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1. Introduction. M-functions were introduced by G. Darbo [1]
and R. Jerrard [5] as a generalization of continuous functions between
topological spaces. They are weighted, finitely-valued functions with
a property corresponding to that of usual continuity. In [1] and [5]
it was shown that ordinary singular homolégy groups for compact
polyhedra are actually m-homotopy type invariants. In [6] it was
shown that m-homotopy type is a stronger invariance than homotopy
type in the sense that two spaces may have different homotopy types
but the same m-homotopy type. R. Schultz [8] has noted that m-
homology differs from singular homology on some compact metric
spaces. It has also been brought to our attention that in a 175
letter, G. Bredon indicated a method of proving that m-homotopy
classes of PL m-functions on finite complexes are in 1 — 1 correspond-
ence with chain homotopy classes of chain maps. His approach is
quite different from the one used in this paper. Here we define m-
homotopy groups (actually R-modules) and give some of their pro-
perties. We show that for a compact polyhedron, the nth singular
homology group and the =nth m-homotopy group are actually
isomorphie.

We show, for example, that the nth m-homotopy group has a
natural definition as mz,(Y) = hom(S", Y) in a certain category of
m-functions, which is an R-module under the addition of m-functions
defined below. This addition turns out to be the extension to m-
functions of the usual product in homotopy groups. Since hom(X, Y)
is always an R-module in this category, we see that m-homotopy
groups (and hence singular homology groups) are special cases of
the R-module hom(X, Y), which is a joint m-homotopy (and topological)
invariant of X and Y.

Next we show that m-homotopy theory is a homology theory
by proving it satisfies the Eilenberg-Steenrod axioms[4]. The excision
axiom is of special interest since it completely fails to hold for usual
homotopy. It is proven to hold in m-homotopy theory by introducing
several combinatorial lemmas (§4).

There is a connection between the results here and the Dold-
Thom theorem [2]. They showed that H,(Y) = 7,.(AG(Y)) where
AG(Y) is the topologiecal free abelian group on the pointed polyhedron
Y. There is a natural relationship between m-functions from X to
Y and functions from X to AG(Y). However, we show that there
are m-functions X —Y with no corresponding continuous function
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X — AG(Y) and vice versa.

2. M-functions. We give below a brief definition of m-functions.
For motivation we refer the reader to [5].

Let X and Y be Hausdorff spaces and R a ring with identity
and without zero divisors (in most examples R = Z or R). Suppose
we are given that:

(i) f:X—>Y is a multiple-valued function such that each f(x)
is a finite or empty subset of Y,

(ii) £ X XY R is a (standard) function which defines f as
a subset of X xY by f = cl{(x, )| flx, ¥) = 0}, and

(iii) for any x € X and any open set V< Y such that oV N f(X) =
@ there exists a neighborhood U of = such that for 2’ e U,

P @, v) =3 f, y) .

Then an m-function (denoted just by f) is f together with the weight-
ing factor determined by the defining function f. The multiplicity
of f is m(f) = X,y f(x, ¥); it is independent of & if X is connected.
The empty m-function, denoted by @ is defined by @: X x Y — 0.
Any continuous function can be regarded as an m-function by assiging
it multiplicity one.

The composition of f: X —Y and g:Y — Z is defined by gof (2, 2) =
S, er f@, ¥)F(y, 2), so Hausdorff spaces and m-functions over R form
a category R-T2, with T2 as a subcategory. Any two m-functions
may be added: f + ¢ is defined by f + g =F+g. Also, if acR we
define the m-function af by af=af. Then hom(X,Y)is an R-module and
there are functors hom(__, Z) and hom(Z, _): R-T2 — (R modules).
The restriction of f: X —>Y to a subset A C X is defined by fl|A =
foi when 1 is the inclusion i: A - X. An m-function F: X X I -»Y
is an m-homotopy between F|X x {0} and F|Xx ({1} (denoted by ~,).
One can form m-homotopy classes of m-functions and these preserve
the ring structure, that is, [f + g] = [f] + [g] and [af] = a[f].

We shall work primarily in the category Ri-phT2 of pointed
pairs of Hausdorff spaces and m-homotopy classes of m-functions
over R of multiplicity zero, together with its hom-sets (they are
R-modules) and its hom-functors (see [7]). An m-function on pointed
pairs f: (X, A4, x,)— (Y, B, y,) must satisfy f|4: A— B and f |2, 2,— ¥,.

LemMMA 2.1. In Ri-phT2 the above condition for an m-function
to be pointed is equivalent to f|x, = ©; also, for

f:X——)Y’ f:(X,A,xo)———>(Y,yo,y0)
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if and only if f1A=@. In particular the morphisms do not depend
wpon the choice of base point in the image space.

Proof. We know from the pointedness condition that f(w,, ¥) =0
if ¥ = ¥,, and then from the zero multiplicity that f(x, ¥,) = 0. Thus
%, has no image points of nonzero multiplicity and flz,= @. A
similar argument gives the second conclusion, and the converses are
trivial.

Working only with m-functions of zero multiplicity entails almost
no loss of generality. To any given m-function of multiplicity a e R
can be added the constant m-function of multiplicity (—a) and image
Yy, to get an m-function of multiplicity zero which is the representa-
tive of the given m-function in R,-phT2.

3. M-homotopy groups. In this section we define m-homotopy
groups and the subsidiary concepts of boundary operator and induced
homomorphism. We also obtain the surprising result that the usual
product [f][g] of two group elements is actually m-homotopic to
[f + g], the addition defined in §2. Thus the group operation is
addition and m-homotopy groups turn out to be hom-sets in R,
phT2, which are R-modules.

For any pair (X, 4) = (X, 4, @) and integer » = 1 we define the
nth m-homotopy group, mm,(X, A) to have as underlying set, the
set of m-homotopy classes of m-functions (of multiplicity zero)
f:(B* S 1)— (X, A). B", S"*, and 1 are subsets of E" defined
by B ={z||z] <1}, S" ' = {x]|]z] =1}, and 1 = {1, 0,0, ---,0)}. In
usual homotopy, 4 # @ and (X, 4) = (X, 4, z,). But by Lemma 2.1
our definition will include this one.

To define mn,(X, A) we let X, be the set of path components of
X not meeting 4. Then m=n,(X, A) consists of the m-homotopy
classes of m~functions f:(S° 1) — (X,) of arbitrary multiplicity.

Note that in the definition of m=n,(X, A) we can replace B", S,
and 1 by I*® "I*, and 0 respectively, where I = [0, 1], 'I* = "(I*), and
0 denotes {(0, 0, ---, 0)}.

Before defining the group operation, we note the following
implications of our above definition and Lemma 2.1:

(i) For m=1, if [flemr,(X, A), then f has multiplicity zero
in every path component of X.

(ii) For n = 2, if [f]lemz,(X, A), then f|S"™* has multiplicity
zero in every path component of A.

(iii) mrm,(X) = R™ where X has m path components.

We define, for » = 1, the product of f and ¢ in the traditional
way by fg:(B** x [~1, 1])/~ — X according to:
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Fo,2t+1,2 —1<t=<0

P90, 60 = 100 0 1 g 0o<t<1.

(For » = 1, drop b from the above.)

THEOREM 3.1. fg ~.,.f + g (where f and g represent elements
of mr. (X, A), for n=1).

Proof. First define the m-functions f;, g,: (B*™* X [—1, 1)/~ - X
by:

for —1=<1t<0: £, ¢ ) = fb, 2t + 1, 2), g.(b, t, x) =0
for 0<t<1:f(bt x)=0,4gb,t a) =gh 2t —1 ).

Then fg =f, + g, and so fg =/, +¢.. We need only prove that
f ~ufiand g ~, 9,. The proofs are similar; we give the first.

Consider the family of homeomorphisms d.: B*™* x [~1, 7] — B"™* X
[—1,0] defined by d.(d, t) = (b, ¢+ 1)/(ct + 1)—1)(ce€I). The m-
homotopy F: ((B*™* x [—1, 1])/~) X [—1, 1] - X given by F(b, t, ) =
fod. for t <t and F(b,t,7) =@ for t >t carries f(zr=0) to
filz = 1).

We extend the group operation to dimension zero by using m-
function addition as the operation there also.

COROLLARY 3.2. For m =1 the m-homotopy group mn,(X, A) is
the R-module hom[(B", S*%, 1), (X, A)]. Letting A = @, mr,(X) =
hom[(B*", §*7, 1), (X)] = hom[(S", 1), (X)].

The last isomorphism can be easily proven by analogy to usual
homotopy.

If f:(X,A)—(Y,B) and n =1 then f,: mz,X, A) - mn,(Y, B)
is defined by f.[9] =[fcg]l. For = =0, f.lgl = [(f|f7(Y5) 9]
(Alternatively we could adjust the definition of m=, instead of that
of f,.) The remarks above on hom-functors imply that f, and the
boundary operator o, defined below are well-defined on m-homotopy
classes of m-functions. Let §,: B* — S* be the natural continuous
map implied by B*/S" '~ S*, for n =1 (3, collapses S** to 1, so
that ¢,: (B*, S**, 1) — (S*, 1, 1)). When we use (I", 'I", 0), 6, becomes
the map 4,: [* — "I*** implied by I"/I" ~ 'I**'. Let 6, S°— S° (or
‘I —'I) be the identity map. We sometimes drop the subscript n
as superfluous. Let 9,: m=x,. (X, A) — m=n,(A), called the boundary
operator, be defined by 0,[f] = [f°d.]. Then for injections i: (4) —
(X) and j: (X) — (X, A) we have the m-homotopy sequence:
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s Ty (X, A) 2 m(A) s M (X) 2 m (X, A)— -
- my(A) = may(X) — mr(X, A) — 0 .

The functorial axioms for m-homotopy follow from the fact that
hom|(B”, S*%, 1), (_, )] is a functor. Also 9, is a natural map

since f,00,[g9] = [fog°0] = 9,0/lg].
THEOREM 3.3. The m-homotopy sequence is exact.

Proof. We use the definition of m-homotopy groups which
considers m-functions from (I*, 'I",0). The proof is divided into
four cases with only case d considering n = 0.

(a) (Exactness at mn,(4).) Suppose [f]emr, (X, A4), so that
fi It 1, 0) — (X, A). Define I'' I"*' x I —I*** by I',(x) = tx.
Let (0, x1:I"x I—"I"""x I be the function (6, x 1)(x, t) =
6,(x), t). Now define G: (I",'I*, 0) Xx I - (X) by G = fol'o(0, X 1).
Since G, = f-0, and G,= @ (a constant m-function of zero mul-
tiplicity must be empty), G shows that 7,0,.[f] =0, and so imad, C
ker 1,.

Now suppose that [f]emn,(4) (so that f:(I", 'I", 0) — (4)) and
that ¢, [f] = 0. Then there exists F: (I*, 'I", 0) X I - (X) with F, =
f and F,= @. There exists a continuous family of continuous
functions D,: (I, 'I*) — (I, "I x TUI* x 1) for tel, with D, =4,
and D, I"— I" x 0 the natural injection. Then FoD,: (I, I*, 0) —
(A), since F|'I" x IUI"x 1= @. Soin mn,(A), [f]l=I[F,]=[F-D]=
[FoD,] = [F-0] =0,[F]. Hence keri, Cima,.

(b) (Exactness at m=n,(X).) Suppose [f]em=n,(4), so that
f:I, 1", 0)— (A). Now for I' as in (a), fol:(I",'I", 0) x I —
(X, A), foI'y=f and fol'y= @, s0 1,J.[f] =0 and im 7, Ckerj,.

Now suppose that [f]em=n,(X) (so that f: (" 'I*, 0) — (X)) and
J«[f]1 =0. Then there exists F: (I*, 'I*,0) X I — (X, A) with F, = f
and F,=0. There is a continuous function H: (" 'I") X I-—
(I, 'I* X 0) such that H|I™ x 1 is a homeomorphism onto I* X
1y I* x I and H|I" x 0 is the identity (H “pulls” the top of I+
over the sides, while “collapsing” the sides). Then F'o H: (I*, "I*, 0) %
I—(X) and FoH:(I" 'I*, 0)— (A). Hence in mr,X), i, [F-H] =
[FeH]=[FoH,) =[f]- Thus ker j, Cim 1,.

(¢) (Exactness at mm,(X, A).) Suppose [f]emr,(X), so that
f:da», I 0)— (X). Since 6,_;: I —"I*, fod,_, = @. So in mr,(X),
0.3 «[f1 = [f°0,-.] = 0, and im j, C kerd,.

Now suppose that [f]em=n, (X, A) (so that f: (", 'I", 0) — (X, 4))
and 9,[f] =0. Then there exists F: (", '[*™ 0) X I— (A) with
F, = fo0 and F, = @. There are continuous functions for 0 <z < 1:
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o I"tx [0, 72l —> I" " X I
with
ar(w’ t) = (my T — 2t)

and

such ;chat a((-r <[ Sijuamxa) =0

4. | int(I”‘1 X [—;—, 1]) is a homeomorphism onto
\ int(I»* x I).
We define H: [(I*™, "I*™%, 0) x I] X I— (X, A) by

Foa, 0< t=7/2

Hw, ¢, 0) = {fod, fe<t<1.

Then H|(z = 1): (I*,'I*, 0) —» (X), so [H|(zt = D)]emn,(X), and
H|(t =0) = fodye[f], since 4, ~ 1;a. Thus j,.[H|(z =1)] =[f] and
kero, Cim j,.

(d) (Exactness for n = 0.) At mr,(4), im o, C ker 7, follows from
the first part of (a). Now suppose [f]emn,(4) (so f:(-I, 0) — (4))
and that i,[f] = 0. Then there exists F: (-1, 0) x [ — (X) with F, = f
and F, = @. Define g: (I, ‘I, 0) — (X, A) by g(¢) = F,1). Then o, [g] =
[9°6]] = [(9]0) + (¢ID)] = [f|1] = [f]. So keri, Cimd,.

At mmy(X) we have im i, Cker j, because if [f]e€ mm,(A) then
f:(CI 0)— (A) and hence f|X, = @. Note that j.[g] = [(J|X,) 9]
Now suppose [f]emnm,[X] and j5,[f] =0. Then f|X, ~,9g where
g: (I, 0) — (A). It follows that [g] € mm,(4) and <.[g] = [f]-

At mn(X, A) we take [fliemn(X, A). Then f:(I, 0)— (X),
[fle mny(X), and j.[f] = [fl.. Thus j, is onto.

4. Three lemmas about boxes. In order to prove the excision
axiom, we introduce several definitions and lemmas. By an n-dimen-
sional box we mean the Cartesian product of » (orthogonal) compact
line segments. By a k-face of a box, we mean any sub-box which
is formed by taking the product of k of the original segments and
replacing the remaining » — k segments by (in each case) either
endpoint. If T is a collection of boxes, we let O(T)(E(T)) be the
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subcollection of those boxes of odd (even) dimension. |-| represents
the cardinality of a set.

LEMMA 4.1. Let t be a proper k-face of an mn-dimensional box,
V, and let T be the set of faces of V containing t. Then |O(T)| =
| E(T)|.

Proof. We may assume that V = I". Note that a face of V is
then determined by an ordered n-tuple where the entries are chosen
from among I, 0, and 1.

Let t correspond to an nm-tuple consisting of k¥ entries of I and
(n — k) entries of a single point, 0 or 1. Choosing an m-face con-
taining t is equivalent to choosing (m — k) of the (n — k) positions
consisting of a single point, to be replaced by I. So we must show
that

—k\ o (m—k
2(” >=2<% > where k=m=mn.
mead\m — k meven \M, — K

This is equivalent to showing that >, . (;) = Zse\-en<§>, for » =

n—k 0<s<r. One sees that this is true by considering

@—1r =73 <:)x"“—~ }3<")xf—3, for x—=1.

seven sodd\ 8

Now suppose I” is subdivided into finitely many boxes by sub-
dividing each I in the product I"=I X I X --- X I into segments.
Let T be the collection of all these n-dimensional boxes and all those
faces which meet the interior of I*. For te T, we identify the box
t with the function ¢: I* — I* for which #(x) is the point of ¢ closest
to x (if xe¢, t(x) =2). For teT and f:I"— X an m-function, we
let f, = fet.

LEMMA 4.2. For f and T as above, f = Cyepm Jo — Surcom fo)(—1)".

Proof. EaeE(T) fo — ZrEO(T) fr = ZseE(T)f °8 — zreom Sfor=
FolCsenm 8 — Drecom 7). So it suffices to show that

0=( % s— 3 r)-1r
se £(T) reu(T)

is the identity m-function on I*. (The functions are added here by
considering them as m-functions.) Let {v;}", be the =n-dimensional
elements of T. Fix aeintwv,, for some k. To each v,, associate v},
the collection of elements, ¢, of T, such that ¢(a) = v.(a). We next
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show that {v}} partitions T and that each v} consists of those faces
of v, containing a special face ¢,.

In general, for u a set formed by Cartesian product of subsets
of each coordinate axis, let u, be the projection of u onto the kth
coordinate axis. We then write w = %, X %, X --+- X u,. Givente T,
t(a), is the point of ¢ closest to a,. (t(a), is either a,, one of the two
endpoints of ¢, or, if ¢, is a point, ¢, itself. Only one of these can
occur.) So v and v} are disjoint for 7 = j.

Let te T be fixed. Suppose we replace some of the ¢, which are
points by the interval in our subdivision of the kth coordinate axis
with endpoint ¢, between a, and the other endpoint. Then the new
Cartesian product gives us a box se T with s(a) = #(a) and ¢ a face
of s. Making all possible such replacements, we get ¢t v} for some
1, with ¢ a face of v,. Hence {v}} partitions 7.

The elements of v¥ can be constructed from v, by considering
each (v,),. If a,¢ (v,), we replace (v;), by its endpoint nearest a,.
The new Cartesian product will give us an element of ¢}, and any
element of vy is of this form. By making all such replacements we
get t,, the element of v} which we require.

Now, for a cintwv,, we have

g=v+-035( s 3 0.

il seE(vz) 'reO(v;)

But for 7 = k, G, B(x)$ — Zreo(v;) 7) maps a to v,(a¢) with multiplicity
|E@})| — |0(@¥)] = 0. So the only image point of a under g with
nonzero multiplicity is a itself, which has multiplicity one. But this
is true for any o in Ui, int v,, a dense open subset of I". Hence
¢ is the identity m-function on I*.

Note that the image of f, is the image of f|t. This lemma
allows us to “break up” m-functions in a manner which corresponds
to the subdivision operator on simplices used in simplicial homology.

LEMMA 4.3. Given an m-function, f:I*—Y, and an open cover
of Y, {U,}, there exist m-functions f, such that f = 2f, and im (f,) C
U.. Further, tf we choose Z, a face of I* such that f|Z = @
(assuming such a face exists), then we may choose {f,} such that
felZ = @ for all a.

Proof. For xel”, let f(x) = {y, )i, with », the weight at (z, v,).
By the definition of m-functions, there exists W, c I, a neighborhood
of z, and {V.}r,, disjoint open subsets of elements of {U,}, such that
fIW, is an m-function with image in {J,V,. Clearly each component
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of f|W, has its image in some V,. Partition I" into cubes of mesh
less than the Lebesgue number of the cover {W,},en. Let T be
the collection of these cubes together with those faces (of any dimen-
sion) which meet intI". Then f = Gz fe — 2urcom [)(—D" by
Lemma 4.2. For each te€ T, f, equals the sum of its component m-
functions, each of which has its image in some U,. We partition
the component m-functions of f, and add so that f, = 3., f.. and the
image of f,, lies in U,. Letting f, = >, fie, the first part of the
lemma is proved.

Suppose we choose Z a face of I" such that f|Z = @. For
teT, let ¢ be the set of points of ¢ closest to Z. Let [t] =
{reT|t =7).

We may assume that each projection Z, is either I or 0. If
Z, =0, then (f), is a single point. Also, [t] consists precisely of
those re T such that », = @), if Z, %0 and 7, =[(),, 0] if Z,=0
(and b may equal (¢),). It follows that [¢] contains an element, ¥/,
of maximal dimension (namely, dim¢ = (dim?%) + (» — dim Z)) and
that [t] consists of the faces of ¢’ containing .

Note that if ze€Z and 7 = 3(i.e., », s € [t] for some t) then »(z) =
s(z). I Z is p-dimensional, let Z' be the open dense subset of Z
minus the (p — 1)-dimensional boxes in the subdivision of I*. But
now, by the same argument as in the proof of Lemma 4.2, for z¢ Z’,
2et, (—1)"Clrenqn T — Duscoqen 8) has multiplicity zero at each image
point of z. Choose an equivalence class [¢]. Then ¢’ and all its faces
lie in some single W,. So we can write fo(—1)"Clrezum 7 — Duscomn 8) =
> fi5. (allowing some f%,’s to be empty) so that the image of f%,
lies in U, (just by partitioning the components and summing as
before). Note that for ze€Z’ — ¢/, £}, has multiplicity zero at each
image point of z. Let ff = Xf7. where we let ¢ take one value in
each equivalence class.

Now f=23f¥ so it remains to show that f¥|Z =2 for each . Fix
ae€Z' and let v be the single (n-dimensional) box in T containing a.
Then v = v and fF = ff + Dso e But fk is just the sum of
certain components of +f, and f,(e¢) = f(a). Since f|Z = @, fF has
multiplicity zero at each image point of a. Hence f*|Z' = @. It
follows that f*|Z = @ and we are done.

5. M-homotopy theory is a homology theory. In §2 we
deseribed m-homotopy theory, mz,. We wish to show this is a
homology theory. In §3 we proved the exact sequence axiom and
noted that the functorial axioms are satisfied. We also noted that
the dimension axiom is satisfied, i.e., that mn(Z) == R™ where m is
the number of path components of Z.
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THEOREM 5.1 (The excision axiom). If Ucint A, then the inclu-
ston map 1. (X —U, A —U) — (X, A) induces an isomorphism
temr, (X —-U, A—-U)—- mr,(X, A) for all n.

Proof. Suppose [f]emr,(X, A), so f:I* -I",0)— (X, 4). By
Lemma 4.3, there exists g, #: (I*, 0) — (X) such that f =g + h and
im(@cX—U and im (k) cint A. But then in m=n,(X, 4),[h] =0
(just consider hoI', where I',: I"— I", I'(x) = tx). Since f and h
represent elements of m=,(X, A), so does g = f — h; in fact [g] =[f].
But im(9)c X — U, and im(g|'I*)C 4, so im(g|'I")c A —U. Hence
g represents an element of mz,(X —U, A —U) and 4, maps the m-
homotopy class of g to the m-homotopy class of f and so is onto.

In the present paragraph, [-] will represent an m-homotopy class
in mr, (X —-U, A—U). Suppose [flemrn,(X —U, A —U) and there
exists F: (I, 'I", 0)xI— (X, A) with F, =f, F, = @ (i.e., f is null-m-
homotopic in mx,(X, A)). Then F:. (", 0 X I) — (X), so by Lemma
4.3, we write F =G + H with G: (I**, 0 x 1) > (X —U) and
H: (I"*, 0 x I) — (int A). Since f =G, + H,, im(H,) Cim(f) U im(G,) C
X—-U. So im(H)c A —U, and [H,] =0 (consider H,oI',). Hence,
as before, [f] =[G,]. Now F,= @ =G, + H,, so im(G,) = im(H)) C
A —U. But then [G,] =[H,] =0. Sinceim(G)cX—-U,G=F — H,
im(F|'I"x I)CA, and im(H)C A4, we can conclude that im(G|'I* x I)C
A-U. So G:(I*,'I"O) xI—> (X-U, A-U) and G:[G] = [G].
Hence [f] = [G,] = [G,] = 0, and %, is one-to-one.

We have neglected the case where n = 0. In this case, mz,(Y, B)
is essentially the possible finite assignments of multiplicities to com-
ponents of Y;. Let X’ be a component of X. If X’is disjoint from
A, then X' is a component of X —U. If X’ meets 4, let X” be a
component of X’ —U. Suppose uc X" NU. Then, since Ucint A4,
some neighborhood of #% lies in A and also meets X”. Hence X"
meets A. On the other hand, if X”N U=, then X” is a component
of Xand so X’ NU =@ and X" = X’'. In either case, X" meets
A—-U. So X, =(X—-U),_,. It is now easy to check that 7, is an
isomorphism for # = 0 also.

Hence m-homotopy theory is a homology theory. By uniqueness
we can conclude that mz,(X, A) = H,(X, A) where (X, A) is any
compact polyhedral pair and H, is singular homology.

6. Examples; the Dold-Thom theorem. In this final section
we consider the connections between m-homotopy groups, singular
homology groups, and the Dold-Thom expression of homology groups
as homotopy groups.
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PROPOSITION 6.1. The m-function image of a compact set is
compact.

Proof. Suppose f: X —Y is an m-function, A c X is compact,
and {V,} is an open cover of f(4). For acA, if f(a) = {y, -, Y},
choose V,, such that y,€ V.. Then by the definition of m-function,
there exist neighborhoods V¥(y,)CV., and U(a) such that for
yelUr, V¥ and 2e U, y¢ f(x). Now let U, ---, U, cover A, with
V¥, -+, Vi the collection of all corresponding neighborhoods in Y.
These cover f'(4), and for each V} some V,; contains V¥. So V,,
.-+, V. is an open subcover of f'(4).

ExAMPLE 6.2. Although m-functions are pointwise finite, they
need not be globally or even locally finite. And f (say with R = Z
or R) need not attain a maximum, even on a compact set. In
Figure 1 we sketch the graph of an m-function f:I— I, such that
as ¢ /1, | f(®)| — oo and max, f(x, y) — oo.

I

FIGURE 1

For an m-function, f, an ordinary point (as opposed to a tangent
point) is a point (x, y) where f is locally single-valued (in [5] it is
shown that in a neighborhood of an ordinary point f is a continuous
function). Call a point z € X ordinary if {(x, ¥)|v € f(x)} consists only
of ordinary points. One can show that if X is Baire and Y is metric
or 2nd countable then the ordinary points form an open dense subset
of X. There are examples with X not Baire and Y = I such that
X has no ordinary points.

COROLLARY 6.3. M-homotopy theory each and m-homology theory
(see [5]; we denote this latter theory by mH,) both satisfy the axiom
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of compact supports (see [9]).

Proof. If [flemn, (X, A), then f: (I, -I*, 0) — (X, A) and we let
X" =im(f), A’ = im(f|-I*). Then [f]* e mz,(X’, A) (where [-]* repre-
sents an equivalence class in mn,(X’, 4)) and the map 1, induced by
the injection 7: (X', A") — (X, A) maps [f]* to [f]. In the case where
[flemH,(X, A), f: 4" —> X and X' = f'(4") is compact. Let A’ =
X'NA. Then [f] emH, (X', A)|-]" represents an equivalence class
in mH,(X', A")), and i, maps [f]” to [f].

We conclude (see [4]) from this corollary that if (X, 4) is any
polyhedral pair, H,(X, A)~ mH,(X, A) ~mr,(X, A). For example,
suppose for some specific pair, (X, A), we know that z¢€ H,(X, A) is
nonzero. Then mH,(X, A) is nontrivial, but what is the m-function
corresponding to z? This question is answered by describing the
two isomorphisms above. For [z2]e H,(X, A), z = >,*, r,0;,, a formal
sum where each o, 4" — X is a singular simplex. Let f = >, 0,
be an m-function sum. Then the map z — f induces a homomorphism
from H(X, A) to mH(X, A) which is the unique isomorphism between
them. Similarly, if [f]emn,. (X, 4), f: (4" -4, 0) - (X, A). In par-
ticular, f: 4" — X and so f determines an element [f]” in mH,(X, A).
This map (f — f, but with the second f we ignore the last two
elements of the triple) induces a homomorphism from mn(X, A) to
mH(X, A) which must be the unique isomorphism.

There is a relationship between the results here and the Dold-
Thom theorem [2]: H,(Y)=7x,(AG(Y)) where Y is a pointed polyhedron
and AG(Y) is the topological free abelian group on Y. We next define
AG(Y) and describe this relationship.

Regarding Y VY as a subset of Y XY we use the notation
y=(,%*, —y=C="1y),*= (7. Starting with an element of Y’ =
Se M-, (Y VY) we remove any simultaneous occurrences of y and
—1vy, remove all occurrences of *, and identify two resulting k-tuples
if one is a permutation of the other. (The summation above is free
union.) This equivalence relation, R, gives us a quotient map,
n:Y' —-Y'|R = AG(Y). Addition in AG(Y) is by juxtaposition of
representatives of elements followed by =«.

Given spaces X and Y there is a natural mapping from m-functions
f: X—Y to (standard) functions f*: X — AG(Y). Namely, if f(x)=
{4, -+, Y.} then let f*(x) = 3, f(&, ¥.)y;- Although this correspon-
dence seems to identify a class of “nice” m-functions to a class of
“nice” continuous functions from X to AG(Y), we show below that
there are degenerate examples on each side.

EXAMPLE 6.4. f may be m-function, but f* not continuous. The
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graph in Figure 1 indicates how we might define an m-function f
such that f*: I — AG(I) fails to be continuous (at 1). It is convenient
to take * = 0. Thus we can identify I\ I to [—1,1] in a natural
way. Let UCAG(I) consist of those points (w,, w,, - -+, w,) for which

i~ w; < 1/10 (the addition is in R and is independent of representa-
tion of the point). It is easy to verify that 7 *(U) and hence U is
open. But we can define f so that f*(U)N[1/2,1] =1. Along any
vertical line the distances between adjacent lines, L, and L, L, and
L;, ete., can be taken to be proportional to 1, 1/4, 1/9, 1/16, - - -, 1/n?,
etc. Given a vertical line, if we choose n large, the sum of the
vertical distances from L, to L,(i < n) can be made arbitrarily large.
Define f using this information.

EXAMPLE 6.5. f* may be continuous, but # not an m-function.
In Figure 2, we indicate an example of a weighted multiple-valued
function f for which we can define f* as above. Then, although f
fails to be an m-function (f(0) is infinite) f* is continuous. The only
point where the continuity of f* is questionable is at 0. There
f*(0) =*. If U is a neighborhood of * in AG(I), then T} crY(U)
and 77 ()N V) xIVD)ca (U)N VI x (I vV I)) which is
open in (I\V I)x (I\I). Since I is compact there exists ¢ >0 such
that if [ — y| < e then (%, —y) € U (the brackets represent unordered
pair, so {x, —y) = & + (—y) where addition is in AG(I) not R). So,
from the figure we see that there exists 6 > 0 such that if 2 <
0, f*(x)e U.

FIicURE 2
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