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Let X be a compact Hausdorff space and denote the
space of all real valued continuous functions on X by
C(X,R). With pointwise operations this space becomes a
linear space which we norm by defining || f||=sup,:x |f(%)|
whenever f€C(X,R). A subset 7 of C(X,R) is said to be
point separating if for any two distinct points x and v in
X there is an f in & with f(x) = f(y). Let Z[.Z] denote
the ring of all polynomials in elements of . which have
integral coefficients. Thus an element g of Z[ %] is an
element of C(X, R) with the special form

’I‘l Tk

q: Z e Z ajl ".jkfil"'fik

J1=0 J,=0
where the a’s are integers, the f’s belong to % and the 7’s
are nonnegative integers. Such ¢ are our integral poly-
nomials. If X is a subset of n-dimensional Euclidean space
and 5 is taken to be the set of » coordinate projections,
then the elements of Z[& ] are polynomials in the usual
sense.

The well known Stone-Weierstrass theorem states that the set
of all polynomials in elements of a point separating .& are dense
in C(X, R). When the coefficients of the polynomials are constrained
to be integers, the polynomials are no longer necessarily dense. The
functions which can be approximated by elements of Z[.# ] were
characterized by Hewitt ond Zuckerman [3] as follows.

Let B(X) denote the set of all ¢ in Z[.¥ ] with |lg|| <1 and set

JX)={xreX:qx)=0 for all geBX)}.
Then their result reads as follows.
THEOREM 1. Amn element feC(X, R) is approximable by elements
of Z[.Z] if and only if
(*) fz) = q(@), v e J(X)
for some q in Z[.7 ].
In this paper we establish two main results. The first is a

version of Theorem 1 with approximation in L, norms instead of
the uniform norm. In the classical case, where X is a subset of
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54 LE BARON 0. FERGUSON

the real line and & consists of the identity function, the “inter-
polatory” condition () no longer enters but a restriction on the “size”
of X does. See the remarks following Theorem 2. The second re-
sult concerns the case where X is a product of subsets {X,};., of
the real line and & is taken to be the set of coordinate projec-
tions. In this case

J(I Xa) =11 J(X3) .

See Theorem 6. Special cases of this result have been treated in
Hastad [2] and Hewitt and Zuckerman [3].

It is possible to use Theorem 1 to obtain a result on approxi-
mation in L, norms by polynomials with integral coefficients. Sup-
pose that X is compact Hausdorff and g is a finite regular positive
Borel measure on X. We denote the space of real valued pth power
integrable functions (1 < p < <) on X by L, ().

THEOREM 2. With the above notation, 1f J(X) is a p-null set,
then every f in L,(t) is approximable by elements of Z[.F].

Before giving the proof we note that the hypothesis that J(X)
be f+-null is satisfied in many interesting cases. If X C R, then we
define its transfinite diameter d(X) by

d(X) = lim sup ( I 1z — z;))=v .

2g500n2p € X 154,55

For a discussion of transfinite diameter and its properties, see Tsuji
[5]. It can be shown (ef. Ferguson [1]) that if Xc R and d(X) < 1,
then J(X) is finite, hence in the case where u is Lebesgue measure
and d(X) < 1, the hypothesis is satisfied. The transfinite diameter
of an interval is 1/4 of its length, hence the hypothesis is satisfied
whenever X is an interval length less than 4 and g is Lebesgue
measure.

Proof of Theorem 2. As a well known consequence of Lusin’s
theorem we know that C(X, R) is dense in L,(#), hence, we assume
without loss of generality that f is continuous. By the (outer) re-
gularity of ¢ there are open sets

V.oV,o---DJ

such that p(V,) < 1/n, all », hence (N V,) = 0. For each n there
is by Urysohn’s lemma a +r, in C(X, R) satisfying

0=y, =1,
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supp v, C V., ,
¥, =1 on J.

Thus -, — 0 off N V,, hence almost everywhere. Setting @, =1 — 4,
we have @, — 1 almost everywhere, hence @,f — f almost every-
where. By Theorem 1, for each n there exists a sequence g, ., in
Z[#] such that

Qo — Pouf uniformly, m — co .

It follows that gq, , — f almost everywhere and that for sufficiently
large 7, |¢..| <|f]l +1. By the Lebesgue dominated convergence
theorem ¢, ,— f in L,-norm.

In Theorems 1 and 2 we see the crucial role which the set J(X)
plays in this approximation problem. In the special case where X
is a product of subsets of the real line, we can write J(X) as the
product of the J’s of the corresponding factors. Since the proof is
long, we break it up into several stages of increasing generality.

The following result is a strengthening of Hewitt and Zucker-
man [3, Thm. 6.7] and Hastad [2, Thm. 5] who prove it when the
factor spaces are intervals.

When X is a product of subsets of R, we take .# to be the
family of coordinate projections. Thus if

X =11 X,
i1
then
F o=y, -, T}
where 7,1 <1 < n, is given by
T (g, oy T) = X; -

For an arbitrary infinite product X = [];., X;, we let & = {m}ic:
where 7, sends each x in X into its Mth coordinate. Thus, at least
in the finite case, the elements of Z[%# | are the usual polynomials
in » variables with integral coefficients.

THEOREM 3. Let n be a positive integer and X, ---, X, be
compact subsets of R, each with transfinite diameter d(X,) < 1. We
let X =TI~ X, and define F as above. Then

JA1 X) = 10 J(x)
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where each J(X,) is defined by taking the corresponding family &
to consist simply of the identity function.

Proof. We first need to know that for each ¢ (1 £7 =< mn) there
is a polynomial ¢ in a single variable with integral coefficients
(i.e., ¢¥ e Z[t]) such that |[q“|x, = sup,cx, |¢"(#)] <1 and for ¢ in
X, ¢t) =0 if and only if teJ(X,). We can see this as follows.
If B(X) = {0} (actually impossible here) then take ¢ = 0. Other-
wise let 0% ¢q,€ B(X). Then ¢, has at most finitely many zeros and
for each of the elements ¢, ---,¢, of (Z,NX)\J(X,) (where Z,
denotes the set of zeros of q,), if such there be, let ¢, ---, ¢+, be
elements of B(X) with ¢,..(t) =0 A =<+=<k). Then for a large
enough positive even integer m we can take ¢ to be the polynomial

qrt QR

We remark that ¢ = 0 although we will not need this fact.
Sinee each (¢*“-7,) e B(X) we have

(1) JX)c) {2 e X: @ -m)(w) = 0} = [T JX) .

If some J(X,) is void, then by (1) so is J(X) and then theorem
holds. We therefore suppose that all J(X,) are nonvoid.

To establish the reverse inclusion in (1) we shall prove that if
feCX, R) and f is approximable on X by elements of Z[.# ], then
f can be interpolated on TI%,J(X;) by an element of Z[#]. The
reverse inclusion in (1) is then a consequence of Theorem 1 as fol-
lows. We suppose that

ve| I Jx) WD

and derive a contradiction. Let vy be any transcendental real number.
Clearly there exists a @ in C(X, R) with @(J(X))c{0} and o(y) = 7.
Then by Theorem 1, ¢ is approximable on X; hence, by what we
are going to prove @ is interpolable on JI%,J(X,). This is a con-
tradiction since y e [[%, J(X,) and q(y) is therefore algebraic for all
q in Z[F].

Now let f be an element of C(X, R) which is approximable on
X. We will be done once we show that f is interpolated on
TI7., J(X,) by an element of Z[#]. Forl<i<un let a, = |inf X,
B: = |sup X;| and

J(Xi) = {ui,lr ] ’u’i,ri} .

(As we have mentioned before, the sets J(X,) are finite since
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d(X,) <1 by hypothesis.) Let
Y= maX{l, ay, 181’ cecy, Xy, 18%}

and let ¢ be any positive number. Since f is approximable there
exists a polynomial q., with integral coefficients, in the functions
7T, -+, T, such that

Nf—al <e.
Thus for every point (u,,;, « -, %,;,) in [1i, J(X;) we have
(2) If(ul,a'p Tty un,j,,) - qe(ul,a'p ) un»i“)l <e.

Let A, --¢, N, be any n» nonnegative integers. If in (2) we multiply
through by wui:;, ---, ui»; and sum over all possible value of j, we
have

71 0
JZ_;I' o jz_aluéljl v uf»?j«,, f(ulyjp Tty u"mjﬂ,)
1= n=
(3) S <& 2 2
__‘2 e E uflil e uﬂ?iﬂqs(uly:ﬁ’ tt umiﬂ,) < 8'\/2“_"“‘_ S SR P

Ji=1 Ip=1

We claim that the second sum in (8) is an integer. Indeed, for
each 7+ (1 =4 =< n), the set {u;, -, u;,} = J(X;) = Jy(X,) where
Jo(X,) is the union of all complete sets of conjugate algebraic in-
tegers which lie completely in X;. See Ferguson [1] for the last
equality. The minimal polynomial of each conjugate set has integral
coefficients; hence the entire set Jy(X,) is the set of roots of a monic
polynomial with integral coefficients. Thus the elementary sym-

metric polynomials in {u,,, ---, %, .} are integers. Notice that each
sum

Tn
(4 ) ‘Zl uftnian(ul,ip ) un,i”)

in=

can be viewed as a symmetric polynomial in the variables
{Wnsy *++y U} With coefficients in Zfuw,;, -*-, oy, . By the
standard theorem on symmetric polynomials (cf, Jacobson [4, Thm.
9, p.109]), it can be written as a polynomial in the elementary sym-
metric polynomials of {u,,, -, %,,,} with coefficients in Z[u,;, ---,
%n_yj,_,]- Since, as we have seen, these elementary symmetric poly-
nomials are integers, it is clear that the sum in (4) is of the form
9y, *+*, Uny,j,_,) Where ¢’ is a polynomial with integral coefficients.
Proceeding by induction we see that the entire second sum in (3) is
an integer, as claimed. Next notice that the first sum in (3) is in-
dependent of ¢ hence is a limit of a sequence of integers, hence an
integer itself. If we take ¢ to be small enough to make the right
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hand side of (8) less than unity, the two sums in (8) will be equal.
Thus setting

¢ — 1

27"1+"‘+Tn"'"/r1 e P,

forces

71 72 Tn
( 5 ) jz—llufljlg‘z—ll e jz—ll uéfzjz e u’z‘nin(f(ul,ip ) u'n,i»n,)
1= 2= n=

—Qs(ul,.ﬁy ) u'n,j,,,))} =0

for 0 sn,=r—1 (1 <Li1<n). Now we view (5) as a system of
equations where the “unknowns” are the quantities within the braces
and the coefficients are ;. The wu,; (1 <j, <) are distinet by
the way they were defined and det(ui;,) 1 =7, <7,0 =M = 7,—1)
is a Vandermonde determinant, hence nonzero. It follows that the
quantities within the braces are all zero. Repeating this argument
n — 1 times, we obtain

f(u’l,ilr Tty un,in) = q£<u1,jl; T un,in)

for all (u,j, -, %;,) in 15, J(X)).

This theorem can be strengthened in two ways. We will first
relax the condition that d(X,) <1, all ©. Then we will also allow
the factor spaces to be infinite in number. We need the following
generalization of Hastad [2, Thm. 7] to infinite dimensions. It
may be of interest in its own right.

THEOREM 4. Let {X,};c, be a family of compact subsets of R
with d(X;) =1 for all ved and set X = [[;e.X,. We define the
projections {T;};.4 and the family & as above. Then J(X) =X,
hence an element of C(X, R) is approximable if and only if it
already lies in Z[.F ].

Proof. Suppose that ¢e B(X). Then ¢ is a polynomial in only
finitely many =x,, say n,, -+, 7;,. We must prove that ¢ =0. We
proceed by induction on n. If n =1 then ¢ is an element of Z[x,]
with |lql| x, <L As we can see in Ferguson [1], since d(X;) =1 we
have ¢ =0 on X;. For » >1 we assume that ¢ # 0 and derive a
contradiction. Write

q@) = ¢.(T)xL, + Qus(B)xL - - +qo(T)

where % is a generic element of TI!Z X,, ;€ Z[xy, - -+, 21, ,]\(0}
(0 <7 <m) and =, is a generic element of X, . For a fixed %, q is
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an element of Z[x;] with uniform norm <1; hence its leading
coeflicient q,(%) satisfies |¢,.(@)| < 1. Indeed, if not then we could
divide ¢ by its leading coefficient and thereby obtain a monic poly-
nomial on X; with uniform norm <1, but this contradicts d(X;,)=1.
Thus ||¢,]lu*-1x, <1 and by the induction hypothesis ¢, = 0 which

i=1"4;

is a contradiction.

After the following, we have established the conclusion of
Theorem 3 for all possible values of the d(X,). Here we use that
J(X)) = X; if d(X;) = 1. This result generalizes Hastad [2, Thm. 6].
The present method of proof is different from his.

THEOREM 5. If in Theorem 3 we relax the hypothesis d(X;)<1,
all 1, to d(X,) < 1 for at least ome i, then the conclusion still holds.

Proof. Let X = ]1, X, and T e X\I[2, J(X,). Then there exists
1, such that %, ¢ J(X;). Also d(X;) <1l since d(X;) =1 implies
J(X,) = X,. Without loss of generality we assume that 4, = 1. Since
d(X,) < 1 there exists ¢ in Z[t] with |[g]ly, <1 and J(X,) = Z,N X,
which can be established as in the beginning of the proof of
Theorem 3. Then ||¢-7,|[x <1 and (¢-7)(&) # 0 which shows that
FeJ(X). Thus we have established that

11 J(X) > J(X) .
For the reverse inclusion let ¢e Z[.% | with |lq|ly < 1. Without
loss of generality we assume that
d(X,) <1 115k
and
dX,) =1 E+DH=1=n.

Then as we have seen before, J(X,) is finite for 1 <+ <k and we
can write

JX) = {uy, -, ui,frz} .

The elementary symmetric polynomials for the elements of J(X,)
(1 £1i<k)are integers, as we saw in the proof of Theorem 3.
Form the polynomial

71 Tk
( * ) Z Tt Z q?‘l(ul,jly Ty ulc,jhy Lpt1y * "7y ‘/X;’IL) .

Ji1=1 Jr=1

For a sufficiently large positive integer [, this polynomial will have
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uniform norm <1 on X since {|¢|ly <1. For each i(1 <¢=<k) it is
clearly a symmetric polynomial in {u,,, ---, %;,} hence by the same
induection argument as in the proof of Theorem 3 it is actually a

polynomial § in Z[x.s, ---, z,]. But
Iall g L <t
i=k+1

hence by Theorem 4 we have § = 0. Since every summand in (*) is
nonnegative, this implies that

q(ulyjl, ) ’u’k,ik’ Ltiy *°°y x'n) =0

for every possible choice of j, ---, 7, and %44y, - -+, ®,. Thus
k n %
J(X)D J;[l J(X,) % ¢=1711 X, = il':[l J(X,)

where the last equality follows from the fact that d(X,) = 1 implies
J(X,) = X,.

The following generalizes Hewitt and Zuckerman [3, Thm. 6.8]
who proved it when the factor spaces are intervals of length <4.
Our proof is a modification of theirs.

THEOREM 6. Let {X;},.4 be a family of compact subsets of R
and define F as above. Then

(1) JOIL X)) = 11 J(X) -

Proof. Let X =T1[:..X; and J, =J(X;), »e 4. Suppose first that
some .J, is empty, say for » = X. Then as at the beginning of the
proof of Theorem 3, it is easy to see that there is a ¢ in Z][t] such
that |{gllx»<1 and ¢ >0 on X3. Then (¢-7n)eZ[F ] |lg-7n7llx <1
and (¢-7y) > 0 on X which shows that both sides of (1) are empty
hence equal. Thus we can assume that every J, is nonvoid. Select
an element u, from each J,.

Given a finite subset @ of A4, let L, be the set of all x in X
such that z; = ¢, for v ¢ @. Let K, = LoN(I11c4 ).

Suppose that fe C(X, R) and f is approximable on X. Then for
every ¢ > 0 there is a [q. in Z[. ] such that ||g. — fllx <e. Let
A, be the set of indices of the variables occurring in q.. Let @ be
any finite subset of 4 and S' =@ U 4,. We define a function f’ in
the variables {z;};cs as follows. For 2’ in X, = 7,.:X; let f/(x")=
f(x) where z; = x) if xe® and z, = u;, if A¢®@. Write S={\, ---,
Ny o+, N} Where d(X;) <1 for 1<i=<n and d(X;)=1 for
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(n +1)<t1=<k. As in the proof of Theorem 3, we set

J(Xl,;) = {ui,la Tty ui,ri} 1 é 1 é 7.
Continuing as in that proof we have
lzu’flfl o ujbninf,(ul,ily ) unyi,,,,: Loty * ' xk)
(*> '—Z ufljl ot u;nj,nq;(ul,jp oty Uniyy Tntry * 0 0y xk)l

< efylx+"'+1n/)~1 e,

where ,4,, -+, ;, are generic elements of X, ., ---, X, (respective-
ly), the A,’s are arbitrary nonnegative integers and the summations
are over all possible j,’s as before. By essentially the same induec-
tion argument about symmetric polynomials as before, we see that
the second sum in (*) is an element of Z[x,., ---, 2,], say §.. For
all sufficiently small ¢, if ¢! and §. satisfy (*), then the correspond-

ing elements ¢, and 55’ of Z[x,sy, -+, 2} satisfy
e —ql <1

where the norm is taken over X = [[%.ui: X;,- By Theorem 4,
J(X)=X hence ¢ — ' =0 on X. Thus the first sum in (*) equals
the second sum for any choice of z,4,, ---, x, and sufficiently small
¢. Continuing the argument as in the proof of Theorem 3, we
finally conclude that

k k
f=q on HJIX)X I X,
ie.,

fl=q on I J;

A€ES
since X;, = J;, (m + 1) =+ =<k. Thus
J@) = q.(x) xe K

and, in particular, f is interpolated on K,.

We claim that K,cJ(X). Indeed, if not, then there is a point
y in K)\J(X). Let v be any transcendental number. There is an
element @ of C(X, R)with @(y) = v and @(J(X)) = {0}, by Tietze’s
extension theorem. Such a @ is approximable by Theorem 1. By
the above paragraph, ¢ is interpolated by an element of Z[% ] on
K, but this is a contradiction since ¢(y) is an algebraic number for
every q in Z[5 |. This contradiction establishes the claim.

Thus we have

ILJ; = (UK C J(X)
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where the union is taken over all finite subsets @ of 4. The re-
verse inclusion is easily established as in the proof of the previous
theorem.
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