THE CLASS NUMBER OF $Q(\sqrt{-p})$ MODULO 4, FOR $p \equiv 3 \pmod{4}$ A PRIME

KENNETH S. WILLIAMS
THE CLASS NUMBER OF $\mathbb{Q}(\sqrt{-p})$ MODULO 4, FOR $p \equiv 3 \pmod{4}$ A PRIME

KENNETH S. WILLIAMS

If p is a prime congruent to 3 modulo 4, it is well-known that the class number $h(-p)$ of the imaginary quadratic field $\mathbb{Q}(\sqrt{-p})$ is odd. In this paper we determine $h(-p)$ modulo 4.

The class number of $\mathbb{Q}(\sqrt{-p})$ is odd, if p is a prime congruent to 3 modulo 4 (see for example [3: p. 413]. D.H. Lehmer [4: p. 9] has posed the problem of determining the Jacobi symbol $(-1/h(-p)) = (-1)^{(h(-p)-1)/2}$, that is, of determining $h(-p)$ modulo 4. In this paper we evaluate $h(-p)$ modulo 4 in terms of the class number $h(p)$ and the fundamental unit $\epsilon_p = T + UV\sqrt{-p}$ of the corresponding real quadratic field $\mathbb{Q}(\sqrt{p})$. It is known that T and U are positive integers which satisfy $T \equiv 0 \pmod{2}$, $U \equiv 1 \pmod{2}$, $N(\epsilon_p) = T^2 - pU^2 = +1$. We prove

THEOREM. If $p > 3$ is a prime congruent to 3 modulo 4 then

$$h(-p) \equiv h(p) + U + 1 \pmod{4}.$$

It is easily checked that (1) does not hold for $p = 3$ ($h(-3) = h(3) = U = 1$). ($p = 3$ is a special case as this is the only value of $p \equiv 3 \pmod{4}$ for which the ring of integers of $\mathbb{Q}(\sqrt{-p})$ has more than 2 units.) The method of proof is purely analytic in nature, it uses Dirichlet's class number formula (in various forms) for both real and imaginary quadratic fields and also some results from cyclotomy. It would be of interest to give a purely algebraic proof.

Proof. Let $p > 3$ be a prime congruent to 3 modulo 4 and set $\rho = \exp(2\pi i/p)$. For z a complex variable, we let

$$F_+(z) = \prod_{(j,p) = +1}^{p-1} (z - \rho^j), \quad F_-(z) = \prod_{(j,p) = -1}^{p-1} (z - \rho^j),$$

so that

$$F_+(z)F_-(z) = F(z),$$

where $F(z)$ is the cyclotomic polynomial of index p, that is,
\(F(z) = \prod_{j=1}^{p-1} (z - \rho^j) = \frac{z^p - 1}{z - 1} = z^{p-1} + z^{p-2} + \cdots + z + 1. \)

\(F_+ \) and \(F_- \) are polynomials in \(z \) of degree \((p - 1)/2\) with coefficients in the ring of integers of \(\mathbb{Q}(\sqrt{-p}) \) (see for example [6: p. 215]). Hence we can write

\[
(5) \quad F_+(z) = \frac{1}{2} \left(Y(z) - Z(z)\sqrt{-p} \right), \quad F_-(z) = \frac{1}{2} \left(Y(z) + Z(z)\sqrt{-p} \right),
\]

where \(Y \) and \(Z \) are polynomials with rational integral coefficients. From (3) and (5) we have

\[
(6) \quad Y(z)^2 + pZ(z)^2 = 4F(z).
\]

It is also known [6: p. 216] or [7: p. 209] that \(Y \) and \(Z \) have the symmetry properties expressed by

\[
(7) \quad Y(z) = \sum_{n=0}^{(p-3)/4} a_n(z^{(p-1)/2-n} - z^n), \quad Z(z) = \sum_{n=0}^{(p-3)/4} b_n(z^{(p-1)/2-n} + z^n),
\]

where the \(a_n \) and \(b_n \) are integers with

\[
a_0 = 2, a_1 = 1, a_2 = (3 - p)/4, \ldots
\]

and

\[
b_0 = 0, b_1 = 1, b_2 = \frac{1}{2} \left(1 + \left(\frac{2}{p}\right)\right), \ldots
\]

(see [7] for further values of \(a_n \) and \(b_n \); see [6] for a table of values of \(Y \) and \(Z \) for \(p \leq 29 \)).

Differentiating the expressions in (7) and (6) with respect to \(z \), we obtain respectively

\[
(8) \quad Y'(z) = \sum_{n=0}^{(p-3)/4} a_n \left(\frac{p-1}{2} - n\right)z^{(p-3)/2-n} - nz^{n-1},
\]

\[
Z'(z) = \sum_{n=0}^{(p-3)/4} b_n \left(\frac{p-1}{2} - n\right)z^{(p-3)/2-n} + nz^{n-1},
\]

and

\[
(9) \quad Y(z)Y'(z) + pZ(z)Z'(z) = 2F'(z).
\]

Taking \(z = i \) in (7) and (8) we obtain

\[
Y(i) = \begin{cases}
A_3(1 - i), & \text{if } p \equiv 3 \pmod{8}, \\
A_7(1 + i), & \text{if } p \equiv 7 \pmod{8},
\end{cases}
\]

\[
Z(i) = \begin{cases}
-B_3(1 + i), & \text{if } p \equiv 3 \pmod{8}, \\
B_7(1 - i), & \text{if } p \equiv 7 \pmod{8},
\end{cases}
\]
and

\[Y'(i) = \begin{cases} C_3 + 2D_3 i, & \text{if } p \equiv 3 \pmod{8}, \\ C_7 + 2D_7 i, & \text{if } p \equiv 7 \pmod{8}, \end{cases} \]

(11)

\[Z'(i) = \begin{cases} E_3 + 2F_3 i, & \text{if } p \equiv 3 \pmod{8}, \\ E_7 + 2F_7 i, & \text{if } p \equiv 7 \pmod{8}, \end{cases} \]

where \(A_3, \ldots, F_7 \) are rational integers (given in terms of the \(a_n \) and \(b_n \)). Using (10) and (11) in (6) and (9) with \(z = i \), we obtain

\[\begin{cases} A_3^2 - pB_3^2 = -2, & \text{if } p \equiv 3 \pmod{8}, \\ A_7^2 - pB_7^2 = +2, & \text{if } p \equiv 7 \pmod{8}, \end{cases} \]

(12)

and

\[\begin{cases} A_3C_3 + 2pB_3F_3 = -1, & 2A_3D_3 - pB_3E_3 = p, \text{ if } p \equiv 3 \pmod{8}, \\ A_7C_7 + 2pB_7F_7 = p, & 2A_7D_7 - pB_7E_7 = 1, \text{ if } p \equiv 7 \pmod{8}. \end{cases} \]

(13)

Clearly from (12) and (13) we see that \(A_3, C_3, E_3, A_7, C_7, E_7 \) are all odd. Now Liouville [5: p. 415] has shown that

\[Z(z)Y'(z) - Z'(z)Y(z) = \frac{2}{z - 1} \sum_{j=1}^{p-1} \left(\frac{j}{p} \right) z^{p-1-j}. \]

(14)

Taking \(z = i \) in (14) we obtain

\[Z(i)Y'(i) - Z'(i)Y(i) = (L + M) + i(L - M), \]

where

\[L = \sum_{j=0}^{(p-1)/2} (-1)^j \left(\frac{2j}{p} \right), \quad M = \sum_{j=0}^{(p-1)/2} (-1)^j \left(\frac{2j + 1}{p} \right). \]

(15)

Applying the transformation \(j \to (p - 1)/2 - j \) to \(L \) or \(M \) we obtain \(L = M \). Also we have

\[L = \sum_{j=1}^{(p-3)/4} \left(\frac{4j}{p} \right) - \sum_{j=0}^{(p-1)/4} \left(\frac{4j + 2}{p} \right) \]

\[\quad = \sum_{j=1}^{(p-3)/4} \left(\frac{j}{p} \right) - \sum_{j=(p-1)/4}^{(p-1)/2} \left(\frac{4((p - 1)/2 - j) + 2}{p} \right) \]

\[\quad = \sum_{j=1}^{(p-3)/4} \left(\frac{j}{p} \right) + \sum_{j=(p-1)/4}^{(p-1)/2} \left(\frac{j}{p} \right) = \sum_{j=1}^{(p-1)/2} \left(\frac{j}{p} \right), \]

so, by Dirichlet’s class number formula (as \(p \equiv 3 \pmod{4}, p < 3 \)) see for example [2: p. 346], we have

\[L = M = \left\{ 2 - \left(\frac{2}{p} \right) \right\} h(-p). \]

(16)
Hence from (15) and (16) we have

\[(17) \quad Z(i) Y'(i) - Z'(i) Y(i) = 2 \left[2 - \left(\frac{2}{p} \right) \right] h(-p). \]

Using (10) and (11) in (17), after equating real and imaginary parts, we obtain

\[(18) \begin{cases}
3h(-p) = 2B_3D_3 - A_3E_3, & \text{if } p \equiv 3 (\text{mod } 8), \\
2h(-p) = 2B_7D_7 - A_7E_7, & \text{if } p \equiv 7 (\text{mod } 8).
\end{cases} \]

Now from (13) we have

\[(19) \begin{cases}
E_3 = -2A_3B_3D_3 - B_3 (\text{mod } 8), & \text{if } p \equiv 3 (\text{mod } 8), \\
E_7 = -2A_7B_7D_7 + B_7 (\text{mod } 8), & \text{if } p \equiv 7 (\text{mod } 8).
\end{cases} \]

Using (19) in (18) we have

\[(20) \begin{cases}
h(-p) = \left(-\frac{2A_3}{n} \right) B_3 (\text{mod } 4), & \text{if } p \equiv 3 (\text{mod } 8), \\
h(-p) = \left(-\frac{2A_7}{n} \right) B_7 (\text{mod } 4), & \text{if } p \equiv 7 (\text{mod } 8).
\end{cases} \]

From (4) we have \(F(i) = i \), and so taking \(z = i \) in (2) and (3) we obtain

\[-i(F_-(i))^2 = \frac{F_-(i)}{F_+(i)} = \prod_{j=1}^{p-1} (1 + i\rho^j)^{-(j/p)} = \exp \left(-\sum_{j=1}^{p-1} \left(\frac{j}{p} \right) \log (1 + i\rho^j) \right) = \exp \left(\sum_{n=1}^{\infty} \frac{(-i)^n}{n} \sum_{j=1}^{p-1} \left(\frac{j}{p} \right) \rho^{nj} \right) = \exp \left(i\sqrt{p} \sum_{n=1}^{\infty} \frac{n}{p} \left(\frac{-i}{n} \right) \right) = \exp \left(\sqrt{p} \sum_{m=0}^{\infty} \frac{2m+1}{2m+1} \frac{(-1)^m}{2m+1} + i\sqrt{p} \frac{2}{p} \sum_{m=1}^{\infty} \frac{m}{p} \frac{(-1)^m}{m} \right) = \exp \left(h(p) \log(T + U\sqrt{p}) + \frac{\pi i}{2} \left(1 - \frac{2}{p} \right) h(-p) \right) = (T + U\sqrt{p})^{h(p)} e^{-\left(\frac{2}{p} \right) h(-p)} = (-1)^{(p+1)/4} (T + U\sqrt{p})^{h(p)}, \]

where we have made use of the Gauss sum

\[\sum_{j=1}^{p-1} \left(\frac{j}{p} \right) \rho^{nj} = \left(\frac{n}{p} \right) i\sqrt{p}, \]

and the two results
\[
\sum_{m=1}^{\infty} \binom{m}{p} \frac{(-1)^m}{m} = \frac{\pi}{\sqrt{p}} \left(\left(\frac{2}{p} \right) - 1 \right) h(-p)
\]
and
\[
\sum_{m=0}^{\infty} \binom{2m+1}{p} \frac{(-1)^m}{2m+1} = \frac{h(p)}{\sqrt{p}} \log(T + U\sqrt{-p}) ,
\]
which follow easily by standard arguments from Dirichlet's class number formula (see for example [2: p. 343]). Hence we have (using (10))
\[
(T + U\sqrt{-p})^{h(p)} = (-1)^{(p-3)/4} i F^2(i)^2
\]
\[
= (-1)^{(p-3)/4} i \left\{ \frac{1}{2} (Y(i) + Z(i) i\sqrt{-p}) \right\}^2
\]
\[
= \frac{1}{2} (A_3 + B_3\sqrt{-p}), \text{ if } p \equiv 3 \pmod{8} ,
\]
\[
= \frac{1}{2} (A_7 + B_7\sqrt{-p}), \text{ if } p \equiv 7 \pmod{8} .
\]
This is essentially a result of Arndt [1].

Expanding \((T + U\sqrt{-p})^{h(p)}\) by the binomial theorem and equating coefficients of \(\sqrt{-p}\), we have as \(h(p) \equiv 1 \pmod{2}\),
\[
U^{h(p)} p^{(p-1)/2} \binom{h(p)}{2} U^{h(p)-1} T^2 p^{(h(p)-3)/2} + \ldots
\]
\[
= \begin{cases}
A_3 B_3, & \text{if } p \equiv 3 \pmod{8} , \\
A_7 B_7, & \text{if } p \equiv 7 \pmod{8} .
\end{cases}
\]
As \(T \equiv 0 \pmod{2}, U \equiv 1 \pmod{2}\), this gives
\[
U(-1)^{\binom{p-1}{2}} \equiv \begin{cases}
A_3 B_3 \pmod{4}, & \text{if } p \equiv 3 \pmod{8} , \\
A_7 B_7 \pmod{4}, & \text{if } p \equiv 7 \pmod{8} ,
\end{cases}
\]
so that
\[
(21) \quad h(p) \equiv \begin{cases}
A_3 B_3 - U + 1 \pmod{4}, & \text{if } p \equiv 3 \pmod{8} , \\
A_7 B_7 - U + 1 \pmod{4}, & \text{if } p \equiv 7 \pmod{8} .
\end{cases}
\]
Putting (20) and (21) together, we obtain (1) as required.

From (1) we have \((-1/h(-p)) = (-1)^{(h(-p)-1)/2} = (-1)^{(h(p)+U)/2} \). In particular whenever \(h(p) = 1\) (a common occurrence) we have
\((-1/h(-p)) = (-1)^{(U+1)/2} \).

In [8] the author has treated, in a similar way, Lehmer's question [4: p. 10] regarding \(h(-2p)\) modulo 8, when \(p\) is a prime congruent to 5 modulo 8.
REFERENCES

8. Kenneth S. Williams, *The class number of Q(\sqrt{-2p}) modulo 8, for p \equiv 5 \pmod 8 a prime*, submitted for publication.

Received July 12, 1978. Research supported by National Research Council of Canada Grant No. A-7233.

Carleton University
Ottawa, Canada K1S 5B6
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor)
University of California
Los Angeles, CA 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90007

HUGO ROSSI
University of Utah
Salt Lake City, UT 84112

R. FINN and J. MILGRAM
Stanford University
Stanford, CA 94305

C. C. MOORE and ANDREW OGG
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $84.00 a year (6 Vols., 12 issues). Special rate: $42.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Older back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1979 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Patrick Robert Ahern, On a theorem of Hayman concerning the derivative of a function of bounded characteristic .. 297
Walter Allegretto, Finiteness of lower spectra of a class of higher order elliptic operators .. 303
Leonard Asimow, Superharmonic interpolation in subspaces of $C_c(X)$.. 311
Steven F. Bellenot, An anti-open mapping theorem for Fréchet spaces .. 325
B. J. Day, Locale geometry ... 333
John Erik Fornaess and Steven Krantz, Continuously varying peaking functions .. 341
Joseph Leonide Gerver, Long walks in the plane with few collinear points .. 349
Joseph Leonide Gerver and Lawrence Thom Ramsey, On certain sequences of lattice points .. 357
James A. Huckaba and James M. Keller, Annihilation of ideals in commutative rings ... 375
Anzelm Iwanik, Norm attaining operators on Lebesgue spaces .. 381
Surjit Singh Khurana, Pointwise compactness and measurability ... 387
Charles Philip Lanski, Commutation with skew elements in rings with involution ... 393
Hugh Bardeen Maynard, A Radon-Nikodým theorem for finitely additive bounded measures ... 401
Kevin Mor McCrimmon, Peirce ideals in Jordan triple systems .. 415
Sam Bernard Nadler, Jr., Joseph E. Quinn and N. Stavrakas, Hyperspaces of compact convex sets ... 441
Ken Nakamula, An explicit formula for the fundamental units of a real pure sextic number field and its Galois closure ... 463
Vassili Nestoridis, Inner functions invariant connected components ... 473
Vladimir I. Oliker, On compact submanifolds with nondegenerate parallel normal vector fields ... 481
Lex Gerard Oversteegen, Fans and embeddings in the plane .. 495
Shlomo Reisner, On Banach spaces having the property G.L ... 505
Gideon Schechtman, A tree-like Tsirelson space ... 523
Helga Schirmer, Fix-finite homotopies ... 531
Jeffrey D. Vaaler, A geometric inequality with applications to linear forms ... 543
William Jennings Wickless, T as an t^G submodule of G ... 555
Kenneth S. Williams, The class number of $\mathbb{Q}(\sqrt{-p})$ modulo 4, for $p \equiv 3 \pmod{4}$ a prime ... 565
James Chin-Sze Wong, On topological analogues of left thick subsets in semigroups .. 571