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Suppose X and Y are Riemann surfaces which have the
open unit ball as universal covering surface. Let doy, doy
be the hyperbolic metric on X, Y, respectively. Given any
analytic function f: X — Y the principle of hyperbolic metric
asserts that (f*(doy)/dox)(p) =1 for each point p € X where
f*(doy) is the pull-back to X via f of the hyperbolic metric
on Y. Moreover, equality holds if and only if f is an (un-
branched, unlimited) covering of X onto Y. This paper has
two main objectives. The first is to study how the principle
of hyperbolic metric can be strengthened if we only consider
analytic functions which are not coverings. The second is
to investigate the set of all analytic coverings of X onto Y.

1. Notation and terminology. Throughout this paper, unless
the contrary is explicitly stated, X and Y will always denote
Riemann surfaces whose universal covering surface is the open unit
ball B. The set of all analytic funetions f: X — Y will be denoted
by A(X, Y). Often we will fix points peX,qgeY and consider
analytie functions f: (X, ») — (Y, q¢). This notion implies that f(p)=q.

We shall make free use of the theory of covering surfaces.
Tor example, the material in [3, pp. 27-44] or [15, Ch. 5] is sufficient
for our purposes. To say that f: X — Y is an analytic covering
projection will always mean that X is an (unbranched, unlimited)
covering surface of Y and f is an analytic function. Let C(X, Y)
denote the set of all analytic coverings f: X — Y; it is possible that
C(X, Y)is empty. N(X, Y)is the complement of C(X, Y) in A(X, Y).
One basic result we shall need is the following. Suppose f: X — 7Y,
9:Y—Z, and h: X — Z are analytic mappings of Riemann surfaces
such that gof=nh. Then if any two of these functions are coverings,
so is the third. In particular, the composition of coverings is again

a covering.
Given a Riemann surface X with the unit ball as universal

covering surface, there is a unique conformal metric doy = \x(2)|dz|
of constant curvature -4 on X called the hyperbolic metric. It is
defined on X by projecting the Poincaré hyperbolic metric on B onto
X by means of any analytic universal covering projection. For any
analytic function f: X — Y we will let f*(doy) denote the pull-back
to X via the function f of the hyperbolic metric on Y. Note that
if m:B-—X is an analytic universal covering projection, then
7*(doy) = dog. If ds, = p,(?)|dz| and ds, = p,(z)|dz| are two conformal

171



172 CARL DAVID MINDA

metrics on X, then the quotient ds,/ds, defines a funection on X.

The fundamental group of X with base point p will be denoted
by 7,(X, »). As is well-known each analytic function f: (X, ») — (Y, q)
induces a group homomorphism f,:7,(X, p) — 7,(Y, q) defined by
F«(Y]D) = [fov], where [v] ([fov]) denotes the homotopy class of the
closed path v(fo7v) based at n(q).

2. The principle of hyperbolic metric. Suppose f: X — Y is
an analytic function. The principle of hyperbolic metric asserts that

(1) L7 gy <1
doy

for each point pe X. We want to determine when equality holds
at a point. In order to do this it is necessary to recall the brief
proof of the principle of hyperbolic metric. Fix peX and set
qg = f(p). Let 7: (B, 0)— (X, p) and w: (B, 0)— (Y, q) be analytic
universal covering projections. Then there is a unique analytic
function f: (B, 0) — (B, 0) such that fox = wof. The inequality (1)
is equivalent to | f’(0)] <1 and equality holds in (1) if and only if
it holds in this inequality. Thus, equality holds if and only if f
is a rotation of B; that is, if and only if f: (B, 0)— (B,0) is an
analytic covering. From fom = wof we see that f is a covering if
and only if f is a covering. Therefore, in the principle of hyperbolic
metric we get equality at a point if and only if f is a covering. Of
course, if f is a covering, then equality holds at every point of X.

One question that we shall investigate is whether the inequality
(1) ean be improved if we restrict our attention to the class N(X, Y)
of analytic functions which are not coverings. To be more precise
we define a function 2: XX Y—[0, 1] by 2(p, q)=sup{f*(doy)/do(p):
feNX, Y), f(p) = q}. Our program is two-fold. First, we want
to investigate the behavior of the funetion 2. Unless X is simply
connected we shall see that 2 is pointwise strictly less than one.
We will also consider the possibility of uniform estimates of 2.
Secondly, we shall study the class C(X, Y) of all analytic coverings
of X onto Y. Generally, C(X, Y) is not a very large subset of
AX, Y).

For the special case X = Y and p = ¢ the function 2(p, p) was
first studied by Aumann and Carathéodory [4]. For an annulus the
actual value of Q2(p, p) was rather implicitly determined by Heins
[6] and Hervé [9]. A more explicit and more elementary determina-
tion of this constant and the extremal functions for an annulus was
given by Minda [16].

3. An improved version of the principle of hyperbolic metric.
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We begin by establishing an analog of Schwarz’ lemma.

ProrPoSITION 1. Suppose acB\{0} and 0 <4d < 1. Let & (a,d)
be the set of all analytic functions f: (B, 0) — (B, 0) which also satisfy
L fla)] £ dlal. Then

¢t = max{|f(0): fe Z(a, ) = LU0
1+ ]alo
Also, fe F(a, ) is extremal tf and only if f(z) = eh(e”z), where
0=—Arg a and h(z) = z(pt — 2)/(1 — pz).

Proof. First, note that we may assume a € (0, 1) and f(a) € |0, 1).
If this were not true, then simply consider e *f(e”“z), where = —
Arga and ¢ = Arg f(a). Now, fe Z(a, o) satisfies this normaliza-
tion if and only if there is an analytic function g: B — B with f(z)=
2¢(z) and 0 < g(a) < 6. In this case g(0) = f'(0). Let <%, be the set
of all such functions g, then g = max{|g(0)]:¢9e.<Z}. Now, it is
elementary to determine p¢. Since 0 < g(a) =< 6, the point g(0) must
lie in the closed hyperbolic ball with center g(a) and radius 1/2log
(1 + a)/d — a), which is the hyperbolic distance from 0 to a. This
hyperbolic ball is symmetric about the real axis and intersects the
real axis in the two points [g(a) — a)/[1 — ag(a)] and [g(a) + a]/
[1 + ag(a)]. The latter point is farther from the origin so

- a + ga) a—+0
0O = T = T w0

:;ﬂ_

Equality holds if and only if g(z) = (¢ — 2)/(1 — p¢z). This establishes
the proposition.

THEOREM 1. Let X and Y be Riemann surfaces and assumie
that X is not simply connected. Then the function 2 is pointwise
strictly less than one.

Proof. Fix analytic universal covering projections z: (B, 0) —
(X, ») and w: (B, 0)— (Y, q). Because X is not simply connected,
there is a point p € B\{0} with #(p) = p. We may assume that |D|
is minimal among all such points. Now, @ ({q}) is a discrete subset
of B so there are just finitely many points in w™'({g}) with modulus
strictly less than |p|. Hence, there is a constant 6, 0 < 6 < 1, such
that if ew™({q}) and |§| < |P]|, then actually |q| < 8|D|.

Consider any fe N(X, Y) with f(p) = ¢q. There is a unique ana-
IytiNc function f (B,0)— (B,0) such that fox =w®o-f. From
o(f(P)) = fx(D)) = f(p) we see that F(P)cw'({g)). Because f is not
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a covering, the function f is not a rotation of B. Hence, | f(®)] < |P|
by Schwarz’ lemma. The preceding paragraph implies that
|F(D)] < 6|5, where 6 is independent of the particular funetion f.
By Proposition 1 we have

7 Bl +8 _
10)] = i @<l

Hence,

f*(doy)
do. () =,
which gives Q2(p, ¢) < ¢. This establishes the theorem.

In the special case X = Y and p = ¢ this result is due to Aumann
and Carathéodory [4]. For this reason the number 2(p, ¢) will be
called the Auwmann-Carathéodory rigidity comstant. Actually, to
exactly recover the theorem of Aumann and Carathéodory it is
necessary to observe that every covering f: (X, p) — (X, p) must be
a conformal automorphism of X.

4, The modular spectrum of a Riemann surface. In this
section we recall some basic facts about the modular spectrum of a
Riemann surface which will be employed in later sections. For
details the reader is referred to the work of Huber [10], Marden,
Richards and Rodin [14] and Jenkins and Suita [11].

Let X be a Riemann surface. Given a closed curve v on X let
{v} be the clags of all closed curves on X which are freely homotopic
to v. The module Mx(v) of {v} is the greatest lower bound of the
set of all hyperbolic lengths of the curves in {v}. The modular
spectrum of X is the set of all nonnegative real numbers M;(7),
where v ranges over all closed curves on X which are not freely
homotopie to a point. A number M in the modular spectrum is
said to have finite multiplicity if there are only finitely many dis-
tinet free homotopy classes {7} with My(v) = M. X is said to have
a discrete modular spectrum if the modular spectrum is a discrete
subset of the real numbers. Finally, X has a finite modular spect-
rum if the modular spectrum is discrete and every nonzero element
of the spectrum has finite multiplicity.

There is an alternate way to express the modulus of a free
homotopy class which uses covering surfaces. Let {v} be a non-
trivial free homotopy class on X. Then {v} uniquely determines a
covering surface X(v) of X whose fundamental group is infinite
cyclic [14]. In fact, X(v) is conformally equivalent to the punctur-
ed ball B\{0} or to a proper annulus A = {z: 1/R < |z]| < R} for
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some R > 1 according as My(v) is zero or positive. If M,(v) > 0,
then we can take X(v) = A,, where R is uniquely determined by
Mx(v) =7%2 log R. Also, if My{v) >0, then there is a unique
curve v, in {y} whose hyperbolic length is equal to Mz(v). The curve
%, is the image of the unit circle if we represent X(v) as the an-
nulus A, [11]. When v is not freely homotopic to a point, M;(v) =0
if and only if v is retractable to an isolated pointlike boundary
element [14]. Such a closed curve is called a point-cycle. An iso-
lated pointlike boundary element is a point of the ideal boundary
which is isolated and has a neighborhood in X conformally equivalent
to a punctured disk. A surface X possesses a closed curve v with
My(v) > 0 except when X is conformally equivalent to B or B\{0}.

ProproSITION 2. Suppose X and Y are Riemann surfaces, v 18
a closed curve on X and fe AX,Y). Then My (fov) £ My(v). If
M (v) > 0, then equality holds if and only if f is a covering.

Pproof. The inequality is well-known ([10], [11], [14]); it is a
simple consequence of the principle of hyperbolic metric. Our interest
is in determining when equality holds. Since a covering preserves
the hyperbolic metric and {fov}={f<0: d € {7}}, it is clear that equality
holds if f is a covering. On the other hand, suppose equality holds
and My(v) > 0. We may assume that v is the unique curve in {7}
with minimal hyperbolic length. Then

Mfon s do=| 7rdon) = | dox = M) .

Since equality must hold throughout, we see that f*(deo,)/do; =1
on v so by the principle of hyperbolic metric f must be a covering.

Observe that the proof shows that if /: X — Y is a covering
and v, is the unique curve in {y} with hyperbolic length equal to
My(7), then fov, is the unique curve in {fov} with hyperbolic length
equal to M,(f-7).

5. Coverings of Riemann surfaces. We now investigate the
set C(X, Y) of all coverings of the Riemann surface X onto the
Riemann surface Y. We shall see that there are many analogies
between this set and the group . (X) of conformal automorphisms
of a Riemann surface. Since .7 (X)cC(X, X), many known results
concerning the group . (X) follow as corollaries of our work. We
shall not explicitly cite these corollaries.

THEOREM 2. Let X and Y be Riemann surfaces and assume X
has monabelian fundamental group. Given any sequence (f,)i-; of
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distinet functions in C(X, Y) and any point pe X, the sequence
(fu(P)3=, has no limit point in Y.

Proof. Suppose there were a sequence (f,)s.; of distinct functions
in C(X, Y) and a point pe X with f,(»)—>¢eY. By a result of
Komatu and Mori [12] we may even assume that (f,);-, converges
to an analytic function f: X — Y uniformly on every compact subset
of X. The uniformity of convergence is with respect to the hyper-
bolic distance. Let z: (B, 0) — (X, p) and w: (B, 0) — (Y, ¢) be analytic
universal covering projections. Take an open ball B centered at the
origin such that w|B is injective. We assume that f,(p) € w(B) for
all n. Let f,,:B—»B be the unique analytic function which satisfies
7.(0)e B and fyomr = wof,. Bach £, is a conformal automorphism of
B sinee it is a self-covering of B. Then (f,)3., converges uniformly

on compact subsets of B to a conformal automorphism f: (B, 0) —
(B, 0) which satisfies fow = wo f.

Let I'(4) be the group of cover transformations associated with
the covering #(®). Since f,I'C Af,, fT' c Af, the functions f,, f in-
duce group homomorphisms fF, f*: I — 4 defined by fiX(T)=
Fuo Tofat, f¥(T) = foTof. Consequently, fi(T) = (Fuof ") o £*(T)e
( Fofr Yy, Now, f%of ~t converges to the identity funetion uniformly
on compact subsets of B, so it follows that f.*(T)— F*(T) uniformly
on compact subsets of B for each TeB. But the group 4 is dis-
crete, so there is an integer n(T) such that f¥(T) = f*(T) for all
n = n(T). This implies that (f'of,)oT = To(f "o f,), or the Mobius
transformations f 'of, and T commute for n=n(T). Since f“ofn
is not the identity, we may conclude for T not the identity that
F'of, and T have the same fixed points on 9B for n = n(T) [13,
p.72]. A simple argument shows that all nontrivial 7 in I” have
the same fixed points which implies that the group I is abelian.
Since I’ is isomorphic to the fundamental group of X, this establishes
the theorem.

Simple examples show that this theorem is false for any surface
X with abelian fundamental group. For a Riemann surface X with
nonabelian fundamental group Theorem 2 shows that the set C(X, Y)
is countable and for fixed peX,qeY the set of all coverings
i (X, p) > (Y, q) is finite.

THEOREM 3. Let X and Y be Riemanmn surfaces and suppose
X has nonabelian fundamental group. Given feC(X, Y) there does
not exist o sequence (f,)n-, in A(X, Y) such that f,— f uniformly
on compact subsets of X and f, #= f for all n.

Proof. Fix a closed curve v on X with M, (v) > 0. Suppose
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that such a sequence (f,)r-, did exist. Without loss of generality
we may assume that all the f, are distinet. Then f,ov is freely
homotopie to fov for all n sufficiently large. Therefore, My (f,°v)=
My(fov) for all n large enough. Now, M,(fo7) = Mx(7) since f is
a covering. Then M,(f,°o7) = My(v) which implies that f, must also
be a covering for all = sufficiently large. We now assume f, is a
covering for all n. Fix peX. Then f,(p)— f(p)€ Y which violates
Theorem 2. This contradiction proves Theorem 3.

Theorem 3 simultaneously generalizes a theorem of Heins [7]
and Theorem 1. Note that Theorem 3 is false for any surface with
an abelian fundamental group. However, the following holds for
any surface X conformally equivalent to an annulus: There is no
sequence in N(X, Y) which converges to an element of C(X, Y).
The same argument as in the proof of Theorem 3 establishes this
result which will be used later.

THEOREM 4. Suppose X has nonabelian fundamental group and
Y has finite modular spectrum. Then the set C(X, Y) is finite.

Proof. Take any closed curve v on X with M,(v) > 0. Without
loss of generality we may assume that v is the unique closed curve
in its free homotopy class with minimal hyperbolic length. For any
feC(X, Y) we have M,(fov) = My(v). Since Y has finite modular
spectrum there are just finitely many distinet free homotopy classes
{04, - -+, {0} on Y with M,(0,) = M,(v). We suppose that each o, has
minimal hyperbolic length in its free homotopy class. Then each
feC(X, Y) maps v onto some d,. Let C(1l =i < n) be the set of
all feC(X, Y) which map v onto 4,; it is enough to show that each
C, is a finite set. Fix a point » on the curve v. For each feC,
the point f(p) belongs to the compact set 4,. Now, Theorem 2
implies that the set C, is finite.

The question of whether a Riemann surface with nonabelian
fundamental group can have a self-covering which is not a conformal
automorphism was first raised by Heinz Hopf [8]. Such a covering
is called nontrivial. Note that the punctured disk, once punctured
plane and a torus have abelian fundamental group and possess non-
trivial coverings. On the other hand, the annulus theorem [14]
implies that every self-covering of an annulus is trivial. The work
of Huber [10] implies that every Riemann surface with finite
modular spectrum and nonabelian fundamental group has no non-
trivial covering. Heins [8] showed that if a Riemann surface has
no Green’s function, then it also has no nontrivial coverings. The
next theorem generalizes Huber’s result about the existence of
nontrivial coverings.
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THEOREM 5. Let X be a Riemann surface with mnonabelian
Sundamental group. If some number in the modular spectrum of
X has finite multiplicity, then every self-covering of X is a con-
Sformal automorphism.

Froof. TFirst, we consider the case in which some positive
number M in the modular spectrum has finite multiplicity. Suppose
{vd, ---, {v.] are the only distinct free homotopy classes with
My(v)=M. If f: X— X is any covering, then M (fov,) =M so
fov is freely homotopic to v, for some unique integer 7, 1 <17 < n.
Let £ denote the n’th iterate of f. Then f™ov, is freely homo-
topic to v,.,. This implies that there exist distinet integers 1<j5<k
with f“ov, freely homotopic to f*ov,, or f* 9 maps f“ov, onto a
curve which is freely homotopic to itself. Since M (f?ov,) > 0,
this implies that f* ? is a conformal automorphism of X [14].
Therefore, f itself is a conformal automorphism.

Now, suppose zero belongs to the spectrum of X and has finite
multiplicity. Then X has finitely many isolated pointlike boundary
elements. This means that there is a Riemann surface Y DX such
that Y\X is a finite nonempty set of points and Y has no isolated
pointlike boundary elements. By a generalized version of Piecard’s
theorem [14] f extends to an analytic self-map of Y. Since fis a
self-cover of X, its extension to ¥ must map Y\X into itself. As
in the preceding case there is an integer j such that f'9 fixes one
point pe Y\X. Then either f is a conformal automorphism of Y or
else f " converges to p uniformly on compact subsets of Y [14].
This would imply that for any closed curve v on X, My(f""ov) =0
for all » sufficiently large. This is a contradiction because each
iterate of f is again a covering.

Similar arguments show that the hypotheses of Theorem 5 imply
that the group of conformal automorphisms of X is finite.

6. Bounds for the Aumann-Carathéodory rigidity constant.
In this section we shall be interested in obtaining upper and lower
bounds for 2. We are especially interested in obtaining bounds
which are independent of either the first or the second variable.

We begin with an observation about the existence of extremal
functions. Let A(X, Y) be given the topology of uniform conver-
gence on compact subsets. Note that Theorem 3 and the comment
immediately after its proof imply that N(X, Y) is a closed subset
of A(X,Y) if X is not conformally equivalent to B or B\{0}. In
particular, for such a surface X and fixed points pe X, ge Y the
set of all fe N(X, Y) with f(p) = ¢ is compact. This means that
if X is not conformally equivalent to B or B\{0}, then there exists



THE HYPERBOLIC METRIC AND COVERINGS OF RIEMANN SURFACES 179
a function fe N(X, Y) with 2(p, q) = (f*(do,)/doy)(p), where f(p)=q.

PROPOSITION 3. Suppose X 1s a Riemann surface which s not
conformally equivalent to B or B\{0}. Then for any Riemann sur-
face Y the function 2 1s upper semicontinuous n each variable.

Proof. Fix peX and let (p,)s-, be any sequence in X which
converges to p. For each » let f, be an extremal function for
2(p., Q). From the work of Komatu and Mori [12] it follows that
there is a subsequence (f,,);=; which converges to fe A(X, Y), f(p)=gq,
uniformly on compact subsets of X. From the preceding remarks
we know that fe N(X, Y). Clearly,

Sa(doy) (Pa,) — fH(doy) (),

do.X dGX

so that 2(p,;, ¢) — 2(p,q). This implies that lim sup,, 2(r, ) =2(p, q),
so that 2 is upper semicontinuous in the first variable. A similar
argument demonstrates upper semicontinuity in the second variable.

Suppose X is not conformally equivalent to B or B\{0}. If K
is a compact subset of X and L a compact subset of Y, then 2 is
uniformly less than one on K X L since an upper semicontinuous
funetion assumes its maximum value on a compact set. In parti-
cular, this is true if X and Y are compact. If just Y is compact,
then for a fixed pe X 2(p, q¢) is bounded by a constant less than
one, independent of g€ Y. This result will be generalized to certain
noncompact surfaces in Theorem 7.

Now, we obtain a lower bound for 2. Let T(X, Y) be the set
of all analytic mappings f: X — Y such that the induced homo-
morphism f,: 7,(X, p)—w,(Y, f(p)) is trivial. Define 2: XxY—[0,1]
by

~ * .

w, ) = sup { L85 (): re 70X, Y), 10) = af -
X

Clearly, 2(p, ) < Q(p, q). It is elementary to express 2 as the

quotient of two conformally invariant metries.

THEOREM 6. 2(p, q) = c3(0)/Nx(p), where cyx(2) |dz| is the analytic
capacity metric on X and Mx(z) |dz| is the hyperbolic metric on X.
In particular, 2(p, q) does not depend on q.

Proof. Let w: (B, 0)— (Y, q) be an analytic universal covering
projection. Since f, is trivieil, each function fe T(X, Y) liths to
a unique analytic function f: (X, p) — (B, 0) such that 7o jf = f.
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Conversely, any analytic function f: (X, p) — (B, 0) defines a function

fin T(X,Y) by f==mnof. Since
f*doy) = F*@*(doy)) = F*(dos) ,

we see that

A(p, ) = sup {—m’i (p): fe F(X), flp) = 0} ,
doy
where £#(X) is the set of all analytic functions f: X — B. This
shwos that 2(p, ¢) is actually independent of ¢ and Y. Relative to
a fixed coordinate system at » we have

’

F*dow) oy _ Lf'®)]
do (®) (D)

if £2(X, p)— (B,0). A function f in &#(X) which maximizes |/'(p)]
is called an Ahifors function ([1], [2]) and cz(p) = max {|f(p)|: fe
(X)) is called the analytic capacity metric. Therefore, 2(p, q)=

(D) Nx (D). B _
For an annulus £ = 2 and the quantity £ was investigated in

[16]. Next, we show that generally 2(p, q) is not uniformly less than
one for a fixed ¢ as p varies over X.

PROPOSITION 4. Let X be a bounded plane region. Suppose a
point { €0X has the property that two closed balls have { on their
boundary, the interior of one ball lies entirely in X and the interior
of the other ball is in the exterior of 2. Then limsup, . 2(p,q) =1
for any Riemann surface Y.

Proof. Let I be the interior of the ball which is contained in
X and let E be the exterior of the ball outside of X. ThenIcXcFE

and

lim 2B _ 1
7= Ny(D)

when p —{ so that » — { makes with the interior normal at { an
angle in absolute value less than «, where a < z/2 [5, pp. 37-38].
Since I X CFE we have

(D) = Mx(D) = Ap(p)
and
M) = ex(p, I) = ex(p, X) = cu(p, B) = Ne(D) ,
so that
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Ay(P) < cs(p, X) < Q <1.
D) = elp) S D=

This establishes the result.
On the other hand, it is sometimes possible to bound 2(p, q)

above, independent of ¢.

THEOREM 7. Let X be a Riemann surface which 1s not confor-
mally equivalent to B or B\{0}. Suppose Y is a Riemann surface
with discrete modular spectrum and no point cycles. Given pe X
there is a constant 2(p)<1l such that 2(p, q) < 2(p) for all ge Y.

Proof. Let v be a closed curve based at p with M,(vy) > 0.
Given any fe N(X, Y) we have 0 < M, (fov) < Mx(v) and My(fov)=0
if and only if fov is freely homotopic to a point since Y has no
point cycles. Because Y has discrete modular spectrum there are
just finitely many numbers in the spectrum of Y less than M, say
M, ---, M, are these values. Set M,=10. Let N,={feNX, Y):
My(fov) = M}, 0 <7 <mn, and define

Q= sup{ii;l%@_(p);fe NX, T}

It suffices to prove 2, < 1,017 < n.

First, we consider 1 <7< n. Let 7w (4; %) — (X, ) be the
annular covering surface determined by the free homotopy class {7}.
If feN,, then let w;: (As, §) — (Y, f(»)) be the annular covering
surface defined by {fov}. Note that S > R and S is independent of
/. Then f induces a unique analytic function f: (A4, 7)— (4, @)
such that f,:7(As §)— (As, @) is an isomorphism. Thus, each
fe N, lifts to an analytic function f: A, — A, which satisfies fomw=
Wy o f and induces an isomorphism of fundamental groups; suppose
N, is the set of all such lifts. Because coverings preserve the hy-
perbolic metric we have

2, = sup{li@i)— (B): fe Nl} .
do,

Note that N, is a normal family whose closure is compact. There-
fore, if 2, = 1, then there is an analytic function f: 4, — A, in the
closure of N, for which (F*(dos)/do,)(p) =1. Then f must be a
covering. But this covering can have only one sheet since fx is an
isomorphism of 7,(4,, P) onto w(As, f(¥). Hence, f is a conformal
mapping of A, onto A; which is impossible since R < S. This con-
tradiction shows that 2, < 1,14 < .

Finally, we consider 7 = 0. Suppose fe N, Let w:(B,0) -~
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(Y, f(p)) be a universal covering projection. Then f lifts to an
analytic function f: (A4, p) — (B, 0) which satisfies fox = wof. As
before let N, be the set of all such lifts. Then |f'(p)| < ¢x(P),
where ¢x(z) |dz| is the analytic capacity metric for 4,. Thus,

f (dUB) CB(p)
o, P ENG)

where do, = M,(2)|dz| is the hyperbolic metric on A,. This proves
that 2, £ ¢x(P)/\i(P).

Added in proof. Recently, the question of H. Hopf that was
mentioned in Section 5 has been resolved. T. Jorgenson, A. Marden
and C. Pommerenke (Two examples of covering surfaces, preprint)
presented examples of Riemann surfaces that admit nontrivial self-
coverings.
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