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Let G be a mixed abelian group with torsion subgroup
T. T is viewed as an € submodule of G, where &€ =EndG.
It is shown that 7T is superfluous in G if and only if, v,
either 7', is divisible or G/T, is not p divisible. If G is not
reduced, 7 is essential in G if and only if T contains a Z(p~).
Let I(G) [I(T)] be the & injective hull of G [T']. Then I(G) =
I(T)® X with X torsion free divisible and 7T is a pure sub-
group of I(G). This can be used to obtain several results;
for example, if Q Z I(T), TFAE: 1. Tess G, 2. I(G) = I(T) as
abelian groups, 3. @ £ I(G). The condition T ess G is charac-
terized if 7 is a summand or if G is algebraically compact.
If T is bounded or if T is a p-group, 7' = (0) and G is re-
duced cotorsion, 7T is not essential. In fact, for bounded 7T
there is an & isomorphism I(G) = I(T')® I(G/T). Some in-
formation is obtained on the p-basic subgroups of I(T') as a
function of those of 7. A condition is given for I(T) 2 @, Q.
These last theorems specialize to I(z:T), where £ = End T.

Preliminaries. In the last fifteen years several authors have
written papers concerning an abelian group G viewed as a module
over £, its ring of endomorphisms.

Let G be a mixed abelian group with maximal torsion subgroup
T. In this paper we consider 7 as an & submodule of G. We
determine when T is superfluous in G and then study the more dif-
ficult question of determining when T is essential in G. (If (0) =
T + G, it is easy to prove that T is neither essential nor superfluous
as a Z submodule of G.)

The latter question leads to consideration of the injective hulls
I(T), I(G)—taken with respect to &.

Our notation, with minor exceptions, is that of [1].

1. T as a superfluous submodule of G. Henceforth, let G be
a mixed abelian group, T = t(G) its torsion subgroup and & = End G.
To avoid stating the trivial cases of our results we always assume
(0) = T+ G. We begin by characterizing those mixed G for which
»T is superfluous in G (T'< G). In our context T < G if and only
if whenever K is a fully invariant subgroup of G with K + T = G,
then K = G.

LeMMA 1. Let T=@ T, be a decomposition of T into its p
components. Then T < G if and only if T, < G, Vp.
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Proof. The only if part of the implication is immediate since
submodules of superfluous submodules are superfluous.

Suppose T, € G, Vp,and T' ¢ G. Then we must have T + K = G
for some fully invariant K = G. Clearly, K 2 T, for some p. Let
K =K+ >4 T,. Since K’ is fully invariant with K’' + T, = G,
K' =Q@G.

Let te T, and suppose that ¢ has order o(t) = p'. Writet =z +y
with x€ K, o(y) =n, (n,p) =1. If a, b€ Z with ap’ + bn = 1, then
t = (ap' + bn)t = bnt = bnxc K. Thus, T,< K, a contradiction.

THEOREM 1. T < G if and only if, Vp, either T, is divisible or
G/T, is mot p divisible.

We prove the contrapositive in both directions.

Proof. Suppose Ip with T, not divisible and G/T, p divisible.
Then T,ZpG and G = pG + T,. Thus, T, < G and, by Lemma 1,
T« G.

Conversely, suppose T ¢ G. Then 3p with T, € G. Let K be
a proper fully invariant subgroup with K+ T, =G. We cannot
have T, divisible, for then K2 Hom (G, T,)K = T,. (If z € K, o(x) = <o,
and te T,, the map Zx — Zt extends to G.)

G/T, is p divisible if and only if K< pG + T,. Assume that
G/T, is not p divisible. Then there is an x € K\pG + T,. Therefore,
vte T,, the p-height of 2 + ¢ in G, hi(x + t), is zero.

Thus, for every positive integer I, T = x + p'G must have order
exactly »' in G/p'G. But then, vie T,, we can construct an endo-
morphism of G mapping ¢ —Z — ¢t. This implies K2 T,, a contra-
diction. The theorem follows.

2. T as an essential submodule of G-basic results. We next
consider the more difficult problem of deciding when . T is essential
in .G(TessG). We first dispose of the nonreduced case.

THEOREM 2. Let G be a nonreduced group. Then TessG if and
only if T contains a Z(p~).

Proof. If T2 Z(p”) then, Vx€G with o(x) = «, ¢ & with
0 # a(x) € Z(p~). This, clearly, is enough to imply TessG.

Conversely, suppose T contains no Z(p©). Then, since G is not
reduced, the maximum divisible subgroup D of G is nontrivial and
torsion free. Hence TN D =0, so T is not essential in G.

From now on we assume G is reduced.

To investigate the question of when Tess G, it is natural to
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consider the & injective hulls. Let I(G) be the injective hull of the
module ,G. Since .T < .G we can regard I(T), the injective hull
of .T, as a maximal & essential extension of T in I(G). If I(T) is
constructed in this way we have an & decomposition: I(G) = I(T) D
X. Clearly, TessG if and only if X = (0).

THEOREM 3. Let X be as above. Then X is torsion free divisi-
ble as an abelian group.

Proof. If t¢(X), the torsion subgroup of X, were nonzero, then
I(T)Pt(X) would be an & essential extension of T in I(G) properly
containing I(T)—a contradiction. Thus, X is torsion free. Since X
is an injective module, X must also be divisible.

COROLLARY. Tess G if and only if I(T) and I(G) are isomorphic
& modules.

Proof. Suppose 0:I(T)— I(G) is an & isomorphism. Then
0(T)ess I(G). By Theorem 38, O(T)N X = (0). Thus, X = (0) and
TessG.

The next theorem is central for our results.
THEOREM 4. T is a pure subgroup of I(G) (T < I(@)).

Proof. Let D(G) be the Z injective hull of G and let A be the
injective left & module Hom, (%, D(G)). Regard GS A via G =
Hom, (%, G) and take I(G) to be a maximal & essential extension
of G in A. It suffices to show T <] A. Let 6 € T with po = 0. Suppose
hi(0) = m < o, but § = p™'a, ac A.

Write 6 = p™d’, 0’eT. Then T = {¢'> @ T’ ([1], Corollary 27.2).
Let we & be projection onto (¢’>. Then o6(n) = w(0) = 0 = p"'a(x) =

a(p™'r) = 0—a contradiction. Thus, we have proved: de T[p] -~
hi(0) = hi(0). This shows T <] A ([1], (b), p. 114).

COROLLARY 1. If T is a torsion group, E = End T, then T <]
IG:T).

This is proved by putting G = T in the above.

COROLLARY 2. Suppose T G with T' = G*, G/T divisible. Then
TessG. (Here T [G'] denotes the first Ulm subgroup of T [G].)

Proof. Since T <]{I(G), G/T divisible, we have G <{I(G). If
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G' = T*' and X is as in Theorem 3, X NG = (0), so X = (0). Thus,
Tess@G.

COROLLARY 3. Let TC G with T* = (0). Then I(T)' = (0).

Proof. I(T)' is an & submodule of I(T). Since T* = (0) and
TAKT), (TYNT = (0). Thus, I(T) = (0).

THEOREM 5. Let TC G with QL I(T). Then TFAE:. 1. TessG;
2. I(T) = I(G) as abelian groups; 3. QL I(G). Moreover, if 1—38
hold, then T'= G

Proof. The implications 1-»2, 2— 3 are obvious. If Q<& I(G),
then the X of Theorem 3 is zero, so TessG.

To prove the additional statement, note that I(T) is an algebrai-
cally compact group ([1], p. 178) which, by assumption, contains no
@’s. Thus, there can be no elements of infinite order in I(T). If
1—3 hold, the same is true for I(G). Thus, in this case, G' = T.

COROLLARY. Let TC G with T* = (0). Then conditions 1—3 are
equivalent. Moreover, if 1—3 hold, then G*' = (0).

Proof. If T* = (0), then I(T)' = (0), so Q€ I(T).

Theorem 5 raises the questions: When are I(T) and I(@) isomorphic
as abelian groups? Is this sufficient for Tess G? Here is a partial
result.

THEOREM 6. Let I be the & imjective hull of the factor module
G/T. Write I(T) = HPD K, where H 1is the maximal torsion free
divisible subgroup of I(T). Let r =rank H, # =rankI. If r is
infinite and r = 7, then I(G) E .

Proof. Embed I(G) into I(T) @ I in the standard way (via a @ 8
where a and B are the extensions to I(G) of TcI(T) and G —
G/Tc I respectively). Then, as & modules, I[(G)P Y = I(T)PI.
Since I(G) = I(T) P X, we have:

(%) IMeXPdY=IT)DI.

The additive group of I is torsion free divisible, since I is the
injective hull of a module whose additive group is torsion free. Thus,
the number of @’s on the right-hand side of (x) is » + 7 =», so

rank X < . But then, I(G) = I(T) EBX; I(T).
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ExAMPLE. For each prime p, let T, be the group generated by
{¢;11=0,1,2,3, ...} with relations {pa, =0, p"a, =@, n =128,
--}. Let T=@,T, and let G=Q@PT. Then =1 and (as we
will see in Theorem 13) » = ¢. Thus, I(G) 2 I(T). Since T is reduced,
T is not essential in G.

3. T as an essential submodule of G—some special cases. In
this section we consider the essentiality of T in G in some special
cases. First we consider the situation for bounded 7. The following
theorem shows if T is bounded, then T is never essential in G.

THEOREM 7. Let TC G with nT = (0) and let I = I(G/T). Then:
1. »I(T) = (0);
2. IG) is & isomorphic to I(T)PI.

Proof. Let D(@), D(T), D(G/T) be the Z injective hulls of G,
T, G/T and let A, B, C be the injective left & modules Hom, (&, D(M))
where M = G, T, G/T, respectively. As in Theorem 4, regard TC
GSI(G)S A. Suppressing the obvious isomorphism, write A = B@®
C—an & direct sum. Under these identifications T'= BN G.

To prove (1), recall T'<] 4, so in this case, TN nA = nT = (0).
Thus, if xe I(T) with nx # 0, then, for some A€ &, 0 \(nx)e
T N nA—a contradiction.

To prove (2), first note that BN I(G) is an essential extension of
T=BNG. Choose I(T)Z I(G) as before—with the additional re-
quirement I(T)2 BN I(G).

Let xeI(T), say x =b + ¢, be B, ceC. Since C is torsion free
and nx = 0, we must have ¢ = 0. Thus, I(T)S B. It follows that
I(T) = BN I(G).

Let weHomg (A4, C) be projection onto C and let 7’ = 7 |; .
Clearly, Kern' = BN I(G) = I(T), so write I(G) = I(T)P Y with =’
a monomorphism on Y.

To finish the proof of (2), we claim #’(Y) is an & injective hull
of G/T. To see this, first note that if G/T is embedded in C via
e: 9 + T — evaluation at g + T, we have ¢(G/T) =7'(G)S7'(Y), so
7'(Y) is an injective containing e¢(G/T) = G/T. Furthermore, if 0 +=
7'(y)ern'(Y), then Ine & with 0 = My)eGNY. Thus, 0= 7'\y) =
A'(y) e o'(G) = e(G/T). This proves that e(G/T) ess #’(Y). The theorem
follows.

ExamMpPLE. Let T =@,.»Z(p), where P is an infinite set of
primes, and let G =Z@T. Then TessG, so I(G) = I(T) and, in
view of Theorem 4, I(T)' = (0). Moreover, it is easy to see that I=,Q.
Thus, if T is an unbounded group direct summand of G, we need
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not have the decomposition of I(G) given in (2).

The following gives one characterization of T ess G in the splitting
case.

THEOREM 8. Let T=@T,cG. Letk,=1ub.{l|G has a Z(p")
summand} and let H = {xeG|o(x) = o, hi(x) = k,Vp}. Then:

(1) If H=(0), TessG;

(2) If G=TEHF and TessG, then H = (0).

Proof. (1) is clear. To prove (2) suppose G = TP F and 0 #
x € H. Then, for some positive integer »n, 0 = nee HN F. Clearly,
ne cannot be mapped by an endomorphism of G onto any nonzero
element of a bounded T,.

If T, is unbounded, then G has an unbounded p-basic subgroup,
S0 k, = . Thus, hf(nx) = hi(nx) = . If Ae & with 0 = Mnx)e T,
then M restricts to a nonzero map of the subgroup {m/p*(nx)|m, ke
Z}<S F into T,. This is impossible since T, is reduced. Thus, nx
cannot be mapped by an endomorphism of G onto a nonzero element
of any T,. The result follows. ‘

It is easy to describe when Tess G for algebraically compact G.

THEOREM 9. Let T=DT,CcG with G (reduced) algebraically
compact. Write G as a product of p-adic modules, G = IIG,. Then
TessG if and only if, Vp, either T, =G, or T, is unbounded.

Proof. It is immediate that T ess G if and only if, vp, T,ess G,.
If 3p with T, # G, and T, bounded, then T, is not essential in G,.
Conversely, by considering projections onto summands of a p-adic
basis for G,, it is easy to see that T, unbounded implies T,ess G,.

We close this section with:

THEOREM 10. Let TC G with G (reduced) cotorsion, T a p-group,
T = (0). Then T is not essential in G.

Proof. If T is bounded, T is not essential. If T is an unbounded
p-group, (0) = Pext (Q/Z, T) = [Ext (Q/Z, T)]*. Since G is reduced
cotorsion, G = Ext (Q/Z, G) = Ext (Q/Z, T) P Ext (Q/Z, G/T) ([1] H,
p. 234 and Lemma 55.2). Thus G* = (0), T' = (0) and T cannot be
essential in G.

4. The structure of I(T). In this section we prove three
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theorems concerning the structure of I(7T). With trivial modification,
each of these theorems can be rewritten to give the same result for
the injective hull of a torsion group over its own endomorphism
ring.

Since I(T) is algebraically compact, it is natural to try to find
out what its p-basic subgroups look like as a function of the p-basic
subgroups of T. In the case T* = (0), this information would charac-
terize I(T') as an abelian group. The next result shows that I(T) is
generally large with respect to 7.

THEOREM 11. Let B [B'] be a p-basic subgroup of T [I(T)]. Let
f = final rank B. If Z(p*) occurs in B, then B contains @;..; {zr)
with | .7 | = 2¥, o(z;) = p*, V7.

Proof. Suppose B contains a Z(p*). Write G = (b) @ Y, o(b) = p*,
and let @,.,<b,>) & B with | A| = f, o(b,) = p"Ve.

Choose {4;|B8¢c .o} a collection of subsets of A such that:
| &7 | =2f, if F is any finite subset of .% and g, F then
[As\Usss,5cr As] = @. (See [1], Lemma 46.2.)

For Be.or define 6, € Hom(@ <b.), b)) by 05(b,) = Xs(a)b— X, the
characteristic function of A4;. Extend each 6, to & .

It is clear that the left ideals &6, form a direct sum s in &.
Let {C;|v e .57} be a family of subsets of .o~ with the above
independence property, |.o7| = 2. Consider:
0—S— &
J«ZT u'/(/‘:;
T

Here ), is the & map defined by M(d;) = X, (B)b, X, the charac-
teristic function of the subset C;, and A, is the map obtained by in-
jectively.

Let z, = A (1). We have 0,(2;) = X (8)b. It is easy to see from
this equation that {z; | X €.97} is a » independent set of elements of
order = p*. This can be included as a summand of B. The result
follows.

Continuing with the same notation we have:
THEOREM 12. If B’ contains a Z(p*) so does B.

Proof. If B contains Z(p*) then I(T) has a Z(p*) summand.
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Therefore, so does Hom (&, D(T)). (I(T) can be regarded as a direct
summand of Hom (&, D(T')). Therefore, so does Hom (&, I(T),).

The pure exact sequence 0 — (&) > & — E[H(L) — 0 yields 0 —
[Z /(&N — E* - t(E)* — 0, where M* = Hom, (M, D(T),). This
sequence is pure exact, so splits, since all its terms are algebraically
compact. (In this proof “splits” means splits as an exact sequence
of abelian groups.) Since [&/{(&)]* is torsion free, t(&)* must have
a Z(p*) summand.

Now #(&)* = [t(&),]*. Let B, be a basic subgroup for #&),.
Repeat the above procedure with 0 — B, — {(&), -~ t(&),/B,— 0 to
conclude that By must have a Z(p*) summand.

Since B, is a direct sum of cyclics, B, itself must have a Z(p*)
summand. Thus, & and, therefore, Hom (G, T,) have Z(p*) summands.

Let B be a p-basic subgroup for G. The p-pure exact sequence
0 — B— G— G/B— 0 yields the p-pure exact sequence 0 — (G/B)” —
G*— (B)* where M*=Hom, (M, T,). Since (G/B)* =W @ @: @, where
W is the p-adic completion of a direct sum of copies of the p-adic
integers, this sequence also splits. It’s not hard to show that (B)?
must have a Z(p*) summand.

Say B = B, ® B,, where B, = @. Z(p'<) is a direct sum of finite
p-power cyclics and B, = @; Z, is free. Then B‘ = (B))*® (B’ so
one of these groups must contain a Z(p*) summand.

If (B)? = Il. T,[p'] has a Z(p*) summand, then B, itself must,
so T does.

If (B)! = II = II;(T,); has a Z(p*) summand, again T does. (If
I[ =<y DY, oly) = p*, then hy(@*'y) =k — 1. If y = [y;], ys € (T})s,
then, for some S8, hy»?(p*"'y,) = k — 1 and, therefore, o(»* 'y;) = p.
Thus, ys, is contained in a Z(p*) summand of (T,);,.)

Thus, in either of the above cases, B contains a Z(p*).

In view of Theorem 5, it is of interest to discover when Q < I(T).
(Obviously, we must have T' = (0).) We are unable to decide if
T* + (0) is also sufficient for Q S I(T). We close the paper with a
result in this direction. First, we need two lemmas.

LEMMA 2. Let T=@T,cG and suppose T: =+ (0) whenever
T,+#(0). Then ,T'ess T.

Proof. If teT\T', then II(t) # 0, Il the projection onto {(a),
some Z(p*) summand of G. It is easy to construct 6 ¢ Hom, ({a), T%)
with 67I(t) = 0. Thus, T ess T.

Let & = & /t(&). Since t(&)T* = (0) we can regard T" as an &
module.

LEMMA 8. Let 7 be the & injective hull of T and let D be
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the maximal divisible subgroup of I(T). Then, under the assumpiion
of Lemma 2, .7 = D.

Proof. By Lemma 2, ,T'ess T, so I.(T") = I(T).

Now .~ is an & essential extension of T, so we can regard
S cI.(TY) = I(T). Since _“ is an injective module over a ring
with torsion free additive group, .# = D. But D is an & essential
extension of T*'. Thus, . = D.

THEOREM 13. Let E = EndT, E = E/t(E) and suppose R: & —
E is onto, where R is the restriction map. Then, if T* is unbounded,

I(T)2. Q.

Proof. Let T,={PT,|T,+0}, T.={PT,|T:=(0). Clearly,
T, and T, are & submodules and I(T) = I(T,) @ I(T,). It suffices to
show I(T,)2@. Q, so, without loss of generality, assume T = T.,.
Then Lemma 3 applies, so it is enough to construct ¢ independent
elements of infinite order in .# = D.

Choose {x;|7=1,2,3, ---} = T* with {o(x;) = pi} unbounded. For
each fixed ¢, choose distinet @7, <b,;> part of a p,-basic subgroup of
T such that 33, ;<b;;) is direct and such that o(b,;) = pi*. (Each T, is
reduced with T} = (0), thus has an unbounded basic.) Finally, choose
{x;;} ST with pgww’ = ;.

Now define 0, € Hom, (B, <b;;», T,,) by 0,b,;) = ,;. Each 6, is a
small homomorphism (see [1], Lemma 46.3) so each 0, extends to an
endomorphism of T, and, thus, to an endomorphism of 7. Still call
this extension 0,.

LEMMA 4. 3. &0, is an & direct sum in E. Here d, = 8, + t(E)
and E is regarded as a left & module in the natural way.

The proof of Lemma 4 is not difficult and is left to the reader.

Let {N.|ae A} be a family of subsets of the natural numbers
with | A|=c such that if F'C A is finite and e, € F' then [No\Uze r,azay Vel
is countable.

For all @€ A4, consider the diagram of E modules:

0— D ggz — K
j"za //:z(;
v

Here A, is the & map defined by 2\, (3,) = Xy (D)x;, Xy, the charac-
teristic function of N,, and A, the & map obtained by injectivity.
Set z, = A (1), 1 the identity of the ring E. Since R: & — E
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is onto, choose G,€ & with R(G,) = 0,.

Then G,(2.) = M(d.1) = My(0,) = Xy (4)x,. This equation, together
with {o(z,)} unbounded, easily implies that {z, |« € A} is an independent
set of elements of infinite order. Thus, I(T)2@. Q.

COROLLARY. Let T be a torsion group with T' unbounded and
E=EndT. Then I(TY26.Q.

Added in proof. The proof of Theorem 138 can be modified, using
a procedure similar to that of Theorem 11, to construct @, Q@< I(T).
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