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Goodman proved that if the axiom of choice vx3yA(x, y) ->
3fVxA(x, f(x)) is added to intuitionistic arithmetic (here
x, y9 and / are f unctionals of finite type), then no new ari-
thmetic theorems are obtained. His original proof used his
theory of constructions, and was widely thought to be per-
haps not the simplest proof possible. Moreover, the gen-
eralization of the result to show that the axiom of choice
remains conservative even in the presence of extensionality,
has remained unsolved, despite its inclusion in Friedman's
list of "102 Problems in Mathematical Logic". In this
paper, we give a conceptually clear proof of Goodman's
theorem, and use the method to solve Friedman's problem
just mentioned, as well as to obtain several other extensions
of Goodman's theorem and related results.

The proof is in two steps — one step uses realizability, the
other step uses forcing; in other words, two well-known tools are
combined to get the result. Goodman himself has also recently
given a fairly simple proof of his theorem; his proof also combines
ideas related to realizability and forcing, but in a single new inter-
pretation, instead of clearly separated. The method of this paper
seems to be more easily generalized.

In [1], there is an application of the extensions of Goodman's
theorem [7] proved in this paper. Friedman has given a formal
theory B for constructive mathematics which is strong in the sense
that all of constructive mathematical practice can be formalized in
it, but proof-theoretically weak in that it is conservative over (clas-
sical) arithmetic. We apply the results of this note to show that
it is also conservative over intuitionistic arithmetic, a problem left
open by Friedman.

0. Preliminaries* We assume familiarity with the system HA
of intuitionistic arithmetic (see e.g., [12] for a description) and with
the system HAW which has variables for functionals of finite type.
If one is only interested in Goodman's theorem and the solution of
Friedman's problem, this will be enough. For some theorems, we
shall also assume familiarity with the systems developed by Fe-
ferman for constructive mathematics, and with Friedman's system
B. Feferman's systems are described in [1], [2], and of course
the original [5]. We find the two-sorted version of these theories
described in [1] the most convenient for forcing, and we assume
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they are so formulated, with one sort of variables for natural
numbers. Friedman has also found it more convenient to use a two-
sorted theory, with special variables for natural numbers, and we
also use that version of the intuitionistic set theories. (In [6],
Friedman equivalently uses two unary predicates and one sort of
variables.) In [3] we have described some intuitionistic set theories
without the axiom of extensionality; since that paper will in any
case be essential to the reader of our theorems concerning intui-
tionistic set theories, we do not repeat the descriptions here. By
HAS we mean HA with species (set) variables and full (second
order) comprehension. By HASω we mean HAS with variables for
functionals of finite type and for species of functionals of each type,
with full comprehension.

By AC we mean the schema in either HAω or HASω,

(AC) VxlyA(x, y) > lfVxA(x, f(x)) .

By DC we mean the axiom of dependent choices, which can be ex-
pressed either in Feferman's theories or in Friedman's:

(DC) Vx e Aly e Aφ(x, y)~^Vxe Alf e AM(f(0) = x and Vnφ(f(n), f(n'))

where N is the natural numbers and n' is the successor of n.

1* How not to prove Goodman's theorem* We give an in-
complete (but simple) proof of Goodman's theorem, because it will
eventually lead to a proof. We assume familiarity with Kleene's
notion of recursive realizability (see [12] for explanations). If A is
a formula of HA, then erA ("e realizes A") is also a formula of
HA; and we have the soundness theorem \-A implies \-erA for
some e. We can extend this notion to HAω by using the here-
ditarily recursive operations HRO (see [12]); we write erA to ab-
breviate er{A)HB0. Then AC is provably realized, so if HAω + AC
\-φ, we have HAωY-erφ for some e. Now, if \-(erφ-> φ), we are
done, for then HAω\-φ (and of course HAω is conservative over HA).
Thus HAω + AC is conservative over HA for all A such that
\-{erA-+ A); this holds in case A is "almost negative" (i.e., contains
no disjunction and has existential quantifiers only immediately in
front of atomic formulae). Now, here is the way not to prove
Goodman's theorem: suppose we use, instead of recursive functions,
functions recursive in some given function α, for our realizability.
If a is "sufficiently nonrecursive", maybe we can get erA —> A (for
a fixed A). This will suffice. For instance, why not let a encode
the characteristic function of all the subformulae of At In this
way one can successfully prove that HAω + AC is conservative over
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classical arithmetic PA, but there are difficulties in replacing PA by
HA; for instance, one can not prove μx A(x,y) is recursive in A
unless A is decidable. However, there seems to be the germ of a
good idea here; if only we know how to choose a properly.

2* Forcing* The answer is, to choose a to be generic with
respect to a suitable set of forcing conditions. We now describe
the set-up necessary to use forcing in an intuitionistic context. If
T is any reasonable intuitionistic theory, let Ta be formed by add-
ing to T a constant a for a generic partial function from N to N.
(It turns out that we have to add a partial function, not a total
function; below we discuss how to talk about partial functions in
HAω.) Our forcing conditions will be finite functions from N to N
(which can be coded as sequence numbers if necessary, in systems
which cannot speak directly about finite functions). Let C be any
set of such conditions, definable in T. We use p, q, r as meta-vari-
ables ranging over C; that is, Vp abbreviates Vp(pe C)—> , etc.
Following the usual (backwards) notation for forcing, we use p <Ξ q
to mean p extends q, i.e., p is defined wherever q is, and agrees
with q on the domain of q, but p may have a larger domain. Now
we assign to each formula A of Ta, a formula p\\-A of T; the free
variables of ph-A are p together with a variable x* for each free
variable x of A. If x is a numerical variable (of any of the theories
we consider), then x* is just x; in other words the need for starred
variables arises only in connection with comprehension axioms. In
HAω, too, x* may be taken as x. For set variables, and for the
operation variables in Feferman's theories, some care should be taken
that the starred variables are distinct from the unstarred ones; this
technicality is discussed in connection with realizability in [2].

The classes defining ph-A are as follows:

ph-A & B is ph-A & ph-B

ph-A\/B is p ih- A V p ih- B

ph-lxA is lx*ph-A

ph-A->B is Vq <; p(qIh- A-> 3r <; q(r Ih-B))

p\\-VxA is Vx*Vq ̂ plr^q r\\-A .

If there is more than one sort of variable, then we let the above
quantifier clauses apply to each sort of variable. These clauses apply
to any theory T; to the the clauses for atomic T, we have to dis-
cuss each theory separately. We want ph-a(n) = m iff p(n) = m;
the object is to arrange it so this works and the rest of the axioms
are forced. Since we are adding a partial function, we have to dis-
cuss how to talk about partial functions in HAω. We can do this
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to a sufficient extent by talking about those partial functions whose
graphs are enumerated by total functions. For instance, let PF(f)
be

Vifc, m, j((k, j)ε range / and (k, m)ε range / >j = m) .

Then let f(k) ~ j be PF(f) and 3m(/(m) - <&, i » . The theory Ta
consists of T, the constant α, and an axiom asserting that a is a
partial function from N to N; in the case of HAω, we use the
formula PF to express this. It is easy to see that Ta is conserva-
tive over Γ.

Now we return to the problem of defining p\\-A for A atomic.
In HAω and in Feferman's theories, we have an application relation
App(/, x, y) for an atomic formula. We set p II- App(/, x, y) to be
/*(p, x) ~ y, or more precisely, /*«p, a?» = y, where (p, x) codes
the pair p, x into a single object of type the same as the type of
x (for HAω; such coding is unnecessary in Feferman's theories). Note
that we are thus driven to discuss partially defined functional of
finite type; but at least their arguments are total functionals, so
that the same coding device as above can be used. This definition
of p if- App(/, x, y) is supposed to apply whether /, x, y are variables
or constants; so we have to give terms e* for each constant c, in
order to make the definition complete. In the case of Feferman's
theories, we take α* so that α*(p, m) = p(m). In the case of HA\
we let α* be some term which will enumerate the graph of the
finite function (coded by the sequence number) p. For the other
constants c of Feferman's theories or of HAω, we want c* to ignore
the arguments p, and do what c would do to the other arguments.
In [2], where we have worked with a slightly different "uniform"
version of forcing, we have given the terms c for Feferman's theory
explicitly.

We define p\\-x — y to be x* — y*. Remember that in certain
cases, for instance if these are numerical variables, x* is just x.
This completes the definition of forcing for ΈLAω.

The other theories for which we are defining forcing have an
atomic formula xεy. We take p\\-xey to be (p, #*> 6i/*. In the
case of Friedman's theories, the partial function a is going to be a
set, so we define α* to be {«p, x)9 y): p(x) = 2/}. For Feferman's
theories, we have to explain iV* and c*. We want iV* to be the
set of <p, n) such that pihneN. Just take iSΓ* to be CxN; in
other words, p Ih n 6 N is just n* e N. We want cφ(y) to be {{p, #>*:
p\hφ(x,y)}9 because cφ{y) is supposed to be {x:φ(x,y)} This defini-
tion may appear to be circular, but it is not, because φ is an
elementary formula in the comprehension axiom of Feferman's
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theories. See [2] for a fuller discussion of why this is not circular.
Also in the case of Friedman's set theories, there need to be certain
constants to denote the sets whose existence is asserted by the
axioms, and certain function symbols, and we have to give c* for
terms c built up in this way. This is carried out in detail in [3];
there the version of forcing is "uniform", but the constants c* are
the same.

REMARK. Forcing for weak intuitionistic set theories offers
several technical complications, which we have considered at length
in [3] and with which we do not wish to become involved here.
Besides these complications, forcing works only for intuitionistic set
theories without extensionality, at least in the present formulation.
This creates no difficulty, since we have proved in [3] that the
theories with extensionality are conservative over those without,
for arithmetic theorems. The "technical complications" mentioned
are the same for the version of forcing used here and that used in
[3]; in particular, for theories without power set, the definition
must be modified by restricting the range of the starred variables,
etc., as in [3]. The reader specifically interested in these theories
may consult [3]; others will find the ideas well illustrated in the
cases of HA and Feferman's theories, where the technical complica-
tions are not so distracting. Note that even our application of
these results to the conservativeness of B over HA uses only results
of this paper for Feferman's theories, not for intuitionistic set
theories.

THEOREM 2.1. {Soundness of forcing.) If Ta\-A then
p(p\\-A). Here T may be any of the following theories:

( i ) HA- or HAS*.
(ii) Feferman's theory BEM + CA of [2], or the corresponding

theory with restricted induction discussed in [1].
(iii) Any of Friedman's set theories discussed in [3] (except

the weakest one B) in the version without extensionality, and with
the axiom of choice DC replaced by arithmetic HA. The forcing
conditions C can be any definable set of finite partial functions.

REMARKS. The theory BEM + CA consists of the theory called
TO in [5], minus the join and inductive generation axioms and with
decidable equality only for integers.

Proof. By induction on the length of the proof of A. For
Feferman's and Friedman's systems, the proof is nearly identical to
the proofs for the "uniform" forcing given in [2] and [3] respec-
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tively; we do not give any details here. The verification that the
axioms of HAω are forced is entirely straightforward. In connec-
tion with HAS0, and generally in connection with any theory having
a comprehension axiom, the axiom guaranteeing the existence of
{x: φ(x)} will be forced if we can form within the theory, the set
{(pfx*}:p\\-φ(x)}. Thus it is easier to deal with an unrestricted
comprehension axiom like that of HAS0 than with a restricted one
as in Feferman's theories, where one has to worry whether the re-
stricted comprehension axiom suffices to form the set one needs.

It is worth remarking that Vxlna(x) = n will be forced if and
only if VnVplq ^ p(q(n) defined); since we cannot guarantee this for
the forcing conditions C we will need to prove Goodman's theorem,
we must add a partial function, even if it is more complicated to
do so.

LEMMA 2.1. If A is arithmetic, then T\-(A*-*p\\-A).

Proof. By induction on the complexity of A.

3* Realizability revisited* Now we want to use functions re-
cursive in the generic partial function a for realizability. First
note that relative recursiveness in a partial function means that we
are using Turing machines with oracles which can ask for the values
of the partial function α; if an answer is forthcoming, the compu-
tation continues. If not, the machine "waits forever" for the
oracle to answer. Thus the graph of a may not be recursive in a.
(This is OK.)

Consider the case T is HAω, which is the simplest case. Before,
we wrote erA for er(A)HR0, where the realizability on the right is
Kleene's (formalized) 1945-realizability. (See [12] for this and for
the definition of HRO.) Now we define HROa analogously to HRO,
using the functions recursive in a, and write erA for er(A)HROa,
where now the realizability on the right also uses functions recur-
sive in a. That is, everything is just as before, reading "recursive
in a" for "recursive". Then we have the soundness theorem.

THEOREM 3.1. Ta + AC\- A implies Ta \- erA for some e; here
T is HA\

Proof. By induction on the length of the proof of A; the proof
is obtained from the corresponding proof for 1945-realizability by
reading "recursive in α" for "recursive". See [12] for details.

4* How to prove Goodman's theorem* The key to Goodman's
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theorem is the following lemma:

LEMMA 4.1. Fix an arithmetic sentence A. Then there is a
set G of forcing conditions (definable in HA) such that HA°V-
Vplq ^ p(q ih- (erA -> A)).

Proof. If y s tands for a list y19 --,yn, let y be (yl9 •••,#«>.

Let C consist of all finite functions p such t h a t for all subformulae

B and D of A (including A as a subformula of itself), we have

(1) lxB{x, y) and p({'lxB', y}) defined -> B(p((ΊxB', y))y)
(2 ) B(y)VD(y) and p(('BVD', y}) defined -> (p(('BVD', y}) = 0

& B(y))V(p(('BVD', y}) = 1 & D{y)).
Then we define for each subformula B of A a number j B such that

( i ) 2V (Vj>3? ^ H 11- (B(y) -> {i*}e-(!/)rjB))
(ii) Γί-(Vp3ggp q\\-(urB-*B)).

The definition of ^ is as follows:
jf̂  for A prime is an index of the identically zero function.

{3B-*C}-(V) = UcY-iv)

{3B}-(v),ticY<V)>

= {3B)-(X, v)

if a(('BVD', y)) - 0

if α«'J8VD'>ir» = l .

After this definition, we can prove (i) and (ii) by a straight-
forward simultaneous induction. Only the cases for disjunction and
existential quantification involve anything new. We treat existential
quantification. Suppose B is 3xD. We prove (i) first. Suppose p
is given; we will show ph~(B(y)-+{jB}-(y)rB). Let q^p have
qh-B(y), i.e., qh-3xD(x9y). Then 3xq\\-D(x,y)9 since x* is x for
number variables. By Lemma 2.1, (q \Y- D(x, y) >̂ D(x, y)); hence
D(x,y). By (i), g has an extension rQ with roh-(D(x9y)-+{jD}-(x,y
rD(x, y)). If this r0 is not already defined at <'!>', τ/>, we can ex-
tend r0 to a condition r by defining r(('B', y}) = sc. (Since i?(aj, j/)
holds, r is in C.) Otherwise replace x by r o «'5 ; , »; since r0 is in C,
we have D(x, y). Thus rif-a? = a((rB\ y}). Since qh-D(x,y), also
9 11- D(x, i/), so by the property of r0, some extension rx of r has
n + {ii)}-(̂ , y)rD{x9 y). Since r ih- a;= α«'5', y))9 also n Ih a? = a(('B'y y)).
Hence n Ih- x = α«'JB', τ/» & {^(a?, y)rD{x, y). That is, r1lh3a?(a? =
α«',B', i/» & {;/#(£, y)rD(x, y)). By definition of ^ = i3x2,, this is
r1\\-{jBY-(v)/rB(y), and (i) is proved for B.

To prove (ii) in case B is ixD, we let #> be given, and prove
p\\-(urB-+B). lί q^Lp has qW-urB, then g ίh- (u\rD((u\9 y)9 so by
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induction hypothesis, q has an extension r with r Ih D((u)0, y); hence
r ih- 3xD(x, y), that is, r\h-B(x, y). This proves (ii) for the case of
existential quantification. Disjunction may be treated similarly; this
completes the proof of Lemma 4.1.

THEOREM 4.1. (Goodman's theorem.) If HA° + ACh-A, for A
arithmetic, then HA\-A.

Proof. Let T be HA'\ Fix A arithmetic with T + ACh-A. By
Theorem 3.1, Ta\-erA for some e. By Theorem 2.1, Th-lp(p\\-erA),
where the forcing conditions C are chosen as above, depending on
the formula A. By Lemma 4.1, T\-Vplq ^ p(q\\-(erA —> A)). Hence
T\-3q(q\hA). Hence, by Lemma 2.1, Tv-A. This proves the theorem.

REMARK. In [8], Goodman states a generalization of the theorem
to any theory T in the language of HAω for which his interpreta-
tion is sound. Correspondingly, our proof clearly works in case re-
alizability and forcing are both sound for T. In fact, in our case
there is no necessity to restrict the language of T in advance. In
the rest of the paper we shall exploit this situation.

5. Friedman's problem. Problem 38 on Friedman's list of
"102 Problems in Mathematical Logic" asks for the extension of
Goodman's theorem to the case when T is HAω + extensionality.
This theory is just HAω with the additional axiom

(extensionality) V#(/(#) — g(x)) > / = g (at all sensible types) .

Previous methods, including apparently those of [8], have not suf-
ficed to solve this problem. Indeed, there might seem to be grounds
for suspicion that the theorem might not extend to this case: for
T + AC refutes Church's thesis in the form VfleVx({e}(x) = fix))
[1]. Perhaps it might also refute the weaker form, Vxly A(x, y) —>
3eVxA(x, {e}(x))> with A arithmetic, which would show that Good-
man's theorem does not extend. Let us begin by asking where our
proof of Goodman's theorem breaks down, if we try to apply it to
T. The problem is, that (ext)HB0 is not realized. We need a re-
alizability for T such that

( i ) we can relativize it to any function a
(ii) we can, after choosing a suitable generic α, get a fixed

arithmetic formula to be "self-realizing"
(iii) extensionality and AC are both realized.

It turns out that such a realizability can be found, and Goodman's
theorem does extend to T. Rather than just pull this realizability
out of a hat, though, it seems better to discuss the background.
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Consider the following realizabilities: For HA we have Kleene's
recursive realizability, where the realizing objects are numbers, re-
presenting partial recursive functions. For HAω, we have KreiseΓs
modified realizability, which is not a single notion, but an abstract
interpretation, assigning a formula A*(f, x) to each A(x); one can
think of A0(f, x) as " / realizes A(x)". But to obtain a specific
notion of realizability, one must follow KreiseΓs interpretation with
an interpretation of HAω in HA, such as HRO or HEO (see [12]).
Alternately, one could first take the HRO or HEO interpretation,
then use Kleene's realizability. (This was what we used for Good-
man's theorem.) The mam difference between KreiseΓs realizabilities
and Kleene's is that KreiseΓs realizing objects are functionals of
finite type (or their interpretations in HRO or HEO); that is, they
are hereditarily total (on the proper type). Examination of the
proof of Lemma 4.1 will convince one that this feature renders
them unsuitable for our purposes: requirement (ii) will never be
met. On the other hand, if we first interpret HAω in HA, then
use Kleene's realizability, we will have trouble with (iii). If we use
HRO, we will not get extensionality. If we use HEO, we will
get extensionality, but (AC)HE0 is not realized. It seems, if we
want to get AC realized, we have to do realizability directly on
HAω. But in order to meet (ii), we have to use partial objects.
Which brings us to a gap in the literature that could have been
filled long ago: solve the proportion,

abstract modified realizability:
specific "total realizabilities" in HRO, HEO

as
X: Kleene's recursive realizability.

Clearly "X" is an abstract interpretation of HAω in a suitable
theory of partial functionals; then Kleene's realizability will result
by an interpretation analogous to HRO. And, the very realizability
which we need will result by an interpretation analogous to HEO.

The details of this program are so similar to what is known
already that we give only a sketch. First we describe a suitable
theory HAP of partial functionals. These are to be partial func-
tionals of partial arguments, not only partial functionals of total
arguments. We have the same type structure as for HAω. We
have an application relation App(/, x, y) at each sensible triple of
types, which is meant to stand for f(x) ^ y. So we need the axiom
App(/, x, y) and App(/, x, z) —> x = z. Exactly as in Feferman's the-
ories, we introduce "application terms", or for short, terms, which
are not officially part of the language. These terms are built up
from variables and constants; we include the same constants as in
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HAω. A list of abbreviations for use in connection with application
terms is in [5] or [1]; in particular, we can make sense of φ(t)
where t is a term and φ a formula. The axioms of HAP include
the full schema of induction, and the defining axioms for the con-
stants, including a constant for recursion.

Next we note that the total types can be defined in HAP.
Namely, for each total type σ there is a formula TOTσ(f), defined
by, TOT0(x) is x=x, where x is a type-0 variable; generally T0To(x)
has x a free type σ variable. TOT{σ>ζ)(f) is Vx(TOTσ(x) ->
TOTζ(f(x))). (So in accordance with our abbreviations, f(x) is de-
fined and is total of type ζ for each x of type σ). Thus in a na-
tural sense HAP contains HAω (one has to prove the constants of
HAω are hereditarily total). In other words, there is an interpre-
tation of HAω in HAP, such that the interpretation A* of each
theorem A of HAω is a theorem of HAP.

Next we give an abstract realizability interpretation of HAP

in itself. We assign to each formula A of HAP, a formula A° =
3/A0(/, x), where x are the free variables of A, and / may be a
finite list of variables. (Think of Ao(/, x) as " / realizes A(x)".)
The clauses defining A0 are the same as for KreiseΓs modified re-
alizability, only now the meaning is different. For instance, if A0

is lfA0(f,x) and B° is lgB0(g,x), then (A->J5)° is lFVf(A0(f, x)-*
B0(F(f), x)); but now, according to our conventions about application
terms, F(f) does not have to be defined unless Ao(/, x); this imparts
the desired Kleene flavor to our interpretation. Composing this
interpretation with the interpretation of HAω in HAP, we get a
realizability interpretation of HAω in HAP. We summarize all this
in a theorem:

THEOREM 5.1. If HApv-A, then for some terms t, HAp\-AQ(t, x).
Moreover, if HAω + AC\- A, then for some terms t, HAp\-((A)*)0(t, x).

Proof. The first part is standard. The second part follows, if
we show that (AC)* is provably realized. Now an instance of (AC)* is

Vx(TOTσ(x) >iy(TOTζ(y) & Φ(x,y))) >

lf(TOT(σ,ζ)(f) & Vx(TOTσ(x) > Φ(x, f(x)))) .

It is easy to see that we can get this realized, if we show that for
each type σ, TOTσ is a "self-realizing" formula. We say a formula
B is self-realizing if there is a term tB such that

It is easy to prove by induction on B that if B is negative (written
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with application terms allowed) then B is self-realizing. Now
TOT{σ>ζ) can be written with application term f(x) as Vx{TOTσ(x) ->
TOTζ(f(x))), and so it is negative, by induction on the types, when
application terms are allowed. Hence (AC)* is provably realized,
and our sketch of the proof of Theorem 5.1 is complete.

Now we indicate how to recover Kleene's 1945-realizability. In-
terpret all the variables, of whatever type, to range over the
integers; and let all the App relations be interpreted as {e}(x) = y.
If A is a formula of arithmetic, then (A)o, so interpreted, will be
provably equivalent to erA, where r is 1945-realizability.

The next part of our program is to give a model of HAP in
HA, in which (ext)* is satisfied. This turns out to be easier sug-
gested than done. Let us examine the obvious approach and see
what is wrong with it. The "obvious approach" is to define for
each type σ, a set Mσ of partial effective operations, and an ex-
tensional-equality relation on Mσ, and then interpret the type σ
variables as ranging over Mo, and type σ equality as the extensional
equality relation. Then we try to check (ext)*: suppose F and F
are of type 2 in this model, i.e., are in Λf2. What happens if F(f) —
G(f) for every total, type 1 /; but F and G disagree on some
partial /? Then F and G will not be set extensionally equal, but
they should be. Now as a matter of fact, Myhill-Shepherdson's
theorem [11, p. 359] shows that this cannot happen; but this theorem
is not provable in HA, as shown in [4].

The solution to this problem is as follows: First we define the
total effective operations Eσ; any integer is in Eo, and n ~om iff
n = m; then e is in E{σ>o if VxeEσ({e}(x) is defined and in Eζ); and
α~(σ>ζ)& if whenever x and y are in Eσ, with x~σy, we have {a}(x)~ζ

{b}(y). (This is just a version of HEO.) Next, we define our model
of HAP by, M0(n) is n = n; M(σ,ζ)(e) iff Vx(Mσ(x) and {e}(x) defined ->
Mζ({e}(x))) and Vx, y(Eσ(x) and Eσ(y) and x~σy and {e}(x) defined-*({e}(y)
defined and {e}(x) ~ζ{e}(y)). Now it is easy to prove that the inter-
pretation * from HAω to HAP, followed by this model, takes the type
a objects onto Eσ. That is, the total objects in Mσ are just Eσ.
Note carefully that the relation a~iσtζ)b is defined even if a or & is
not in E{σtζ); in that case the definition requires (according to our
conventions) that for x in Eσ, if {a}(x) is defined, so is {b}(x). Thus
the second part of the definition of M(σ>ζ) makes good sense. (To
understand the definition; consider a few examples at low types.) A
straightforward use of the recursion theorem (to get a model of
the recursion operator in HAP) shows that the Ma do indeed form
a model of HAP + (ext)*, when equality at higher types is inter-
preted by means of the relations ~ σ.

For the rest of this section, T will be HAω + ext). Let Ta be
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formed as before, by adding a constant a for a partial function
from integers to integers. We can form the theory HApa even
more naturally, letting a stand for a partial function (without cod-
ing). Ta has a natural interpretation in HAFa, which we denote by
* since it extends the old*. Next we relativize the model M to α, by
replacing {e}(x) by {e)-(x) throughout. Of course, now the inter-
pretation goes, not into HA, but back into HAωa (which is conser-
vative over HA.) Now we write erB to abbreviate (CB*)0)ir(e).

LEMMA 5.1. If T + ACv-B, then HAωaY-eτB for some e.

Proof. Suppose T + AC h- B. By Theorem 5.1, HAP proves
(E-±B)t(t) for some application term t; here E is a conjunction of
instances of ext. But E is equivalent to its realizability interpre-
tation, since E is negative. (To be precise: JS7* is negative, when
written with application terms. Such a formula is equivalent to its
interpretation.) Hence, for some term s, HAP proves E—*(βo(s)).
Next we note, by induction on the complexity of application terms
s, that there is for each term s a number e such that HAωa proves
that e plays the role of s in the model M (which is now relativized
to α, remember.) That is, the number which represents s in the
model does not depend on a. Hence (B%(s))M is just (B'l)M(e). Since
E% is provable, we have HAωa\-(Bi)M(e), that is, HAωa\-erB. This
proves the lemma.

LEMMA 5.2. (The analog of Lemma 4.1.) Fix an arithmetic A.
Then there is a set C of forcing conditions (definable in HAω) such
that HA°a 1 Vplq ^ pq lh- (erA -> A).

Proof. Take the same C as in Lemma 4.1. Moreover, take the
same numbers j B . Then we claim (i) and (ii) in the proof of Lemma
4.1 still hold, with the new meaning of realizability. For this only
one thing needs to be added to the proof of Lemma 4.1: we have
to check that these numbers belong to Mσ of the appropriate type,
i.e., that they are extensional. This is an easy induction, noting for
the basis case that only the values of a are used in the definitions
of the j B .

Now we are ready to solve Friedman's problem.

THEOREM 5.2. Let A be arithmetic. If HA(ϋ + AC + ext \~ A, then
HA^v-A.

Proof. Exactly as for Theorem 4.1, using our new extensional
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realizability: Fix A, with T + AC\-A, where as above T is HAωjr
extensionality. By Lemma 5.1, for some e, we have HAωa\-erA.
By Lemma 5.2, we can choose forcing conditions so that HAωa \-
Vplq ^ p(q IK (erA -> A)). By Theorem 2.1, HAω h- 3<?(tf iμ A). So, by
Lemma 2.1, HAω \- A. Since HAω is conservative over HA, HAv-A.
This completes the proof.

REMARKS. There are several other interesting models of HAΓ,
including the "effective operation" version of Platek's "hereditarily
consistent" functionals. In Platek's dissertation, the fundamental role
of partial functionals in recursion theory is made clear — it seems
an historical accident that total functionals have had the limelight.

6. Results for stronger theories* We first consider the ex-
tension of Goodman's theorem to the theory of species, and then
some Goodman-style theorems for Feferman's and Friedman's
theories.

THEOREM 6.1. HAS10 -f AC is conservative over HAS for arith-
metic theorems.

Proof. All we have to do is show that realizability and forcing
are sound for HASω. First, we extend the HRO model from HAω

to HASω. Species of type σ objects get interpreted as species of
numbers in HROσ; thus the HRO interpretation goes from HASω

to HAS. Now Troelstra has given a realizability for HAS in [12];
so we can write erA for er(A)HR0, where the realizability on the right
is Troelstra's. Again, (AC)HR0 is realized; the essential point here is
that the finite types in HRO are defined by self-realizing formulae.
And, as before, this realizability can be relativized to any partial
function a. We have already proved the soundness of forcing for
HASω; and now the proof can be completed exactly like the proof
of Theorem 4.1.

We next give Goodman-style theorems for Feferman's and
Friedman's theories. These theorems say that the axiom of depend-
ent choices does not enable us to prove any more arithmetic theorems
than we can prove without it. In [1], this result is applied to show
that certain of these theories are actually conservative over HA, a
result of some philosophical significance considering the vast amount
of mathematical practice that can be formalized in these systems.

Modulo the work on forcing and realizability which has already
been done for these systems in [2] and [3], these theorems are easy.
This is one of the main advantages of the present method of proof:
we use familiar tools instead of inventing a new one.
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We now discuss the extension of Goodman's theorem to Fried-
man's theories. A little care is necessary here: if we. delete DC
from Friedman's theories, we cannot prove the existence of any
functions, not even plus and times on the integers. The proper
result is as follows:

THEOREM 6.2. Let T be any of the intuίtίonistίc set theories
discussed in [3], except the weakest one B. If we delete DC from
T, but add back the axioms of HA, then no arithmetic theorems
are lost.

REMARK. Thus T can be Friedman's Tl9 T2 (which is essentially
My hill's CST), Γs, Γ4, Zermelo set theory, or intuitionistic ZF. The
theorem is true for B too, in view of the theorem of [1] that the
arithmetic theorems of J3 are exactly those of HA. The present
proof does not apply to 2? directly since we do not know that forc-
ing is sound for I?. The proof of [1] makes use of Goodman-style
theorems for Feferman's theories (see below) together with an in-
terpretation of B in Feferman's theories.

Proof. In [3] is proved that the axiom of extensionality can be
deleted from T without loss of arithmetic theorems (if certain
minor modifications are also made to the other axioms of T). We
can therefore assume that T is one of the nonextensional set theories
discussed in [3]. Then forcing and realizability are both sound for
T, as proved in [3]. The same proof shows the soundness of re-
alizability using functions resursive in a for Ta. Then the proof
goes through exactly as for Theorem 4.1.

Next we extend Goodman's theorem to certain theories in the
language of Feferman's systems. Our proof will work for any
theory T in this language, and any axiom of choice C, such that (i)
T proves C + T is realized, and (ii) forcing is sound for T. In [1]
we apply the theorem to an unconventional axiom of choice C, which
we can show is realized; this is an essential step in our proof that
1? is conservative over HA. From results of [2] discussed earlier
in this paper, we know for example that these conditions hold for
C = dependent choices and T = BEM + CA.

THEOREM 6.3. Let T be a theory in Feferman's language and
C an axiom of choice, such that conditions (i) and (ii) are satisfied.
Then T + C is conservative over T for arithmetic theorems.

Proof. There is an obstacle here, in that realizability for T is
not "recursive realizability'7; the formula erA has a variable e for
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an operation, not a number. Hence it is not clear how to define a
"relativized realizability", relative to a generic function a. There
are at least two ways around this obstacle, one of which is as fol-
lows. Let M be a model for T, constructed in the way that Fefer-
man's model in [5] or [2] is constructed, by using functions re-
cursive in a instead of recursive functions. It is not hard (except
in case T is EMN, in which case it is still possible) to formalize
this model in Ta, so that M\\-A is a formula of Ta, for each
formula A of Ta; all the free variables of Mh-A are number vari-
ables. (The details of this formalization are actually carried out in
[2].) Now M\\-eτA is a formula with a number variable e; and we
can use this formula in place of erA to carry out the argument for
Goodman's theorem. We have to check that Ta\-A implies
ΓαH(Af Ih A); this is done for T in place of Ta in [2], as mentioned;
the same proof works for Ta. Hence T + C\- A implies Taϊ-(M\=
erA). Also, since the integers of M are standard, we have T\-(A*-*
M\=A) for arithmetic A. Now the proof is straightforward: Sup-
pose T + Ch-A, with A arithmetic. Then 2V(M|= erA), for some
e; then T\-3p(p\h(M\= erA)), for forcing conditions C chosen to
make T\~ Vplq ^ p(q\\-(MN erA-± Mμ A)). Hence T\-lqq\\-(M\= A).
Since A is arithmetic we have 2V((Λf t= A) <-> A). Hence T\-lq(q\\-A).
Hence Tv-A, by Lemma 2.1. This completes the proof of the
theorem.

Open Problem. Is B + AC conservative over 2? for arithmetic
sentences? Here one must read AC as defined in this paper, that
is the axiom of choice at all finite types. It is known that the full
set-theoretic axiom of choice implies the law of the excluded middle
in B (see [1] for a general discussion of axioms of choice in intui-
tionistic theories). It is worth explaining why the technique of
Theorem 6.2 fails to solve the open problem. It is because we can-
not get rid of extensionality, as we can in the case of DC. In the
case of DC, we have the work of [3], where a model of B is given
in B minus extensionality, using sets of rank <ω + ω, with defined
relations of extensional equality. If we try to verify AC in this
model, we can apply AC to get a choice function, but there is no
guarantee that the choice function will be extensional. With DC,
this problem does not arise, since the function will have domain the
integers.
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