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FIX-FINITE HOMOTOPIES

HELGA SCHIRMER

A well-known result by H. Hopf states that every
selfmap f of a polyhedron |K| can be deformed into a self-
map f’ which has only a finite number of fixed points and
is arbitrarily close to the given one. In addition one can
locate all fixed points of f” in maximal simplexes. A map
which has a finite fixed point set is here called a fix-finite
map, and a homotopy F: |K| X I— |K| is called a fix-finite
homotopy if the map f; = F(-,t) is fix-finite for every tc I.
We extend Hopf’s result to homotopies, and show that two
homotopic selfmaps f, and f, of a polyhedron |K]| which are
fix-finite and have all their fixed points located in maximal
simplexes can be related by a homotopy which is fix-finite
and arbitrarily close to the given one. All fixed points of
F can again be located in as high-dimensional simplexes as
possible. Some simple properties are derived from the fact
that the fix-finite homotopy is constructed in such a way
that its fixed point set is a one-dimensional polyhedron in
K| x I.

A. Introduction. In 1929 H. Hopf [2], Satz V, proved a well-
known theorem which states that every selfmap f of a polyhedron
can be deformed into a selfmap f’ which is arbitrarily close to f
and has only a finite number of fixed points. The construction of
f' can be carried out so that all fixed points of f’ are, in Hopf’s
terminology, “regular”, i.e., they are located in maximal simplexes.
We call a map which has only a finite number of fixed points a
fix-finite map, and formulate Hopf’s result accordingly.

THEOREM 1 (Hopf). Let f be a selfmap of a polyhedron |K|.
Given € > 0, there exists a selfmap f' of | K| such that

(1) f' is fiz-finite,

(2) all fixed points of f' are contained in maximal simplexes
of 1 Kl,

(3) the distance d(f, f') <e.

We ask in this paper whether a similar result can be obtained
for homotopies. We call a map F:|K| X I— |K| (where I is the
unit interval) a fiz-finite homotopy if the map fi: |K|— | K| defined
by fi(x) = F(z, t) is a fix-finite map for every ¢ € I, and ask therefore
whether two selfmaps f, and f, of a polyhedron |K| which are fix-
finite and homotopic can be related by a homotopy which is fix-finite
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and arbitrarily close to the given one. We shall show that this is
possible if all fixed points of f, and f, are contained in maximal
simplexes, and we shall construet the fix-finite homotopy so that its
fixed points are again located as nicely as possible. They clearly
cannot all be located in maximal simplexes of | K|, but they can be
located in simplexes which are either maximal, or faces of maximal
dimension. Let us make these notions precise.

We denote by |K| a polyhedron which is the realization of a
finite simplicial complex K, by o an open simplex of K, by ¢ its
closure, and by dim ¢ its dimension. ¢ < 7 means that ¢ is a face
of the simplex 7. The (open) star st o of o consists of all simplexes
7 of |K| with 0 <7. A simplex ¢ is called maxzimal if o = sto,
and we call it a hyperface if dimsto =dimo + 1. A fived point
of a homotopy F:|K| x I— |K| is defined as a point x€|K| with
F(x,t) =« for some tel. If f, ' are maps and d is the metric of
| K|, then the sup metric is given by

a(f, f) = sup {d(f(x), f'@)leeX}.

We use this terminology to state our main result.

THEOREM 2. Let F be a homotopy between two selfmaps f, and
fi of a polyhedron |K|, let f, and f, be fix-finite, and let all their
fized points be contained in maximal simplexes. Given ¢ > 0, there
exists a homotopy F' from f, to f, such that

(1) F' is fix-finite,

(2) all fixed points of F' are contained in mazximal simplexes
or hyperfaces of | K|,

(3) d(F, F') <e.

Special cases of Theorem 2 are known. Weier [6] constructed
a fix-finite homotopy satisfying (1) and a condition related to (2) if
| K| is a 2-dimensional pseudomanifold satisfying a certain connected-
ness condition, and in [4], Satz III we constructed a fix-finite
homotopy satisfying (1) and (3) if | K| is an orientable and triangula-
ble finite dimensional manifold without boundary.

The proof of Theorem 2 given below is related to Hopf’s proof
of Theorem 1. Hopf started with a simplicial approximation of the
given map, and then carried out a succession of changes on simplexes
of increasing dimension which freed the simplicial approximation of
fixed points on all but maximal simplexes. The final result is a
map which is again simplicial and satisfies Theorem 1. Hopf’s proof
is readily available in [1], pp. 117-118, where the successive changes
are called “Hopf constructions”.
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In our proof of Theorem 2 a homotopy is altered successively
on simplexes of increasing dimension by a “Hopf construction for
homotopies” which is described in §B. As this construction can only
be applied to simplicial homotopies, it is first necessary to approxi-
mate the given homotopy by a simplicial one. This leads to a proof
of Theorem 2 in three steps. In the first, the given maps f, and f;
are, with the help of the Hopf construction, approximated by fix-
finite simplicial maps g, and g¢,, and fix-finite homotopies H; from
f; to g, (where 7 = 0, 1) are obtained in a2 manner reminiscent of [4].
A homotopy between the simplicial maps g, and g, has a simplicial
approximation relative to | K| x {0} U | K| x {1}, on which a succession
of Hopf constructions for homotopies is carried out in Step 2, leading
to a fix-finite homotopy G’ from g, to g¢,. Finally, in Step 3, the
desired homotopy F"” is obtained by constructing a homotopy from
g, to g, as the composite of H;', F, and H, changing it to a
homotopy G’ as in Step 2, and forming the composite of H, G’, and
H;', where all compositions are made with suitable scale changes to
ensure closeness between F and F".

The homotopy F' is constructed in such a way that the set

Fix F" = {(z, t) e | K| x I|F'(z, t) = x}

is a finite one-dimensional polyhedron. Some simple consequences of
this fact are given in §D. One of them is the existence of an upper
bound M so that the number of fixed points of f; is <M for every
tel

B. A Hopf construction for homotopies. Let G be the reali-
zation of a simplicial function P — K, where P is a suitable complex
with |P) = | K| x I, and let 7 be a given simplex of |P|. The Hopf
construction for homotopies, which frees G of all fixed points on ¢
as long as G(z) is not maximal in | K|, will be the basic tool in the
second step of the proof of Theorem 2 and we shall embody its
results in the rather technical Lemma 1 below. We write G:|P]—|K]|
to indicate that G is the realization of a simplicial function from P
to K. The construction of K,, the barycentric subdivision of K
modulo the subcomplex L, can e.g. be found in [3], p. 49. If L = 4,
then it is the ordinary barycentric subdivision of K. A refinement
of K is a complex obtained from K by means of a finite number of
subdivisions modulo subcomplexes. w((K) denotes the mesh of | K|,
i.e., the maximum of the diameters of its simplexes.

LEMMA 1. Let P be a complex with |P| = |K| X I, let G: |P|—
| K| be simplicial and w:|P|— | K| be the first projection. If t is
a stmplex of | P| for which w(t) is contained im a simplex o of | K|,
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where K' is a refinement of K, if tNFixG # ¢ where FixG =
{(z, t) e | P||G(z, t) = n(x, L)}, and if G(z) is not maximal in | K|, then
there exists a simplicial map G':|P,| — | K|, with Q = P\stz, so
that

(1) =N FixG = ¢,

(2) G=G" on |Q],

(3) d(G, @) = 2u(K).

Proof. Let p* be a maximal simplex of K’ with p < p*, and
0* be a maximal simplex of K with p* Co*. Then

r(tycpcp*ca*.

If ¢ = G(z), then 7(zr) N o # ¢ implies o < o*.

Define G: |P,| — | K| on the vertices of P, as follows: If veQ,
let G'(v) = Gw). If r;estz\r and v is the vertex of P, contained
in z;, let G'(v) be any vertex of o, and if v is the vertex of P,
contained in 7, let G'(v) be any vertex of o* which is not a vertex
of ¢. (As ¢ is not maximal, such a vertex exists.) It can be
checked that G’ extends to a simplicial map G':|P,| — |K|. The
proof that G’ satisfies the conditions (1), (2), and (3) closely parallels
arguments in [1], p. 117-118, and is omitted.

C. The proof.

Step 1. Construction of fix-finite simplicial maps ¢, which are
fix-finitely homotopic to the given maps f;.

We begin with a simple lemma.

LEMMA 2. Let | K| be a connected polyhedron, xe|K|, and the
carrier ¢ of x in |K| maximal. Given 6 > 0, there exists a y€o
with d(z, y) < 6 whose carrier in any refinement of K is maximal.

Proof. |K]| is connected, therefore o is of dimension » > 0. As
the number of refinements of & is countable, the dimension of the
union A of the (p — 1)-skeletons of all refinements is p — 1, and
yeo\A with d(x, ¥) < 6 exists and satisfies the lemma.

The result of Step 1 is given as the next lemma, where
diam H = sup {d(H(x, t), H(z, t"))|x e | K|, t, t' e I}
denotes the diameter of a homotopy H:|K| x I —|K]|.
LEMMA 3. Let fi: |K|— | K|, 1 =0, 1, be two selfmaps of a poly-

hedron |K| which are fix-finite and have all their fixed points
located in maximal simplexes of |K|. Given € > 0, there exist a



FIX-FINITE HOMOTOPIES 535

refinement K' of K, refinements K. of the first barycentric subdivi-
sion of K', simplicial maps g,: | Ki'| — | K’|, and homotopies H, from
J: to g, so that

(1) H, is fix-finite and has all its fixed points located in the
maximal simplexes of | K|,

(2) the fized points of g, are located in distinct maximal
simplexes of | K|,

(3) diam H, < ¢/4,

(4) (K" < ¢/8(n + 1), where n = dim | K|.

Proof. We can assume that |K| is connected, otherwise the
construction is made on each component.

(i) We first construct two maps fi:|K|— |K| and homotopies
H; from f; to fi; such that all carriers of fixed points of f; are
maximal in every. refinement of K, all carriers of fixed points of
H; are maximal in | K|, and diam H; < &/2.

Consider f,, and let Fix f, = {¢;} be its fixed point set. As f; is
uniformly continuous, we can select 8 with 0 < 8 < ¢/16 so that,
for all ¢; € Fix f;, the open g-balls U(c;, B) are pairwise disjoint and
each Ule;, B) is contained in the carrier of ¢; in |K|. Now select 7
with 0 < v < B/2 such that d(z, fiy(x)) < B/2 for all x e U {Ule,, 7)|c; €
Fix fi}. According to Lemma 2 each U(c;, v) contains a point ¢; whose
carrier in all refinements of | K| is maximal. If e Ulc;, v)\(c}}, let
y be the point in which the ray from ¢} to x intersects the boundary
Bd U(e;, 7), and z the point on the segment from ¢; to y for which

de;, y) ,
d(c.i’ Z) = —+'— : d(ci: x) .
d(cj’ y)
To define a map fi; from Ulc;, v) to Ulc;, B), denote by ab the (free)
vector from a to b in U(e;, B), and determine f,;(x) for = + ¢; by

i is(@) = ci + 2f2) ;

also let fi; = ¢}.

As we have for all z ¢ Ule;, v)

d(fo;(®), ¢;) = d(fo;(2), ) + d(z, c;)
= d(fi(?),2) +d(=,¢;) < B2+7<RB,

this construction is well defined.

Now define fo:|K|— |K| by

, Sfoi®) it xe U{Ule;, 7)le;eFix fi}
Solx) =

Je otherwise .

fo is continuous, and its fixed point set is Fix f, = {¢}}. Hence all
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carriers of its fixed points are maximal in every refinement of |K]|.

If fi(x) # fy(z), then x € Ule;, v) for some ¢; € Fix f;. Denote, for
0<t=<1, by ¢;(t) the point which divides the segment from ¢; to
¢; in the ratio ¢: (1 — ¢), and define H,(x, ¢) as the point in Ule,, B)
which is obtained in a manner analogous to fo;(x) but with the use
of ¢;(t) instead of ¢;. Also put H¢;(x, 0) = fi(x). Then a homotopy
H| from f, to f, can be constructed from the H; in the same way
in which f; was constructed from the f;;. If fi(x) = f,(x), then H,
is the constant homotopy, if fi(x) = fi(x), then the set {H,(x, ©)|0 <
t <1} lies in some U(c;, B). Hence diam H; < 28 < ¢/8. The con-
struction of H, shows that all carriers of its fixed points are
maximal in K.

The map f, and the homotopy H; from f, to f. are obtained
analogously.

(ii) We now describe the construction of the maps g, and the
homotopies H; from f; to g,.

Choose p, with 0 < p, < ¢/32 so that for each ¢;cFix f; with
carrier £; in | K| the set U(c}, 40,) C k;, and so that the T(c}, 40,) are
pairwise distinet. As f; is uniformly continuous, there exists a 4,
with 0 < d, =< p, so that

£, 8)) c T(e, ) for all ¢ eFix f; .
Furthermore choose 7, with 0 < », < o, so that
d(z, fo@) =n, if d, Fix fi) =6, .

Determine p,, 6,, 7, analogously for fi, and select a refinement K’
of K so that p(K') < min {8, d,, 7,/(2n + 1), 7,/(@n + 1)}, where n is
the dimension of K.

Let 4, be a simplicial approximation of f; which maps a refine-
ment of the first barycentric subdivision of K’ into K’, and choose
g, as a2 map which is obtained from |+, by a succession of Hopf
constructions in the same way in which f’ is obtained from || in
the proof of Theorem 2 on p. 118 of [1]. Then g, is a simplicial
map | K| — |K’|, where K, again refines the first barycentric sub-
division of K’. It is fix-finite, has all its fixed points located in
distinet maximal simplexes of | K, |, and d(|4v], 90) < 2nu(K’'). As
d(fo, 19e]) = (K", we have d(f, 9o) < (2n + (K" < 7.

Next, let us construct a homotopy H, from f; to g,, If x¢
U {U(c;, 8,)}c; e Fix f,}, then it follows from [1], p. 118 that g,(x) =
| |().  As 4 is a simplicial approximation of fi, it is possible to
define H,'(x, t) by

Hi(, t) = tfo@) + L — 1)g(x) .
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From d(z, fi(x)) = v and d(fe, 9,) < 7 follows H;(x,t) =« for all
0t 1.

Now consider one of the sets U(c}, §,) contained in a maximal
simplex k; of |K|. H, has already been defined on Bd U(c}, 8,) x I
such that

(e, Hi'(x, 1)) = d(c;, fu(®) + (o), 9,(x)) = 20, .

Let further H!(z, 0) = fi(x) and H}(x, 1) = g,(@) for all x e U(c), 5,).

Then H! is defined on Bd (U(c}, 8,) x I), has values in U(c}, 20,),
and its fixed point set consists of ¢} x {0} and finitely many points
in U}, 6) x {1}. To extend H; over all of U(c} ) X I, let &; =
(¢}, 1/2), and determine for every point % = (, t) € (U(c}, 8,) x I)\{c;}
the point % = (y, s) as the one in which the ray from ¢&; to % inter-
sects Bd (T(c}, 8,) x I). Let d denote the product metric in |K| x I,
and define H;'(z, t) by

c;H'(x, t) = cix + My H'(y, s) ,
where
N o= d(&;, B)/d(E;, ¥) .

As d(c;, ) <0, 0 <N =1, and d(y, Hy'(y, s)) =<0, + 20, < 40,, we obtain
in this way a point H,'(z, t) € U(c}, 40,). Finally, let H;'(c}, 1/2) = c!.

In this way H/ is extended over U{U(c}, d,) x I|c,eFix £},
yielding a homotopy H:|K| x I —|K| from f; to g, which is fix-
finite and has all its fixed points located in the maximal simples «;
of |K|. If xe U{U(c, dy)|c;eFix fi}, then sup {H{ (x, t), H(x, t')|t,
eI} <d(fl, g0 <7, and if xe U}, d,) for some c;eFix f}, then
{H!(z, t)|t e I} < Ulc), 40.), so sup {H{(x, t), HY(x, t)|t, t' e I} < 8p,.
Hence diam H}’ < ¢/4. The construction of H:|K| x I—|K]| is
analogous.

(iii) Define finally a homotopy H, from f; to g, by

Hi(x, 2t) for 0t<1/2,

B0 = g ot — 1) for 12<t<1.

Then diam H; < diam H; + diam H} < ¢/4, and H, and H, satisfy
Lemma 3.

Step 2. Construction of a fix-finite homotopy between two fix-
finite simplicial maps.

The aim of Step 2 is the construction of a fix-finite homotopy
between the fix-finite and simplicial maps ¢, of Lemma 8. It will
be achieved with the help of a succession of Hopf constructions for
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homotopies. For this purpose, we need to realise |K|x I as a
suitable simplicial complex P. If K’, K} and K! are the complexes
obtained in Lemma 3, then we require that P is a simplicial complex
with | P| = | K| x I and satisfies the following two conditions:

(P1) K x {0} and K x {1} are subcomplexes of P,

(P2) if r€|P|isa simplex and =:|P|— | K| the first projection,
then n(r) C p, where p is a simplex of K'.

P can easily be obtained by starting with the complex usually
associated with the polyhedron |K’| x I and then refining it modulo
the complements of the simplicial neighborhoods of those simplexes
in K’ x {0} and K’ x {1} which are subdivided in K, resp. K.

We state one more technical detail as a lemma.

LEMMA 4. Let P’ be a refinement of P, let G,.|P'|— |K'| be a
simplicial map, and z<€|P’| so that z N Fix G, = ¢. If © is neither
maximal nor a hyperface in |P'|, thn G,(z) is not maximal in | K'|.

Proof. Let G,(r) =0, where ¢ is a simplex of |K’|, and 7(z)Cp,
where pe|K'|. As tNFixG, +# ¢ implies n(t)N o # ¢, we have p =0,
and dim o < dimz. By assumption there exists a simplex z*e|P’|
with 7 < z* and dim 7 < dim t* — 2, therefore

dimpo + 1 dimz* — 1 £ dim n(z*),

so w(t*) ¢ p. But m(r) C o implies 7(7*) N o + ¢, hence p cannot be
maximal in |K'|. As p = o, G,(r) cannot be maximal either.
The next lemma contains the result of Step 2.

LemmA 5. Let K', K and g.:|K;'| —|K'| be as in Lemma 3.
If g, and g, are related by a homotopy G, then there exists a homotopy
G’ relating them such that

(i) G 1is fix-finite and has all its fixed points located in
maximal simplexes or hyperfaces of | K|,

(il) d(G, G") < ¢/4.

Proof. Again we can assume that |K| is connected. Let P
satisfy (P1) and (P2). We first select as a simplicial approximation
of G a simplicial map G,: |P’| — | K’|, where P’ is a refinement of P
obtained by a finite number of subdivisions modulo (K{ x {0}) U
(K!" x {1}), so that G, satisfies G, = G on (| K{'| x {0}) U (K| x {1})
and d(G, G,) < (K’). The existence of G, follows from (3], p. 55.

If %, = (,, t,) is a vertex of |P'| with G,(x,, t,) = %, then x, is
a vertex of |K'| and hence not maximal. Lemma 1 allows us to
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make a Hopf construction which results in a simplicial map G!:
|P"|— | K’|, where P" refines P’, for which Gi(x,, t,) # x,and G, = G,
on |P'\st{%,}|. Hence any vertex Ze|P”|N Fix G, must also be a
vertex of |P'\{Z,}|]. We can therefore make further Hopf construc-
tions for all such vertices until we arrive at a simplicial map,
denoted again by Gi:|P”|— |K’|, where P” refines P’, which is fixed
point free on all vertices of |P”|. As G, is fixed point free on the
vertices of (|K{| x {0}) U(K/{| x {1}), we have G.= G, on this
subcomplex.

Next we carry out a succession of Hopf constructions for all
one-dimensional simplexes 7 e€|P”| for which ¢ N Fix G} + ¢ and Gi(7)
is not maximal in |K’|, then for all two-dimensional simplexes with
the same property, and so on. According to (P2) and Lemmas 1
and 4 we can continue until we arrive at a simplicial map GJ: |P"| —
| K'|, which equals G, on the subpolyhedron (| K| x {0}) U (| K!'| x {1})
of |P"”| and is fixed point free on all simplexes of |P"”| which are
neither maximal nor hyperfaces.

If ¢ is a hyperface of |P"| for which 7z N Fix G} +# ¢, then it
follows (as in [1], pp. 118-119) from the fact that G| is linear on T
and that Bd z N Fix G} = ¢ that G} has at most one fixed point on 7.
Now consider a maximal simplex 7 e |P"”| with ¢ N Fix G} # ¢. Then
Bdz N Fix G! is empty or a finite set {%;}. Let %; = (z;, t;), and
select %, = (%, t,) ez so that t, = ¢t; for all ¢;, For any % = (z, t) e
T\{%,}, let ¥ = (y, u) be the point in which the ray from %, to % in-
tersects Bd 7, and modify G; on T to G’ by defining G'(x, t) as the
point in & = G)(T) with

26, 1) = 2x + WGy, w), where N = d&, )/dG, 7).

As m(T)cé and & is convex, this yields a point G'(z,t)ed. Also
let G'(x,, t,) = %,. Then 7T N Fix G’ consists of the union of the seg-
ments from Z, to all the %; if Bdz N Fix G’ +# ¢, and otherwise of
the point %, alone. If we carry out this construction on all maximal
simplexes of | P”| on which G/ has fixed points, we obtain a fix-finite
homotopy G':|P"”|—|K'|, where P"” refines P’ and hence P. By
construction G'(x, 0) = g,(x) and G'(x, 1) = g,(x) for all xe|K|. If
¥ = (x,t)eFix G, then % is contained in a maximal simplex or
hyperface of |P”| and hence of |P|. It follows from (P2) that x is
contained in a maximal simplex or hyperface of |K’| and hence of

| K.

Each point Fe¢|P| is moved during the succession of Hopf
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constructions at most » times, where again % is the dimension of
| K|, and by a distance of at most 2¢(K’) on each move. During
the last change of G! to G’ it is moved by a distance of at most
t(K"). So we have

G, G') = 2n + UK,
and hence, according to (4) of Lemma 3,
d(G, G < 2n + HK") < e/ .

We see that G’ satisfies Lemma 5.

Step 3. Construction of a fix-finite homotopy between the given
maps.

It remains to paste the constructed homotopies together in a
suitable way to find a homotopy F' satisfying Theorem 2. Given
F:|K| x I—|K| as in Theorem 2 and ¢ > 0, we can choose ¢ with
0<d<1 so that d(F(zx, t), F(z, t") < ¢/4 for all x¢|K| and ¢, t'el
with [£ —t'| < 4. Use the homotopies H,, H, obtained in Lemma 3
and define F"': | K| x I—| K| as a homotopy which equals H,H;'F'H H;'
apart from a scale change by

Hy(x, 2t/0) if 0t=<é/2,
Hy(x, 2(1 — t/9)) if 92<5t=<o,
F'(z,t) =AF(x, t —0)/1 —28) if 6<t<1-9,

H((x, ot +0—-1/2 if 1—-6=t=1-—96/2,
H,(x, 6(1 — t)/2) if 1—-é62t<1.

Then d(F, F'") < g/2.

The homotopy G: | K| x I—| K| defined by G(z, t) = F"'(x, t(1 — 6) +
0/2) for all (x,t)e|K| x I equals H;'FH, apart from a scale change

and is hence a homotopy from g, to g,. Replace it by a homotopy
G’ according to Lemma 5, and define F': | K| X I— | K| by

Hy(x, 2t/5) if 0<t=<d2,
F'(z, t) = 1G'(@, (t —0/2))(L —8) if s2=<t=<1—5/2,
(Hx, 51 — 1)/2) if 1—s2<t<1.

It is easy to check that F” is a homotopy satisfying Theorem 2.

D. Some properties of the fix-finite homotopy. The proof of
Theorem 2 allows an easy description of Fix F".

PrOPOSITION 1. The homotopy F' in Theorem 2 canm be chosen
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s0 that Fix F' is a one-dimensional finite polyhediron in |K| x I
withowt horizontal edges.

Here a horizontal edge means an edge contained in a section
| K| x {t}, for some tel. Note that Fix F”, though constructed as
a polyhedron, was not constructed as a subpolyhedron of |P|, and
its projection 7w(Fix F”) is not a subpolyhedron of | K].

As Fix F' has a simple structure, it has simple properties. We
collect a few. The first two are immediate consequences of the
homotopy and additivity axioms of the fixed point index i(f, ) of
the selfmap f of a polyhedron at the isolated fixed point «.

ProPOSITION 2. Let ¢ be an edge of Fix F'. Then the index of
fi along e is constant, i.e.,

iW(fl, ) =1i(flL,y) if (x,t)ee and (y,s)ce.

PROPOSITION 3. Let v = (2, t) be a vertex of Fix F'. Then the
index of f, at x is the sum of the indices of fixed points chosen on
all edges of Fix F' either leading towards v or away from v, l.e.,

i1 @) = Silfh, 2,

where all (x,, t,) lie on edges e, €stv, with e, distinct, and the sum
taken over all edges in stv N { K| x [0, 1)} (resp. in stvN{{ K| x
(¢, 11).

Finally we note that F’ is “uniformly” fix-finite.

PROPOSITION 4. There exists a positive integer M so that the
number of fixed points of fi is = M for all tel

Proof. 1t suffices to choose M as the number of edges in Fix F”,
as no section | K| X {t} can intersect the closure of an edge of Fix F’
more than once.

E. Conclusion. For a single selfmap f of a polyhedron | K|
the construction of a fix-finite map which is arbitrarily close to f
and has all its fixed points contained in maximal simplexes is only
a first step on the road to the construction of a map homotopic
to f which has a minimal number of fixed points. It is, in fact,
possible to obtain a map g homotopic to f which has exactly N(f)
fixed points, where N(f) is the Nielsen number of f, as long as
| K| satisfies the Shi condition, which is a somewhat stronger con-
nectedness condition. (See [5] or [1], p. 140.) Hence a similar
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guestion arises for homotopies.

Problem. 1f f, and f, are two selfmaps of a polyhedron |K]|
which satisfies the Shi condition, if f, and f. are homotopic and have
each exactly N(f,) fixed points, does there exist a homotopy F from
fo to fi so that, for every telI, the map f, = F(-,t) has exactly
N(f,) fixed points?
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