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EXTENSION OF ACTIONS ON STIEFEL MANIFOLDS

IsABEL DoOTTI DE MIATELLO

It is natural to ask for examples of r-biaxial actions
in the unitary and simplectic case which do not come from
the orthogonal case. Here we provide examples of such
actions.

Introduction. Let us consider the left translation action of
Un)(Sp(n)) on the Stiefel manifold U(n + k + 2)/U(n + k) (Sp(n +
k + 2)/Sp(n + k)), k nonnegative integer, n = 2.

The main result to be proved here is that the above action can
not be extended to a biaxial O@2n)(U(2n)) action. The proof uses
strongly the correspondence between U(n)(Sp(n)) m-biaxial manifolds
with orbit space diffeomorphic to a disk and framed submanifolds
of the sphere.

The main references for this article are the book Introduction
to Compact Transformation Groups (Bredon {3]) for the general theory
of groups actions and the mimeographed notes (Bredon [4]) Biaxial
Actions of the Classical Groups for the classification of such actions
and characterization of restrictions of m-biaxial manifolds.

1. Preparatory material. Let G be a compact Lie group and
0: G — GIV) be a representation of G on the real vector space V.
By a G-manifold “modeled on ¢” we mean a smooth G manifold
such that each orbit in M has an open invariant neighborhood which
is equivariantly diffeomorphic to an open invariant set in the
representation space V of o.

Let d = 1,2 4. In these three cases we let G¢ stand for O(n),
Umn) or Sp(n). The standard representation of G¢ on R™ will be
denoted by ¢, and the trivial real k-dimensional representation by
0.,. A G-manifold M is modeled on 20, +6, k<0 if M x R7* is
modeled on 20,(G¢ acts trivially on R7%).

DEFINITION 1.1. A G¢ manifold M, n = 2, will be called biaxial
if it is modeled on the representation 20, + 6,. It is not hard to
see that a G¢ manifold is biaxial iff the following four conditions
hold:

1. The principal orbit type is G¢/GZ_,. The other orbit types
(if any) are G¢/G:_, and fixed points (if any).

2. The representation of G¢ about a fixed point is 20, + 6,.

3. The slice representation of G¢_, on the normal space to an
orbit at a point with isotropy group Gi_, is ¢, ; + Oriars-
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4. The slice representation of G¢_, normal to a principal orbit
i Oriasse

Suppose now that K is a closed subgroup of G, G a compact
Lie group, M a G-manifold and M, the set of points on orbits of
type G/K. Under this hypothesis it is proved in Bredon [3] that
the orbit map M, — M)/G is a fiber bundle projection with fiber
G/K and structure group N(K)/K.

DEFINITION 1.2. A biaxial manifold M is called =-biaxial if its
bundle of principal orbits is trivial.

Let G¢ act on R x R via twice the standard representation.
The orbit map =z;: R X R — R x R*/G{ induces a functional
structure on the orbit space, (i.e., a function f on an open set UC
R x R*™/GE to R is smooth iff fom, m;%(U)— R is smooth). The
following theorem is proved in Bredon [4].

THEOREM 1.1. The orbit space R X R*"|GE, with the functional
structure induced from w, s diffeomorphic to the subset K(d) of
R x R comsisting of those points (y,a,b,c,d, e)e R X R*" such
that y = (a® + b* + ¢® + d?, )V* (the functional structure on K(d)
being the induced one from R X R**Y). The map that induces the
diffeomorphism 1is

T, R X R — R X R
(w, v) — ((wf + ol Juf — |v], 2{u, v)) .

Notice that K(d) is a positive solid cone, diffeomorphic outside the
origin to the half space R+ x R+,

2. Complex and quaternionic Stiefel manifolds. We shall
now apply the results of the preceding section to the unitary and
simplectic groups acting on the Stiefel manifold V, . 1:15:(C), Vuipieo(@)
where V,i4402(C) = Uln +k + 2)/Un + k), Virreeo(Q) = So(n +Ek+2)/
Sp(n + k). By Un)c Umn + k + 2)(Sp(n) C Sp(n + k + 2)) we will
denote the standard embedding of U(n) (Sp(n)) into Uln + k + 2)
(Sp(n + k + 2)), and by

Un +k+2) . Spn+k + 2)
) e w <S W Py )

the restriction to U(n)c Un + k + 2)(Sp(n) C Sp(n + k + 2)) of the
action given by left multiplication.

THEOREM 2.1. The Stiefel manifold V,i4re.(CHV 1110.(@)) 18 a
m-biaxial U(n)(Sp(n)) manifold.
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Proof. Let us observe that the U(n) manifold Un + k + 2)/
U(n + k) is an invariant submanifold of C* x C* x C*** x C*** with
the representation 20, + 0,..5, the submanifold being

Visrrr2(C) = {(vy, 0, wy, wy) €C™ x C™ x C** x C*H/
{7)1|2 + !wllz = [0212 + Iwzlz =1
and
<vb v2>c + <w1y w2>c = O} .

The isotropy subgroup of U(n) at (v, v,, w,, w,) is U — 1) if dim
{v,v}=1, 1=0,1,2. Since V,i+:,(C) contains elements that
satisfy any of the above conditions, the first condition of Definition
1.1 is satisfied. Using the implicit function theorem it is not hard
to see that the tangent space to V,i1:..(C) at a fixed point, say
0, 0, w, w,) is U(n) equivalent (as U(n) modules) to C™ x C™ X
R#+ the U(n) action on C" x C* x R*+ given by 20, + 04,
Similar arguments apply to the slice representations. Since V,i;4..(C)
contains a principal orbit of C* x C* x C*** x C*+*, its bundle of
principal orbits is a subbundle of that of €™ x C* x C**? x C*+*
which is trivial (Theorem 1.1). Therefore Un + k + 2)/U(n + k) is
a w-biaxial U(n) manifold. The proof in the simplectic case is
completely analogous.

All the proofs in this section will be carried out for the unitary
case since the simplectic case can be dealt with in a similar way.

Suppose that 0: G X M — M is a smooth action of a Lie group
G on a smooth manifold M. The orbit map n: M — M/G induces a
functional structure on M/G which we call the induced functional
structure. Thus a function f on an open set UcC M/G to R is called
smooth iff for: 7z Y(U) — R is smooth. From Theorem 1.1 it follows
that the orbit space of a biaxial manifold with the induced func-
tional structure is a smooth manifold except at the fixed point set.

The next theorem characterizes the orbit space of the U(n)
(Sp(n)) action on V,.1i09(C) (Virpies(Q))-

Let X(C)(X(Q)) denote the subspace of C**? x C*¥QF+* X Q*+?)
consisting of all points (w,, w,) such that, {w,? <1, |w,*<1 and
(1 - !wllz)(l - |w2]2) - K’wl, 'w2> lz = 0.

THEOREM 2.2. The orbit space of the Un)Sp(n)) action on
Virwre,(C) (Vs (@) 15 diffeomorphic to X(C)YX(Q)). (The func-
tional structure on X(C)X(Q)) being the restriction of the C* one
on R2k+4 >< RZk+4(R4k—E-S X R4k-{-8)')

Proof. Clearly, the map ¢: V,,1..(C) — X(C), ¢(v,, v, wy, w,) =
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(w,, w,) induces a one to one morphism of functional structures, ¢:
Voirir2.(C)/Um) — X(C). To prove that ¢ is onto let (w, w,) be an
element of X(C), then by Theorem 1.1 there exist (v, v,)eC* x C~"
such that

(1) (ol + 10l =2—(w] + |wl)

(i) [wf + [0 = |w|* — [w,[*

(i) 2{vy, vy = — 2{w,, w,).
But the above conditions imply that the element (v, v, w, w.)
belongs t0 V,..::.(C) and hence ¢ is surjective. Since in C*** X
C*+? the C= functional structure is the same as the one induced
from the projection p,:C" x C* X C*+* x C*+* — C*** x C**? the
theorem follows.

Note that the fixed point set of the U(n) action on V, ;:,.(C)
is diffeomorphic to U(k + 2)/U(k) and the image under ¢ is the set

2(C) = {(w,, w,) e C** x Ck+2/<w1, wyy = 0, lw,| = |w,| = 1} .
PROPOSITION 2.1. The subspace X(C)X(Q)) s contractible.

Proof. It is not hard to check that the function f: D*'* —
Ck+2 x C** given by

(\/ l+1/1+4ax \/ 1+1/1+4ay>a,¢0

S, v) =
(@, ¥) a=0

where a denotes the real number |{z, )| — |||y /*/(|x]® + |y ?)* is
a homeomorphism onto X(C).

3. The pullback construction. The main result of the theory
of m-biaxial actions (Bredon [4]) gives a one to one correspondence
between GZ m-biaxial manifolds with orbit space diffeomorphic to a
fixed manifold X and framed cobordism classes of framed submani-
folds of 60X cobounding the fixed point set. As a consequence we
have that to U(n): Un + k + 2)/U(n + k) corresponds [V*#+3, & ]
where [V*** & ] denotes the framed cobordism class of a framed
submanifold of d(X(C)) cobounding 3(C).

Our objective now is to characterize V**° and .&#.

Let t: C*** x C*** 5 R x R x C

T(w;, wy) = (2 — (Jw, > + |w, ), |w, [P — {w, ]}, —2{w,, wy)) .

It is easy to see that 7 is transverse regular to zero therefore
there exists a neighborhood about (w,, w,) e X(C) diffeomorphic to
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Ux(RxRxC), Uopen in 2(C), where t is just the projection on
the second factor. Now X(C) = t7(K(2)) where K(2) is the image
of 7 C*X C* >R X RxC (§1), so in X(C), about (w,, w,) € 3(C) we
have a neighborhood diffeomorphic to U X K(2) where 7 is just the
projection.

PrOPOSITION 3.1. The map 7:0X — d(K(2)) 18 transverse regular
to R*(1, 1, 0).

Proof. Transverse regularity is clear at zero so we may confine
our attention to points (w, w,) such that |w,* <1, |w,*=1 and
{w,, w,y = 0. For these points we observe that

costsint )
—sintcost

7:(8) = (w,, wz)(

costisint
—esintcost

7o(t) = (w,, w2)<

are curves in 0X such that the tangent vectors to zov, 1 =1, 2 at
t = 0 span the normal space at z(w, w,).

We will denote by V*+%, the inverse image under = of R*(1, 1, 0).
Note that

V& = {(w,, wy) e C** x C*¥|lw, P < 1,
<’w1, w2> = 0}, oVt = 2.

It follows from Proposition 8.1 that V**° is a submanifold of
0X with trivial normal bundle.

Let &, denote the standard framing of R*(1, 1,0) in 3(K(2)),
F,={X,, X3}, X R*(1,1,0) > RXRXC, i=1,2, X(a, a, 0)=(0, 0, 1),
X(a, a, 0) = (0,0, %) and let &% be the pullback by z of &7, i.e.,
dt)}(F ) = F,. The pullback .# consists of smooth functions

Y Vi CR x CF = 1,2

__ (=D
Y(w, w,) = 20 + [w.P) (ws, w,)

__ (=1 L
Y.(w, w,) = 20 + [w,]) (1w,, —rw,) .

It is not hard to see that Y,(w,, w,) is perpendicular to the tangent
space of V*+° at the point (w, w,). Thus .&# defines a framing of
V#+5 (after dividing Y, by || Y;|]). Now it remains only to show
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that (V*+° &) is the framed submanifold of 4X cobounding X(C)
that corresponds to U(n): Umn + k + 2)/U(n + k).

By an analogous argument to the one in §9 of Bredon [2] it
suffices to prove that the following diagram

VatrinaC) ZC™ x C

lsﬁ l%g

C xS RxRxC

is a pullback diagram in the differential category. Here ¢ stands
for projection on the last two coordinates and 7, is the map defined
in §1. Clearly V,.;:..(C) is a pullback in the topological sense.
Since the derivative of 7, is surjective except at the origin and
is transverse regular to zero, the map 7, X 7 is transverse regular
to the diagonal. Hence the above diagram is a pullback diagram in
the differential category.

Let M be an O(2n) biaxial manifold. The restriction of o,,:
0@2n) — GI(R*™ x R*™) to U(n)c O(@2n) is the standard representation
o, of Un). It follows that the restriction to U(n) of an O(2n)
biaxial manifold is a U(n) biaxial manifold.

The most important result about restrictions of 7-biaxial actions
is proved in Bredon [4]. The theorem relates characteristic mem-
branes (i.e., framed submanifolds of the boundary of the orbit space
cobounding the fixed point set) of the O(2n) action and its restric-
tion to U(n). The statement of the theorem is the following:

THEOREM 3.1. If M 4s an O(2n) w-biaxial manifold such that
(M*, M%) s diffeomorphic to (W, 3), and the characteristic mem-
brane is VC oW, then the restriction to U(n) gives ¢ U(n) =-
biaxial wmanifold with orbit space diffeomorphic to (W X I, %)
(corners straightened) and characteristic membrane VCoW Co(WxI)
with the framing extended by the positive mormal field of oW in
(W x I).

Now we apply the theorem to our particular case.

We proved (§2) that (Un + &k + 2))/U(n + k)/U(n), (Un +k+ 2)/
Uln + k))'™) was diffeomorphic to (X(C), Z(C)).

Assume there exists a =w-biaxial O(2n) action on U(n + k + 2)/
Umn + k). Let us denote by Y the orbit space (Un + k + 2)/
U(n + k))/O(2n), with Z the fixed point set (Un + k + 2)/U(n + k))°*®
and with [V, %] the characteristic membrane of the extension.

Because of Theorem 3.1 we have that, after smoothing the
corners, (Y x I, Z) is the orbit space, and fixed point set of the
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restriction to U(n) of the O(2n) action. But, if the O(2n) action is
an extension of the original of U®w): Un + k + 2)/U(n + k) then
(Y x I, Z) is diffeomorphic to (X(C), F(C)). Moreover, the character-
istic membrane for U(n): Un + k + 2)/U(n + k) is frame cobordant
to a framed submanifold of 4(Y).

In the next section we will assume that Y is D**’, and we
will contradict the existence of extension by proving the impossi-
bility for V*+* of being frame cobordant to a submanifold of S**°,

4. Main theorem (complex case). This section contains the
statement and proof of the main result for U(n) acting on V., 41..(C).
We will study separately the cases k¥ = 0 and & = 2 because in those
cases V*+° ig g trivial disk bundle. Then %k even %k =4 and finally
I odd.

Case 1. k = 0.
PROPOSITION 4.1. The manifold V* 1s diffeomorphic to D*x S*.

Proof. Let oy denote the map
i D*x ST —— C* x C*
v(z, q) = (2Jq, q) .
It is not hard to see that .r gives the desired diffeomorphism.
In §8 we defined .»# (0X,2) as the set of framed cobordism

classes of framed submanifolds of 0X cobounding X¥(C). Now we
are going to define a function

Yirt 7 (60X, 3(C)) — [0X, S*] .

Let [W°® (G, G.)] be a framed submanifold of 06X cobounding
Y(C). To this [W? (G, G.)] we are going to associate a framed S°*
in 0X therefore an element of [0X, S*] (by the Thom-Pontryagin
construction). We consider the embedding

S L8 % 88 () — 56X

where «(g@) = (1,¢) and .r is the map of Proposition 4.1. The
framing of ea: S®->0X being Gy, G,, (dv)(1, g)(¢, 0) and N. Here N
denotes the pointing out normal vector to X(C) in W°.

Let us consider, now, the following framed S? in 6X. The embed-
ding v defined by v(q) = (0, ¢) and the framing by Z,(0, q) = (g, 0),
20, q) = (1g, 0), Z,0, @) = (g, 0), Z0, q) = (kq, 0). This framed S*
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in 0X defines an element [a] of [0X, S*] and it is not hard to see
that [a] = v.£[(V? (Y, Y.)]. After these considerations we are
ready to prove the main result for k = 0.

THEOREM 4.1. The action of Uln) on Uln + 2)/U(n) can not be
extended to a biaxial O(2n) action with orbit space diffeomorphic to
D,

Proof. Assume there exists a zm-biaxial action

Uln + 2) Un + 2)
0@m) > =) )

which extends the U(n) action on U + 2)/U(n) and with the
property (U(n + 2)/U(n))/O@2n) ~ D®. Then by the discussion in §3,
[V® (Y, Y,)] is frame cobordant to a submanifold of S®*CoX~S".
Then the element v,x[(V?, (Y, Y,))] is in the image of the suspension
homomorphism s: 7,(S®) — 7,(S*). We want to prove that this is
impossible. Let us consider the following diagram

m(S*)
w/  N\H
/ N

7(SO)) —L m(S¥)

Ts
7(S?)

where J is the Hopf-Whitehead homomorphism and H is the Hopf
invariant.

Since v,[V?, (Y,Y,)] = J(R]) where R(q) is right multiplication
by ¢, g€ S? we get a contradiction because HoS = 0 but z([R]) is
not.

Case 2. k= 2.
Let 7 and a denote the following maps
12 R*—> R*=R*X R"® i(x) = (0, x)
a: C*—C* o(z,, %9y %3, 24) = (zn %9y R, 24)’
Using the Cayley multiplication we define
¢6:D* X 8"— C* x C*
#(x, y) = (a((i)y), a(y)) -
The map ¢ is a diffeomorphism onto V*.
As in the case k = 0 we define

Yox: F (0X, 2) — [0X, S7]
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and with analogous proof we have that v,.([V" (Y, Y,)]) = J(R])
(R(x) right (Cayley) multiplication by %) ean not be in the image
of the suspension homomorphism. Therefore we have

THEOREM 4.2. The U(n) action on Uln + 4)/U(n + 2) can not be
extended to a biaxial O(2n) action with orbit space diffeomorphic to
D,

Case 3. k even, k= 4.
Let p: V#+5 - S*+3 be the projection on the second factor.

Note that when & is even we have a section

s: Szk-}—s 2415-}-4

S((zly oyttt R 2)) = ((22, — 2y, Eb _Zzy ot ')(zl, Ry 00y zk-l-z)) .

It is not hard to see that the map p: V*+ — S%+% ig 5 disk bundle
projection characterized by a generator of =.,.,(SOQ2k + 2)) ~ Z,.

THEOREM 4.3. The action of Un) on Un + k + 2)/Un + k), k
even k = 4 can not be extended to a biaxial O(2n) action with orbit
space diffeomorphic to D¥+8,

Proof. Assume there exists such an extension. Then (V#+°,
(Y, Y,) is frame cobordant to (V*+, (Y, V,)), where V#+ is a
framed submanifold of S*+°cC oX ~ S*+7,

Therefore the normal bundle of

8

Szk-m 2’4k+4 V47c+5 S4k+6

is represented by a generator of 7w, .(SO@k + 3)) which is Z, for
k even, k = 4 (Kervaire [11]). This contradicts the known fact (see
Haefliger [6]) that any S** embedded in S**+° is unknotted.

We observe that from the above proof and Theorem 11.2
(Bredon [4]) it follows that there does not exist, for » + k even,
n+ k=4 a biaxial O@n) action on V,.....(C) with orbit space
diffeomorphic to a disk.

Case 4. k odd.
This case follows easily from the even one.

COROLLARY 4.1. The action of Un) on Un + k + 2)/Un + k),
n =8, k odd can mot be extended to a biaxial O@n) action with
orbit space diffeomorphic to a disk.
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Proof. If Umn): Un + k + 2)/U(mn + k) were the restriction of
an O(2n) biaxial action then U(n —1): Un — 1+ (k + 1) + 2)/Un—
14 (5 + 1)) would be the restriction of an O(2n — 2) biaxial action,
but this is a contradiction because k& + 1 is even.

REMARK 1. In the preceding theorems we assumed that the
O(2n) biaxial extension had orbit space diffeomorphic to a disk. It
can be proved that this is no restriction. In fact, if U(n): Un +
k -+ 2)/U(n + k) is the restriction of a biaxial O(2n) action, U(n—1):
Un — 14+ (k+ 1)+ 2)/Umn —1+ (b+ 1) is the restriction of a
biaxial O@2n — 2) action, but since the orbit spaces of the U(n) and
U(n — 1) actions are disks we have that the orbit spaces of the
O(2n) and O@n — 2) actions are contractible. Following the same
kind of arguments as in Bredon [4], Chapter V we can prove that
the boundary of Uln — 1+ (b + 1) + 2)/Un — 1 + (k + 1))/0@2n — 2)
is simply connected, hence it is a disk. Therefore we get a con-
tradition.

REMARK 2. Since the classification theorem for SO(n) biaxial
actions is the same that the one for O(n), = > 8, in the preceding
theorems was proved that the U(n) action on V,,,.,.(C) can not be
extended to a biaxial SO(@2n) action. A natural question is the
following: Can the U(n) action on V,.,...(C) be extended to SO(2n)?
The next proposition answer almost completely the question.

PrOPOSITION 4.3. Given k, n, such that n* —5n > 4k + 4 the
Un) action on V,ip10.(C) can not be extended to SO(2n) (therefore
to O(2n)).

Proof. Suppose there exists such an extension and let x be a
fixed point for the U(n) action. Then the connected component of
the isotropy subgroup of =z, (SO(2n),)’, contains the maximal torus
of SO@2n). Let Z be the center of (SO(2n),)’, then

(80(@n),)" = (Nsoea(Z))" see Borel [2]

where Ny,..,(Z) denotes the normalizer of Z in SO(2n).

The center Z must be Z, (therefore x fixed) otherwise (SO(2n),)°
would be U(n) which is impossible by dimensional reasons.

Now, the tangential representation at x of SO(2n) must be
20,, + 0., because restricted to U(n) is 20, + 6,,., therefore the
principal orbit type is SO@2n)/SO@2n — 2). After these considera-
tions the biaxiality of the SO(2n) action follows from a theorem of
Hsiang (see Hsiang [8]), therefore a contradiction.
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5. Biaxial Sp(n) manifolds. Let us consider the left trans-
lation action of Sp(n)C Sp(n + k + 2) on the quaternionic Stiefel
manifold Sp(n + k + 2)/Sp(n + k). It is not hard to prove, using
the same kind of arguments as the ones we used to prove the
results of § 3, the following theorem.

THEOREM 5.1. Let
ok — {(w,, w,) € Qr+? % Qk+2/i,wllz <1 |wf =1, {w, w,y = 0}

F ={Y}i., Y. V¥t R¥+8 . ROE+S

1 2=1
_ T 1=2
Y (w,, wy) = (q,w,, qw,) q; = 4.
73 1=38
k 1=4.

Then, the cobordism class of the pair (V*+4 &) is the element
that corresponds (via Theorem 13.3, Bredon [4]) to the action of
Sp(n) on Sp(n + k + 2)/Sp(n + k).

Assume that the action of Sp(n) on Sp(n + k + 2)/Sp(n + k)
can be extended to a z-biaxial action of U(2n) such that the orbit
space Sp(n + k + 2)/Sp(n + k)/U(2n) is homeomorphic to D%+
Since we are dealing with biaxial actions, the fixed point sets of
the Sp(n) action and its extension to U(2n) are the same. Let
[(EfE+ )] denote the cobordism class of the framed submanifold
of S%+3 cobounding the fixed point set that corresponds to the
U(2n) action. Then, by the analog of Theorem 3.1, the restriction
to Sp(n) gives a Sp(n) n-biaxial manifold with orbit space diffeo-
morphic to D®+*° and characteristic membrane (Ef+* £,) where &,
is %, plus the restriction to E*t' of the standard framing of
Sek+13 — §8k+15 . Since we are assuming that the restriction to Sp(n)
is equivalent to the original action, we have that [(V**%, & )] =
[(E&+ 22)] (the brackets denote framed cobordism classes). Our
main objective is to show that the last equality gives us a contradic-
tion. We cannot use here the same kind of argument we used in
§4 for the U(n) case, because, even when V*®*+! ig still a disk
bundle over a sphere we do not have (at least for an infinite family
of k’s) nontrivial cross sections (see James [9], [10]).

Let (B Z,) be a connected framed submanifold of S*+* with
boundary oFE, diffeomorphic to Sp(k + 2)/Sp(k).

PROPOSITION 5.1. The pair (EF+, &) is frame cobordant to «
4k + 5 connected pair (H%*+ <).
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Proof. The technique for simplifying (F, ?fo) will be as to be
expected, that of framed spherical modifications as presented in
Haefliger {6] (Proposition 3.3).

Let a e 7, (E,), then the hypotheses of Haefliger [6] are:

(1) « is represented by an imbedded sphere s in int E,.

(2) s bounds an imbedded disk d in S*+“ such that dN E,=s
and f,|s points radially into d(Z, = {f.}..).

(8) the frame (f;, fi)|s extends to a partial normal frame on
d.

The proof of Proposition 3.3, Haefliger [6], shows that if these
hypotheses are satisfied (E, &, is frame cobordant to (X(E, f),
X(Z,) for some imbedding f: 87 x D%+ — F, representing a. As-
sume (F;+", 5%) is » — 1 connected, 0 < » <4k + 5. We will show
that hypotheses (1), (2) and (3) can be satisfied for all aex.(F,);
then will follow from Milnor [13] and Haefliger [6] that (E,, &, is
frame cobordant to a 4k + 4 connected manifold. In Kervaire and
Milnor [12], Kervaire and Milnor show how to kill the middle homo-
topy group when the boundary of the manifold is a homology
sphere. The same proof works here because of the fact that the
middle dimension homology of the boundary is zero, therefore the
proposition will follow.

Hypothesis (1) is a consequence of classical results of Whitney
together with the fact that E¥*“ is parallelizable.

Hypothesis (2) will follow if S%+* — Ef#+1 ig s-connnected. By
Lefschetz duality H,(S%+“ — E) ~ H¥*+4(S%+* E)~ Z. The 1l-con-
nectedness of S*+* — E. follows from the l-connectedness of S®+
by a general position argument (Milnor [14]). It is not hard to
check that H,/(S*** — E,) = 0 for 2 <1 < »; an application of the
Hurewiez theorem then shows that S%+“ — E, is r-connected.

Hypothesis (8) is trivially satisfied because the obstruction to
extending (f,, f)|s over d is represented by an element

5 € ﬂr( V8k+13~—r,2) .

Since 27 < 8% + 11 this group is zero (Browder [5]). Hence the
proposition follows.

Let (W, &) denote the framed cobordism between (V®+%, &)
and the 4k + 5 connected submanifold of S®%+* (Proposition 5.1)
(E8k+11, {//))

Applying the technique of framed spherical modifications to
(W, &) we may assume that the pair (W, 5#°) is 4k + 5 connected.
The obstruction to make it 4k + 6 connected is its signature and it
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is easy to see that it is a multiple of eight.

THEOREM 5.2. There exists a framed h-cobordism between
(V1 Z7Y and o framed submanifold of S+,

Proof. Assume sign (W) = 8y. It follows from the results of
Browder [5] that there exists a 2(2k + 8) — 1 connected z-manifold
M®+? with oM a homotopy sphere such the sign (M) =28y. Accord-
ing to Hirsch [1], M embeds in S®+*® and since M is a m-manifold,
M embeds in S¥+*® with normal frame .#,.

Let us consider M embedded in S®+*® x I with the property
M N (S*+% x {0})) = oM. The connected sum along the boundary
(Milnor and Kervaire [12]) give us a new framed submanifold
(W, 57), 57 = {h)i_, of S*%+% x I, which is 4k + 5 connected, has
signature zero and is a framed cobordism between V®+' and
E®+ug5M. It follows from Milnor [13] that 7,.,(WW) may be killed
by a sequence of spherical modifications on W associated with ele-
ments of 7,.(W) whose self intersection number is zero. That
hypothesis (3) of Proposition 3.3, Haefliger [6], is satisfied for all
such elements follows from the fact that the obstruction to extend-
ing h,|s, i =2, 83,4 over d is represented by &€ Tyie( Vigsos). But if

0: Wypro( Vigro) — Tas(SO4k + 6))

is the boundary homomorphism of the fibration SO(4k + 6) —

SOk + 9) — Vs then (&) corresponds to the normal bundle of s

according to Haefliger [6]; then by Lemma 20, Milnor [13], d(¢)=0.
According to Kervaire [11]

0 k even

Tas(SO4k + 9)) = 7k odd

and according to Paechter [16] 7,.16(Vites) =~ Z; then o is a mono-
morphism and & = 0. Therefore the spherical modifications can be

carried out on (W, 57) and we get a framed 4k + 6 connected
cobordism (that we will denote again by (W, 57)) between (Vek+n,
F) and (B, 2)4(0M, 7y |0M) = (E*+, &). It is not hard to
show that the homomorphisms

iyt Hypro VY — Ho (W)
Tyl H4k+7(E'8k+u) — H4k+7(W>

are isomorphisms; therefore W is an h-cobordism and the theorem
follows.
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We are ready now to prove the main theorem of this section.

THEOREM 5.3. The Sn(n) actton on Sp(n +k + 2)/Sp(n + k)
can not be extended to a m-biaxial U(2n) action with orbit space
diffeomorphic to a disk.

Proof. We know that if such an extension exists, we have a
framed h-cobordism between (V®+: &) and a framed submanifold
of S%+#, If we restrict # to S*+"C V™" we have an element
[a] € Typio( Vigrs,s) Where

a(X) = (=, 0)(ix, 0)(y=, 0)(kz, 0)) .
But then the element [a] is in the image of the homomorphism
2t Tarr(Virrs) = Taprol Viers,o)

which is impossible, because ¢.[a] is a generator of 7, (S**"). (Here
q = Viies — S** denotes the projection onto the last factor). Hence
we proved impossibility of such an extension.

REMARK. In Theorem 5.3 we assumed that the orbit space of
the U(2n) extension was a disk, but this is no restriction. The
proof is similar to the ortogonal case (§4).
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