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SPHERICAL MEAN PERIODIC FUNCTIONS ON
SEMI SIMPLE LIE GROUPS:

SomESH CHANDKA BAGCHI AND ALLADI SITARAM

Let G be a connected semisimple noncompact Lie group
with finite center. We define the notion of a smooth
spherical mean periodic function (with respect to a fixed
maximal compact subgroup K of G) and show that the
classical results of L. Schwartz for mean periodic functions
on the real line hold in this context.

1. Introduction. The study of mean periodic functions started
with Delsarte ([1]) who was interested in solving the convolution
equation

where g is a measure of compact support on R and f a continuous
function on R. He was able to show that under certain conditions
a general solution f can be written as a linear combination of
“exponential monomial” solutions of the above equation. A mean
periodic function on R is a continuous function f satisfying the
above convolution equation for a nontrivial g#. In his famous paper
([11]) L. Schwartz studied mean periodic functions in detail, intro-
duced the notion of the spectrum of a mean periodic function and
showed that a mean periodic function f can be approximated by
finite linear combinations of the functions in the spectrum of f.
Malgrange in [10] studied the case of mean periodic functions on
R* for » > 1 and showed that a weaker version of Schwartz’s result
holds in this case.

The study of smooth mean periodic functions for the group
SL (2, R) was taken up by Ehrenpreis and Mautner in [4], [5] and
results analogous to those of Schwartz were obtained by them.
Since then harmonic analysis of spherical functions on semisimple
Lie groups has been studied extensively ([2], [6], [7], [9], [12]).

The purpose of this paper is to use these powerful results along
with the original results of Schwartz and Malgrange to study the
case of spherical mean periodic functions on a noncompact semisimple
Lie group G with finite center.

2. Preliminaries. Throughout §2 and §3 G will denote a
noncompact semisimple Lie group with finite center and of real
rank 1, K a fixed maximal compact subgroup of G and R the real
line. Any unexplained terminology in this section can be found in [8].
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Certain function spaces on G and R: Let C*(R) be the set of
all (complex valued) C~-functions on R equipped with the topology
of uniform convergence along with all derivatives on compacta. By
(C~(R))* we denote the closed subspace of C*(R) consisting of funec-
tions f which are even (i.e., f(x) = f(—x) for all ze R). Equip
(C=(R))* with the relative topology from C*(R). Let C>(R) ((C:(R))%)
denote the subspace of C~(R) (respectively (C*(R))*) consisting of
the compactly supported funections.

We denote by (C~(R)) the dual of C*(R) and equip it with the
strong topology. Then every T e (C*(R)) is a distribution of com-
pact support. Let & be the dual of (C*(R))° equipped with the
strong topology. Then & can be identified as a topological vector
space with the subspace of compactly supported even distributions
on R. (A distribution T on R is said to be even if for all fe C°(R),
T(f) = T(f*) where f*(x) = f(x) + f(—2)/2). B

For feC>(R) (resp. Te(C°(R))) let f (resp. T) denote the
usual (Euclidean) Fourier transform of f (resp. T).

Let C*(G) be the space of C=-functions on G. A function
feC=(G) is said to be K-bi-invariant if f(kxk')=f(x) for all k, k'e K
and ze€G. C*(K\G/K) will be the space of K-bi-invariant functions
in C°(@). Topologise C*(@) by means of uniform convergence along
with all derivatives on compacta. C*(K\G/K) will have the relative
topology from C<(G). C:(K\G/K) denotes the subspace consisting
of compactly supported functions. We recall that C?(K\G/K) is
closed under convolution and that convolution is commutative in
Cr(K\G/K).

E will denote the dual of C*(K\G/K) and will have the strong
topology. Then every TeF is a K-bi-invariant distribution of
compact support. (A distribution T on G is K-bi-invariant if T(f)=
T(f*) for all feC>(G) and k, k.€ K where *f*(x) = f(kxk, for
all x€G.)

The spaces (C”(R))° and C*(K\G/K) are Frechet-Montel spaces,
hence reflexive. Thus the duals of & and E can be identified with
(C=(R))* and C(K\G/K) respectively.

Spherical Fourier transform: (See [8] for details.) Let G =
KAN be the Iwasawa decomposition of G. Let g be the Lie algebra
of G, a the Lie algebra of A, a* the dual of a and a* the complexi-
fication of a*. Let o denote the half sum of the positive roots
for the adjoint action of a on g: Since G is of real rank 1, dimen-
sion a¥ = 1 and thus sea¥ can be written uniquely as s = ap with
xeC. Then for NeC let ¢, denote the elementary spherical func-
tion associated with Mpea¥. Again, since G is of real rank 1
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observe that ¢, = ¢, iff A =\ or A = —\. R
For feC>(K\G/K) define the spherical Fourier transform f on
C by

700 =\ f@w @ida( = | r@p@ds)

where dx is a fixed Haar measure on G; More generally, if TeH,
define the spherical Fourier transform 7T by

TO) = T(¢) , neC.

Let X be the space of all entire functions 2 on C which are even,
i.e., h(z) = h(—2z) for all ze C and satisfying the growth condition:

[h(z)] = Ke™ (1 + |z )"

for some 7, K > 0 and nonnegative integer . Then we have the
following Paley-Wiener type result from [2, Theorem 3].

THEOREM 2.1. The spherical Fourier transform gives a linear
bijection of E onto X.

Finally, for fe C(K\G/K), define a function F'; on R by
Fi(t) = e '8 “S f(an)dn where a = expitp .
N

Then it is well known that F;e (C;°(R))° and the map f— F; is an
isomorphism of C>(K\G/K) onto (CZ(R))* and, further, f = F,.

Mean periodic functions on R: A function feC*(R), is said
to be mean periodic if and only if there exists a nonzero distribu-
tion T of compact support such that T«f =0 (where = denotes
convolution) or, equivalently, there exists g € C°(R), g +# 0, such that
g+f =0. It is easy to see that f is mean periodic if and only if
the closed linear span of {*f;x< R} is a proper subspace of C~(R)
where *f(y) = f(y — x) for all ycR.

Examples of mean periodic functions are the functions F,, where

F, . (x) = i*x* exp (inx) , € R

for xeC and &k a nonnegative integer. (Schwartz in [11] studies
in detail mean periodic functions in C(R). However, as he himself
points out, these results can be formulated and proved in exactly
the same way for C*(R), the space of distributions, ete.)

Let V be a proper closed subspace of C*(R) such that if feV
then *fe V for all x € R — or, equivalently, if fe V then Wxfe V for
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all We(C°(R))’. Such a V will be called a variety in C*(R).
The following theorem is due to Schwartz [11].

THEOREM 2.2. Let V be a wartety and let feV. Then [ s
the limit in C*(R) of finite linear combinations of functions of the
type F,, with F,,eV. (Note that if F,,€V, it can be proved
that F,,. eV for all K £ k.)

Mean periodic even functions on R: We now modify the
preceding definitions and results slightly in order to apply them
later to K-bi-invariant mean periodic functions on semisimple Lie
groups of real rank 1.

DeFINITION 2.1. (a) A function fe(C”(R))° is said to be an
even mean periodic function if there exists Te &, T # 0 such that
T«f = 0.

(b) A proper closed linear subspace V of (C*(R))* is said to be
a variety if Wxfe V for all We & and fe V.

For A e C and %k a nonnegative integer we define +, , € (C*(R)) by

F; (@) + Fr(—2)
2
iExt exp ine + F(—x)*F exp (—inx)
5 .

v u(X) =

It is easy to see that +;, is even mean periodic. A minor modifica-
tion of Theorem 2.2 yields:

THEOREM 2.3. Let V be a variety in (C°(R)) and let feV.
Then f can be approximated in (C~(R))® by finite linear combina-
tions of functions of the type ;. where o, V.

K-bi-invariant mean periodic functions:

DerFINITION 2.2. A function feC~(K\G/K) is said to be a
spherical (or K-bi-invariant) mean periodic function if there exists
TeE, T+ 0 such that T+f = 0.

Note that if f is mean periodic then the closure of the subspace
{W=f; We E} which will be denoted by V;, in the sequel, is a proper
subspace of C*(K\G/K). (The converse of this assertion is also true
— as will follow easily from Lemma 3.3 and the corresponding fact

for (C™(R))").

ExAMPLES. (1) ¢, n€C is mean periodic in the above sense.
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For, let f be any nonzero function in C>(K\G/K) such that f(\) =0
(such functions certainly exist). Now

i) = | f@pw oy .

However, using the well known functional equation
[, sutwdim)il = o(z)p(e)

the above integral is merely equal to ¢,(x)f(\).

(2) Let 0 #feC~(G)N L(K\G/K). Then we show that f can-
not be mean periodic. As is well known the spherical Fourier
transform is defined on a horizontal band containing the real axis.
If now T+f = 0 for a nonzero T ¢ E, then we have Tf = 0. Since
T is entire its zeros on R are isolated. So f= 0 on R and hence
f=0.

(3) A similar argument shows that if f belongs to any of the
Harish-Chandra Schwartz spaces & ?(K\G/K) (see [12] for definition
of these spaces) then f cannot be mean periodic in the sense of
Definition 2.2.

DEFINITION 2.8. Let A e C and % a positive integer. Let

dk

W%(@ , vel

Sau(@) =

and
61,0x) = x(x) , €@ .

Following Schwartz we now introduce the conecept of spectrum of
a mean periodic function.

DEFINITION 2.4. Let feC*(K\G/K) be mean periodic. Let V;
denote the closure in C*(K\G/K) of the subspace {W=xf: We E}.
By spectrum f we mean the collection {¢;,;; 61,.€ V).

It will follow from Lemma 3.3 and the corresponding fact about
the spectrum of a variety in (C™(R))* that if ¢,,c spectrum f then
ér.wespectrum f for all k' < k.

3. The main result for groups of real rank 1. As in §2 G
will stand for a semisimple Lie group of real rank one. We begin
with a proposition which is implicit in the work of Inoue, Okamoto
and Tanaka [9].

PROPOSITION 3.1. There exists a linear topological isomorphism
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S from E onto & such that for any feC2(K\G/K) (considered as
a K-bi-invariant compactly supported distribution)

S(f)=F; .
Also, if A, A,e B, then S(A,xA,) = S(4,)xS(4,).

Proof. Given we FE, let % denote its spherical Fourier trans-
form. Then WeX (see §2) and there exists a unique u € & such
that # = @ (by the Paley-Wiener theorem for R). Define S(w) = u.
It is easy to see from Theorem 2.1 and the Paley-Wiener theorem
for R that S is one-to-one and onto. On X we impose the topology
defined by Ehrenpreis (see [3, p. 414]). This makes X and &
topologically isomorphic. The important observation made in [9,
Prop. 1] is that for X equipped with this topology, the spherical
Fourier transform is an isomorphism of E onto X. Thus it follows
that the map S defined above is a topological isomorphism from E
onto &. Finally, the fact that S(f) = F, if fe C;(K\G/K) follows
from the equality 7 = F, (see §2). The last statement is a con-
sequence of the relations (w,xw,)” = ®,-w, and (S(w,)*S(w,)) =
S(w)~S(w,)™.

PROPOSITION 3.2. There exists a linear topological tsomorphism
T from C*(K\G/K) onto (C(R))* such that

Sw)(T(f)) = w(f) for all we E and feC~(K\G/K) .

Further, under this isomorphism

T(pan) = ban

Jor all ne C and k nonnegative integer.

Proof. Define T as above. Since C*(K\G/K) and (C*(R))* are
Frechet-Montel spaces, they are reflexive. Hence the duals of F
and & (equipped with the respective strong topologies) are C=(K\G/
K) and (C*(R))* respectively. Since by the previous proposition S
is a linear topological isomorphism, T is also a linear topological
isomorphism.

For the second assertion, first observe that T'(¢,) = 4. Let
we K. ;T\llen S(w)T(¢;) = w(g,) by definition of T. However w(s,)=
W) = S(w)(N) = S(w)(yra).

So, S(w)(T(4:) = S(w)(y;) for all we E. Since S is an isomor-
phism this implies

A(T(42) = A(yy) for all 41e& .
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Thus T(¢;) = ¥;,. Next, observe that the function

Vatn — P2 ,_d
h an

in the topology of (C”(R))* as h—0. Since T is a topological

isomorphism, it follows that (¢;+, — ¢2)/h converges in C*(K\G/K)

but clearly it has to converge to (d/d\)g;. Hence

7 d‘i 5 )= —j;(m) .

Iteration of the above gives that

T(¢20) = Va

for all x e C and k nonnegative integer.

LEMMA 3.8. Let feC*(K\G/K) and w, w' € E. Then
S« T(w=f) = T(w'~w=f) .

Proof. Let A€ E. Then

S Sw'+T(w=f)) = S(A)=(S(w")=T(w=£))"(0)
= S(A)+(T(w=£))"*(S(w"))(0)
= S(4)+(Sw") (T (w=f))"(0)
= (dxw')(w*f) .

Similarly we can show

S(D(T(w'swxf)) = (Asw')(wxf) .

Note. (1) However in checking the above one needs to use
the fact that if we E and feC~(K\G/K) then wx*f = f*w, where
the right hand side should be viewed as the convolution of two
distributions.

(2) For any function f on a group G by f~  we mean the
funetion f7(g) = f(g™?) and if T is a distribution, T~ is defined by

T7(f) = T().

PROPOSITION 3.4. Let f be mean periodic in C°(K\G/K). Then
T(f) is mean periodic in (C*(R))* and spectrum f (=spectrum V)=
spectrum TV;.

Proof. If f is mean periodic then V; = C~(K\G/K) and hence
TV;# (C*(R)). From Lemma 3.3 we conclude that TV, is a variety
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in (C*(R))*. Thus T(f) is mean periodic. The second assertion
follows from the definition of spectrum and Proposition 3.2.

We are now in a position to state our main theorem.

THEOREM 3.5. Let fe C*(K\G/K) be mean periodic. Then f is
in the closed linear span of spectrum of f, that is, f can be
approximated in the topology of C=(K\G/K) by finite linear combi-
nations of functions of the type ¢, where ¢, spectrum f.

Proof. Immediate from Proposition 8.4 and Theorem 2.3.

Note. (i) One could have studied mean periodic distributions
instead of mean periodic functions and one would obtain results
analogous to Theorem 3.5.

(ii) As in Schwartz [11] and Ehrenpreis-Mautner [4, p. 52] one
can, by means of grouping of terms and Abel convergence factors,
represent a given mean periodic function f€ C*(K\G/K) by an infinite
series f ~ >, d; $1,, Where d,, are constants and ¢,,c spectrum f.

4. The case of arbitrary rank. In this section we will drop
the assumption on the rank of G. Hence G stands for an arbitrary
semisimple Lie group with finite center. As before, K will be a
fixed maximal compact subgroup and KAN, g, a, a*, a¥, o and finally
C*(K\G/K) and E will have the same meaning as in §2 and §3.
(Note that now dima = n = real rank of G =1.) Let W be the

Weyl group of the pair (G, K) (see [8]). Let e, ---,e, be an
orthonormal basis of a with respect to the Killing form B restricted
toa and ef, ---, e¥ be the dual basis of a*. Then any M €a™ can be

written uniquely as
N=2zef + - + 2z, 2,€C, 1=1---n.

We denote by ¢, the elementary spherical function associated with
rveaX., Let a be a multi-index, i.e., a=(a, ---, a,) Where a;, - -+, &t,,
are nonnegative integers. Define ¢; ., to be the function 0'*'g;/0z1- - - 025~
(where |a| = 33, ).

On the other hand a can be identified with R™ by means of
the orthonormal basis e, ---, ¢,. Since W acts on o this identifica-
tion will induce a natural action of W on R". Let (C*(R")" denote
the space of C=-functions which are invariant under the action of
the Weyl group W. Topologise (C”(R™)" as a closed subspace of
C>(R") with the usual topology. Let & stand for the strong dual
of (C°(R™)”. (Then & is really the space of compactly supported
distributions on R™ which are invariant under W.) Now using the
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work in [9] just as in §3 we can establish the isomorphisms

S:E— ¥

and
T: C*(K\G/K) — (C=(R"))"

such that S(4)(T(g)) = A(g), A€ E, g e C*(K\G/K). Lemma 3.3 would
be valid in this set up and an easy application of this lemma
together with an approximate identity argument would yield:

*) S(N*T(f) = 0 if and only if A+f =0.
For a function feC=(R") define f* e (C=(R")" by

@) =23 fls) .

}Wl Sew
For »e€C" and « a multi-index a = (a,, -- -, a,) let
Yre = (Fra)”
where
la TAew
Foe) = 9 LeRe.

a)\:fl oo a%:n

With the identification of a used above it can be shown exactly as
in §8 that T(g;.) = 4. for all xeC* and multi-index a. The
following theorem is due to Malgrange [10].

THEOREM 4.1. Let f be a nonzero function in C*(R™) and T «a
nonzero distribution in (C*(R™)" such that T+f = 0. Then f can be
approximated in C(R") by finite linear combinations of fumctions
of the type F,, where the F,, satisfy the convolution equation

T+F,=0.

Just as with Schwartz’'s main result, we adapt the above to
yield the following

THEOREM 4.2. Let 0% fe(C*(R")” and 0+ Te& such that
T«f = 0. Then f can be approximated in (C*(R™)” by finite linear
combinations of functions 'of the type «:. where the ;. satisfy
the convolution equation Txr; . = 0.

In view of the isomorphisms S and T and of (x) Theorem 4.2
translates into the following result (which is a weaker version of
Theorem 3.5 when n = 1).
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THEOREM 4.3. Let 0 + feC*(K\G/K) and 0 = T e E such that
Ts«f =0. Then f can be approximated in the topology of C*(K\G/K)
by finite linear combinations of functions of the type ¢,. where
the ¢;.. satisfy Tx¢,. = 0.
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