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THE SPLITTING OF OPERATOR ALGEBRAS

SzeE-KAl Tsul AND STEVE WRIGHT

We say the singly generated C*-algebra, C*(T, @D T.),
splits if CX(T, ® T.)=C*T,) & C*T,;). A necessary and suf-
ficient condition is derived for the splitting of C¥(T, D T,)
in terms of the topological structure of the primitive ideal
space of CX(T,@D T,). In particular, when C¥T, P T,) is
strongly amenable, the necessary and sufficient condition can
be simplified and does not depend on the topology of the
primitive ideal space of C*T,® T.). Several applications
of this theorem, such as the cases, among others, where 7',
T, are compact operators, and C*T,), C*(T:) have only
finite-dimensional irreducible representations, are discussed.
For the splitting of the W*.algebra, W*(T, ® T.), two equi-
valent conditions are derived which are quite different in
nature. It is also shown that W*(T,® T,) splits if either
W*(ReT, ®ReT,;) or W*(ImT, D ImT,) splits, but the con-
verse is false. An example is given to show that
WH(T, @ T.) splits whereas C*T, @ T.) does not.

1. Introduction. Let & be a C*-algebra. If . has an
identity element and T is in .o, C*(T) will denote the C*-subalgebra
of &7 generated by T and the identity element; if .o has no
identity element, C*(T) will denote the C*-subalgebra of .o gene-
rated by T alone. If <# is another C*-algebra and .o @ < is the
C*-direct sum of .o and <&, one can ask the following question:
Given TP T, in &7 P <&, when does C*(T, P T,) = CXT) D C*(T,)?
One always has C*(T, @ T,) < C*(T,) @ C*(T,), and if equality holds,
we say C*(T, D T, splits. A similar question can be posed in the
context of W*-algebras. Given W*-algebras 2, % and T.P T, in
# P .45 when does WHIT, D T, = W*T)H WHT,) (W*T) = the
W *-algebra generated by 7)? As in the C*-algebra case, W*(T.P T.)
is said to split if equality holds.

In this paper, necessary and sufficient conditions are derived for
the splitting of C*(T, P T,) and W*(T,P T.). These results should
be compared with theorems in [2], [7], [5], and [6], where the split-
ting problem for various functors involving the direct sum is
treated. Indeed, the results in the present paper can be viewed as
“gelf-adjoint” analogs of the non-self-adjoint situations of this pre-
vious work.
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2. The splitting of C*(T,P T,). If .o is a C*-algebra, Prim
(.%7) will denote the primitive ideal space of . equipped with the
hull-kernel topology, and Irr(.) will stand for the set of all ir-
reducible representations of .. If K is a central projection in .o
and © is a representation of .&, 7, is the representation of .o
defined by 7 x(T) = n(TE) (T A).

We denote by .#Z(.%7) the multiplier algebra of &v; #Z(.%)
can be characterized as the largest C*-subalgebra of .o7**, the en-
veloping von Neumann algebra of ., which contains .7 as a
closed, two-sided ideal. If 7 is in Irr(.97), then =’ denotes the uni-
que extension of @ to an irreducible representation of . Z(.%)
(since .7 is a closed, two-sided ideal of .Z(.%), ©’ exists for each
7 in Irr(.o7)).

We begin by stating a noncommutative C*-algebra analog of
the Silov idempotent theorem ([15], Theorem 8.6). Its proof is ob-
tained from a straightforward application of the Dauns-Hofmann
theorem ([10], Theorem 3; [13] Corollary 4.7), and is therefore left
to the reader.

PROPOSITION. Let {X,, 2.} be a disconnection of Prim(.¢), &% a
C*-algebra. Then there exists a unique central projection E of
A7) such that

= {kerm: welre(. ), n’ = 7wk},
Y, =lkerm:welrr( ), n’ = w;_5} .

Conversely, any nontrivial central projection K of #(.7) induces
a disconnection of Prim(.87) in this way.

Now let .94, 71 =1, 2, be C*-algebras and let 7#; be a represen-
tation of 97,1 =1,2. We define a representation 7, of &P .4
by “evaluation at coordinates”, i.e.,

7 A1@A2'—_’7rz(Ai) (A1€9A2€-%€9 ) .

In particular, if 7@ T, is a fixed element in . .% and o¢
Irr(C*(T,), 1 =1,2, then & is an irreducible representation of
CHT,P T,). With this in mind, we now state and prove the main
theorem of this section.

THEOREM 2.1. Let <%, 1 =1, 2, be C*-algebras with T.P T, a
fived element in Z, P &. Then CHT,P T, splits if and only if
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the sets
Y, =lkerd,;:0,eIre(C*(T))}, 2=1,2,
disconnect Prim(C*(T, P Tv)).

Proof. (=). Let & =C*(T)PCHT), % =C*Ty), i1=1,2.
Since ¥ ** = . ** D . **, there exist orthogonal central projec-
tions E, E, in w** with I=E, + K, E, =100, FE, =081 Thus
E.s7r < ,i=1,2. Since, for 7 in Irr(.7), o’ = ©};, = = vanishes
on 0P ;=7 =46 for some o in Irr(.o4), we conclude that 3, =
{ker m: w e Irr(.%7), #’ = 7%}, and similarly 3, = {ker zn: 7 e Irr(.7),
n’ =m_z}. By the previous proposition we have that {¥,, 2.} dis-
connects Prim(.%7).

(=). Let & =C*T, T,) and .o = C*(T;) for ¢ =1,2. Due to
the above proposition, there exists a
central projection E of _#Z (%) such that

(2.1) 3 ={kerm:welrr(.&), ' = wh}
(2.2) S, =flkerm:melrr (), @' =m_z}.

Let A, P A, be a fixed element in .97, and ¢ in Irr(.%4). By (2.1)
there exists z in Irr(.%”) such that kerw = ker &, = = w%. Thus
1 — FE is in kera’, and so

0=r'(1—E)A, + 4y)) =71 - E)A, + A)) .
Hence (1 — E)A, P 4,)ckerw = ker g, i.e.,

0=6(1—- E)A4, DA
=o([1 — E)YA. D A)]) .

Since ¢ is arbitrary in Irr(.87) and Irr(.%7) separates points of .97,
we conclude that

(2.3) 0=[1—-EXA DA .
Similarly

(2.4) 0 =[EA, DA .

Thus,

(2.5) E(A @A) = [EA, D A)LDO

(2.6) (1—-EYADA)=0D[1 — EXA D 4. -

Adding (2.5) and (2.6) yields
A, @ A, = [E(A1 @ Az)]x @ [(1 - E><A1 @ Az)]z .
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Hence
A1 = [E(A1 @ Az)]1 ’ A, = [(1 - E)(A1 @ Ae)Jz ’

whence by (2.5) and (2.6),
E(A,DA)=A4,B0, A1-ENADA)=0DA,.

Since E multiplies .o, A, P 0 and 0P 4. are both in .o7. It fol-
lows that C*(T, @ T,) splits.

Let T be a normal element of a C*-algebra, .. We identify
the spectrum A(T) with Prim(C*(T)), if .7 has an identity element.
It is easy to see that A(T, P T,) = A(T) UV A(T,) for T,, T, in .. We
therefore deduce from Theorem 2.1:

COROLLARY 2.2. Let T, and T, be normal elements in a
C*-algebra 7. If .87 has an tdentity, then C*(T,D T,) splits 1if
and only if ATH)NAT) = @. If .& has no identity, then,
C*(T, D T,) splits if and only if A(T) N A(T,) = {0}.

Of particular interest is the case .o = .4 = ZZ(57), where
Z(97) denotes the C*-algebra of all bounded operators on the
Hilbert space ~z7. The following results indicate the utility of
Theorem 2.1.

COROLLARY 2.3. Suppose T, and T, are irreducible operators
on 7. Then C*(T,P T, splits if and only if Prim(C*(T,D T.)) is
disconnected.

Proof. IP0 and 0 I are the only possible nontrivial central
projections in C*(T,. @ T,). If Prim(C*(T, @ T,)) is disconnected, we
hence conclude by the proposition preceeding Theorem 2.1 that
CH*(T, D T.) contains I 0, and therefore splits.

Suppose that T, and 7T, are isometries on ..z” with von Neumann-
Wold decompositions T, = U, P S;,+ =1, 2, ie., U, is unitary and
S, is a (possibly trivial) unilateral shift. If either S, or S, is non-
zero, it follows from [4] that C*(T.& T,) is isomorphic to C*(S),
where S denotes the unilateral shift of multiplicity 1. Since S is
irreducible, we conclude that C*(T.@ T,) does not splits. Hence
we have:

COROLLARY 2.4. Let T, and T, be isometries with wvon
Neumann-Wold decompositions U, @D S;,,1=1,2. Then C*T.D T.)
splits if and only if S, =S8, =0 and AU)N AU, = @&.
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Let T, and 7T, be two compact operators acting on a Hilbert
space &7, If 277 is infinite-dimensional, then it is easy to see that
the C*-algebra generated by 7T, 7, and the identity operator on
P S never splits. However, if we consider C*(T. P T.) in
(S @ SF7) (the C*-algebra of all compact operators on 57 @ 277),
then the splitting of C*(T, € T,) can be characterized as follows:

COROLLARY 2.5. Let T, and T, be compact operators on .7 .
Then CHT, B T,) (generated as a C*-subalgebra of 27 (o7 @ .77))
splits 1f and only if every minimal projection in C*(T, P T,) is of
the form P, B0 or 0B P, where P, is a minimal projection in
CcHT),1=1,2.

Proof. (-). Clear.

(+=). Let.or =C*(I. P Ty, . =C¥T),1=1,2. Let_ .7 (resp.
. /) denote the set of minimal projections of .& of the form P50
(resp. 06D P,), where P, is a minimal projection in .%4, 7 =1, 2.
Then by hypothesis,

(2.7) {minimal projections in .o} = . 7 U . % .

Let welrr(.o7). Then ([1], Theorem 1.4.4) there exists a mini-
mal projection P = P.e¢ .57, a nonzero vector & = ¢&.e P(77 @ 7)),
and a unitary operator U = U.:[.97&]— 27" such that

(1) w=P)+0,

(i) =(T'PT)=UT, &S T)RU*, where @Q = projection of
iz @ & onto [ 7E]

We denote this by writing w~id,. By (2.7), P must be in either
. wi or _#, suppose Pe_ 7, ie., P= R0, R a minimal projection
in .o, Then = (&,0), & a nonzero vector in R(.°77), and so

o7&l = .28 D (0)
Therefore, there exists a unitary U":[.%4&] > 2%, such that
Ui(x, 0)-» U'z, xe[.94&]. Thus by (ii),
2.8) (TP T, =UTQRQU), @ = projection of 2% onto [.84&] .

But by ([1], Proposition 1.4.3), the right side of (2.8) defines an ir-
reducible representation ¢ of .%4. Thus # =4&. If Pe.%, the
same argument shows that = = 7 for some irreducible representation
zof &% If ¥, and 3, are as defined in Theorem 2.1, we conclude
that

2.9 Prim(.o7) = 2,02, .

We now assert that
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(2.10) Y =hull 4 = {kerw: 7 € Irr(.7), 7 < ker @},
(2.11) Y, =hull 7, ={kerm:welrr(.¥), + < kern}.
It is clear from the definition of _.# that 3, £ hull _~;. Suppose

ker w € hull(_~,). Now w~idp, with Pe _#U._«, 1If Pe_+;, then
7(P) = 0, which by (i) is contrary to the choice of P. Thus Pe _#
whence by the previous reasoning, w €Y, This verifies (2.10), and
(2.11) follows similarly.

Suppose kerre ¥, N Y, Then _7 U._#,ZCkerw. But m~idp,

for some Pe_ 7, U ., with n(P) # 0, a contradiction. Thus
(2.12) 2N =0.

It follows from (2.9)-(2.12) that {X,, ¥,} disconnects Prim(.27),
whence by Theorem 2.1, C*(T, & T,) splits.

Let p be natural map from .<Z(S57°) onto the Calkin algebra
F (7). 257 (2#°). The following concept is also seen in [12].

DEFINITION. Let T be an element in < (2#°). A projection P
in Z(o7) is fully n-reducing for T if TP = PT, rank (P) < <o,
and C*(T)P = M,, the n x n matrix algebra. A projection P in
FB(F) is essentially fully m-reducing for T if p(P)o(T) = p(T)p(P),
P has infinite rank and nullity, and o(C*(T))o(P)= M,. We denote
the set of all fully (essentially fully) n-reducing projections for T
by R(T)YRYT)), and let R(T) = U.R.(T), R(T) = U. R(T), where
n ranges through all positive integers. Each P in RYT) (or in
R(T)) induces an irreducible representation, 7,, of C*(T) in a natural
way as:

(2.13) mx(A) = p(A)o(P) (mp(A) = AP) for all A in C(T).

DEFINITION. Let T and S be elements in C*-algebras .o and
<Z respectively. T is algebraically equivalent to S, if there exists
a *-isomorphism @ of C*(T) onto C*(S) with o(T) = S.

PROPOSITION 2.6. Let T,,1 =1, 2, be two operators in Z (%)
such that every irreducible representation of C*(T), 1 =1,2, has a
fintte-demenstonal representation space. CHT, P T.), a C*-subalgebra
of B (% P 7)), splits if and only if the following two conditions
hold: ‘

(1) If an operator in C*(T,) @ C*(T,) is of the form P,PDO or
0P P, where P, is in R(T)NCHT),t=1,2, then it is 1in
C(T, & T.).

(ii) If P,eR((T,),1=1,2, then po(P,T) is mnot algebraically
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equivalent to p(P,T,).

Proof. Let &7 be C*(T. P T,), .o be C*(T,), 7 =1,2,and 3, be
as in Theorem 2.1, i = 1, 2.

(=) Condition (i) follows from the fact C*(T,) @ 0 and 0 C*(T,)
are contained in &7 P ¥, = 7.

(ii) Let P, bein R(T,), + =1, 2. If there exists a *-isomorphism
@ of C*(p(T,PY) onto C*(o(T.Py), with P(o(T,P)) = o(T,P,), then the
kernels of the two irreducible representations 7%, %, of .& induced
by P, P, (n, =m,, as in (2.13)) are equal. Since ker 7#; is in 5,
i = 1, 2, this contradicts the fact that 3, N 2, = @ by Theorem 2.1.

(=) Any 7w in Irr(.7. P .o7) is of the form 7 = &, for some
o; in Irr(.&7), and hence is finite-dimensional. Since .7 P ¥, is
CCR, any two irreducible representations 7, 7, of .7 @ .97, are uni-
tarily equivalent if and only if ker=, = ker=m, ([8], 4.3.7). ., a
C*-subalgebra of .o, @ .97, is also CCR, and also has the above pro-
perty. Next, we state a proposition ([8], 11.1.6), and then use the
proposition to show that .97 splits.

PROPOSITION. Let <Z be a C*-algebra, and <&, a C*-subalgebra
of &#. If <&, satisfies the following two conditions:

(i) =w|s, ts in Irr(A), of © is in Irr(<Z);

(ii) w|s, is mot unitarily equivalent to ='|s, if T is mot uni-
tarily equivalent to @' in Irr(<#), then F, = Z.

Let @ be in Irr( %7 @ .%7%;) and of the form 7 = &, for some o,
in Irr(.7). So w(T\PT,) =6,(T.P T, =o0,T,), whence n(.¥)=
o, (;) on 57, and 7|, is irreducible. Let 7 be an n-dimensional
irreducible representation of C*(T) for some T in & (5#). Theorem
1.1 in [12] implies that either (a) 3P C*(T)N R(T) such that 7(P) =1
and the restriction of = to C*(T)P is a *-isomorphism of C*(T)P
onto M,, or (b) 3Pe R*(T) and a *-isomorphism @ of o(C*(T))o(P)
onto M, such that 7(4) = @(e(A)p(P)) (A e C*(T)).

Suppose 7w, 7w, are two unitarily inequivalent elements in
Irr(.7, P .%7;), and z;, = &, for o, in Irr(.,), 1 =1, 2.

Case 1. j(1) = j(2). We note n (T, D T,) =6(T, D T,) = 0(T;w),
i = 1, 2, and unitary equivalence between =,|., and =,|. implies that
there exists a *-isomorphism @ of 7,(.&) onto 7,(.%") with o(o,(T;)=
o@(T, D TY)) =n(T. P T,) = 0(T;»). This @ induces a unitary
equivalence between o,(.%,) and 0(..). If A P A, are in
7, D 7, PG (A, @ 4,)) =¢(01(Aj(1))) = az(Aj(l)) = O'z(Ai(z)) =0y(4, D 4).
The second equality in this equation is due to a property of o,
which is illustrated in the following commutative diagram:
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pl/Mn

e < l@
N M,

It follows that =, and =, are unitarily equivalent on .%7 P .,
which is a contradiction. Therefore 7|, is not unitarily equivalent
to 7.,

Case 2. j(1) # j(2). Let j(1) =1, 7(2) =2. If o, is of form
(a) relative to P in R(T) N .%; with PO in &7, then 7n(PPH0) =
0 (PP0)=n(P)=1 and 7 (PP 0) = (PP O0) = 0,0)=0. It fol-
lows that x|, is not unitarily equivalent to w,|.,,. Similary x|, is
not unitarily equivalent to «,|, if =z, is of form (a). Suppose both
7, and w, are of form (b), i.e., 3P, € R(T,) and a *-isomorphism ¢,
of o(.7)o(P;) onto M, such that o,(4) = @.(0(4)p(P)), (A€ .%%), 1=
1,2. We note that

ﬂl(Tl @ Tz) = ;fl(Tl EB Tz) = 5:1(T1) = @1(10(111)()(1)1))
ﬁz(T1 @ Tz) - (72(T1 @ Tz) = 02(T2> = sz(p<T2)(0(P2>) .

Since o(T)p(P,) and o(T.)po(P,) are not algebraically equivalent,
there exists no *-isomorphism of @,(0(.7)p(P,)) onto @,(0(.57,)0(Fo)),
which maps @,(o(T)p(P,) to @,(o(Ty)pe(P,)). This implies that there
exists no *-isomorphism of m,(.9”) onto 7,(.%7") which maps 7,(T, D T})
to (T, 6P T,). Hence =w,|. is not unitarily equivalent to w,|...

In the following we wuse a Stone-Weierstrass theorem for
C*-algebras to obtain a significant improvement of Theorem 2.1 in
an important special case.

Recall that a subset <# containing the identity of a unital
C*-algebra .o~ separates the pure states of .o if to each pair p,
and o, of distinect pure states of .o, there corresponds a Be <%
such that o,(B) # 0.(B).

We fix a unital C*-algebra .o and elements T, T, of .o, 2,
and 3, are defined relative to C*(T, €D T.) as in Theorem 2.1.

LEMMA 2.7. If Z.N%,= @, then C*(T, P T,) separates the pure
states of C*(T,) @ C*(T,).

Proof. Let .o =C*(T) @ C*(Ty), & = C*(T, D T, .7; = C*(T)),
i1 =1,2.

Suppose p, and p, are pure states of .o such that oz = 0,)a.
For 7 =1, 2, there is an irreducible representation 7, of .%” and
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a unit vector & €577, for which o,(-) = (w,(-)5, &). Now x; is of
the form & for oelrr ./, Ulrr &7,. If o¢lrr.o, then

P{AD B) = (0(4)%, §), VAD Be .,

and so p; = f for some pure state f on .%7. Similarly, 0; = g for
some pure state g on %7 if o¢Irr .o7.

Suppose p; = Fo f; a pure state on .7, i = 1,2. We denote by
G the set of all polynomials in two noncommutating variables and
for pe &, we set p(T,) = (T, TF),©1=1,2. Since p)|s = Oua, it
follows that

H(o(T) = filo(Ty)), VpeF .

Let 27 = GNS Hilbert space corresponding to f;, and set ker f,=
{Ae .o fi(A*A) = 0}. Define the mapping U: F(T)/ker fi — F(Ty)/
ker f; by U: p(T) + ker f, — p(T,) + ker f,, p€ <. Then by (1),

Ho(T)) + ker f]l%, = filp(T)*p(TY))
= fol(p(T)*p(Ty)
= ||p(Ty) + ker f;|l%,, VpeF,

and so U extends to a unitary transformation of 57 onto &7;,. Also,
if p,qe < and 7, is the GNS representation corresponding to f;,
then

T (O(T))UQ(T) + ker f) = m;,(0(T))(q(T,) + ker f5)
= p(T)e(T,) + ker f;
= Uo(T)e(T,) + ker f))
= Unp (p(T))(g(T) + ker f)) .

Since p and ¢ are arbitrary, it follows that 7|, is unitarily equi-
valent to 7., and so ker(%;|s) = ker(%;,|s) € X, N X, contrary to
assumption.

We conclude that either

(a) p, =4, 0, a pure state on &%, 7 =1, 2,
or

(b) p, =0, 0, a pure state on .97, 1 =1, 2.

Suppose (a) holds. Let »,qe.Z”. We have

(2.14) 0:(0(T) @ ¢(T2) = oy(p(T) ,
(2.15) 0:(0(Ty) @ o(T3) = o(p(T) .
Now p(T,) @ p(T.) € <&, and so since o,z = 0z,
(2.16) o(p(T) = oy(p(T) .
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Thus by (2.14), (2.15), (2.16), and the arbitrariness of p and g, o, = p,.
For case (b), argue similarly.

THEOREM 2.8. Suppose C*(T,D T.) is strongly amenable (con-
sult ([11], definition, p.70). Then C*(T, D T,) splits if and only if
2N2,=Q.

Proof. We need only verify the “if” part. By Lemma 2.7,
C*(T, @ T.) separates the pure states of C*(T,) & C*(T,). Thus by
Proposition 8.8 in [3], C*(T. P T,) = C*(T,) & C*(T,).

COROLLARY 2.9. Suppose T, and T, are GCR elements (i.e.,
C*(T,) s a GCR algebra, 1 =1,2). Then C*(T, T, splits if and
only if T,.N32, = Q.

Proof. Since all GCR algebras are strongly amenable ([11],
Theorem 7.9, p. 78), this corollary is evident from the‘above theo-
rem.

REMARK 2.10. Theorem 2.8 (and hence Corollary 2.9) also holds
in the nonunital case. One need only check that there can exist no
nonzero pure state of C*(T,) @ C*(T,) which vanishes on C*(T, P T,),
and this follows from the fact that each pure state of C*(T,)PC*(T,)
is “evaluation at coordinates” of a pure state of either C*(T,) or
C*(T,) (see the beginning of the proof of Lemma 2.7).

3. The splitting of W*(T, @ T,). In this section necessary and
sufficient conditions for the splitting of W*(T,®D T, are given,
where T, e & (57) for Hilbert spaces 577, 1 =1, 2.

We begin by considering a slightly more general problem. Let

S ={I,0,0D T, TXrd0,0p T},
Z ={I\ T, Tr DT},
r=<U{Ipo}.
We are interested in deriving conditions under which the W*-algebras
generated by &7, %, and 7' coincide. By the double commutant

theorem, it suffices to consider &, # ", and 7" (' denotes com-
mutant), and we easily see that &# " < " < 7.

Let S = (g *g) be in 7, with S* = S, i.e., 8% = S, i = 1, 2,

21 22.
and S = S%. From
T, 0 T, O)
S = S,
<0 T2> (0 T,
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it follows that

(Sn T1 S12 T2> . ’T1 Sn T1 S12>
(Te S21 Tz Sz2 '

Thus we have

SiiTi = T«;Sm 1= 1: 2
(3.1) S12T2 = Tlslz ’
ST, = TS .

Similarly from

Ty 0 T 0
S = , tai
<O T2*> <0 T;*) S, we obtain
STy = TES,, 1 = 1,2
$.1)* ST = T*S,
SiTr = T¥Sk .

Since (3.1)* is just the “adjoint” version of (3.1), we have the fol-
lowing lemma:

LeMMA 3.1. Let S* = S = (g g) be in B(7@® 7). Then
Se. 7" if and only if “
SiiTi = TiSii, 1= 1; 2 ’
SlZT2 = T1S12
SxT, = TS .

Now suppose Se.9”’ and S = S*. From

T, 0\ (T, 0 (0 oy_(o 0)
S<o 0>”<0 o)s and S{y ) =1o /5"

\ /

we get

TiSu' = SiiTi9 1= l; 2,
S1*2T1 = TlSI2 = S12T2 = T2S1*2 =V.

Similarly from

T: 0 T: 0 0 0 0 0)
S(O 0>“<0 0>S and S(O Tz*)‘( )5

we get
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T?SH :Squ,/lf = 1;2 ’
SiT¥ = T¥S, = STy = T¥SE =10

Therefore we have

LEMMA 3.2. Let S* = S = (Sn Sm) be in F(o@® 7). Then
i SZl Szz
Se. .o if and only if

SiiTi = TiSii; 1= 1; 2,
ST, = TS, = ST, = T,S% =0 .

Finally if Se 7"’ if follows from

I0 I0 Sy Se 'Sy 0
S(O 0>-<0 0) Sthat(o 0)-( ) 0>’ where S, =0.

12

The following theorem is an immediate consequence of Lemmas 3.1
and 3.2.

THEOREM 3.8. (1). & " =.9" if and only if for any bound-
ed linear operator S from 57, into 57, we have S T, =S*T, =0
whenever ST, = T.S and S*T, = T,S*.

(2) " =7 if and only if for any bounded linear operator
S from 57, into o7, we have S =0 whenever ST, = T.S = S*T,=
T.8* = 0.

(8) F" =" 1if and only if for any bounded linear operator
S from 297, into 97, we have S =0 whenever ST,= TS and
S*T, = T,S*.

Let _+" be a W*-algebra, _4~, its predual, and let Rep,(.+#")
denote the family of all o(_#", _#",)-continuous representations of
.¥". Each point of the positive part of the unit ball of 7", gives
rise to an element of Rep,(.#") via the Gelfand-Naimark-Segal con-
struction, and therefore Rep,(.#") separates points in _4".

Now, let T,e Z(97),1=1,2, and set 4 = W*T.D T,),
N7 =W*T),i=1,2. For mweRep,(+;), defined as in §2,
AT, D T,) = n(T;). Then 7eRep,(_+"). There hence exists a central
projection P = P: ¢ _4  such that ker 7 = . #"P. Let suppZ=1— P,
and let

II, = {supp T: w € Rep, (A7)}, +=12.
Suppose that
*) 11, (ie., S,;S,=0, S,ell,, +1=12),
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sup(/1, U I1,) = sup{P: Pe I, U II,} = I = identity on 57, @ 57,. Let
P, =sup{P: Pell}, 1 =1,2. P, is a central projection in _#~, and
by (*), P1LP,P,+P,=1 Let Q=P, so that I —Q = P,. Let
Q=Q>DQ.

Since @ = P, P,L P, and 7(Q,) = #Q) = #(P) =0 for all « in
Rep,(_#3), we conclude that @, = 0. Similarly, for all = in Rep,(.+75,)
we have

(I, — Q) = n(I) — 7(Q)

=1 —7@)
=1 —a(P)
=I—-1=0.

Hence I, = Q,. Therefore @ = I, 0, and W*(T,P T,) splits.

From the preceding discussion and Theorem 8.3, we may hence
deduce the following result, which gives spatial and space-free
criteria for the splitting of W*(T. D T.,).

THEOREM 8.4. Let T,e & (357,),v=1,2. The following are
equivalent:

(a) WH*T, T, solits.

(b) II,11I, and sup(lI, U II,) = I.

(¢) For any bounded linear operator S from 57, into 57, we
have S = 0 whenever ST, = T,S and S*T, = T,S*.

Furthermore, W*(T, P T,) splits if either W*(Re T, @D Re T,) or
W*(Im T, P Im T,) splits.

Proof. (a) <= (b). This follows immediately from the discussion
following Theorem 3.3.

(a) = (c). Notice first that by the double commutant theorem,
W*(T, D T, splits precisely when &# " = 7. Now apply Theorem
3.3(3).

Suppose W*(Re T, D Re T,) splits. Let S be a bounded linear
operator from H, into H, such that ST, = T.S and S*T, = T,S*.
Then T.S = STZ, so

(Re T)S = Zl:;_Tl*_s — sl’e_i"z_ﬁ =SRe T, .
Thus from Theorem 3.3 (3) and the fact that W*(Re T, Re T),)
splits, we conclude that S = 0. This verifies (c), and so W*(T. D T,)
splits. Argue similarly if W*(Im T, Im T,) splits.

REMARK 3.5. We now show by example that W*(T.@ T,) can
split with neither W*(Re TP Re T,) nor W*(Im T, D Im T,) split-
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ting.

Let a,=1/n,8,=1/n+1 v=1,2,8,--- . Let T, (resp. T,
be the diagonal operator with diagonal {ay, 8,, a;, B,, -+ -} (resp. {8,
o, Bs, &, --+}), acting on the separable Hilbert space H. We have

A(Tl) = {O: 7'} U {al, 627 Xy, -t } ’
A(T2> = {07 7’} U {Bl; @, By, + - } 4

If A and B are normal operators, it follows from Theorem 3.4
(b) or ([9], Theorem 4.71) that W*(A & B) splits if and only if a
scalar spectral measure of A is orthogonal to a scalar spectral
measure of B. Let K, denote the projection-valued spectral measure
of T,k =1,2. If {X,} is a countable dense subset of the unit ball
of 27, then

m() = S 2 | Bl I

is a scalar spectral measure for T,, k = 1,2. Since 0 and ¢ are not
eigenvalues of T, k =1, 2, it follows by ([14], Theorem 12.29) that
({0, 1)) =0,k =1,2. Since p, is supported on A(T)), k= 1,2, we
conclude that g, and g, are orthogonal, and so W*(T, P T,) splits.
But one easily checks that A(Re T)) = A(Re T,), AIm T,) = A(Im T,)
and therefore neither W*(Re TP Re T,) nor W*(Im T, P Im T,)
splits. This also provides an example of operators T, and T, such
that W*(T,. @ T, splits, but C*(T, P T,) does not.
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