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ON BANACH SPACES HAVING
THE PROPERTY G. L.
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A Banach space E has the property G. L. if every
absolutely summing operator defined on E factors through
an L, -space. Some properties of spaces having G. L.
property are investigated, using methods of Banach ideals
of operators.

1. Introduction and notations. The property G. L. is known
to be shared by a number of important classes of Banach spaces: in
[6] it is shown that if E” is isomorphic to a complemented subspace
of a Banach lattice (in particular, if E has local unconditional strue-
ture in the sense of [4]) then E has the G. L. property. Subspaces
of L, spaces as well as quotients of C(K) spaces have G. L. property.
Moreover, in [17] it is shown that if F is a subspace of a Banach
space F s.t. I, F) = (&7, F) (in particular if F' has cotype
2) and F' has the property G. L. then E has the property G. L. In
fact, it is easy to see that it is enough for E to be finitely re-
presented in F. In this paper, we try to investigate the property
G. L. using methods of Banach ideals of operators. It is shown
that this property is characterized by a perfeet ideal [I, v]. We
obtain a description of the conjugate ideal [I"*, v*] and deduce that
[I", 7] is 2 symmetric ideal hence E has G. L. iff E’ has it.

It is also shown that a number of properties, known to hold
for spaces having [.u.st. in the sense of [4] are common to all the
spaces having G. L. For example, if EF is a space having G. L.
which does not contain [%-s uniformly, then either E contains [7-s
gniformly and uniformly complementably, or E does not contain
[*-s uniformly at all.

It follows that if K is a space having G. L. and F a Banach
space, then there exist compact nonnuclear operators from E to F
and from F to E. These are partial generalizations to results of
Davis and Johnson (see [2] and [9]). We show also that for spaces
having G. L. the property (<2, E) = £(<., E) implies that FE
is of cotype 2; we show a dual implication as well.

The paper is divided into two parts. In §2 we describe some
tools in Banach ideals of operators; in §3 we use these tools in
investigating spaces having G. L. It seems to us that these tools
may be useful in other contexts.

The notations are of two kinds:

(1) General notations. We use standard notations of Banach
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space theory. If E is a Banach space its dual space is E’ and for
xe K, ©' ¢ ' we denote by {(z, «’> the scalar product of x and «'.
We deal with Banach spaces over the field of real numbers.
Modification to the complex numbers case is straightforward. For
a positive measure space (2, 3, ¢t) and 1 < p < « we denote by L,(x)
the Banach space of scalar, g-measurable functions f with |f|?
integrable (with classical modification for p = o) with the usual

norm.
We denote by L,(E) = L, (¢, E) the space of Bochner measurable

E-valued functions with ||f(-)||e L,(¢) equipped with the norm
WA =1 A e

The term “operator” means “bounded linear operator between
Banach spaces”. If E, F are Banach spaces, (K, F') is the Banach
space of operators from F into F equipped with the norm of

operators.
Let E, F' be Banach spaces; we say that F is finitely represented

in F (abbreviation: Ef.rF) if for every finite dimensional subspace
E, of E and >0 there exists a subspace F, of F and an isomorphism
w: E,— F, with [|u]|||Ju™]| <1+ e If Pis a property which makes
sense for Banach spaces we say that FE has super-P if every space F
with Ff.rKE has the property P.

(2) Definitions and notations concerning Banach ideals of
operators and temsor products of Banach spaces. A standard
reference in Banach ideals of operators is [8] (see also, [15] and [14]);
as a reference concerning tensor products one can use [20]. If [A4, a]
is a Banach ideal of operators we denote by [A*, a*] the conjugate
ideal and say that [A, a] is perfect if [A4, a] = [4**, a**]. [4, a'] is
the adjoint ideal (T'c A'(E, F)iff T" ¢ A(F", E")).

Let [4, a] be a normed ideal of operators and E, F' Banach spaces,
a norm (called “an ideal norm”) is naturally induced on the tensor
product E® F by considering it as algebraically contained in
FA(E', F). We denote EX F with this norm by E Q. F and its
completion by E@a F. Let E, F' be Banach spaces and uc E X F.
Let E,, F, be subspaces of E and F' respectively s.t. there is a
representation of w as u = >\, ¢, Q y, with x; € E,, y, € F, for all 4.
We denote by a(u, E,, F',) the norm of u as an element of E, @, F..
If E and F are not considered as subspaces of some other spaces
we denote a(u, E, F') = a(u).

We say that an ideal norm a is semi-tensorial norm if for every
pair of Banach spaces FE, F, one which is finite dimensional, and
every ue K F hold: a(u) = inf {a(u, E, F)); E,.CE, F,.CF, E, and
F, finite dimensional and ue E, ® F}.

We list here a number of ideals that we shall use in the
sequel.
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(a) [Z ]|-1]] the ideal of all bounded operators.

(b) [, 7] 1=pZ ) the ideal of p-summing operators.

(¢) [I,, ©,]} the ideal of p-integral operators. Ue [ [E, F] if there
exists a probability space (2, Y, 1) and operators Ve ¥ (E, L. (1)),
We (L), F"') s.t. WiV = j,U where ¢ is the formal “inclusion”
map of L_(x¢) into L, (1) and j, the canonnical inclusion of £ into
E”,

We define 1,(U) = inf {||V|[|||W]|; V, W, (2, 3, 1) as in the defini-
tion}. We say that U is strongly p-integral if the preceeding
factorization is for U instead of j,U.

(d) [N,,v,] 1 <p < oo the ideal of p-nuclear operators.

(e) [I',, 7,] the ideal of operators factorizable through L,. Ue
I' (E, F) if there exists an L,(x) space and operators A € &7 (&, L,(1)),
Be A (L,(p), F") s.t.j,U = BA. We define v,(U) = inf || B||||A|[.

(f) (A new definition). [M, ] the ideal of operators factorizable
through a Banach lattice. Ue M(FE, F') iff there exists a Banach
lattice L and Ae ~(H, L), Be (L, F")s.t.j, U= BA. pmU)=
inf || B}||A||. Using ultraproducts of Banach spaces ([1]) or the
methods of [5] one can show that [M, p] = [H**, »**] where [H, 7]
is the ideal of weakly nuclear operators introduced in [7]. Therefore
a Banach space E has l.u.st in the sense of [6] iff E" is isomorphic
to a complemented subspace of a Banach lattice ([5]).

It is known that the ideals in (a), (b), (¢) and (e) are perfect
and the same is true for the ideal in (f). It is also not hard to
check that all the ideal norms on tensor products induced by the
above ideals are semi-tensorial.

Let E, F be Banach spaces, the greatest temsor-norm, @, is de-
fined on B F by n(w) =inf {30, [z lllly.]; v=3 %@y} for
ue EQ F. There is an identification (H @r FY = ~(F, K') defined
by

(u, T') = trace Tu = i (x,, Ty,
for

uw=32QueEQF.

2. Let I be an index set and {{4,, a.}};.; a family of normed
ideals of operators.

DEFINITION 2.1. (a) The greatest lower bound [A; 4;, A:a.] of
the family is defined by:
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(A Ai>(E, F) = (Te (B, F); Vi, Te A(E, F)
and sup a,(T) < oo}

(4\ ai>T=su%pai(T) for Te(/i\ Ai>(E, F).

(b) The least upper bound [V, A, V,a;] of the family is defined
by:

(v Ai>(E, F)={Te (B, F); T=73 T; JCI, J finite
1 jed
and for all jeJ T,€ A,(F, F)}

(y @ )(T) :inf[% a,.(Tj):l tor Te(VY ANE, F),

the inf being taken over all finite subsets J I s.t. there is a re-}
presentation 7' = 3;., T; with T;e A{(F, F).

PrOPOSITION 2.2. (a) [A:4:; A:a]and [V, A4, V;a;] are normed
ideals of operators.

(b) If for all i [A,, a;] are Banach ideals then so is [N: Ai;, A: @
and if, in addition, I is finite, then [V.a, V.a;] is also a Banach
ideal.

(e) If for all i [A;, a;] are perfect then so is [A: A, A:a;l.

The proof is routine.
PROPOSITION 2.3. [A:A¥ A.af] = [(V:A)*, (V.a)].

Proof. Consider the following diagram, in which E, F' are Banach
spaces, E,, F, finite dimensional Banach spaces and T, U, S, V
operators.

E—F
v e
E,—>F,
(a) Suppose Te(V,; A)*(E, F') then
trace TVSU| = (V o) (DIVIITI(Y a)S) ,

hence, for all 71l

trace TVSU| = (V a.) (DIVIITUllals) ,



ON BANACH SPACES HAVING THE PROPERTY G. L. 509
therefore viel a(T) < (V,a,)*(T) and it follows that
Te(AAF)E,F) and (Aa)D) = (Aa) (D).

(b) Suppose T'e A; AF(E, F'). Let J I be finite and S = >,., S;
be a representation of S s.t.

3 adS) = (Va)s) +e.

We have:
itrace TVSU| = > |trace TVS;U|

< 31 a5 ()| V11U a4S))
< sup ax(D) | VI U1 a48))
= (A )OIVl (v e)s) + <],
therefore T'e(V, A)(E, F') and (V,a)(T) = (A, ai)XT).
COROLLARY 2.4. If [A,, a,] are perfect, then

(Aa)s (aa) [=[(vas) " (yar) "],

in particular, if E and F are finite dimensional then (without
assuming perfectness of [A,, a,}) for every Te Z(H, F) (A; a)(T) =
(V. ai)T).

Proof. Since for all ¢ [4,, a;] = [AF", af*] we get

(ha) = (hare) = [(ya) T =(yas)”

with equality of the norms. The second assertion is an obvious con-
sequence of the first.

DEriNITION 2.5. (a) Let |A, a] and |B, b] be normed ideals of
operators and G a fixed Banach space. We define for Banach spaces
E, F.

(%)JE F)={Te Z(E F);VUeBF,G) UTecAE,G).

From the closed-graph theorem it follows that for every Te¢
(A/B),(E. F') there exists a k& > 0 s.t. for all Ue B(F, G)a (UT) <
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kb(U). We define (a/b)o(T) = inf {k; k as above}.
(b) Let [A4, a] and [B, b] be normed ideals of operators, E and
I Banach spaces. We define

%(E, F)={Te (K, F); for every Banach
space G and Ue B(F,G) UTec A(E, @)} .

It can be shown in a standard way that for every Tc A/B(E, F')
there exists a & >0 s.t. for every Banach space G and Ue B(F, &)
a(UT) £ kb(U). We define a/b(T) = inf {k; k as above}.

(¢) Let [A, a], [B,b], E and F be as in (b). We define

%f(E, F)={Te X(E, F); 3k > 0 s.t. for every Banach space
G of finite dimension and Ue <(F, G) a(UT) < kb(U)}
%f(T) = inf {k, k as above} for Te %f(E, F).

PrOPOSITION 2.6. [(A/B)g, (a/b)s], [A/B, a/b] and [A/Bf, a/b f]
are normed ideals of operators.

If[A, a] is a Banach ideal then these ideals are Banach ideals.
If [A, a] is perfect then [A/B, a/b] = [A/Bf, a/b f].

Proof. The verification of the first and third assertions is
routine. We prove the second assertion for 4/B.

Let {T,}..~ be a Cauchy sequence in A/B (K, F'). It is easy to
check the following facts:

(1) There exists an operator T ¢ A/B(E, F') s.t. for every Banach
space G and Ue B(F, G) «(UT, — UT)E?O 0.

(2) The numerical sequence a/b(T, — T) is Cauchy, hence
a/b(T, — T)/(L——)——-)oo 1=0.

It is left to show that [ = 0. Suppose I > 0. By (2) there is
an integer m, s.t. for any n = n, there exists a Banach space G, and
an operator U,c B(F, G,) with b(U,) £1 s.t. a(U(T, — T)) > 1)2.
We get for m > n = n,.

(3) 12<a(U[T, —T)) =a(UT, — T,) + (U, (T, — T)).

Choose n, > m, s.t. for all U with (U)=<1 and %, m = n, we
have a«(U(T, — T,)) < 1/8 (which is possible since {T,} is Cauchy in
A/BE, F)). Fix n > n, and let m, > n, be s.t. for m > m, we have
a(U(T, — T)) < 1/8 (such m, exists by 1).

Applying (3) to the fixed n and some m > m, we get /2 < l/4
which is a contradiction that completes the proof.
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ProrosiTiION 2.7. Let [A, a]l and [B,b] be mormed ideals of
operators such that [A, a] is perfect and b is a semi-tensorial norm.
Then [A/B, a/b] is perfect.

Proof. By Proposition 2.6 it is enough to show that [A/B f, a/b f]
is perfect. Let Te(A/B f)**(E, F'), then for every finite dimensional
subspace M of FE and finite codimensional subspace N of F
a/b £{qxT1:) < (a/b £)**(T) where 1,: M — E is the inclusion map and
qy: N — F/N the canonical surjection. Let G be a finite dimensional
Banach space and Ue B(F, @), since b is semi-tensorial we have:

b(U) = inf {b(U, F', G); F" finite dimensional subspace of F"}
= inf b(U,)

the last infinum is taken over all operators U, and finite codimen-
sional subspaces N of F such that U has a factorization of the form:

r—2 ¢

(1) o
FIN

For given ¢ >0 let N and U, be as in (1) with (U, = bU) + .
We have a(UTiy)=a(U,qy Tiy) <b(U,)a/b f(qy Tiy) =< (b(U) +e)a/b £)**(T).
Since ¢ is arbitrary and [A4, a] is perfect it follows that o(UT) <
b(U)a/b)**(T), therefore Te A/Bf(E, F) and a/b f(T) = (a/b £)**(T).

ProrosiTION 2.8. Let [A4, a] and [B, bl be mnormed ideals of
operators, K and F Banach spaces of finite dimension and T € & (H,F).
Then (afb £Y(T) = inf D7, a*(UDB(V)), the infinum being taken over
all representations of T of the form T=37r, U, V, with V,€ & (E, G,);
U,e (G, F) and G, finite dimensional Banach spaces.

Proof. For fixed finite dimensional G and Se .7 (F, E) we have
(%‘)JS ) = sup {a(US); Ue L (B, @), b(U) < 1} .

Define the operator S: B(E, G) — A(F, G)
by S(U)= US. Then
a _ A~
(&), =181

The correspondence S — S enable us to identify (A/B)«(F, E) with
a subspace of F(B(E, G), AF, @)). Therefore (A/B)}(E, F) =
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[(A/B),(F, E)]' is a quotient space of A*(G, F) Q. B(E, G) with the
following identification: for ¢ =37, U QR V, e A*G, F)®- B(E, G)
and Se(A/B)(F, E) we define
= ﬁ‘, U, V.S = Zn trace U, V.S = trace T'S
where
T=>UYV,.
From the last discussion it follows that for Te < (K, F)
a &k . n « n
(&),(1) = inf {S a*(UB(V T = 3 UV
Ve #(E GU.c (G, F)} .
We complete the proof by noting that

05 LA (BlAl ()]

and by using Corollary 2.4 which shows that for finite dimensional
E and F

LG G =LY )Y ()]

DErFINITION 3.1. We define the ideal |I", ¥] by:

[, 7] = [Fl , ljl . Explicitly:
1, =,

Te I'(E, F)iff for every Banach space Gand Uec Il (F,G) UTe I' (K, G).

For such an operator T v(T) = supv.(UT), the supremum being

taken over all Banach spaces G and U< I (F, G) with =, (U) = 1.

DEFINITION 3.2. We say that a Banach space E has the property
G. L. (Gordon-Lewis) if for every Banach space G II,(E, G)c I' (K, G).
Of course, K has property G. L. iff the identity operator on FE is

in I'(E, E).

PROPOSITION 8.3. A Banach space E has the property G. L. if
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and only if there exist k>0 s.t. for every finite dimensional
Banach space G and Ue . (E, @) v,(U) £ kr,(U).

Proof. This is a result of the equality
Iy L] — [L N ]
[Hl’nl Hlf’ 77:1f

which is, in turn, a consequence of Proposition 2.6 and the fact that
[Fl’ 71] is perfect.

PROPOSITION 3.4. Let E and F be finite dimensional Banach
spaces and Te L (E,F). Then (a) v*(T) = inf [>i, 7 (U)m,(V))],
the infinum being taken over all representations of the form T =

» UV, with V,ell (E, G,), U, e II,(G,, F') and G, finite dimensional
Banach spaces.

(b) ¥*(T) = inf [0, || !l v:]]], the infimum being taken over
all representations of the form T = S, T, s.t for all 1 there exist
positive Radon measures, p, on the unit ball B(E') of E' and v, on
the unit ball B(F') of F s.t. for allxe K,y e F' and 1 < 1 < n hold:

(Ta, = e aldpe) | 1w i)

(E")

Proof. (a) Follows from Propositions 2.8 and 3.3 combined with
the fact ([10]) that [}, v¥] = [}, 71].

(b) Is a consequence of (a) and the following lemma which is
proved by methods of [10].

LEMMA 38.5. (¢) Let Te ¥ (E, F) (E, F not necessarily finite
dimensional) then

(1) inf 7y (U)m(V') = inf [[w]| || ]

where the infinum on the left is taken over all Banach spaces G and
representations jT = UV with j the canonical inclusion of F into
F", Ueclli(G, F") and Vell(E, @). The infimum on the right is
taken over all positive Radon measures ¢ on B(E') and v on B(F")
(with the relative w*-topologies) s.t. for all xe FE, y € F’ hold

(Tl | 1@ adlapen | v ian .
B(E') B(F'")
(d) If in (¢) E and F are finite dimensional then the infinum
on the left hand side of (1) can be taken over all finite dimensional
Banach spaces G.
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Proof. (d) follows from (c¢) since 7, and 7; are semi-tensorial (in
fact, tensorial) norms. We prove (c).

Let jT = UV be a factorization of jT with UeclIl (G, F”) and
Vell,(E, G). By the Pietsch factorization theorem there exist posi-
tive Radon measures, ¢ on B(E’) and v on B(F") s.t. for x € E, y' ¢ F’
1vall = 1@adldpe), [UvIs| 1y ldw”) and
el = 7f1(V) 4+¢, |yl £ 7(U) + e Therefore HVHII#II = (m(U) +¢)
(7 (V) +¢) and

(2)  KTouy|=KVe, Uy =| I adide| 1, unyldy.

On the other hand, suppose ¢ and v are Radon measures on
B(E') and B(F'") respectively s.t. (2) hold for every zec K, y' c¢F’
then we define operators:

U F'— L(v); UW) =<9
and
VO: E— Ll(,") ) Vo(x) = <x; > .

Let H= U(F'), G = V,(E) and let {-) be the bilinear form on
V(E) x U(F') defined by (Vy, Uy') = {T=x, y'), from (2) it follows
that this form is well defined and bounded with norm < 1, hence it
defines an operator We <~(G, H') with [|W]|| <1 and (V, Uy') =
(WVe, Uy'>. We have then the following commutative diagram:

(3) Ul\ /{1
¢ L mw

where U, and V, are U, and V, considered as operators into G and
H respectively. Of course «,(U)) < ||¢]] and 7, (V7)< ||v|| which
completes the proof of Lemma 3.5 and Proposition 3.4.

REMARK 3.6. In [7] Gordon and Lewis show that for all E, F
and Te ¥ (K, F)

(1) p*(T) = inf [[ ]| ,

the infinum being taken over all positive Radon measures on B(E’) X
B(F'") (with the product of the w*-topologies) which satisfy for all

’

X, Y.

(2) I{Tx, ') | = S | (=, @' )<y, ¥ ldp’, y7) -

B(E’)XB(F'’)
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In fact, using compactness of the unit balls it is not hard to check
that for finite dimensional E and F we can replace “inf [|u¢]” by
“Inf 7 g v:])” in (1); #4, v, positive Radon measures on B(E’)
and B(F') respectively s.t. for all z, ¥

(3) KTyl sn| e adldp@) | 1))

i=1 JB(E’) B(F)
(all the p¢;, ® v, but one may be taken as scalar multiples of (i) Q
o(y;)—the products of valuations at points z; e B(E’), y, e B(F'), the
one pt; Q v, left may be a scalar multiple of the product of Lebesgue
measures on B(FE’) and B(F')). The difference between p¢* and v* is
therefore the possibility to represent T as a sum >,-, T, where each
T, is “majorized” by the product g, ® v,. It follows of course that
p* < v*, hence ¢t = v and we get the result of [6]: if E” is isomor-
phic to a complemented subspace of a Banach lattice then E has
property G. L.

CoroLLARY 3.7. [I',v] =1[I", '], therefore E has the property
G. L. +f and only if E' has it.

Proof. [I'*,v*] =", v*]; this is obvious for pairs of finite
dimensional Banach spaces from (a) or (b) of Proposition 3.4 and
passes over to all pairs of Banach spaces since [I'*, v*] is perfect.
Now perfectness of [I,v] gives [I', 7] = [[**, v**] = [[T**, v*'*] =
[**, ¥**] = [I", 7.

The last corollary enables us to prove that a number of proper-
ties known to hold for spaces having [.u.st. are true also for spaces
having the property G. L.

We use the next lemma of Pisier ([16] and [17]) which was
originally proved for spaces E with E' isomorphic to a complement-
ed subspace of a Banoch lattice. However, Pisier’s proof uses only
the fact that such an F, and also E’, has the property G. L.

LEMMA 3.8. Let E have the property G. L.

(a) If E does mot contain I%2's uniformly, them there exist
7,2 qg< o and C> 0 s.t.

(1) For any E valued operator Amw,(A) < Cri(A).

(b) If meither E nor E' contain I2's uniformly, then there
exist ¢,2<q< oo, p,1 <p =<2 and C>0 s.t.:

(2) For any E-valued operator Arm,(A) < Cr,(A).

The next theorem and its corollary is in a certain way a
generalization of results of Johnson and Davis ([9] and [2]).
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THEOREM 3.9. Let E be finitely represented in a Banach space
F such that F has the property G. L. and F does mot contain I-'s
uniformly. Then either E contains I}-'s uniformly and uniformly
complementably or E does not contain [3-’s uniformly.

We need two lemmas.

LEMMA 3.10. Let [4, a] and [B, b] be normed ideals of operators
s.t. a is a semi-tensorial norm and [B, b] is perfect and right injec-
tive (which means: if E, F, G are Banach spaces, FCG and Te
F(E, F) then the b-norms of T considered as operator from K to
F or from E to G are the same).

Let F be a Banach space s.t. the following holds:

(1) There exists a &> 0 s.t. for every Banach space G and
Te AG, F) (T) < ka(T).

Let K be a Banach space s.t. Ef.r.F then (1) is true for E as
well.

Proof. Let G be a Banach space and Te A(G, E). Let G, be a
finite dimensional subspace of G and T, = T'|4: G, — E. Then (T, =
a(T). Since a is semi-tensional and G, finite dimensional then
o(T) = inf {a(T,: G,— N); N a finite dimensional subspace of F with
T(G)c N}. Given ¢ > 0 there exists therefore a finite dimensional
subspace Nc E with T(G,)c N s.t. T,: G, — N — the astriction of
T,, satisfies a(T) < (1 + &)a(T,). We can find a N, F and an iso-
morphism i: N— N, with [[4]| <1; ||| <1 +e. Let j: N,— F be
the inclusion map from N, into F, then a(5i7,) < (1 + ¢)a(T) and
(1) gives:

b(jiT) < k(1 + &)a(T), injectivity of [B, b]

implies now that b(iT,) < k(1 + e)a(T). Therefore b(T,) < k(1 + &)*a(T)
which implies b(T)) < k(1 + ¢)’a(T). Since ¢ is arbitrary and [B, b]
perfect we conclude that &(T) < ka(T).

We say that a Banach space E has property I — K (respectively
I — N,) if for every Banach space G and strongly integral operator
T:G — E T is compact (respectively — T is r-nuclear). It is known
(combining results of Diestel [3] and Pisier [18]) that the property
super (I — N,) is super reflexivity.

LeMMA 3.11. The following are equivalent:
(a) K has the property super (I — K).
(o) FE does not contain I¥’s uniformly.
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Proof. It is known that if £ contains [’-s uniformly than [,
as well as L]0, 1] are finitely represented in E. The formal “inclu-
sion” map L_[0, 1] — L,[0, 1] is strongly integral, noncompact opera-
tor, therefore in this case K fails to have super (I — K). Suppose,
on the other hand, that E does not contain [”-s uniformly but there
exists an integral noncompact operator into E. The adjoint of this
operator is a strongly integral noncompact operator T defined on E,
hence it is a Dunford-Pettis operator (which means that it takes w-
Cauchy sequences into norm convergent sequences). Since E does
not contain [7-s uniformly — E’ does not contain an isomorph of [, it
follows from a result of Rosenthal [19] that every bounded sequence
in E’ contains a w-Cauchy subsequence, but then T must be compact
— a contradiction. Therefore £ has (I — K). Since “not containing
{*-’s uniformly” is a super-property it turns out that £ has in fact
super (I — K).

Proof of Theorem 3.9. From Lemma 3.8 follows the existence
of ¢ >0 and 2 < g < = s.t for every Banach space G and 4A: G > F

(1) T (A) = om{(4) .

From Lemma 3.10 we deduce that (1) holds for K as well. If E
does not contain [?-s uniformly and uniformly complementably £’
does not contain [%-s uniformly and follows as in [16] the existence
of d>0 and 1< p=<2 s.t. for every G and A: G — K w(A) <dxn,(A).
Therefore there exists £t >0 2=<¢ < o=, 1 <p <2 s.t for every G
and A as above

(2) T (A) = m,(A) .

By Lemma 3.10 (2) is true for every Banach space which is finitely
represented in E. Now, let G be a Banach space and 7:G— E a
strongly integral operator. Then T has a factorization

¢ -~ . g
T
Lo(2, 1)~ L2, 1)

with (2, ¢#) a probability space and j the formal “inclusion” map.
We look at the factorization

J

Loo(“Q, #) — Ll(‘Q: #)
(4) >1\ /{

L (2, 1)
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where 1/p + 1/p’ = 1 and 4,, i, are the formal “inclusion” maps. Then
A, e (L,(¢), E) and from (2) follows Ai,en,(L, (1), E), a known
result of Persson and Pietsch [14] combined with the fact that B
is strongly p’ integral then shows that

T = AiiBeN(G, E) with ~=L 1.

r D q

Since the same is true for every Banach space finitely represented
in E, E has super (I — N,) and of course it has super (I — K).
Lemma 3.11 then shows that E does not contain I?-s uniformly.

REMARK. We do not know if the property super (I — N,) is in
fact strictly stronger than “not containing I7-’s uniformly”.

COROLLARY 3.12. Let E be a Banach space which either has the
property G. L. or is finitely represented in a Banach space F s.t.
F has property G. L. and does not contain 1%-'s uniformly. Then
for any Banach space G there exist compact nonnuclear operators
from E into G and from G into E.

Proof. From Theorem 3.9 it follows that in both cases one of
the three possibilities hold: (a) E contains I%-s uniformly.

(b) E contains I”-s uniformly and uniformly completably.

(¢) FE does not contain [*-s uniformly.

In each of these cases the result follows, in (a) or (b) from results
of [9] and in (c) from the result of [2].

Let E be a Banach space. We say that E has Grothendieck
property (G. P.) if II(~,, E) = (<., F) (see [4] for discussion
of this property). Maurey [12] showed that if K has cotype-2 then
E has G. P., Pelezynski [13] shows that the inverse implication is
true if E has l.u.st. We can generalize:

THEOREM 3.13. Let K be a Banach space having the property
G. L. Then

(a) E has G. P. if and only if E is of cotype-2.

(b) E’' has G. P. and E' does not contain I'-s uniformly if and
only if E is of type 2.

Proof. In both assertions only the “only-if” parts are new and
will be proved.

By Corollary 3.7 we know that E’ also has the G. L. property.

(a) Suppose E has G. P. As in [16] the fact that «(<2, E) =
I, E) combined with the G. L. property of E’ shows that there
exists ¢ > 0 s.t. Any FE-valued operator A satisfies
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(1) my(A) = emi(4)

By [16] (1) is equivalent to the following condition:
(2) Let S be a subspace of an L,(x) space and @: S — L,(v) a
bounded operator. Then w K I, (I, — the identity operator of E) can

be extended to a bounded operator S®41E~> L,(F) (for a subspace
S of L,(y), 4, denotes the norm on S & E as a subspace of L,(y¢, E):

of course L,(p) ®4p E = L,(¢, E)).

We choose S to be the closed linear span in L,[0, 1] of the
Rademacher functions {r,}. (r.(t) =sign2"znt; n=20,1,---.) It is
known that S is isomorphic to l,. Let @ be the isomorphism from
S to I,

@3 b,7,) = (Bn)yey -
From (2) it follows that
oRI;:S® , E— 1,

is bounded. Therefore, for %, ---, x, € E we have:

SIEAON

Il

(0RL(Em® w]-)' .
37 ®

Ll([OylLE)
n

r; X x;

=1

= llo ® Il

3
l5=
= lo® Ll |

0 il

therefore E is of cotype 2.

(b) Let E’ have G. P. and suppose E’ does not contain [}-'s
uniformly. Then E does not contain [%-’s uniformly and Pisier’s
method ([16]) yields the existence of C >0 and 1 < p <2 s.t. Any
E’-valued operator A satisfies

(3) my(A) = Cmy(4) .

(3) is equivalent to

(4) Let w be a bounded operator w: L, () — Ly(v), then @ Q I
is extendable to a bounded operator ® & I: L,(¢, E')— Ly(v, E’).
For such a @ we get therefore that

(0 @ Ip)': [Lo(v, B — [Ly(et, ENY

is bounded.
It is easy to check (identifying Ly, E") and L,(y¢, E”) with
subspace of [L,(v, E)]' and [L,(#, E")') that

(0 Q Ip) (Lu(v, E")) C Ly (e, E”)



520 SHLOMO REISNER

and

(0 Ip) = & & Ly

considered as operators L,(v, E”') — L,(¢, E"”).
Therefore ' ® I,. is well defined and bounded. Now, take
Lyv) = 1,, L,(¢) = L,[0, 1] and w: L,[0, 1] — I, defined by

o(f) = ({fs "a)dnew -
w is bounded and ®':l,— L,[0, 1] is the embedding of I, in L,[0, 1]:
'(9) = X g;r; for g =(9;)jenels.
We get for «,, ---,2,€ E:
(\, >y ri(t)e; Tat)” =

= @@ n(Se®e)
= Hco’@IE"|l<]z:‘1H%"H2>I/2

ﬁ"’j@%.

i=1 )

0@ LS e @

1y(E

(e; being the unit vectors in [,). Therefore E is of type 2.

Some concluding remarks. The property G. L. as it is defined
is in some sense an “external” property. It is interesting to find
some “internal” geometric characterization of this property. Up to
now we know of no example of Banach space having the G. L.
property for which E" is not isomorphic to a complemented subspace
of a Banach lattice, though Remark 3.6 hints that the existence of
such example is probable (a result of Lewis [11, Cor. 4.2], together
with the fact that each subspace of I, has G. L. constant 1, shows
that the two norms are not equal).

Another course of problems may arise with respect to properties
of spaces having the G. L. property, e.g., how far properties of
spaces having [.u.st or isomorphic to complemented subspaces of
Banach lattices pass over to spaces having G. L. property. Also
one can ask how one can use such properties to the solution of
problems concerning general Banach spaces. For example with
respect to the problem of compact-nonnuclear operators arises the
problem: suppose E satisfies <~(E,1,) = II,(E, l,), does this imply
that E can be embedded in a space having G. L. property which
does not contain [2-s uniformly?
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