Pacific Journal of Mathematics

A TREE-LIKE TSIRELSON SPACE

GIDEON SCHECHTMAN

Vol. 83, No. 2 **April 1979**

A TREE-LIKE TSIRELSON SPACE

GIDEON SCHECHTMAN

An example is given of a reflexive Banach space *X* such that $(X \oplus X \oplus \cdots \oplus X)_{l_1^n}$, $n = 1, 2, \cdots$, are uniformly isomorphic to *X.* Some related examples are also given.

1. Introduction. In [4] Lindenstrauss observed that a Banach space *X* such that $(X \oplus X \oplus \cdots \oplus X)_{l_1^n}$ is isometric to a subspace of *X* for every *n* must contain an isometric copy of *l^t .* This gives a very simple proof to the fact that there exists no separable reflexive Banach space which is isometrically universal for all the separable reflexive Banach spaces. Lindenstrauss asked whether the isomorphic version of this result is true; i.e., does the fact that *X* contains uniformly isomorphic images of $(X \oplus X \oplus \cdots \oplus X)_{l_1^n}$, $n = 1, 2, \cdots$, imply that X contains l_1 isomorphically? An affirmative answer would give an alternative proof to the nonexistence of an isomorphically universal space in the family of all separable reflexive spaces as well as in the family of all spaces with a separable dual. (The nonexistence of these spaces was proved by W. Szlenk [8] by a completely different method.) Unfortunately the answer to Lindenstrauss' question is negative in a very strong sense.

THEOREM. Let $1 \leq p \leq \infty$ and $\lambda > 1$. There exists a Banach *space X with a 1-unconditional basis* {e£ }Γ=i *with the following properties:*

(a) *X is reflexive.*

(b) X does not contain a subspace isomorphic to l_p (c_o in the *case* $p = \infty$).

For every $n = 1, 2, \cdots$ there exist n disjoint subsequences of *the natural numbers* N_1, N_2, \cdots, N_n such that

(c) ${e_i}_{i \in N_i}$; is isometrically equivalent to ${e_i}_{i=1}^{\infty}$, and

(d) If $x_j \in [e_i]_{i \in N_j}; j = 1, 2, \dots, n$ then

$$
\lambda^{-1} \Biggl(\sum_{j=1}^n ||x_j||^p\Biggr)^{1/p} \leqq \left|\left|\sum_{j=1}^n x_j\right|\right| \leq \lambda \Biggl(\sum_{j=1}^n ||x_j||^p\Biggr)^{1/p} \\\left(\lambda^{-1} \max_{1 \leq j \leq n} ||x_j|| \leq \left|\left|\sum_{j=1}^n x_j\right|\right| \leq \lambda \max_{1 \leq j \leq n} ||x_j|| \text{ if } p = \infty\right).
$$

(e) There exists a $K < \infty$ such that X is K-isomorphic to $(X \bigoplus X \bigoplus \cdots \bigoplus X)_{l^n_p}$ for every n.

The construction uses ideas from [9] and [1] as well as the basic

idea of James to construct Banach spaces on trees. The notations are standard and can be found in [5] or [6].

Proof of the theorem. We first deal with the case $p = \infty$. Let (T, \leq) be the set

$$
T = \{(n, i); n = 0, 1, \cdots, i = 1, \cdots, 2^n\}.
$$

With the partial order

$$
(n, i) \leq (m, j)
$$
 if and only if $n \leq m$ and $(i - 1)2^{m-n} < j \leq i2^{m-n}$.

Let *L* be the linear space of all the functions on *T* which differ from zero only on a finite number of points of *T*. For $n = 0, 1, \cdots$ and $i = 1, \cdots, 2^n$ define $e_{n,i} \in L$ by

$$
e_{n,i}(m, j) = \begin{cases} 1 & (n, i) = (m, j) \\ 0 & \text{otherwise} \end{cases}.
$$

And define the operators $P_{n,i}$, $S_{n,i}$, and P_n from L to L by

$$
(P_{n,i}x)(m, j) = \begin{cases} x(m, j) & (n, i) \leq (m, j), & x \in L \\ 0 & \text{otherwise} \end{cases}
$$

$$
(S_{n,i}x)(m, j) = x(m + n, (i - 1)2m + j), x \in L
$$

and

$$
P_{\scriptscriptstyle n} = \textstyle\sum\limits_{i=1}^{\scriptscriptstyle 2^n} P_{\scriptscriptstyle n,i} \; .
$$

Now, we define on L a sequence of norms $|| \cdot ||_n$ by induction

$$
||x||_0 = ||x||_{l_1} = \sum_{n,i} |x(n, i)|
$$

$$
||x||_m = \inf \left\{ ||x_0||_{m-1} + \lambda \sum_{k=1}^K \max_{1 \le i \le 2^k} ||P_{k,i}x_k||_{m-1} \right\}
$$

where the inf is taken over all finite sequence x_0 , \cdots , x_K in L which satisfy

$$
\sum_{k=0}^K x_k = x \quad \text{and} \quad P_k x_k = x_k \ , \quad k=0,\,\cdots,\,K \ .
$$

It is easy to prove by induction that for every $x \in L$ and every m

 $||x||_{c_0}\leq ||x||_m\leq ||x||_{m-1}$.

So that we can define

$$
||x|| = \lim_{m\to\infty} ||x||_m .
$$

 $|| \cdot ||$ is a norm. Let Y_m be the completion of L with respect to $|| \cdot ||_m$ and let Y be the completion of L with respect to $|| \cdot ||$.

LEMMA 1. (a) ${e_{n,i}}_{n=0,i=1}^{\infty}$ *is* a 1-unconditional basis for Y_m and *for Y.*

(b) If R is a norm one projection on $l_1(T)$ such that $P_{k,i}R =$ $RP_{k,i}$, for all $k = 0, 1, \cdots$ and $i = 1, \cdots, 2^k$, then R is a norm one *projection on Y^m and on Y.*

(c) $S_{n,j}$ is an isometry from $P_{n,j}Y_m$ (resp. $P_{n,j}Y$) onto Y_m (resp. Y) *for all* $n = 0, 1, \cdots, j = 1, \cdots, 2^n$.

(d) For every $x \in L$ the infimum in the definition of $\|x\|_{m}$ is *attained.*

(e) For every $x \in L$

$$
||x|| = \min \left\{||x_0||_{l_1} + \lambda \sum_{k=1}^K \max_{1 \leq i \leq 2^k} ||P_{k,i}x_k||; x = \sum_{k=0}^K x_k, P_kx_k = x_k\right\}.
$$

Proof, (a) and (b) are proven by induction and passing to the limit. (d) is a simple consequence of (b) (for $R = I - P_n$). We prove now (e). For every $\{x_k\}_{k=0}^K$ such that $x = \sum_{k=0}^K x_k$ and $P_k x_k = x_k$ $k = 0, \dots, K$ and for all m

$$
||x|| \le ||x||_m \le ||x_0||_{m-1} + \lambda \sum_{k=1}^K \max_{1 \le i \le 2^k} ||P_{k,,i}x_k||_{m-1} \le ||x_0||_{l_1} + \lambda \sum_{k=1}^K \max_{1 \le i \le 2^k} ||P_{k,i}x_k||_{m-1} .
$$

So, passing to the limit and using (b) to prove that the infimum is attained, we get

$$
||x|| \leq \min \left\{ ||x||_{l_1} + \lambda \sum_{k=1}^K \max_{1 \leq i \leq 2^k} ||P_{k,i}x_k||; x = \sum_{k=0}^K x_k, P_kx_k = x_k \right\}.
$$

In order to prove the other side inequality it is enough to prove that for all *m* and all $x \in L$

$$
||x||_m \geq \min\,\Big\{||x_{\text{o}}||_{l_1} + \lambda\sum_{k=1}^K \max_{1\leq i\leq 2^k}||P_{k,i}x_k||; \, x = \sum_{k=0}^K x_k, \, P_kx_k = x_k\Big\} \,\, .
$$

We prove this by induction on m. This is obvious for $m = 0$, assume it is true for $m-1$ and assume that

$$
||x||_{m} = ||x_{0}||_{m-1} + \lambda \sum_{k=1}^{K} \max_{1 \leq i \leq 2^{k}} ||P_{k,i}x_{k}||_{m-1}
$$

where $x = \sum_{k=0}^K x_k$ and $P_k x_k = x_k$, $k = 0, \dots, K$.

By the induction hypothesis

$$
||x_0||_{m-1}\geqq||y_0||_{l_1}+\lambda\sum_{h=1}^H\max_{1\leq i\leq 2^h}||P_{h,i}y_h||
$$

for some $\{y_k\}_{k=0}^H$ such that $x_0 = \sum_{k=0}^H y_k$ and $P_k y_k = y_k$, $h = 0, \dots, H$. We assume as we may that $H = K$, then $x = y_0 + \sum_{k=1}^{K} (x_k + y_k)$, $P_k(x_k + y_k) = x_k + y_k, k = 1, \dots, K$ and

$$
||x||_{m} \geq ||y_{0}||_{l_{1}} + \lambda \sum_{k=1}^{K} \max_{1 \leq i \leq 2^{k}} ||P_{k,i}(x_{k} + y_{k})||.
$$

To prove (c) it is clearly enough to show that for every *x* such that $P_{n,j}x = x$ and for every m

$$
||x||_{m} = \min \left\{ ||x_{n}||_{m-1} + \lambda \sum_{k=n+1}^{K} \max_{1 \leq i \leq 2^{k}} ||P_{k,i}x_{k}||_{m-1} \right\}
$$

where the minimum is over all the sequences $\{x_k\}_{k=n}^K$ such that $x = \sum_{k=n}^{K} x_k$ and $P_{n,j}P_kx_k = x_k$, $k = n, n + 1, \dots, K$.

Let x satisfy $P_{n,j}x = x$ and let $\{y_k\}_{k=0}^H$ be such that

$$
||x||_{m} = ||y_{0}||_{m-1} + \lambda \sum_{h=1}^{H} \max_{1 \leq i \leq 2^{h}} ||P_{h,i}y_{h}||_{m-1} ,
$$

$$
x = \sum_{h=0}^{H} y_{h} \text{ and } P_{h}y_{h} = y_{h} , \quad h = 0, \dots, H.
$$

We can assume that $H > n$ and by (a), we can also assume that $P_{n,j}y_{h} = y_{h}, h = 0, \dots, H.$

$$
||x||_m = ||y_0||_{m-1} + \lambda \sum_{h=1}^n \max_{1 \leq i \leq 2^h} ||P_{h,i}y_h||_{m-1} + \lambda \sum_{h=n+1}^H \max_{1 \leq i \leq 2^h} ||P_{h,i}y_h||
$$

=
$$
||y_0||_{m-1} + \lambda \sum_{h=1}^n ||y_h||_{m-1} + \lambda \sum_{h=n+1}^H \max_{1 \leq i \leq 2^h} ||P_{h,i}y_h||.
$$

If $\sum_{k=1}^n ||y_k||_{m-1} > 0$ then since $\lambda > 1$

$$
||x||_m > ||y_0 + y_1 + \cdots + y_n||_{m-1} + \lambda \sum_{h=n+1}^H \max_{1 \leq i \leq 2^h} ||P_{h,i}y_h||
$$

in contradiction to the fact that the minimum is attained at y_0, \dots, y_{H} . This concludes the proof of Lemma 1.

PROPOSITION 2. (a) For every $n = 0, 1, \cdots$ and $\{y_i\}_{i=1}^{2^n}$ such $that P_{n,i}y_i = y_i, i = 1, \dots, 2^n,$

$$
\max_{1\leq i\leq 2^n}||y_i||\leq \left\|\sum_{i=1}^{2^n}y_i\right\|\leq \lambda \max_{1\leq i\leq 2^n}||y_i||.
$$

(b) Y does not contain an isomorphic image of c_0 .

Proof, (a) The left hand side follows from the 1-unconditionality of $\{e_{n,i}\}_{n=0,i=1}^{\infty}$. For the right hand side put

$$
x_n=\sum_{i=1}^{2^n}y_i\quad\text{and}\quad x_k=0\quad\text{for}\quad k\neq n
$$

then, by Lemma l.e,

$$
\left\|\sum_{i=1}^{2^n}y_i\right\|\leq \lambda \max_{1\leq i\leq 2^n}||P_{n,i}x_n||=\lambda \max_{1\leq i\leq 2^n}||y_i||
$$

(b) Assume that Y contains an isomorph of c_0 . Since the unit vector basis of $c₀$ tends weakly to zero, we can assume that there exist a sequence ${u_n}_{n=1}^{\infty}$ of norm one elements in Y, an increasing sequence ${m_n}_{n=1}^{\infty}$ of positive integers and a constant K such that

$$
(P_{m_n}-P_{m_{n+1}})u_n=u_n , \quad n=1,2,\cdots
$$

and

$$
\max_{1\leq n<\infty} |a_n|\leq \left\|\sum_{n=1}^{\infty} a_n u_n\right\|\leq K \max_{1\leq n<\infty} |a_n|
$$

for every sequence $\{a_n\}_{n=1}^{\infty}$ such that $a_n \to 0$ as $n \to \infty$. For every n $\mathrm{let}\, \ 1 \leqq i_{\scriptscriptstyle n} \leqq 2^{m_{\boldsymbol n}}\,\, \mathrm{be} \,\,\mathrm{such} \,\,\mathrm{that}$

$$
||P_{m_n,i_n} u_n|| = \max_{1 \leq i \leq 2} ||P_{m_n,i} u_n||
$$

and put

$$
v_n=P_{{\scriptscriptstyle m_n,i_n}}u_n\ .
$$

By part (a) and Lemma l.a.

$$
1=||u_{\scriptscriptstyle n}||\leqq \lambda ||v_{\scriptscriptstyle n}||\leqq \lambda ||u_{\scriptscriptstyle n}||\leqq \lambda
$$

and

$$
\lambda^{-1} \max_{1 \leq n < \infty} |a_n| \leq \left\| \sum_{n=1}^{\infty} a_n v_n \right\| \leq \left\| \sum_{n=1}^{\infty} a_n u_n \right\| \leq K \max_{1 \leq n < \infty} |a_n|
$$

for every sequence $\{a_n\}_{n=1}^{\infty}$ such that $a_n \to 0$ as $n \to \infty$. We also have $P_{m_n,i_n}v_n = v_n$ $n = 1, 2, \cdots$. By passing to a subsequence we can also assume that

$$
P_{\scriptscriptstyle m_n,i_n}v_r=v_r\quad\text{for all}\quad r\geqq n\;.
$$

This last property (with other *mⁿ 's)* remains true for every block basis of the *uⁿ 's.* Thus, by a theorem of James [3], we may assume that there exist an n , a $1 \leq j \leq 2^n$ and two normalized vectors w_i , *w2* in *Y* such that

$$
(I - P_n)w_1 = w_1
$$
, $P_{n,j}w_2 = w_2$ and $||w_1 + w_2|| < \lambda - \varepsilon$ where

 $z > 0 \text{ satisfies } 1 < \lambda - \varepsilon < 1 + \varepsilon/\lambda. \quad \text{Let } \{x_k\}_{k=0}^K \text{ be such that } w_1 + w_2 = 0.$ $\sum_{k=0}^{K} x_k$, $P_k x_k = x_k$, $k = 0, \dots, K$ and

$$
(\ast) \qquad ||w_1 + w_2|| = ||x_0||_{l_1} + \lambda \sum_{k=1}^{K} \max_{1 \leq i \leq 2^k} ||P_{k,i}x_k||
$$

(such x_k 's exist by Lemma 1.e). We can also assume that $K \geq n$ and that $\mathrm{supp} x_k \subseteq \mathrm{supp} (w_1 + w_2),\ k = 0, \ \cdots, \ K.$ We first prove that

$$
(\lambda^{**}) \qquad \qquad \left\| \sum_{k=1}^{n-1} P_n x_k \right\| \leq \frac{\lambda - \varepsilon}{\lambda}.
$$

If this were not true then, since $P_{n,j}P_nx_k = P_nx_k$ for $k = 0, \dots, K$,

$$
\lambda - \varepsilon > ||w_1 + w_2|| \geq \lambda \sum_{k=1}^{n-1} \max_{1 \leq i \leq 2^k} ||P_{k,i} P_n x_k||
$$

$$
= \lambda \sum_{k=1}^{n-1} ||P_n x_k|| \geq \lambda \left| \left| \sum_{k=1}^{n-1} P_n x_k \right| \right| > \lambda - \varepsilon.
$$

From (**), we get that

$$
(^{***}) \qquad \qquad \left\| P_n x_0 + \sum_{k=n}^K x_k \right\| \geq \frac{\varepsilon}{\lambda} .
$$

Indeed,

$$
\left\|P_nx_0+\sum_{k=n}^K x_k\right\|=\left\|P_nx_0+\sum_{k=n}^K P_nx_k\right\|\\\geq\left\|P_n\left(\sum_{k=0}^K x_k\right)\right\|-\left\|\sum_{k=1}^{n-1} P_nx_k\right\|\\\qquad \qquad =||w_2||-\left\|\sum_{k=1}^{n-1} P_nx_k\right\|\geq 1-\frac{\lambda-\varepsilon}{\lambda}=\frac{\varepsilon}{\lambda}.
$$

Now, by Lemma l.e, the equalities

$$
w_1 = \sum_{k=0}^{n-1} (I - P_n) x_k, \quad P_k (I - P_n) x_k = (I - P_n) x_k, \quad k = 0, \dots, n-1
$$

and

$$
P_nx_0+\sum_{k=n}^K x_k=P_nx_0+\sum_{k=n}^K x_k, \quad P_kx_k=x_k, \quad k=0, n, n+1, \cdots, K,
$$

 $(*)$ and $(***)$ we get

$$
\begin{aligned} \lambda-\varepsilon&>\left|\left|w_{1}+w_{2}\right|\right|\geqq\left|\left|(I-P_{n})x_{0}\right|\right|_{l_{1}}+\lambda\sum_{k=1}^{n-1}\max_{1\leq i\leq2^{k}}\left|\left|P_{k,i}(I-P_{n})x_{k}\right|\right|\\ &+\left|\left|P_{n}x_{0}\right|\right|+\lambda\sum_{k=n}^{K}\max_{1\leq i\leq2^{k}}\left|\left|P_{k,i}x_{k}\right|\right|\\ &\geqq\left|\left|w_{1}\right|\right|+\left|\left|P_{n}x_{0}+\sum_{k=n}^{K}x_{k}\right|\right|\geqq1+\frac{\varepsilon}{\lambda} \end{aligned}
$$

which contradicts the choice of ε . This concludes the proof of Proposition 2.

The space *Y* satisfies (b), (c) and (d) of the theorem for $p = \infty$ this follows from 2.b, l.e and 2.a, respectively it is also not hard to see that *Y* satisfies (e), however (a) is not satisfied, indeed, if $\{(n_k, i_k)\}_{k=1}^{\infty}$ is a totally ordered sequence in T then it is not difficult to see (using 1.e.) that $[e_{n_k,i_k}]_{k=1}^{\infty}$ is isometric to l_i , so some additional work is needed.

Proof of theorem for $p = \infty$. Define on L a new norm by

 $|||x||| = |||x|^2||^{1/2}$ $x \in L$

(for $x = \sum_{n,i} a_{n,i} e_{n,i} |x|^{\alpha}$ is defined to be $\sum_{n,i} |a_{n,i}|^{\alpha} e_{n,i}$), and let X be the completion of *L* with respect to this norm. It is easy to check that ${e_{n,i}}_{n=0,i=1}^{\infty}$ constitutes a 1-unconditional basis for X. Now, if ${x_m}_{m=1}^M$ is a block basis of ${e_{n,i}}_{n=0,i=1}^{\infty}$ then

$$
a\max_{1\leq m\leq M}|a_m|\leq \left\|\sum_{m=1}^M a_m x_m\right\|\leq b\max_{1\leq m\leq M}|a_m| \quad \text{for all} \quad a_1, \cdots, a_M
$$

if and only if

$$
a^{1/2} \max_{1 \leq m \leq N} |a_m| \leq \bigg\| \bigg\| \sum_{m=1}^M a_m |x_m|^{1/2} \bigg\| \bigg\| \leq b^{1/2} \max_{1 \leq m \leq N} |a_m| \text{ for all } a_1, \dots, a_N.
$$

This proves that (b), (c) and (d) of the Theorem remain valid for X (with $\lambda^{1/2}$ instead of λ). In order to prove (a) it is enough, by James theorem $[2]$ to prove that X does contain an isomorph of ζ . This in turn is a consequence of the following simple fact: if $\{x_m\}_{m=1}^M$ are disjointly supported with respect to ${e_{n,i}}_{n=0,i=1}^{\infty}\,$ then

$$
\left\| \left| \sum_{m=1}^M x_m \right| \right\| \leq \left(\sum_{m=1}^M |||x_m|||^2 \right)^{1/2}.
$$

To prove (e) it is enough, in view of (c), (d) and Pelczynski's decomposition method [7], to prove that X is isomorphic to $X \oplus X$. Now, as we mentioned above for any totally ordered sequence ${(n_k, i_k)}_{k=1}^{\infty}$ in *T* ${e_{n_k,i_k}}_{k=1}^{\infty}$ in *Y* is equivalent to the unit vector basis in l_1 thus, ${e_{n_k,i_k}}_{k=1}^{\infty}$ in X is equivalent to the unit vector basis in l_2 . So, X contains a copy of ϵ_2 and therefore is isomorphic to each of its one co-dimensional subspaces. In particular to $[e_{n,i}]_{n=1,i=1}^{\infty}$ which, in turn is isomorphic to $X \oplus X$.

Proof of the theorem for $1 \leq p < \infty$. Let X and $\{e_i\}_{i=1}^{\infty}$ be the space and the basis which satisfy the theorem for $p = \infty$ and let ${f_i}_{i=1}^{\infty}$ be the biorthogonal basis of ${e_i}_{i=1}^{\infty}$ then clearly X^* and ${f_i}_{i=1}^{\infty}$ satisfy the theorem for $p=1$.

For $p > 1$ define, for every eventually zero sequence $\{a_i\}_{i=1}^{\infty}$,

$$
||\{a_i\}_{i=1}^\infty||_p = \left\|\sum_{i=1}^\infty |a_i|^p f_i\right\|^{1/p}.
$$

Considerations similar to those in the proof of the $p = \infty$ case show that the completion of the space of finite sequences under $\lVert \cdot \rVert_p$ satisfies the theorem.

REMARK. It may be useful to know what is the dual norm to $|| \cdot ||$. Define on *L* a sequence of norms as follows

$$
|x|_{o} = ||x||_{o_{o}}
$$

$$
|x|_{m} = \max \left\{ |x|_{m-1}, \lambda^{-1} \max_{1 \leq k < \infty} \sum_{i=1}^{2^{n}} |P_{k,i}x|_{m-1} \right\}
$$

and define

$$
|x| = \lim_{m \to \infty} |x|_m .
$$

It can be shown that for every $x \in L$

$$
|x| = \max \left\{ ||x||_{e_0}, \lambda^{-1} \max_{1 \leq k < \infty} \sum_{i=1}^{k} |P_{k,i}x| \right\}
$$

and that {[<UίUSU I'll is the dual of *{[eⁿ ,<]U£i,* INI}

Once this duality is proved it can be used to simplify the proof of the theorem, in particular the proof of Proposition 2.b. We prefered, however, to give a proof which avoids the routine proof of the duality.

REFERENCES

1. T. Figiel and W. B. Johnson, *A uniformly convex Banach space which contains no l p ,* Compositio Math., 29 (1974), 179-190.

2. R. C. James, *Bases and reflexivity of Banach spaces,* Ann. of Math., 52 (1950), 518-527.

2. , *Uniformly non-square Banach spaces,* Ann. of Math., 80 (1964), 542-571.

4. J. Lindenstrauss, *Notes on Klee's paper, "Polyhedral sections of convex bodies,"* Israel J. Math., 4 (1966), 235-242.

5. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces,* Springer Verlag, Lecture notes 338, 1973.

6. , *Classical Banach Spaces,* Vol. 1 Sequence spaces, Springer Verlag, Berlin. 7. A. Pelczynski, *Projections in certain Banach spaces,* Studia Math., 19 (1960), 209-228.

8. W. Szlenk, *The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces,* Studia Math., 30 (1968), 53-61.

9. B. S. Tsirelson, Not every Banach space contains l_p or c_0 , Funct. Ann. and its application, 8 (1974), 138-141, (translated from Russian).

Received April 10, 1978 and in revised form July 10, 1978.

OHIO STATE UNIVERSITY COLUMBUS, OH 43210

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) J. DUGUNDJI

HUGO ROSSI

University of Utah Salt Lake City, UT 84112 Stanford University

C. C. MOORE and ANDREW OGG Stanford, CA 94305 C. C. MOORE and ANDREW OGG University of California Berkeley, CA 94720

University of California **Department of Mathematics** Los Angeles, CA 90024 University of Southern California Los Angeles, CA 90007

R. FINN and J. MILGRAM

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON UNIVERSITY OF OREGON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is issued monthly as of January 1966. Regular sub scription rate: \$84.00 a year (6 Vols., 12 issues). Special rate: \$42.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Older back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.). 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

> Copyright © 1979 by Pacific Journal of Mathematics Manufactured and first issued in Japan

Pacific Journal of Mathematics
Vol. 83, No. 2 April, 1979 Vol. 83, No. 2

