
Pacific Journal of
Mathematics

THE o-PRIMITIVE COMPONENTS OF A REGULAR ORDERED
PERMUTATION GROUP

MAUREEN A. BARDWELL

Vol. 84, No. 2 June 1979



PACIFIC JOURNAL OF MATHEMATICS
Vol. 84, No. 2, 1979

THE ^-PRIMITIVE COMPONENTS OF A REGULAR
ORDERED PERMUTATION GROUP

MAUREEN A. BARD WELL

It is well-known that the class of right-ordered groups
and the class of regular ordered permutation groups coincide.
In this paper, we exploit this connection to investigate the
component parts of an arbitrary regular o-permutation
group. We show that there exist regular o-permutation
groups with nonregular o-primitive components. We show
how to construct a regular o-permutation group which has
any given o-primitive o-permutation group as its largest
component. We investigate consequences of this construc-
tion when o-primitive ^-permutation groups are used. We
also derive some of the necessary relationships which must
exist between the o-primitive components of a regular o-
permutation group, and we derive a collection of necessary
and sufficient conditions for a regular o-permutation group,
which has a finite number of o-primitive components, to
have all its components regular.

In [2], Paul Conrad studied the structure of an arbitrary right-
ordered group, and showed there is a natural correspondence between
the class of right-ordered groups and the class of regular ordered
permutation groups. He also investigated those right-ordered groups
which have the property that for every pair of positive elements
α, ί>, there exists a positive integer n such that (ab)n > ba. These
groups are called Conrad right-ordered groups. Those regular ordered
permutation groups which are matched to the class of Conrad right-
ordered groups under the natural correspondence mentioned above
are distinguished by the property that each of their o-primitive
components is order-isomorphic to a right regular representation
of a subgroup of the reals. In this note, we show that there
are regular ordered permutation groups with non-Archimedean,
regular o-primitive components, and we also show that there exist
regular ordered permutation groups with nonregular o-primitive
components. In fact, each transitive, o-primitive ordered permutation
group may occur as the o-primitive component of a regular ordered
permutation group. Consequences of this theorem are explored.
Next, we derive some of the necessary relationships which must
exist between the components of a regular ordered permutation group.
Finally, we briefly study a more general class of right-ordered groups
than the class of Conrad right-ordered groups. This class has the
property that each of the o-primitive components of the corresponding
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ordered permutation group is regular, although they need not be
Archimedean.

A group G together with a total order <; of the set G is a
right-ordered group (ro-group) if a <i 6 implies ac <^ be for all α, ί>, e
in G. Throughout this note, the identity element of any group G
will be denoted by eQ. For a totally ordered set S, >Stf(S), the
collection of all order preserving permutations of S, is a lattice-ordered
group (Z-group) under the induced order, and the pair (jy(S), S) is
a lattice-ordered permutation group (Z-permutation group). If G is
a subgroup of J^(S), G is a partially ordered group (po-group), and
(G, S) is an ordered permutation group (o-permutation group). If G
is a sublattice of J^(S) as well as a subgroup, (G, S) is also an Z-
permutation group. Let (G, S) be a regular o-permutation group
and s0 be a fixed reference point in the set S. Then, the triple
(G, S, s0) is a regular o-permutation group with a distinguished
element. Suppose (G, S, s0) and (H, T, t0) are two such permutation
groups. Then (G, S, s0) and (H, T, t0) are order-isomorphic if and
only if (i) There exists an order-isomorphism ψ:G —> H, (ii) There
exists a set order-isomorphism ^: S —> T, (iii) s0^ = £0> and (iv) For
each s in S and for all g in G, (sg)φ = sφgψ. For further information
on ordered permutation groups, the reader is referred to Glass [3],

A form of the following correspondence theorem was proved by
Conrad in [1].

THEOREM 1. There is a one-to-one correspondence between iso-
morphism classes of right-ordered groups and isomorphism classes
of regular o-permutation groups with distinguished elements.

Proof Let (G, ^ ) be an ro-group. G is a totally ordered set,
and (G, G) denotes the right regular representation of G. Then
(G, G, eG) is a regular o-permutation group with a distinguished
element. The isomorphism class of (G, <*) will be matched to the
isomorphism class of (G, G, eG) by a map X. Now let (G, S, s0) be any
regular o-permutation group with a distinguished element. To redefine
the order relation on the set G, for any g in G, say g is positive
if sog ^ s0 in S. Let P denote the collection of positive elements of
G. P has the properties of a positive cone for a right total order
of G. Let (G, <;so) denote this ro-group, and match (G, S, s0) wΐίft
(G, ^8Q) by a map w. It is straightforward to check that X is a
one-to-one correspondence and X~x — n.

We will refer to the correspondence X set up in the above theorem
as the Conrad correspondence between the isomorphism classes of
right-ordered groups and the isomorphism classes of regular o-
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permutation groups with distinguished elements.
Let (G, S) be an ordered permutation group. A G-congruence

on S is an equivalence relation i f on S such that if s^t, then
sg^tg for all s, t in S and g in G. & is a convex G-congruence if
the classes of c ^ are convex. A convex subset T of S is an o-block
if TΦ 0 and whenever # e G either Tg = T or Tg f) T = 0. If G
is transitive on S, every o-block Γ is a class of a unique convex
G-congruence and, conversely, the classes of each convex G-congruence
are o-blocks. Moreover, the collection of convex G-congruences forms
a tower under inclusion [3]. Convex congruences can be used to
form the o-primitive components of an ordered permutation group,
and ordered wreath products are then used to sew the o-primitive
components together. The knowledge of the possible o-primitive
components which may occur in a transitive ϊ-permutation group has
proved to be an invaluable tool in understanding their overall struc-
ture. This is one of the primary reasons for examining o-primitive
components when studying the more general o-permutation groups. A
knowledge of these subjects is assumed in this note. The notation
and terminology can be found in Glass [3].

Next, let (G, g) be an ro-group. If H is a subgroup of G, H
is convex if for every g in G and h in H, eG <̂  g <̂  h in G implies
geH. The collection of convex subgroups of (G, <;) forms a tower
under containment [2].

Suppose the isomorphism class of (G, g) is matched to the iso-
morphism class of (J5Γ, Γ, ί0) under the Conrad correspondence. The
following theorem relates the convex subgroups of (G, 50 to the o-
blocks (and hence the convex iϊ-congruences) of (H, T, t0).

THEOREM 2. There is a one-to-one correspondence between the
collection of convex subgroups of G and the collection of o-blocks of
the set T containing the point t0. This correspondence preserves
containment.

Proof. It suffices to examine (G, <0 and (G, G, eG). If K is a
convex subgroup of G, then K is a convex subset of the chain G
which contains eG. It is straightforward to check that K is an o-
block. The second part of the theorem will then be clear.

The class of Conrad right-ordered groups and the corresponding
class of regular o-permutation groups are described in the following
theorem.

THEOREM 3. Let (G, <*) be a right-ordered group with positive
cone P and let (G, G, eG) be the corresponding regular o-permutation
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group. Then the following conditions are equivalent:
( i ) For all a, b in P there exists a positive integer n such that

(ab)n > ba.
(ii) For all covering pairs (Cr, C

r) of convex subgroups of G, Cr

is normal in Cr and Cr/Cr is o-isomorphic to a subgroup of R.
(iii) Every o-primitive component of (G, G, eG) is o-isomorphic

to a right regular representation of a subgroup of R.

Proof, (i) <=> (ii) is proved in [2]. The equivalence of (ii) and
(iii) is immediate.

Every regular Z-permutation group has every o-primitive com-
ponent o-isomorphic to a right regular representation of a subgroup
of R [3]. In view of the above theorem, the natural questions to
ask are whether the o-primitive components of every regular o-
permutation group have to be regular, and whether the regular
components of such a group have to be right regular representations
of subgroups of R. The answer to both of these questions is no as
we shall show by example.

We now consider the second question. The following example of
an ro-group is due to Smirnov, although it originally appeared in
another form. Let G = {(x, y) e Q x Q\y > 0}. Define an operation
on G by: for (xl9 yj, (x2, y2) in G, (xl9 y^x* y2) = (&i + aWi, 3/i2/2). Fix
a positive irrational β and define a positive cone P for a right total
order of G by P = {(x9 y)eG\xβ + y ^ 1}. Then G is a nonabelian
ro-group with no proper convex subgroups, and it is not Archimedean
[6], Since G has no proper convex subgroups, by Theorem 2, G has
no proper o-blocks and thus (G, G, eG) is a regular, o-primitive o-
permutation group which is not isomorphic to a right regular repre-
sentation of a subgroup of R. As remarked before, this is in sharp
contrast to the situation for o-primitive regular Z-permutation groups.

The following example gives a negative answer to the first
question asked.

EXAMPLE 4. Let {j^(R)9 R) denote the t-permutation group of
order preserving permutations of the real line. Well order the set
R by r0 -< rx < and right order j^(Λ) by the following rule: for
/ e J / ( 5 ) , call / strictly positive if the first point r in the well
order of R that / moves is moved strictly up in the original total
order of R. (This method was introduced by Conrad in [2].) The
collection of all strictly positive elements forms a strict positive cone
for a right total order ^ of i^(Λ). Let (,J*f(R), ,Sϊf(R), e) denote
the regular o-permutation group which corresponds to (jzf)R), <;)
under the Conrad correspondence. We show (jy(Λ), J*f{Rj) has
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nonregular o-primitive components. In fact, each o-primitive com-
ponent is nonregular, there are infinitely many o-primitive components,
and they are all order-isomorphic to the o-2 transitive Z-permutation
group (J^(JB), R).

For each reR, let Gr denote the stabilizer subgroup of r in
jzf(R). The tower of convex subgroups of (j^(R)9 <*) is J*f(R) 2
G>02Gv0 ΠG r i2G r oΠ(? r iΠGr 22 , and, at each stage in the tower,
equality holds or the lower group is a maximal convex subgroup of
the group immediately preceding it. (Equality will hold once a
dense subset of R has been fixed.)

To show this is true, we argue that Gro is a maximal convex
subgroup of (j^(i2), ίg). The other needed arguments are similar.
Clearly Gro is convex. Let ge ,s*f(R)\GrQ-(Gro, g) denotes the convex
subgroup of j^(R) generated by Gro and g. We show<Gro, g) = j^(R).
Without loss of generality, g > e. Choose any / > ees^(R). ge
,S^(R)\GrQ so r0 < rQg. If r0 ^ rj < rog, then e < / < g and / e
(Gro,g). Assume ro<rQg<^rof. Choose heGrQ so that rof<rogh.
gh € <G>0, g) and the first point in the well order of R which gh
moves is r0. Therefore, by definition of the right order on jy(J2),
e < f < gh and so / e <Gro, g). Thus <Gro, g) = Λf(R).

By using the above information, we see that the largest o-
primitive component of (J^(JB), >Szf{R)) is (.stf{R), ,s^f(R)IGr). This
is o-isomorphic to (j%f{R), R) by letting ψ in the definition of o~
isomorphism be the identity map and by letting φ be defined by: for
fGro e j^(R)IGrof (fGr)φ - rj. Thus (J^(Λ), J*r{R)) has a nonregular
o-primitive component which is o-isomorphic to an o-2 transitive
Z-permutation group.

In fact, when descending the tower of convex subgroups, we
see that each o-primitive component of (J^(JB), jy(jβ)) is Z-isomorphic
to ( j^(JB), R), and there will be infinitely many such components in
the wreath product of o-primitive factors of (.j^(JB), ,W{R)).

To check this statement, we describe what happens at the second
and third stages. The component immediately below( j^(JB), Jϊf(R)/GrQ)
in the tower is (G>0, GrJGrQ Π Gri). The Z-group Gro has three orbits
in the set R, namely all points which are to the left of r0 in the
natural order on R, {rj, and all points which lie to the right of r0.
The two nonsingleton orbits are o-isomorphic to R. Without loss of
generality, suppose rx lies to the left of r0. Call the left orbit g?L. We
may define an o-isomorphism φ from GrJGro Π Gn to έ?L by (fGro Π GrJφ =
rj. GrQ acts like j^(Λ) when restricted to έ?L. Thus (GrQ, GrJGrQ Π Gr)
is o-isomorphic to (Gro, έ?L) which is in turn o-isomorphic to
(j^f(R)f R). At the third stage in the tower the o-primitive component
is (Gro n Grι, Gro n GrJGrQ Π Gri Π Gr2). Again, if rx lies to the left of
r0, Gro Π Gri has three nonsingleton orbits in R: all points to the
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left of rί9 all points between rx and r0, and all points to the right
of r0. We may then locate the orbit of r2 and show that the
resulting o-permutation group is o-isomorphic to (<szf(R), R).

To show that the above example is not pathological, we now
describe which o-primitive o-permutation groups may occur as the
o-primitive component of a regular o-permutation group.

THEOREM 5. Let (G, S) be a transitive, o-primitive o-permutation
group. Then there exists a regular o-permutation group which has
(G, S) as an o-primitive component.

Proof. We first prove the following lemma.

LEMMA. Suppose (G, S) is a transitive, o-primitive, o-permutation
group. Well order S by so< sx< s2< , and right order G accord-
ing to this well order (as was done in Example 4). Then G8o is a
maximal convex subgroup of the ro-group (G, <£).

Proof. First, GSo is convex. For suppoe g e GSo, / e G, and eG <
/ < g. There exists sa in S such that sa is the first element in the
well order of S which g moves and sa < sag. Similarly, there exists
an element sβ in S for / with the same properties. eG < / < g
implies, by definition of the right order on G, that sa < sβ. Since
g e G8o, sQ < sa. Thus s0 < sβ and / 6 G8Q.

Next, Gso is maximal. Suppose there exists a convex subgroup
C of G such that GSQ §Ξ C. Let s0C denote the orbit of s0 under the
group C. We check s0C is an o-block. It is easy to see that s0C is
a G-block. To check the convexity, suppose SQ^ and s0c2 are in s0C
and there is a t in S such that so

ci ^ * ̂  s0c2 in the original order
on S. G is transitive so there is / in G such that sof = t. Thus
S(A ^ So/ ^ soc2. Since C is convex, / 6 C. Thus £ 6 s0C. It follows
s0C is an o-block of S. C Ξg GSo so there exists # e C such that so0 Φ
s0. Therefore s0C 3 {s0, sog). (G, S} is o-primitive so it must be that
s0C = G.

We now show C = G. Choose eG < feG. If sof = sQ then feC.
Therefore assume s0 < sof. Since s0C = <S, there exists c in C such
that sQ < s0/ < S(A By definition of the right order on G and the
convexity of C, f e C. Thus GSo is maximal in G.

Now right order G according to the well order in the lemma and
let (G, G, eG) be the corresponding regular o-permutation group of G
so (G, G/G8o) is the largest o-primitive component of (G, G, %). Using
the methods of Example 4, we can show (G, G/G,) is o-isomorphic
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to (G, S). Thus (G, G, eG) has (G, S) as an o-primitive component.

When considering Example 4 and Theorem 5, several questions
immediately come to mind. Suppose (G, S) is any o-primitive o-
permutation group, s0 -< st < s2 is a well order of the set Sf and
G is right-ordered according to this well order. We may form a
tower of convex subgroups of G by GS o2GS onGS l2GS onGS inGS 22 .
Some questions are: (i) at each stage of the tower is the lower group
always maximal in or equal to the upper group?; (ii) does one have
to go through infinitely many stages in the tower before any equality
relations hold?; and (iii) are all the o-primitive components of a
regular o-permutation group constructed by using the methods of
Theorem 5 always order-isomorphic?

We examine these questions in the context of o-primitive l-
permutation groups. S. H. McCleary has shown that all o-primitive
ί-permutation groups are either regular, o-2 transitive, or periodic
[4]. If (G, S) is a a regular o-primitive i-permutation group, then
by going through the process of Theorem 5, we simply recover (G, S)f

and there are no proper convex subgroups to consider.
We now consider the second case.

THEOREM 6. Suppose (G, S) is an o-2 transitive l-permutation
group, and s0 < sλ < s2 < is a well ordering of the set S. Right
order G according to this well order. Then:

( i ) GSQ 2 G80 n G,t 2 G8Q f] GH Π GS2 2 is a tower of convex
subgroups of G.

(ii) For every positive integer n(^l), Γ\7=o GH is proper maximal
convex subgroup of Π?=o GH.

(iii) The o-primitive components which correspond to the countable
collection of convex subgroups mentioned in (ii) are all o-2 transitive.

Proof (i) has been done. To prove the maximality part of (ii),
use the identical argument given in Example 4. The fact that these
relations will hold for at least countably many steps follows from
the fact that o-2 transitivity implies o-m transitivity for every finite
integer m. (iii) also follows from the same statement.

We may not, however, abstract the properties of Example 4 to
show that all the o-primitive components of a regular o-permutation
group constructed from an o-2 transitive Z-permutation group are
order-isomorphic. We demonstrate this in the following examples.

EXAMPLE 7. Let L denote the long line. Any initial segment
of L is order-isomorphic to JB, any final segment of L is order-
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isomorphic to L, and (jzf(L), L) is o-2 transitive [3].
Fix any r0 e L. Next, choose any r1 to the left of r0 and choose

an r2 to the right of r0. Well order L by r0 < rλ < r2 and then
complete the well ordering in any way obtaining ro< r1<r2<
r3 •< .

Right order ,s>f{L) according to this well order. By Theorem 7,
the tower of convex subgroups of ,$zf(L) begins with Gro 2 Gro Π Grι 2
GSoPiGrϊf)Gr2. By checking the method of Example 4, the largest o-
primitive component of ,Sϊf{L) is order-isomorphic to (,s^(L), L). The
second largest o-primitive component is (Gro, GrJGrQf]Gr2). Since rx is
located in the left orbit of Gro, GrJGro Π Gri is order-isomorphic to R.
It follows that the second largest component is order-isomorphic to
(jy(jβ), R). The point r2 is located in a final segement of L, so
(Gro n Gn, GrQ n Gri/Gro n Gri ίΊ Gr2), the third component, is order-
isomorphic tO ( jy(£), Zv).

Before giving the next example, we slightly generalize the method
of right-ordering an ordered permutation group which was given in
Example 4. For a chain S, let S denote the Dedekind completion of
S. For any fe,.s^(S)9 f can be uniquely extended to an order
preserving permutation / of S [3]. Identify each permutation /
with its extension /.

PROPOSITION 8. Let (G, S) be an ordered permutation group.
Well order the set S by s0 < sλ < s2< . Order the set G by the
rule: for any f in ,j^(S), / is strictly positive if the first point f
moves in the well order of S is moved strictly up in the original
order on S. Then, the collection of all strictly positive element forms
a strict positive cone for a right total order of G.

EXAMPLE 9. A totally ordered set S is an ηr&et if whenever
A, B £ S, A < B, and \A\, \B\ < \^lf there exists s in S such that
A < s < B. Any 7 -̂set of cardinality ^ x is a 1-set. Let S be a
1-set. Then (.J^(S), S) is o-2 transitive. Both the initial and final
characters of S are ωx. Let S denote the Dedekind completion of S.
Then each point of S has character cu, whereas for each s e S\S, s
may have character c01, c10, or cn. For verification of the above facts,
the reader is referred to Glass [3].

We will right-order .sχf(S) using Proposition 8. We will specify
a well ordering of S. Let soeS be any point of character c01, and
sx be any point of S which lies to the left of sx. Complete the well
ordering in any way obtaining s0 < sλ < s2 < - - . Right order jy(S)
according to Proposition 8. As before, the tower of convex subgroups
of ,s*(S) starts with Gs- 2 Gs- n Gs-.
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The largest o-primitive component of (,szf(S), jy(S)) is
. J^(S)/G8- is order-isomorphic :to so.s*f(S), the orbit of

sQ under the functions in *s&(β). This consists of all points of
character cQ1, and so so,j^f(S) is a dense subset of S disjoint from S.
The largest o-primitive component is therefore something which is
closely related to the original group (jy(S), S).

The second o-primitive component is (G6τ0, GrJGrQ Π G^). GrJGτQ Γϊ
G6τ is a dense subset of the segment of S which lies to the left of
s0 and has final character co0. Because of the vast difference between
the final characters of this chain and the original chain S, we have
no hope of marking an identification between this component and

S).

We now consider the final case where (G, S) is a periodically o-
primitive Z-per mutation group.

THEOREM 10. Suppose (G, S) is a periodically o-primitive l-
permutation group, s0 < sx< s2< is a well ordering of the set
S, G is right ordered according to this well ordering, and GSo 2 GSo Π
GSl 2 GSQ Π GSl Π GS2 2 is the tower of convex subgroups of G
corresponding to this well ordering. Then,

( i ) For every positive integer n ^> 1, either Π?=o Gs. = Π?=o GSz

or Π?=o GSi is a maximal convex subgroup of Π?=oLGs..
(ii) The largest o-primitive component of (G, G) is periodically

o-primitive.
(iii) For every positive integer n ^ 1, either

Γ\G.t,nG.i/f\G.%)
,i=0 ι i=o ι l i=o /

is the trivial permutation group or it is an o-2 transitive l-
permutation group.

Proof, (ii) has been shown. We check (i) at the first stage.
GSQ has a countable number of fixed points in the S. If sx is one of
these fixed points, then GSQ = GSo Π GSl and we are done. Therefore
assume GSQ n G8ί gΞ GSQ. sί is contained in one of the proper periodic
intervals of GSQ, and GSo, when restricted to this interval, is on o-2
transitive J-permutation group. Since GSo is o-2 transitive on its
proper periodic intervals, we may slightly modify the argument in
Example 4 to show GSo ΓΊ GSl is maximal in GSQ.

The rest of (i) and (iii) follows from the facts that the stabilizer
subgroups are o-2 transitive on their periodic intervals, that o-2
transitive implies o-m transitive for every finite integer m, and by
the construction of the o-primitive components.
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Note that this theorem shows that any regular o-permutation
group constructed from a periodically o-primitive Z-permutation group
has the same periodic group as its largest o-primitive component,
and then, minimally, countably many o-2 transitive Z-permutation
groups as o-primitive components. We now give examples of the
types of o-2 transitive Z-permutation groups which will be encoun-
tered in this construction.

EXAMPLE 11. Let + 1 denote that element of jy(Λ) which is
translation by the real number 1, and let G = {/e j ^ ( Λ ) | / ( + l) =
( + 1)/}. Then G is a periodically o-primitive Z-permutation group
[4]. Well order the set R by rQ < rx < r2 < and right order G
according to this well order. Then, the largest o-primitive component
of (G, G) will be order-isomorphic to (G, S) and the remaining o-
primitive components will be order-isomorphic to (j^(JB), R).

To construct an example where all the o-2 transitive components
are not order-isomorphic, we modify Example 9. Use is made of a
construction given by McCleary in [5]. Let S be a 1-set and let Sn

be all points in S\S which have character cn. Then, there is a
periodically o-primitive Z-permutation group G of Config (1) having
the proper periodic orbits of the stabilizers isomorphic to Sn. Call
the totally ordered set G acts on Γ. Then, by using the techniques
of Example 9, (G, T) will give the desired example.

In view of the examples just presented, it is clear that only
knowing the possible o-primitive components of a regular o-permuta-
tion group is not sufficient for the understanding of the overall
structure of such a group. Further knowledge can be derived by
understanding how the o-primitive components fit together. The
following theorem is a step in this direction.

THEOREM 12. Suppose (G, S) and {H, T) are transitive o-permu-
tation groups, and let {W, R) — (G, S)Wr{H, T). // there exists a
regular o-permutation group (K, R) £ (W, R) which induces (G, S)
and {H, T) as components {these are not necessarily o-primitive), then

( i ) (G, S) is a regular o-permutation group.
(ii) For each toeT, there is an epimorphism *tQ:G-^HH.

Proof. The regularity of (G, S) follows easily from the regularity
of {K, R).

For (ii), fix ί0 e T. HH is the stabilizer of t0 in H. Define KH =
{{φ; h)eK\heHtQ). We claim for each g in G there exists a unique
h 6 HtQ such that there exists a (φ; h) in Kto with φ{t0) — g. The
existence of such an h follows from the fact that {K, R) has com-
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ponents (G, S) and (H, T).
For uniqueness, suppose there exists hlf h2 e Hto such that (φx; hj),

(φ2; h2)eKtQ where φ^Q = g = φ2(t0). Then, for all points (s, ί0) eR,
(s, to)(&; h,) = (sg, ί0) = (β, $)(&, h2). By the regularity of K, (&; hx) =
(φ2; h2) and so ht = Λ2.

Define *ίo: G —> HH by: for # in G, g*to = h, where h is the unique
element of Hto defined in the above claim. Then, by using the
regularity of K, it is straightforward to check *ίo is an epimorphism.

In the examples which preceded this theorem, we examined the
largest o-primitive components of serveral regular o-primitive o-
permutation groups. From this theorem we see that if a regular
o-permutation group is locally o-primitive, it is locally regular.

From (ii) it is now easy to see that there is no regular o-
permutation group which is globally an o-2 transitive ί-permutation
group and locally order-isomorphic to a regular representation of an
abelian ordered group (o-group).

If the regular o-permutation group (K, R) in the theorem has
local component order-isomorphic to a regular representation of an
abelian o-group, we can conclude the following about the o-permu-
tation group (H, T).

COROLLARY 13. Suppose (K, R) Q (G, S)Wr(H, T) and (K, R)
satisfies the hypothesis of the previous paragraph and Theorem 12.
Then, for each teT,Ht is regular on each of its orbits in T.

Proof. By the theorem, for each ί0 e T, HH is a homomorphic
image of G and is therefore abelian. Let tHH denote an arbitrary
orbit of HtQ in T. Then (ϋέo, tHtQ) is a transitive, abelian ordered
permutation group and hence is regular.

We now briefly study a class of ordered permutation groups
which is somewhat more general than the class of regular o-permu-
tation groups which corresponds to the class of Conrad right-ordered
groups.

We consider regular o-permutation groups which have only a
finite number of o-primitive components. For ease of notation, assume
that the o-permutation groups we consider have two o-primitive
components, namely (G, S) aad (H, T).

Let (W, R) = (G, S)Wr(H, T): {K, R) is a large subaction of
(W, R) if (K, R) has global action (H, T), and for each fixed tQeT and
g e G, there exists (φ; eH) in K such that φ(tQ) = g. This is stronger,
in general, than saying (JSΓ, R) has local action (G, S) and global
action (H, T). Note that the small wreath product and the diagonal
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wreath product are always large subactions of the usual wreath
product.

THEOREM 14. Suppose (G, <;) is an ro-group and {eG} £ ffgi G
is the collection of convex subgroups of G. Then, then following are
equivalent:

( i ) G is an extension of the ro-group H by the ro-group G/H.
(ii) H is a normal, convex subgroup of G.
(iii) (H, H), the local component of (G, G), and (G/Γ\9,o Htt, G/H),

the global component of (G, G), are both regular o-permutation groups.
(iv) If(W, G) = CH, H)Wr(G/Γ)geGH

g, G/H), then (G, G) is a large
subaction of (W, G).

Proof, (i) <=> (ii) <=> (iii) are clear.

Next, (ii) => (iv). Since H is normal in G, f\gBQHa — H, and so
the global action of (G, G) is (G/H, G/H), a regular o-permutation
group. (GjH, GjH) is regular so the point stabilizers of G/H in G/H
are trivial. It is now clear that (G, G) has local action (H, H) and
global action (G/H, G/H) imply that (G, G) is a large subaction of

The only implication left is (iv) => (iii). Clearly (H, H) is regular.
For ease of notation, let (K, T) = (G/C\geGH

9, G/H), so (G, G) is a
large subaction of (JHΓ, H)Wr(K, T). Suppose there exist k in K and
tQe T such that £oft = ί0. We show k — eκ. (G, G) has global action
(if, T) so there exists (φλ; k)eG. Suppose &(£0) = fe0. (G, G) is large
in (if, H)Wr(K, T) so there exists (<ρ2; eκ)eG such that 02(to) = h0.
Then, for all (h, QeHx T, (h, Qfa k) = (A; ίo)(&; e*). By the
regularity of G, (^ k) = fe; βx) and so k = eκ. Thus (JBΓ, T) =
(G/Γ\gBGH

g,G/H) is a regular o-permutation group.

The reader may generalize the definition of a large subaction
for an o-permutation group with a finite number of o-primitive
components. In the case where (G, G) is a regular o-permutation
group, the following conditions are equivalent: (i) (G, g) has a finite
number of convex subgroups, each of which is normal in its cover;
(ii) (G, G) has a finite number of o-primitive components, all of which
are regular; (iii) (G, G) is a large subaction of the wreath product
of its o-primitive components. Even in the case where (G, G) has
an infinite number of o-primitive components, obviously (i) all convex
subgroups of (G, <;) are normal in their covers, is equivalent to (ii)
each o-primitive component of (G, G) is regular.

We offer the following example to demonstrate that the conditions
studied in Theorem 14 are not always satisfied by regular o-permu-
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tation groups with a finite number of o-primitive components.

EXAMPLE 15. Let G be the subgroup of Jzf(R) consisting of all
lines of positive slope. (G, R) is a sharply o-2 transitive ordered
permutation group, i.e., if we fix two points of R by an element of
G, we are forced to fix every point of R.

Let r0 be the real number 0, rx be the real number 1, and complete
a well ordering of R in any way obtaining 0 < 1 < r2 < r3 < .
Right order G according to this well order, and let (G, G) denote the
regular o-permutation group corresponding to (G, <£).

Since G is sharply o-2 transitive, the entire tower of convex
subgroups of (G, <£) is G 2 Go 2 R?}. By the methods of Theorem
5, (G, G/GQ), the global component of (G, G) is order-isomorphic to
(G, jβ), a nonregular o-permutation group. The local component of
(G, G) is (Go, Go). We describe this group more explicitly. The
function / in G are of the form xf = ax + b where a is any fixed
strictly positive real number and b is any fixed real number. If
/ 6 Go, then b = 0 in the above formula. Thus Go is the multiplicative
group of positive real numbers, and (Go, Go) is a regular, abelian
ordered permutation group. (G, G) is therefore a regular ordered
permutation group which has only two o-primitive components, one
of which is regular and one of which is not.

The ideas of Example 15 may be generalized to construct further
examples of right-ordered groups which have not yet been studied,
and which may prove useful in constructing counterexamples to various
conjectures. We briefly outline this method.

Let G be any ro-group (written additively) and let Φ(G) denote
the collection of all order-automorphisms of the ro-group G. J*f{G)
denotes the collection of order preserving permutations of the ordered
set G, and G will also denote the subgroup of jy(G) which is trans-
lation by elements of G. Let (Φ(G), G> denote the group generated
by Φ(G) and G. <Φ(G), G> is a subgroup of j^(G). For any x in
G and for any / e <Φ(G), G>, xf = xψ + g, where ψ is a fixed element
of Φ(G) and g is a fixed element of G. (In Example 15, Φ(G) was
the multiplicative group of positive reals, G was the additive group
of reals, and (Φ(G), G) was the group of lines of positive slope.) We
may then well order G and right order (Φ(G), G> according to this
well order.

There are a number of questions related to this study which
would be interesting to answer. We list some of them.

1. Classify all o-primitive, regular o-permutation groups. (The
known examples are the right regular representations of subgroups
of R and Smirnov's group.)
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2. In Smirnov's example of an ro-group of G, the collection of
elements whose powers are unbounded forms a subsemigroup of G.
Is this a common property of all non-Archimedean ro-groups with
no proper convex subgroups?

3. In Theorem 5, we constructed ro-groups from arbitrary o-
primitive o-per mutation groups. Is the tower of intersections of
stabilizer subgroups always the complete tower of convex subgroups
of the ro-group so constructed?

4. Investigate the structure of the ro-groups (Φ(G), G) construct-
ed after Example 15 for various right-ordered groups G.
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