
above and a theorem of Anderson [1], we assume without loss of
generality that K I%. For each t€[0,2] and A€ K let g(A4, t)=
cl(N(t, A)NB")(N(, A) = U.ea{zxlllz — a|| < t}). Note g is continuous
and that g(4, 0) = 4 and g(4, 2) = B*. (See Borsuk [4].) By a re-
sult of Chapman [6] it follows that cec(B*) — K = ce(B*) — {M} for
Mece(B*). Hence, by (2.2) above, cc("B") = I, — {p}, and this com-
pletes the proof.

(7.3) THEOREM. If m = 2,cc(R") = I, — {p} for pel..

Proof. Using the proof of (5.4), it is easy to see that cc(R™)=
ce("B*). Therefore, by (7.2) ce(R") = J.. — {p}. Theorem 7.3 sug-
gests the following.

(7.4) Problem. If H is a separable Hilbert space, is cc(H) = H?

We will now discuss and state two problems which arise out of
our previous work. Problem 7.5 is motivated in part by the result
of Schori and West [16] that 27 = I.
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Let D be the semidisc in R® given by {(x, y)a* + ¥* =1, y = 0}
and let K be the semicircle DN S'. Let R = {4 ecc(D)lext[A] C K}.
The mapping f: 2¥ — R given by f(E) = co(¥) is a homeomorphism.
Let R* = ce(D) — R. Note that R* is an open convex subset of
ce(D) and that I, = R = ce(D) — R*. This suggests the following

problem:

(7.5) Problem. Let M be an open convex subset of a convex
Hilbert cube @. What are necessary and sufficient conditions on M
in order that I, = Q — M?

Several times in our work we encountered infinite dimensional
compact convex subsets P of I, such that P = ext[P]=I.. The
countable product of semidises is such an example. This suggests
the following problem.

(7.6) Let @ be a convex Hilbert cube. What are necessary and
sufficient conditions for @ to be homeomorphic with ext[Q]?

We remark that a theorem answering the above question may
by considered as a compact analogue of the theorem of Klee [11]
that in separable Hilbert space the unit sphere is homeomorphic
with the closed unit ball.

REMARK. After this paper was written, certain developments
occurred which may be of interest to the reader. D. W. Curtis in
a forthcoming paper entitled “Growth hyperspaces” investigates,
among other things, subspaces G of the cc-hyperspace having the
property that if AeG and AcB then BeG. D. W. Curtis, J.
Quinn and R. M. Schori in a forthcoming paper entitled “On the
cc-hyperspace of a polyhedral two-cell” show that the ce-hyperspace
of a polyhedral two cell in R? is I, with perhaps a finite number
of two cell flanges. J. Quinn and R. Y. T. Wong in a forthcoming
paper entitled “Unions of convex Hilbert cubes” show that the
union of finitely many convex Hilbert cube manifolds each sub-
collection of which intersects vacuously or in a Hilbert cube is a
Hilbert cube manifold, and, as a corollary, obtain the result that
if A and B are infinite dimensional compact convex sets in I, such
that AN B is infinite dimensional then AU B = I, Reiter and
Stavrakas in a forthcoming paper entitled “On the compactness of
the hyperspace of faces” and Quinn and Stavrakas in a forthcoming
paper “Selections in the hyperspace of faces” investigate certain
topological aspects of the hyperspace of faces of a compact convex

set.
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