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This paper has its origins in the problem of proving
irreducibility or reducibility for principal series representa-
tions of certain noncompact, complex, semi-simple groups by
Fourier-analytic methods; for example, the abelian methods
of Gelfand-Naimark for Sl (n,C), and the non commutative
(nilpotent) methods of K. Gross for Sp(n,C). As is well-
known, principal series representations are induced from
unitary characters of a parabolic subgroup, the series being
termed “nondegenerate” if the parabolic is minimal (i.e., the
Borel subgroup) and otherwise “degenerate”. Here we
consider degenerate principal series for Sp (n, C) correspond-
ing to maximal parabolic subgroups (more general than the
situation studied by Gross) and reduce them with respect
to the “opposite” parabolic. Let %, denote the complex
dimension of the isotropic subspace correspoending to the
maximal parabolic, let 0 <%, <%, and n,=n —n,. The
resulting reduction is described in terms of the natural
representation of the complex orthogenal group O(n,, C)
acting on the space L*(C":*™) and the temsor product of =,
copies of the oscillator representation of Sp (1, C). In the
terminology introduced by R. Howe, this harmonic analysis
reduces to the theory of a “dual reductive pair”, and any
further resolution of the question of irreducibility by these
methods will depend upon the study of the oscillator
representations for such a dual reductive pair.

We now deseribe our work in more detail. As a presentation
of the complex symplectic group, take

S.=1{geC"*gM,q = M,},

where M, :[(I) “16], I, is the »n X n identity matrix, and ¢’

denotes the transpose of ¢g. Specify a complete set of conjugacy
class representatives of the maximal parabolic subgroups H in
Y, (e.f., [9], §8) by defining H = Z'SA, where the subgroups Z, S,
and A are given below. Let the isotropic subspace of C** cor-
responding to H have dimension n,, with 0 < n, < n and n, = n — n,.
Then the blocking scheme used in defining Z, S, and A has diagonal
blocks of dimensions %, X %, M, X %y 7N, X %, and n, X n, from
upper left to lower right.
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I 0 00
-y I 0 0
Z e . —_ 7 = ’ T ’
oz Iy nN—0 =yx Y
2 0 0 [
I 0 0 0
S = 0 s, 0 s = Su S s,
0 0 I o So1 8y 05
0 s, 0 sy
a 0 0 O
0 I 0 O
A= | aeGln, C)
0 0 a0
0 00 I

Clearly, S is isomorphic to Sp (%, C), A is isomorphic to GI (%, C)
and elements of S commute with elements of A. Also, it is easily
shown that Z and Z’ are normalized by SA and hence, ZSA and
Z'SA are semidirect products.

The maximal parabolic subgroup H = Z'SA gives rise to a
degenerate principal series of representations T, of Y, induced from
unitary characters X on H. We shall realize T, in the Hilbert space
LAZ) as follows: Let dz denote Haar measure on the unimodular
group Z. Denote by d.,h and d,h, respectively, fixed left and right
Haar measures on H, and let §; be the modular function defined by
0u(h) = dihjd.h. By direct calculation (cf., [3], §6), HZ is an open
subset of ¥, whose complement is a set of Haar measure zero. Thus,
we can extend the positive character 6, and any unitary character
X on H to functions defined almost everywhere on Y, by defining
0n(hz) = dy(h) and X(hz) = X(h) for any hze HZ. Also, each right
coset of H in ¥,, except for a set of cosets whose union is a null
set, contains a unique element of Z. It follows that the canonical
action of X, on the right coset space H\3, gives rise to an “action”
of 3, on Z: for any ge X, and z¢ Z, let 2z be the unique element
of Z such that H(zg) = Hzg, provided that such an element exists.
To be specific, denote by Z¢ the subset of Z such that zg exists,
then Z’ is an open subset of Z whose complement is a null set.
Therefore, if f € L*Z) then the function z — f(z7), for fixed geJ,,
is defined almost everywhere in Z. Now, the formula ([2], §30)
defining the (continuous) unitary. representations 7, of X,, which
form a (degenerate) principal series is

(1.1 T(9)f(2) = 04(29)""X(29)f(29) (9 € 3., f € LXZ)) .
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Let us briefly explain the Fourier-analytic reduction of the
restriction of 7T, to the (opposite) parabolic subgroup ZSA. Fix =,
withl <n <, fixX,and let T = T,. We observe that the restric-
tion T|, of T to Z is just the right regular representation of Z.
Thus, it is natural to replace T with the unitarily equivalent represen-
tation T = T where .7 is the Plancherel transform of L¥Z),
for T|, decomposes as a direct integral. The operator < maps
L¥Z) unitarily onto the Hibert space L*4, X, dm(\)), of X-valued,
square-integrable functions on 4. Here 4 is the dual object of Z,
dm(\) is the Plancherel measure on 4, and X = HS(L¥C"**™)) is the
Hilbert space of Hilbert-Schmidt operators on L*C™*™). It is also
the case that 7|, decomposes as a direct integral, and one can ex-
plicitly analyze T(zsa) for all zsa e ZSA. The operators of Tlysa
involve a representation I:S— Z/(L*C™*™)) which is the tensor
product of m, copies of the oscillator representation of Sp (n,, C), as
well as a representation D: A — 7 (L¥C**™)), in which Gl(n, C) acts
on LXC™™) by generalized dilations. The above results are contained
in §2 of this paper.

Let .o7"(T|,s.) denote the commuting algebra of 7|,,,. There
are sufficiently many operators of T'l,s. which are diagonalizable to
force .o7'(T|,s,) to be decomposable. Moreover, the components of
.7"(T)4s4) are essentially copies of the intersection, .o"(I) N .&7"(D,,)
of the commuting algebras of [ and D[, where A, = O(n,, C). That
is, there is an isometric isomorphism of von Neumann algebras,
which we exhibit, between .o7'(T,s,) and .o7'(I) N .o7"(D|,). This
is the content of §3.

It should be noted that there are two special cases in which
complete results are known. The case n, = n is special since Z is
abelian. It is not difficult to show that .%’(7|,s,) is one-dimensional
and, hence, for all X, T, is already irreducible upon restriction to
ZSA. Also, the irreducibility problem has been completely solved
in the case n,=1, n,=n —1, in |[3], which may be regarded as the
prototype for the general case. There it is proved that T, is
irreducible unless X is the trivial character on H, in which case, T,
splits into the sum of two irreducible representations of ZX,. The
complete results of [3] rest on the fact that the commuting algebra
(DN S '(D|,,) is just 2-dimensional when n, =1. In the genera}
case, this algebra is infinite dimensional and the full analysis of T
on all of 5, depends upon its explicit description.!

The author wishes to thank Steven Gaal and the referee of an
earlier version of this paper for advice and helpful criticism.

L R. Howe’s results show that the joint representation of Sp (1o, C) X O(ny, C) de-
composes continuously. It follows that the commuting algebra is infinite dimensional.



294 THOMAS A. FARMER

2. The operators T(zsa). In order to analyze T[ZSA we need
to introduce the dual object of Z, the resulting Plancherel transform
of L*Z) and the oscillator representation of Sp (n, C).

Procedures of Kirillov [5] can be applied to the simply connected,
nilpotent lie group Z to yield the dual object — the set of equivalence
classes of irreducible, unitary representations of Z. The results are
given below.

Denote the elements of Z by (x, y, t), where ¢ = 7 — y2’ so that
t is symmetric. In this way Z is identified with V x V x 4,,
where V = C"*™ and 4, = {teC**™: ¢ = ¢'}. Multiplication in Z is
now given by

(@1, Yy (@, Yoy Bo) = (X + By Yy + Yy &y + &, — *,Y; — yzx{) .

Also, the center of Z is easily seen to be {0} x {0} X 4, and the
Haar measure of the unimodular group Z is real Lebesgue measure
dz = dx dy dt on the Euclidean space V x V X 4,.

For ned, with rank A =17, let CA)eO(n, C) be such that

CONCONY =

g’ 8| , Where \, is a symmetric, invertible » x = matrix.

Also, let X = g’ 810"1“‘“, thought of as a measure space with real

Lebesgue measure. Finally, throughout this paper we shall let
(w|v) = Retr wv’ for all u, v e CP*.

THEOREM 2.1. Ewery irreducible, unitary representation of Z
is unitarily equivalent to I, for some choice of a, SeV and
N € Ay, where I, 5, 15 defined as follows:

(1) If x=0 then I, is 1-dimensional and is given by

e p.0(, ¥, 1) = exp 2mif(a]x) + (8]Y)]

for (x,y,t)e Z.
(2) Iframkx=1r+0, then I 4 Z — 72 (LX(X)) 48 co-dimen-
stonal and is given by

M ws(®, ¥, D) = exp Zm‘{(alCO»)’ g (;!cm)x)

I. 0
(Bl + - 2C(>»)’uy')]f<u ¥ | . 0'C<mx>
for felXX) and (x,y,t)eZ. Moreover Il s .y and I, are
unitarily equivalent +f and only if M =N, @ =&, + Ma, and

B, = By + NMb for some a,be V.

The Plancherel transform of L*Z) does not require the entire
dual object of Z, but only the representations corresponding to



THE REDUCTION OF CERTAIN DEGENERATE PRINCIPAL SERIES 295

“maximal orbits”. These are the representation I17,,,, where \ is
invertible (i.e., = m,). Thus, let 4 = {y e 4,: rank » = n,} and for
A€ A denote I, by X, then X acts in the Hilbert space LX V) by
the formula

(2.2) N®, y, t)f(u) = exp [2mi(\|¢ — 2uy)]f(u + @)

for feLXV) and z = (x,¥y,t)eZ.

Let & = (V) x FA(V) x & (4,), where (V) (respectively
S (4,)) is the vector space of all infinitely differentiable, rapidly
decreasing functions with domain V (respectively 4,). Then & is
a dense subspace of L*Z) with which we can state and prove the
following results concerning the Plancherel transform & of L¥Z).

THEOREM 2.3. (1) The Plancherel measure m on A is given by
dm(\) = 2omtnum=l L [ det \ [Prod),

where d\ 18 the restriction to A of the Lebesgue measure on A,. (2)
The mapping f — K, defined for fe.&” by

Ki(x, y, \) = S S : flw —y, v, t) exp [2mi(\ |t — 20y')]dtdw
extends uniquely to a linear isometry of LXZ) onto LV x V x 4,

dxedydm(N)). This 'és the function-valued Plancherel transform. (8)
The mapping f — f defined weakly for fe.S” by

ORI ONCZ

extends uniquely to an isometry & of LXZ) onto L¥A, HS(LXV)),
dm(N)). This is the Plancherel transform of LXZ).

Proof. A computation shows that f(h) is an integral operator
with kernel K;. The mapping f — K, is decomposed as in [3] (1.8)
into ordinary, partial Fourier transforms

Fif @0 = | f@, 0,0 exp[-2rity |v)]d
Fof(®, Y, \) = 2-mm2 SA f(@, ¥, t) exp [—2mi(\ | £)]dt
(f €. the factor ¢ = 27792 makes .#, an isometry) and a trans-

formation .ZZ: LV X V X 4, dedyd\) — LV X V x 4,, dxdydm(\))
given by

Bf (%, ¥, M) = cf(® — y, 2\y, \) .
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In fact, K; = Z2#, 7 ;'f for all f €. &~ Now dm(\) is chosen so that
Z# is an isometry and hence f — K, is an isometry.

To prove (3) and (2), one shows that the mapping K; — 7, defined
for fe.&% extends to a linear isometry of LYV X V X 4,, dedydm(\))
onto LA, HS(L*V)), dm(\)).

The tensor product of 7, copies of the oscillator representation
of S occurs naturally in the present setting. Note that S normalizes
Z. Specifically, for seS and z = (x, y,t)e Z

—_ ’ ’ 1 ’ ’
828" = (X85 — YSy, YSi — XSipy t + 283581, + YSuSuY'
’ ’

— %8180y — YSnS¥') .

Let ne4 and fix se€S. The mapping z — X(szs™) is an irreducible,
unitary representation of Z acting in L V) which agrees with X on
the center of Z. Thus, these two irreducible representations are
unitarily equivalent, and so, there is a unitary operator X(s) on L¥ V')
such that

N(szs™h) = MMM (€ Z).

For each s, \(s) is unique up to scalar multiples of absolute value 1,
and, as we will show, X\(s) can be normalized so that s — X(s) is a
unitary representation of S acting in L V). Let us now be more
explicit.

Identify S with 3, and define the following subgroups of X,
using the blocking scheme with two diagonal blocks of size m, X 7,

M = {m(b):]g ?':bzb’}

L= l(l(“) - lg 3 taeGl(n, C), a¥ = (@) .

Also, let p = [g _(ﬂ The set L UM U {p} generates 3, ([3], p.

404), so to define X on S it is enough to define it on this generating
set.

DEFINITION 2.4. Given Med, define \: L UMU {p} —» % (LXV))
by
MUa))f(u) = |det a|™fua) (ia)e L)
N(m(b))f(w) = exp [—2wi(vu |ub)] f(w) (m(b) e M)
ND)f(w) = v(\)|det 2 [~ USf(2 )

where U is the Fourier transform of L* V') defined for feLYV) by
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Uftu) = | fw) exp [2milulv)ldv

and Y(\) is a complex number with modulus 1, which will be
determined in the proof of Theorem 2.5.

THEOREM 2.5. The mapping X\, defined on L U MU {p} above,
extends uniquely to be a continuous unmitary representation of 3,
(and hence S) acting in L V) which satisfies

N(szs7Y) = N(8)M2)N(s)™*

Jor all seS and ze Z.

Proof. It is easy to verify that the restrictions of X to L, M,
and LM are continuous unitary representations of these groups.
Now apply Lemma 1 of [3]. To prove that condition (2).of Lemma
1 is satisfied, we use the following: Observe that m(I)pm(I) =
pm(—I)p. Let m = m(I), then m™ = m(—1I). From the definitions
of the operators X(m) and X(p), a computation shows that

X(m)X(D)X(m)N(2)X(m) " X(p) X (m) ™
= X(mpmzm“lp“‘m“)
= Mpm ™ 'pzp~'mp™)
= X(@)X(m)~X(p)M(=)X() " X(m)X(p)™*

and hence Y,(A) = X(0) " 'N(m)X(p) " N(m)N(p)X(m) € '(X), the commut-
ing algebra of N. This is true regardless of the value of v(\) with
[Y(\)| = 1. Thus, letting

Y.(0) = [YO) MO M m)[y (W) T RD)] T Rm)[ YN TR(D)IN(m) |

we have Y;(\) = y(\) Y,(\) € .977(X). But X\ is irreducible so .577(X) is
1-dimensional and hence Y,(\) = ¢(\)I for some unique ¢(\) e C with
le(v)] = 1. Define v(\) = ¢(\) then Y,(A) = I and it follows that

Am)Mp)N(m) = N(p)Mm™HN(p)
which is condition (2) of Lemma 1 of [3].

Just as the representation X of S arises from interwining
operators \(s) between X and z — \(szs™!), a representation D of A4
arises from intertwining operators D(a) between (ana’)” and z —
Ma'za). For acA and z = (z, y, t) € Z, we have

a'za = (a'z, a'y, a'ta) ,

and from formula (2.2), the representations (ara’)” and z — Na za)
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are easily seen to agree on the center of Z. Hence, these two
irreducible representations of Z are unitarily equivalent and, in fact,
the operator D(a) given by

D(@)f(u) = |det a|™f(a'w) (feL(V))
intertwines them. Also, the fact that

X(8)D(a)"(ana')"(2) D(c)N(s)™*
= Nsa zas™) = NMa'szsTia)
= D(a)™(ane) (s)(ana') (z)(ana’)™(s) ™ D(a)

suggests that D(a) may also intertwine X and (aaa’)” and, indeed,
this is the case. We summarize these facts in the next theorem.

THEOREM 2.6. The mapping D: A— Z(ILXV)) is a continuous
unitary representation of A which satisfies

(1) D(a)(era') (2)D(a) = Ma za)

(2) D(@)Ms)D(a)™ = (ana’)(s)
Jor all xed, acA, s€8, and z€Z.

We omit the proof of the above theorem since it is fairly
straightforward (cf., [3], Theorem 2), however, we make the follow-
ing observation related to the proof. For each invertible symmetric
matrix A there exists 8¢ Gl (n,, C) such that A = 88’. Consequently,
the action of A on 4 defined by a - » = ana’ is transitive, and from
this follow two important facts: First, the function v defined on 4
in the proof of Theorem 2.5 is constant. Secondly, we have the

COROLLARY. Let ne/d and let IeAd denote the n, X m, irdentity
matriz, then % 18 unmitarily equivalent to I.

View LA V) as the tensor product @™ L*C™) by defining
H®[® - ®f%1(u) = fulw)fo(wy) - - - fn,(u'nl) ’

where u, is the ith row of w and f,eL¥C™). By inspection of I
and comparison with Theorem 2 of [3], one sees that I is a tensor
product of n, copies of the oscillator representation 7 of [3].

We may now compute the operators f’(zosa) for zsaeZSA.
Recall that the formula (1.1) for T(g) involves the action of g on Z
given by H(zg) = Hzg. If g = z,5a¢ then the action becomes 2280 =
a'sT'zzsa. Also, 04(29) = 0x(27,80) = 0x((sa)(@™!sT'zzsx)) = Op(sc),
since 4(h2) is defined to be d4(h) for any hze HZ. Furthermore,
Ou(sa) = 0x(a) because S has no nontrivial characters. Similarly,
X(zz,s) = X(«) for any unitary character X on H. Thus, (1.1) becomes
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(2.7) T(zs)f(z) = dg(a) ™V A(a)f(a s 2z80)

for f e LXZ). Now let fe LZ)N L*Z) and f = &°f, then fesz =
L¥(A, HS(LXV)), dm(\)) and FP(LNZ) N L*Z)) forms a dense subspace
of 2~ The next theorem determines the transformed representa-
tion TlZSA.

THEOREM 2.8. For feLNZ)N LXZ) and zsa € ZSA,
T(zsa) f(N) = du(a)*X(a)X(s)D(er) f(a™ - N)D(a)*X(s) " \(z)™

Jor almost every e A.

Proof. For every ned, T(zsa)f(\) = PT(280) P PfN) =
FT(zsQ)f () = S T(zs)f(2)\(2)dz = st,,(arwxm) fla s 2z sa) (2)dz
(1) =90 H(af“lf"ZX(a) SZ f(z)X(saza"ls“1z;1)d(saza'ls“z; D)

(2) = onl@) e | foRsaza s 5" 0u(@)d
(3) = dular e | N aza N6y dz [i(a)
(4) = du@ UaNs) | fR)D@(a Ay @D@) dz [Xs) (e

= 5;1(a>"'zx(a)i(S)D(a)UZ f@)(a™ -N)A(z)dz]D(a)“X(S)"‘i(zo)“1,

which gives the theorem. Equation (1) is a change of variables, (2)
is the fact d(saza™'s™) = dyz(a)dz (cf., [6], II. 7), (3) is an application
of Theorem 2.5, and (4) is from Theorem 2.6 (1). The formula in
the Theorem is said to hold “almost everywhere” since there may
be a null set in 4 where the right-hand-side is not in HS(L¥ V)).

3. The commuting algebra of 7 |,s,. We seek necessary and
sufficient conditions for Be _<(5%"), the bounded linear operators on
the Hilbert space o7 = L¥4, HS(LXV)), dm(\)), to be in the com-
muting algebra .o7'(T'|,s,). Suppose Be.o7'(T|,s.). Then, in parti-
cular, B commutes with 7'(z) and T(s) for all zeZ and seS. We
will first see what conditions on B these facts impose. Then we
will obtain additional conditions from the fact that B commutes
with T(a) for ae A.

Realize HS(LXV)) as LA V)X LX V). From the observation that

oz = L}4, LXV)® LA(V), dm(\)) = S1L2(V)® L V)dm(\) is a di-

rect integral of Hilbert spaces, we have the notions of decomposa-
ble and diagonalizable operators ([7], I. 8). From Theorem 2.8, it
is clear that T(z) and 7'(s) are decomposable operators for ze Z and
se S and can be denoted:
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T(z) = S 1B N2dm(n)

T(s) = SAX(s) ® Xs)dm(n) .

To show from this that B is decomposable requires the following
technical lemma of Stone-Weierstrass type.

Let X be a locally compact, o-compact, Hausdorff space with
positive Borel measure g, which is finite on compact sets. Let H
be a separable Hilbert space. For a e L*(X, ¢), let M(a) denote the
diagonalizable operator on L X, H, y) given by M(a)f(x) = a(x)f(x).

LeEMMA 3.1. Let O/ be a subalgebra of C(X)N L*(X, p) over C
such that

(a) le.ss

(b) ae.% implies @ € .5,

(e) .7 separates points of X.
If Be Z(LXX, H, pv)) and BM(a) = M(a)B for all a € .57, then BM(a)=
M(a)B for all a € L*(X, p).

THEOREM 3.2. Suppose Be .57 (T |,5.). Then

(a) B is decomposable.

(b) There exists a mapping A — B(\) of A anto ZF(LXNV)),
defined a.e. [m], such that B — S BV Idm(\).

(¢) B(\)e.>’'(X) for almost every e A.

Proof. (a) Let .o = {N —exp[2miM|t)]:ted}). & is a sub-
algebra over C of C(4) N L”(A, m), which satisfies the conditions of
Lemma 3.1. Furthermore, if a €.% then the associated diagonaliza-
ble operator M(a)e < (5#7), given by M(a)f(h):a(x)f(x), is an
operator of the representation 7'|,. In fact, if a(\) = exp [273(\|t)]
then M(a) = f’(z), where z = (0, 0, £). Therefore BM(a) = M(a)B for
every a €. and the lemma implies that this holds for every ac
L>(A, m). Since {M(a): a € L™(4, m)} is exactly the set of diagonaliza-
ble operators on .97, B must be decomposable ([7], I. 3.2).

(b) Since B is decomposable, there exists an eSsentialIy bounded
mapping \ — B;, defined a.e. [m] with values in . Z(LXV)® LA V),
such that B = g Bdm()).

Since B commutes with T(z) = S IR NMz)dm(\) for every ze Z,
B, commutes with I& X(z) except for A in an m-null set N,. Z is
separable; let {z;: 7€ . 7} be a countable dense subset of Z and let
N = Ui~ N,. Then m(N)=0 and for e N°, B; commutes with
I®N(z,) for all ie._% Thus we have two continuous maps, z -»
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B(I® X)) and z— (IR N\z))B;, which agree on a dense subset of
Z. It follows that B,e . %'(I®N) for all xe N°. Since X\ is ir-
reducible, for each A e N° there exists B(\)e (LA V)) such that

B, = BOW® I ([1], V1. 3.14). Therefore, B = SAB(N) & Idm(\).
(¢) Since B commutes with 7'(s) = Sﬁx(s)@ Xs)dm(n) for every

seS, B\)® I commutes with X(s)® Ms) a.e. [m]. Just as in the
proof of (b), since S is separable there exists an m-null set N such
that for every M e N° and every s€ S,

(BOV) @ D(X(s) @ Ms)) = (M) @ MNBM X I) -

It follows that BOW)X(s) ® X(s) = X(s)B(M) ® N(s) and hence B(\)X(s) =
Ms)B(Z). Thus, B(\)e.o7’(X) for almost every .

Continue to suppose that Be .o'(T|,s,) so that B satisfies (a), (b),
ang. (e) of :l‘heorem 3.2. We will now make use of the condition that
BT () = T(a)B for all ¢ ¢ A. Recall that a denotes both an element

a 0 0 0
of Gl(m,, C) and the corresponding element 8 (I) g'—lg of A.
00 0 I

Concerning the transitive action of A on 4 given by a-» = ara/,
let A, be the stability subgroup of A at IeA. That is, 4, =
{a e A: ac’ = I}, which can be identified with O(n,, C). Let p: A— 4
be the projection p(a) = a-I = waa’'. We will need to know that a
measurable set N is an m-null set in 4 if and only if »p™%(V) is a
null set in A with respect to Haar measure. This result can be
obtained by first showing that dnp(A) = |det »|"™*t"d\ is an A-invariant
measure on 4. It follows (as in [1], V. 3) that N is an %-null set
in 4 if and only if p™%(N) is a null set in A. Since m and 7 are
clearly equivalent we have the needed result. We are now able to
prove

THEOREM 3.3. If Be%’(T]ZSA) then there exists a mapping
A— B\ of A4 into L(LAV)) which s weakly continuous and
satisfies:

@ B=| Bo)® Idmov;

(b) Blaa') = D(e)B(I)D(a)™ for all acA;

(e) B(I)e ."(D|,);

(d) BX\)e.&7'(X) for all neA.

Proof. From Theorem 3.2, we have a weakly measurable mapp-
ing A — B,(\) such that B = SABIO\')@ Idm(x). The major part of
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this proof is to show that there is an equivalent mapping which is
weakly continuous. By Theorem 2.8, if e« € A and f € Z(LXNZ) N LXZ))
then

T(@)F(N) = du(@) Ua)D(@)f(a™ - N)D(@)™

for almost every ned, where a™'-» = a™'a’™*. The condition that
BT (a) = T(a)B for all ac A is seen to be equivalent to

(1) For all ¢ e A, B,(A) = D(a)™'B,(ana’)D(a) a.e. [m(\)] .

Consider the weakly measurable mapping a — D(a) 'B(aa’)D(«)
of A into (LA V)). For fixed ae A, (1) implies

(2)  D(@p)B(app'a)D(ap) = D(B)*B(BB)D(B) a.e. [dB],

since a null set in 4 pulls back under »™ to a null set in A. Fix
é, v € L(V) and define the measurable, essentially bounded function
w: A— C by

w(B) = (D(B)*B(BL)D(B), v)

where (,) is the inner product of L(V). Then, by (2), w(B)dB
defines a left invariant Borel measure on A. By uniqueness of Haar
measure, w must be almost everywhere constant. Moreover, if this
number is denoted w,  then, by application of the Riesz representa-
tion theorem to the bilinear form (g, 4) — w, v, there exists a unique
Le Z(LXV)) such that

(3) D(B)*B(BBYD(B) = L a.e. [dg] .

Consider the weakly measurable maps B8 — B(BB') and g —
D(B)LD(B)™ of A into <~(LXV)). Since A, = {aec A: aa’ = I}, the
first map is constant on left cosets of 4,. The second map is con-
tinuous (with respect to either the strong or the weak operator
topology of .~ (L*V))). Also, (8) implies that the two maps coincide
almost everywhere. We can conclude that 8 — D(R)LD(B)™* is both
continuous and constant on left cosets of A,. Because of this fact,
the mapping BB — D(B)LD(B) is well-defined on 4. It is also con-
tinuous since B — D(B)LD(BR)™* is continuous and p is open. Define
B(BR") = D(B)LD(B)Y, then B(BR') and B,(BG') differ only on a “strip”
set of measure zero in A4, which projects to a null set in 4. Thus,
N — B(\) is a continuous mapping such that (a) holds.

Parts (b) and (c) follow immediately from the definition of B(\).
To prove (d), recall from Theorem 8.2 (¢) that B(\)e.%’(X) for
almost every ne4. In particular, B(\,) € . ¥’(X,) for some )\, =
BR edA. Let ned, then » = ard’ = aBB’a’ for some ac A. Now
apply the definition of B(\) along with Theorem 2.6 (2).



THE REDUCTION OF CERTAIN DEGENERATE PRINCIPAL SERIES 303

We now have the main theorem.
THEOREM 3.4. The mapping
BI)— B = | D@)BIODE)" & 1dm(ss)

8 am tsomorphism of von Neumann algebras from 57'(Dl,) 0 7 "(I)
onto 7' (T |z54)-

Proof. The mapping in the theorem makes sense because the
condition B(I)e .»7"'(D|,,) guarantees that gB8'— D(B)B(I)D(B)*® I
is well-defined. It is straightforward to verify separately that Be
(T, Be.sz'(T|s), and Be.or'(T|,). Also, using properties of
decomposable operators, it is easy to show that B(I)— B is an
isometric, *-algebra isomorphism. The fact that it is surjective is
proved in Theorem 3.3.
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