OPERATORS SATISFYING A G_1 CONDITION

CALVIN R. PUTNAM
OPERATORS SATISFYING A G_1 CONDITION

C. R. PUTNAM

An operator T on a Hilbert space is said to be G_1 if $\|(T - z)^{-1}\| = 1/\text{dist}(z, \sigma(T))$ for $z \notin \sigma(T)$ and completely G_1 if, in addition, T has no normal part. Certain results are obtained concerning the spectra of completely G_1 operators and of their real parts. It is shown in particular that there exist completely G_1 operators having spectra of zero Hausdorff dimension. Some sparseness conditions on the spectrum are given which assure that a G_1 operator has a normal part.

1. Introduction. All operators considered in this paper will be bounded (linear) on a Hilbert space \mathcal{H} of elements x. For any such operator T it is well-known (and due to Wintner [26]) that

$$\|(I - z)^{-1}\| \geq 1/\text{dist}(z, \sigma(T))$$

for $z \notin \sigma(T)$ and $\|(T - z)^{-1}\| \leq 1/\text{dist}(z, W^-(T))$ for $z \notin W^-(T)$, where $\sigma(T)$ denotes the spectrum of T and $W^-(T)$ denotes the (convex) closure of the numerical range $W(T) = \{(Tx, x) : \|x\| = 1\}$. An operator T is said to be G_1 (or to satisfy a G_1 condition, or to be of class G_1) if

$$\|(T - z)^{-1}\| = 1/\text{dist}(z, \sigma(T)) \quad \text{for} \quad z \notin \sigma(T).$$

For instance, (1.1) holds for operators T which are normal ($T^*T = TT^*$), more generally, for those which are subnormal (T has a normal extension on a larger Hilbert space), and still more generally, for hyponormal operators ($T^*T - TT^* \geq 0$). The inclusions indicated here,

$$\text{normals} \subset \text{subnormals} \subset \text{hyponormals} \subset (G_1),$$

are all proper and, needless to say, the simple stratification (1.2) can be interstitially (and endlessly) refined. In this connection, see the brief survey in Putnam [16].

An operator T will be called completely G_1 if T is G_1 and if, in addition, T has no normal part, that is, T has no reducing subspace on which it is normal. Similarly, one has corresponding definitions of completely subnormal or completely hyponormal operators. It is well-known that every compact set of the plane is the spectrum of some normal operator. Moreover, necessary and sufficient conditions are known in order that a compact set be the spectrum of a completely subnormal operator (Clancey and Putnam [4]) or of a completely
hyponormal operator (Putnam [15], [17]). On the other hand, no such
conditions are known for the class of completely G_1 operators.

It may be noted that if T is G_1 and if $\sigma(T)$ is finite, in particular,
if \mathcal{H} is finite-dimensional, then necessarily T is normal. In fact,
Stampfli [20], p. 473, shows that if T is G_1 and if z_0 is an iso-
lated point of $\sigma(T)$ then z_0 is a normal eigenvalue of T, that is,
$z_0 \in \sigma_2(T)$, the point spectrum of T, and the corresponding eigenvectors
form a reducing space of T on which T is normal. (For some related
results, see also Hildebrandt [8], p. 234, and Luecke [10], p. 631.)
More generally, it was shown by Stampfli ([22], [23]) that if T is
G_x and if z_0 is an iso-
lated point of $\sigma(T)$ then z_0 is a normal eigenvalue of Γ, that is,
$z_0 \in \sigma_3(T)$, the point spectrum of T, and the corresponding eigenvectors
form a reducing space of T on which T is normal. (For some related
results, see also Hildebrandt [8], p. 234, and Luecke [10], p. 631.)

All of this suggests that a simple necessary and sufficient con-
dition on a compact set in order that it be the spectrum of a
completely G_1 operator is not easily obtained. In fact, even such a
condition on a countable compact set in order that it be the spectrum
of a nonnormal operator of class G_1 is not known. (A sufficient
condition for normality is that of Luecke [10] mentioned above;
another is given in Theorem 2 below.) Of course, any G_1 operator
having a countable spectrum certainly has a normal part. It is thus
clear that a necessary condition on a compact set, X, in order that
it be the spectrum of a completely G_1 operator is that X be perfect.
In order to describe certain types of sets X occurring below, it will
be convenient to recall the definition of Hausdorff measure.

A "measure function" $h(t)$ is an increasing continuous function
on $0 \leq t < \infty$ satisfying $h(0) = 0$. For a bounded set, X, of the
complex plane and a fixed $\delta > 0$ let $\Gamma = \{D_i, D_0, \cdots\}$ be any countable
covering of X by open disks D_j of radius $\delta_j \leq \delta$. Then
$\Lambda_h(X) = \lim_{\delta \to 0} [\inf \{\sum_{j=1}^\infty h(\delta_j)\}]$ exists and is the Hausdorff h-measure of X. (See
Garnett [5], p. 58; also Carleson [2], Rogers [19].) If $h(t) = t^r$, $r > 0$,
then $\Lambda_h(X)$ is the r-dimensional Hausdorff measure of X. In par-
ticular, a nonempty set X is said to have Hausdorff dimension $= 0$
if $\Lambda_h(X) = 0$ for all $h = t^r, r > 0$.

2. THEOREM 1. For any given measure function h there exists
a perfect set X of the complex plane and a completely G_1 operator T
for which $X = \sigma(T)$ has Hausdorff h-measure $= 0$.

It may be noted that, in particular, there exist completely G_1
operators with spectra of Hausdorff dimension $= 0$. That the function
h of Theorem 1 be preassigned is an essential requirement however.
In fact, the condition that $\Lambda_h(\sigma(T)) = 0$ for all measure functions
h is sufficient (as well as necessary) in order that $\sigma(T)$ be countable; see Rogers [19], p. 67.

Proof. As in Stampfli ([20], [22]), consider the matrix
\begin{equation}
A = \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix},
\end{equation}
acting on a two-dimensional Hilbert space, so that $(A - z)^{-1} =
\begin{pmatrix}
-1/z & -1/z^2 \\
0 & -1/z
\end{pmatrix}$, and hence $||(A - z)^{-1}|| \leq 1/|z| + 1/|z|^2$ for all $z \in \sigma(A) = \{0\}$. Note also that $W(A)(= W^{-}(A)) = \{z: |z| \leq 1/2\}$ and $||A|| = 1$. Then $||(A - z)^{-1}|| \leq (|z| - 1/2)^{-1}$ for $|z| > 1/2$ and clearly there exists a countable set $\alpha = \{z_1, z_2, \ldots\} \subset \{z: 0 < |z| < 1\}$ satisfying $z_n \to 0$ as $n \to \infty$ and such that
\begin{equation}
||(A - z)^{-1}|| \leq 1/\text{dist}(z, \alpha) \quad \text{for} \quad z \neq 0.
\end{equation}

Next, choose a sequence of nonoverlapping open disks $\{D_n, D_2, \ldots\}$, where each D_n has center z_n and is contained in $\{z: 0 < |z| < 1\}$. Let $A_n = a_n A + z_n$, where $0 < a_n < \text{radius } D_n$, so that $||A_n - z_n|| = \text{radius } D_n$ and $\sigma(A_n) = \{z_n\}$. Then, for each $n = 1, 2, \ldots$, choose a countable set $\alpha_n = \{z_{n1}, z_{n2}, \ldots\} \subset D_n$ satisfying $z_{nk} \neq z_n$ and $z_{nk} \to z_n$ as $k \to \infty$ and the inequality $||(A_n - z)^{-1}|| \leq 1/\text{dist}(z, \alpha_n)$ for $z \neq z_n$. Thus, if $T_0 = A$ and $T_1 = \sum \bigoplus A_n$, one sees that
\begin{equation}
T = T_0 \bigoplus T_1 \text{ satisfies } ||(T - z)^{-1}|| \leq 1/\text{dist}(z, \alpha_0, \bigcup \alpha) \end{equation}
for $z \in \sigma(T) = \{0\} \cup \alpha$.

In the next step each of the disks D_n plays the role of the containing disk $\{z: |z| < 1\}$ in the previous construction. Thus, for each $n = 1, 2, \ldots$, one chooses a sequence of nonoverlapping open disks $\{D_{n1}, D_{n2}, \ldots\}$, contained in D_n and clustering at z_n, and obtains a new operator T_n for which $T = T_0 \bigoplus T_1 \bigoplus T_n$ satisfies a condition analogous to (2.2) for $T = T_0$ and to (2.3) for $T = T_0 \bigoplus T_1$. Continu-
ation of this process leads to an operator \(T = \sum_{k=0}^{\infty} T_k \) satisfying
\[
||(T - z)^{-1}|| \leq 1/\text{dist}(z, X) \quad \text{for } z \in X,
\]
where \(X \) is the closure of the set of all centers of circles occurring in the above construction. Since \(X \subseteq \sigma(T) \) then, by (2.4), \(\sigma(T) = X \) and \(T \) satisfies (1.1). Moreover, it is clear that \(T \) is a completely \(G_1 \) operator. Further, the inclusions
\[
\{z: z < 1\} \supset \bigcup D_n \cup \{0\} \supset \bigcup D_{nk} \cup \{0, z_1, z_2, \cdots\} \supset \cdots \supset \sigma(T)
\]
show that, for any given measure function \(h \), one can always choose the countable collection of disks \(\{D_n\}, \{D_{nk}\}, \cdots \), in such a way that \(\sigma(T) \) has Hausdorff \(h \)-measure = 0. This completes the proof of Theorem 1.

Corollary 1. If \(X \) denotes an arbitrary compact set of the plane and if \(h \) is any measure function, then there exists a perfect set \(P \supset X \) and a completely \(G_1 \) operator \(T \) such that \(P - X \) has Hausdorff \(h \)-measure = 0 and \(\sigma(T) = P \).

Proof. Let \(\{z_1, z_2, \cdots\} \) be any countable subset of \(X \) dense in \(X \). For each \(n = 1, 2, \cdots \), let \(D_n \) be an open disk centered at \(z_n \) and suppose that diam \(D_n \to 0 \) as \(n \to \infty \). Then let \(T_n \) be a completely \(G_1 \) operator having spectrum of Hausdorff \(h \)-measure = 0 and such that \(z_n \in \sigma(T_n) \subseteq D_n \). One need only choose \(T_n \), for instance, to be an appropriate linear function of the operator \(T \) constructed in the proof of Theorem 1. (Note that the \(G_1 \) property is invariant under linear transformations; see Luecke [11], p. 36.) If \(T = \sum \bigoplus T_n \) then, since each \(T_n \) is \(G_1 \), \(\sigma(T) = (\bigcup \sigma(T_n))^- \) and hence, since diam \(D_n \to 0 \) as \(n \to \infty \), \(\sigma(T) = \bigcup \sigma(T_n) \cup X = P \) satisfies the conditions stated in the corollary.

A related result is the following

Corollary 2. If \(B \) is any operator and \(h \) is any measure function there exists a completely \(G_1 \) operator \(T \) for which \(B \bigoplus T \) is also \(G_1 \) and \(\sigma(T) \subseteq \partial(\sigma(B)) \cup \beta \) where \(\beta \) has Hausdorff \(h \)-measure = 0.

Proof. Choose a sequence of points \(\alpha = \{z_1, z_2, \cdots\} \) in such a way that no \(z_n \) lies in \(\sigma(B) \), dist(\(z_n, \sigma(T) \)) \(\to 0 \) as \(n \to \infty \), and such that
\[
||(B - z)^{-1}|| \leq 1/\text{dist}(z, \alpha) \quad \text{for } z \notin \sigma(B).
\]
Then choose a sequence of open disks \(\{D_1, D_2, \cdots\} \), where \(z_n \) is the center of \(D_n \), satisfying \(D_n \cap \sigma(B) = \emptyset \) and diam \(D_n \to 0 \) as \(n \to \infty \), so that the \(D_n \)'s cluster only on the set \(\partial(\sigma(B)) \). If \(T_1, T_2, \cdots \) are \(G_1 \) operators such that \(z_n \in \sigma(T_n) \subseteq D_n \) and \(\sigma(T_n) \) has Hausdorff \(h \)-measure = 0, then \(T = \sum \bigoplus T_n \).
\[\sum \oplus T_n \] satisfies the conditions stated in the corollary.

3. Some lemmas. If \(\{A_1, A_2, \cdots \} \) is a decreasing sequence of self-adjoint operators then the \(A_n \) converge strongly to a (self-adjoint) operator \(A \), a result due to Vigier (see Riesz and Sz.-Nagy [18], p. 263). In particular, if each \(A_n \) is an orthogonal projection, so also is \(A \). Further, it is well-known that a projection \(P(P = P^2) \) is orthogonal if and only if \(||P|| \leq 1 \). We shall need need the following generalization to arbitrary projections \(P_n \) of the above results.

Lemma 1. Let \(\{P_1, P_2, \cdots \} \) be a sequence of projections \((P_n = P^2_n) \) satisfying

\[
P_n P_{n+p} = P_{n+p} \quad (n = 1, 2, \cdots; p = 0, 1, 2, \cdots)
\]

and

\[
\limsup_{n \to \infty} ||P_n|| \leq 1.
\]

Then the \(P_n \) converge strongly as \(n \to \infty \) to an orthogonal projection.

Proof. First, let \(P \) denote any projection and let \(t \geq 0 \) satisfy

\[
||P|| \leq 1 + t.
\]

Since \(P^2 = P \), the range of \(P^* \) is orthogonal to the range of \(I - P \) and hence, if \(x \) is arbitrary in \(\mathcal{D} \) and \(y = P^*x \), then \(y = P^*y \perp (I - P)y \).

Since \(Py = y - (I - P)y \), then

\[
||y||^2 + ||(I - P)y||^2 = ||Py||^2 \leq (1 + t)^2 ||y||^2,
\]

and so \(||(I - P)P^*x||^2 \leq (2t + t^2)||P^*x||^2 \). Consequently,

\[
||P - PP^*|| = ||P^* - PP^*|| \leq t^{1/2}(2 + t)^{1/2}(1 + t),
\]

and hence

\[
||P - P^*|| \leq 2t^{1/2}(2 + t)^{1/2}(1 + t).
\]

Relations (3.2) and (3.5) (with \(P \) replaced by \(P_n \)) imply that \(||P_n - P^*_n|| \to 0 \) as \(n \to \infty \). Further, if \(Q_n = P_n P_n^* \), also \(||Q_n - P_n|| \to 0 \) as \(n \to \infty \) (uniformly in \(p \geq 0 \)). Similarly, \(||Q_n Q_{n+p} - Q_{n+p} Q_n|| \to 0 \) as \(n \to \infty \) (uniformly in \(p \geq 0 \)) and hence also \(||Q_n(I - Q_{n+p}) - Q_{n+p}^1(I - Q_{n+p})Q_{n+p}^0|| \to 0 \) (uniformly in \(p \geq 0 \)). It follows that there exists a sequence of positive numbers \(\{t_1, t_2, \cdots\} \) with limit 0 for which

\[
A_{n+p} = Q_n - Q_{n+p} + t_n \geq 0 \quad \text{for all} \quad n \geq 1 \quad \text{and} \quad p \geq 0.
\]
If x is arbitrary in \mathfrak{F}, then clearly one can choose integers $n = n_k \to \infty$ and $p = p_k \to \infty$ so that $(Q_{n_k} x, x) \to \liminf_{n \to \infty} (Q_n x, x)$ and also $(Q_{n_k+p} x, x) \to \limsup_{n \to \infty} (Q_n x, x)$. Hence, by (3.6),

$$\lim_{n \to \infty} (Q_n x, x)$$

exists, for each x in \mathfrak{F}.

An argument like that in Riesz and Sz.-Nagy [18], p. 263, shows that $\|A_n x\|^2 = (A_n x, A_n x) \leq (A_p x, x)(A_p x, A_p x)$ and hence, by (3.7) and the definition of A_n in (3.6), $(Q_n - Q_{n+p}) x \to 0$ (strongly) as $n \to \infty$ (uniformly in $p \geq 0$), so that $Q = s\lim_{n \to \infty} Q_n$ exists and is self-adjoint. Since $\|Q_n - P_n\| \to 0$, then $s\lim_{n \to \infty} P_n = Q$ is an orthogonal projection and the proof of Lemma 1 is complete.

Lemma 2. Let T be a G_1 operator and suppose that $z_0 \in \sigma(T)$. In addition, suppose that there exists a sequence of circles $C_n = \{z: |z - z_0| = r_n\}$, $n = 1, 2, \ldots$, lying in the resolvent set of T, and for which $r_n > r_1 > \cdots \to 0$ and

$$r_n/\text{dist}(C_n, \sigma(T)) \to 1 \quad \text{as} \quad n \to \infty.$$

If each C_n is positively oriented and if P_n denotes the projection

$$P_n = -(2\pi i)^{-1} \int_{C_n} (T - z)^{-1} dz \quad (n = 1, 2, \cdots),$$

then $P_n \to P$ (strongly), where P is an orthogonal projection commuting with T, and

$$T - z_0) P = 0.$$

Proof. That the P_n satisfy (3.1) follows from a computation similar to that in Riesz and Sz.-Nagy [18], p. 419. In addition, it is clear that

$$||P_n|| \leq (2\pi)^{-1} \left(\max_{z \text{ on } C_n} ||(T - z)^{-1}|| \right) 2\pi r_n \leq r_n/\text{dist}(C_n, \sigma(T)),$$

so that (3.8) implies (3.2). Thus, by Lemma 1, $P_n \to P$ (strongly), where P is an orthogonal projection. Since $P_n T = TP_n$, then also $PT = TP$. Relation (3.10) follows from the limit relation $r_n \to 0$ and an estimate of $(T - z_0) P = -(2\pi i)^{-1} \int_{C_n} (z - z_0) (T - z)^{-1} dz$ similar to that of (3.11).

Lemma 3. Let T be an arbitrary operator and suppose that $z_0 \in \sigma_p(T)$. In addition, suppose that there exist $z_n \in \sigma(T)$ such that $z_n \to z_0$ and $|z_n - z_0| ||(T - z_n)^{-1}|| \to 1$ as $n \to \infty$. Then z_0 is a normal eigenvalue of T.

Proof. The result was given in Putnam [14] and, before this, implicitly in Stampfli [21] (cf. Stampfli's remark in [24], p. 135). A variation appears earlier in Sz.-Nagy and Foias [25], p. 93. See also Hildebrandt [8], p. 234.

REMARK. Let T be G_1. It is clear from Lemma 3 that if $z_0 \in \sigma_p(T)$ and if

$$z_n \notin \sigma(T), \quad z_n \longrightarrow z_0 \quad \text{and} \quad \text{dist}(z_n, \sigma(T))/|z_n - z_0| \longrightarrow 1$$

as $n \longrightarrow \infty$, then z_0 is a normal eigenvalue of T. In Lemma 2, it is assumed only that z_0 is in $\sigma(T)$ but not necessarily in $\sigma_p(T)$. On the other hand, the condition (3.8) for such a z_0 is clearly much stronger than (3.12). Since T commutes with P, relation (3.10) implies that if $P \neq 0$ then necessarily z_0 is a normal eigenvalue of T.

If only $z_0 \in \sigma(T)$ is assumed, it may be noted that (3.12) may hold for a completely G_1 operator, so that, in particular, $z_0 \notin \sigma_p(T)$. For example, let T be a completely G_1 operator as constructed in the proof of Theorem 1, so that T has the form $T = \sum \oplus (b_n A + w_n)$, where $b_n > 0$ and A is given by (2.1). If $s = \sup \text{Re} \sigma(T)$, then there exists some $z_0 \in \sigma(T)$ with $s = \text{Re} z_0$, and hence (3.12) holds with, say, $z_n = z_0 + c_n$, where $0 < c_n \rightarrow 0$.

Further, note that it is possible that T is G_1 with $z_0 \in \sigma_p(T)$ and that there exist circles $C_n = \{z: |z - z_0| = r_n\}$, $n = 1, 2, \ldots$, lying in the resolvent set of T and satisfying $r_1 > r_2 > \cdots \rightarrow 0$ and for which the projections P_n of (3.9) are orthogonal and converge strongly to an orthogonal projection $P \neq 0$, but for which z_0 is not a normal eigenvalue of T. Thus, (3.10) need not hold if (3.8) is not assumed, even though the other hypotheses of Lemma 2 are retained.

A simple example is obtained by considering the construction of Stampfli ([20], [22]), with

$$T = A \oplus N,$$

where A is given by (2.1) and N is normal with spectrum α^-. Here α is defined as in the beginning of the proof of Theorem 1 and, in particular, (2.2) holds. Clearly, for $z_0 = 0$, there exist circles $C_n = \{z: |z| = r_n\}$ lying in the resolvent set of T with $r_1 > r_2 > \cdots \rightarrow 0$. It is seen that each P_n is an orthogonal projection. Further, if A acts on the two-dimensional space \mathcal{H}_0 then $P_n \rightarrow P$ (strongly), where P is the projection of \mathcal{H}_0 onto \mathcal{H}_0. Although $z_0 \in \sigma_p(T)$, it is clear that z_0 is not a normal eigenvalue of T.

The above procedure can be modified so as to yield a completely G_1 operator T. One need only consider the operator T constructed
in the proof of Theorem 1 above where the numbers z_1, z_2, \ldots, and the first sequence of disks $\{D_1, D_2, \ldots\}$, with $D_n = \{z : |z - z_n| < r_n\}$, are chosen so that $(0, t) \cap \bigcup_{n=1}^{\infty} (|z_n| - r_n, |z_n| + r_n) \neq (0, t)$ for all $t > 0$. This enables one to choose circles C_n as in the preceding paragraph and to proceed in a manner similar to that described there.

4. Theorem 2. Let T be G_x and suppose that $\sigma(T)$ is not a perfect set and that for each $z_0 \in \sigma(T)$ there exists a sequence of circles $C_n = \{z : |z - z_0| = r_n\}$, $n = 1, 2, \ldots$, lying in the resolvent of T for which $r_1 > r_2 > \cdots \to 0$ and (3.8) holds. Then

(4.1) T is normal if $\sigma(T)$ is countable,

and

(4.2) $T = T_1 \oplus T_2$ if $\sigma(T)$ is not countable,

where T_1 is normal with $\sigma(T_1) = \alpha^-$ and α a countable set, and where $\sigma(T_2)$ is perfect and $\sigma(T_2) \cap \alpha = \emptyset$.

Proof. Since $\sigma(T)$ is not perfect, $\sigma(T)$ contains a nonempty (countable) set, S_0, of isolated points. Hence, as noted earlier, T has a normal part N_0 corresponding to these points with $\sigma(N_0) = S_0$. In case $S_0 = \sigma(T)$, the proof is complete. Otherwise, as will be assumed, $T = N_0 \oplus A_0$, where $\sigma(A_0) \cap S_0 = \emptyset$, and we let S_1 denote the (countable) set of isolated points of the first derivative, $\sigma'(T)$, of $\sigma(T)$. If S_1 is empty the proof is over and so we can suppose that $S_1 \neq \emptyset$. It follows from (3.10) of Lemma 2 that each point z_0 of S_1 either corresponds to a normal eigenvalue (if $P \neq 0$), or, if $P = 0$, can simply be ignored. Thus, at the end of the second stage we have $T = N_1 \oplus A_1$ where $\sigma(N_1) = S_0^+ \cup S_1^-$ and, if A_1 is present, $\sigma(A_1) \cap (S_0 \cup S_1) = \emptyset$. One then repeats this process. It should be noted that for $n = 0, 1, 2, \ldots$, $S_n = \sigma^{(n)}(T) - \sigma^{(n+1)}(T)$, where $\sigma^{(n)}(T)$ denotes the nth derived set of $\sigma(T) \equiv \sigma^{(0)}(T)$. If for any positive integer n, S_n is empty, the process terminates. In addition, if $\sigma(T) = \bigcup_{n=0}^{\infty} S_n$, the process also terminates, and, of course, implies that T is normal and that $\sigma(T)$ is countable. Otherwise, the process continues via transfinite induction as noted below.

The νth derived set of $\sigma(T)$ can be defined, in the manner of Cantor using transfinite induction, for any ordinal ν; see Kamke [9], p. 127. It follows from a transfinite induction argument ([9], pp. 132–133) that there is a least ordinal γ, where $0 \leq \text{cardinality of } \gamma \leq \aleph_0$, with the property that $\sigma^{(\gamma)}(T) = \sigma^{(\alpha)}(T)$ for all ordinals $\alpha \geq \gamma$. In particular, if $\sigma^{(\gamma)}(T)$ is not empty then it is perfect. It follows (cf. [9], p. 133) that if $\sigma(T)$ is countable, then $\sigma^{(\gamma)}(T)$ is empty and,
by the process described in the preceding paragraph, (4.1) is established. If \(\sigma(T) \) is not countable then \(\sigma^{(r)}(T) \) is perfect and so (4.2) holds with the properties described in Theorem 2.

5. Theorem 3. Let \(T \) be \(G \). Suppose that for every \(\varepsilon > 0 \) there exists a countable covering of \(\sigma(T) \) by open disks \(D_n = \{ z : |z - z_n| < r_n \} \), \(n = 1, 2, \ldots \), with the properties that, for each \(n \), \(D_n \cap \sigma(T) \neq \emptyset \) and \(C_n = \{ z : |z - z_n| = r_n \} \) lies in the resolvent set of \(T \), and that

(5.1) \[\sum_n \left(\frac{r_n}{d_n} - 1 \right)^{1/2} < \varepsilon, \quad \text{where} \quad d_n = \text{dist}(C_n, \sigma(T)) \quad (\leq r_n), \]

and

(5.2) \[\sum_n r_n < \varepsilon. \]

Then \(T \) is normal.

Proof. Let \(\varepsilon > 0 \) be fixed. In view of the Heine-Borel theorem it may be suppose that the covering of Theorem 3 is finite, say \(\{ D_1, \ldots, D_N \} \), and that \(D_n \not\subset D_m \) for \(n \neq m \). For \(n = 1, \ldots, N \), define

\[P_n = -(2\pi i)^{-1} \int_{C_n} (T - z)^{-1} \, dz, \]

where the \(C_n \) are regarded as positively oriented, so that, by an estimate similar to that of (3.11), \(||P_n|| \leq r_n/d_n \). (Note that in the present case, \(D_n \cap \sigma(T) \neq \emptyset \) but it is not assumed as in Lemma 2 that the center of \(C_n \) is in \(\sigma(T) \).) Next, if \(t_n = r_n/d_n - 1 \) then \(||P_n|| \leq 1 + t_n \) (cf. (3.3)). It follows from (3.5) with \(P \) and \(t \) replaced by \(P_n \) and \(t_n \) that

(5.3) \[||P_n - P_n^\circ|| \leq \text{const}(r_n/d_n - 1)^{1/2} \quad (n = 1, \ldots, N), \]

provided, say, \(0 < \varepsilon \leq 1/2 \), as will be assumed. Thus, in view of (5.1).

(5.4) \[\sum_{n=1}^N ||P_n - P_n^\circ|| \leq \text{const} \varepsilon. \]

Next, consider any pair or circles, say \(C_1 \) and \(C_2 \). It will be shown that if \(D_1 \cap D_2 \neq \emptyset \) then either one circle, say \(C_2 \), can be discarded or it can be deformed into a rectifiable simple closed curve \(C_2' \) lying in the resolvent set of \(T \) and with the properties that

(5.5) \[P_2 = P_{C_2'} = -(2\pi i)^{-1} \int_{C_2'} (T - z)^{-1} \, dz \]

and

(5.6) \[\text{int} C_2' \subset D_2 \quad \text{and} \quad D_1 \cap \text{int} C_2' = \emptyset. \]
To see this, note first that \(\sigma(T) \cap \{z: r_1 - d_1 < |z - z_1| < r_1 + d_1\} = \emptyset \). If \(D_2 \subset \{z: |z - z_1| < r_1 + d_1\} \), then \(D_2 \cap \sigma(T) \subset D_1 \cap \sigma(T) \) and so \(C_2 \) can be discarded. Also, in case \(D_1 \cap \{z: |z - z_1| \leq r_1 - d_1\} = \emptyset \), then, since \(D_2 \not\subset D_1 \), \(C_2 \) can be deformed into \(C'_2 \) so as to satisfy both (5.5) and (5.6). The remaining possibility is that

\[
D_2 \cap \{z: |z - z_1| \leq r_1 - d_1\} \neq \emptyset \quad \text{and} \quad D_2 \not\subset \{z: |z - z_1| < r_1 + d_1\}.
\]

It may be supposed, however, that \(\{z: |z - z_1| < r_1 + d_1\} \not\subset D_2 \) since, otherwise, \(D_1 \cap \sigma(T) \subset D_2 \cap \sigma(T) \) and \(C_1 \) can be discarded. Consequently, \(r_2 > d_1 \) and \(d_2 < 2(r_1 - d_1) \), so that \(r_2/d_2 > d_1/2(r_1 - d_1) = 1/2(r_1/d_1 - 1)^{-1} \). Hence, \(r_2/d_2 > 1/2\varepsilon \), in view of, and in contradiction to (5.1) (with \(\varepsilon \leq 1/2 \)).

Repeated applications of the above argument show that the circles \(C_1, \cdots, C_N \) may be replaced by rectifiable simple closed curves, say, \(\gamma_1, \cdots, \gamma_M(M \leq N) \), where each \(\gamma_i \) is some \(C_j \) or some \(C'_j \), and where \(\text{int} \gamma_n \cap \text{int} \gamma_m = \emptyset \) for \(m \neq n \) and \(\sigma(T) \subset \bigcup_{n=1}^{M} \text{int} \gamma_n \). It is seen from relations corresponding to (5.5) and (5.6) that \(\sum_{n=1}^{M} P_n = I \), where \(P_n = -(2\pi i)^{-1} \int_{\gamma_n} (T - z)^{-1} dz \), and hence that \(\sum' P_n = I \) where the prime denotes that the summation is over a subset of \(\{1, \cdots, N\} \). As a result, we revert to the original notation and suppose without loss of generality, that

\[
(5.7) \quad I = \sum P_n \quad \left(\sum' = \sum \right).
\]

It is now easy to complete the proof of Theorem 3. For,

\[
(5.8) \quad T = TI = \sum TP_n = \sum z_n P_n + \sum (T - z_n)P_n.
\]

But \(||(T - z_n)P_n|| \leq r_n ||P_n|| \leq r_n(r_n/d_n) < r_n(1 + \varepsilon^2) \), the last inequality by (5.1). Since \(\varepsilon \leq 1/2 \), (5.2) shows that \(\sum ||(T - z_n)P_n|| \geq 2\varepsilon \). Also, \(\sum z_n P_n = \sum z_n P^*_n + \sum (z_n(P_n - P^*_n)) \) and, by (5.4), \(\sum ||z_n(P_n - P^*_n)|| \leq (\max |z_n|) \text{const} \varepsilon \). Since each \(D_n \) contains part of \(\sigma(T) \) it is clear from (5.2) that \(\max |z_n| \leq ||T|| + 2\varepsilon \leq ||T|| + 1 \), and so, by (5.8),

\[
(5.9) \quad T = \sum z_n P^*_n + A, \quad \text{where} \quad ||A|| \leq \text{const} \varepsilon.
\]

Hence, \(T^*T = \sum z_n T^*P^*_n + T^*A = \sum z_n[z_n P^*_n - (T^* - \bar{z}_n)P^*_n] + T^*A \). But \(||T^*A|| \leq \text{const} \varepsilon \) and, as above, \(\sum ||z_n(T^* - \bar{z}_n)P^*_n|| \leq (\max |z_n|)2\varepsilon \), and so another application of (5.4) yields \(||T^*T|| - \sum |z_n|^2 ||P_n|| < \text{const} \varepsilon \). A similar argument yields the same inequality with \(T \) and \(T^* \) interchanged, hence \(T \) is normal, and the proof is complete.

Remarks. It is readily seen that Theorem 3 implies the assertion of Theorem 2 when \(\sigma(T) \) is countable. We do not know whether the hypothesis of Theorem 2 implies that \(T \) is normal even when \(\sigma(T) \)
is not countable, in which case Theorem 2 would imply Theorem 3. The hypothesis (3.8) of Theorem 2 is of course a "sparseness" condition on $\sigma(T)$ and, conceivably, is restrictive enough to imply normality of T. In the same vein, we do not know whether the condition (5.2) in the hypothesis of Theorem 3 is essential, although, of course, at least a boundedness restriction must be placed on the r_n's of (5.1). (Note that if C_r is the circle with center at $z = 0$ and radius r then $r/dist(C_r, \sigma(T)) \to 1$ as $r \to \infty$.) It is clear, of course, that (5.2) alone is not enough, since this condition amounts only to requiring that $\sigma(T)$ be of one-dimensional Hausdorff measure 0.

It may be noted that there exist uncountable sets, corresponding to $\sigma(T)$, for which (3.8) holds. To see this, one need only modify the construction of the standard Cantor set so that the length of each removed complementary open interval is a fraction sufficiently close to 1 of the length of the (closed) interval from which it was removed.

6. Real parts of G_1 operators. If T is G_1 then, as was shown in Putnam [13], p. 509,

$$ (6.1) \quad \text{Re} \sigma(T) \subset \sigma(\text{Re} T). $$

For another proof, see Berberian [1], where it is also shown that, if $\sigma(T)$ is connected,

$$ (6.2) \quad \text{Re} \sigma(T) = \sigma(\text{Re} T). $$

That (6.2) need not hold in general, however, can be deduced from the example of Stampfli of (3.13) above, simply by choosing the sequence $\{z_1, z_2, \cdots\}$ so that, for instance, $\text{Re} z_n \neq \pm 1/2$ for all n. Then $\text{Re} \sigma(T)$ consists of 0 and the real parts of the z_n's while $\sigma(\text{Re} T) = \text{Re} \sigma(T) \cup \{\pm 1/2\}$. A consideration of the operator T constructed in Theorem 1, where now the disks D_n are chosen so that $\text{Re} z \neq \pm 1/2$ for $z \in D_n(n = 1, 2, \cdots)$, shows that (6.1) may hold properly also if T is completely G_1.

It is known that (6.2) always holds for hyponormal operators; see Putnam [12], p. 46. In view of certain known results concerning the spectra of completely subnormal and completely hyponormal operators one has the following

Theorem 4. Let T have the rectangular form $T = H + iJ$ and let X be a compact subset of the real line. Then:

(i) X is the spectrum of $H = \text{Re} T$ for some completely subnormal T if and only if X is the closure of an open subset of the real line;
(ii) \(X \) is the spectrum of \(H = \text{Re} \ T \) for some completely hyponormal \(T \) if and only if, for every open interval \(I \), \(\text{meas}_r(X \cap I) > 0 \) whenever \(X \cap I \neq \emptyset \), where \(\text{meas}_r \) denotes linear Lebesgue measure.

Proof of (i). First, let \(X \) be the closure of an open set of real numbers, so that \(X = \bigcup I_n \). Since the unilateral shift \(V \) is subnormal and \(\sigma(V) \) is the closed unit disk (see, e.g., Halmos [7]), one need only put \(T = \sum \bigoplus (a_n V + b_n) \) where \(a_n, b_n \) are real, \(a_n > 0 \), and \(I_n = (-a_n + b_n, a_n + b_n) \). Clearly, \(X \subset \sigma(T) \), while the reverse inclusion follows from the fact that each term \(a_n V + b_n \) is \(G_2 \).

Conversely, suppose that \(H = \text{Re} \ T \) where \(T \) is completely subnormal and let \(X = \text{int} \sigma(H) \). It will be shown that \(X = \sigma(H) \). If \(X \neq \sigma(H) \), then there exists some \(c \in \sigma(H) - X \) and an open interval \(I_c \) containing \(c \) such that \(\sigma(H) \cap I_c \) has no interior. In view of (6.2), there exists an open disk \(D \) intersecting \(\sigma(T) \) for which \(Y = \sigma(T) \cap D \) is nowhere dense and has a connected complement. Hence \(C(Y) = \{Y\} \), by Lavrentiev's theorem (cf. Gamelin [5], p. 48), and hence \(T \) has a normal part with spectrum \(Y \); see Clancey and Putnam [4]. Thus, \(T \) is not completely subnormal, a contradiction.

Proof of (ii). First, suppose that \(X \cap I \) has positive linear measure whenever \(I \) is an open interval and \(X \cap I \neq \emptyset \). Let \(T = H + iJ \) on \(\mathcal{H} = L^2(X) \), where \((Hx)(t) = tx(t) \) and \((Jx)(t) = -i \int_s^t (s-t)^{-1} x(s) \, ds \), the integral regarded as a Cauchy principal value. Then \(T \) is completely hyponormal, \(\sigma(T) = X \times [-1, 1] \), and \(\text{Re} \sigma(T) = X \); cf. Clancey and Putnam [3], p. 452.

Next, suppose that \(H = \text{Re} \ T \) where \(T \) is completely hyponormal. Then \(\sigma(T) \cap D \) has positive planar measure whenever \(D \) is an open disk for which \(\sigma(T) \cap D \) is not empty; see Putnam [15], p. 324. Since \(T \) satisfies (6.2), it is clear that \(\sigma(H) \cap I \) has positive linear measure whenever \(I \) is an open interval for which \(\sigma(H) \cap I \) is not empty. This completes the proof of Theorem 4.

As was noted in §1, a necessary and sufficient condition on a compact set of the plane in order that it be the spectrum of a completely \(G_1 \) operator is not known. Also, we do not have an analogue of Theorem 4. However, it is possible to prove the following

Theorem 5. In order that a compact set \(X \) of the real line be the spectrum of the real part of a completely \(G_1 \) operator \(T \) it is necessary that \(X \) be uncountable (equivalently, that \(X \) contain a perfect set).
Proof. In view of (6.1) it is clear that if \(T \) is any \(G_x \) operator and if \(X = \sigma(\text{Re} T) \) then \(\sigma(T) \) is contained in the set consisting of all lines \(\{ z : \text{Re} z = c \} \) where \(c \in X \). Further, since \(T \) of the theorem is completely \(G_1 \), then \(\{ z : \text{Re} z = c \} \cap \sigma(T) \) is empty whenever \(c \) is an isolated point of \(X \), as can be seen from (6.1) and Stampfli’s result ([22], [23]) mentioned in §1. Consequently, \(\sigma(T) \) is contained in the union of lines \(\{ z : \text{Re} z = c \} \) where \(c \in X' \), the first derived set of \(X \). As above, no point of \(\sigma(T) \) can lie on \(\{ z : \text{Re} z = c \} \) if \(z \) is an isolated point of \(X' \), that is if \(c \not\in X'' \). It follows as in the proof of Theorem 2 that if \(\gamma \) is the least ordinal (necessarily of finite or denumerable cardinality) with the property that \(X^{(\gamma)} = X^{(\gamma+1)} \) then necessarily \(\sigma(T) \) is contained in the union of lines \(\{ z : \text{Re} z = c \} \) with \(c \in X^{(\gamma)} \). Consequently, \(X^{(\gamma)} \neq \emptyset \), hence is perfect, and the proof of Theorem 5 is complete.

REMARKS. In Theorem 5 it is possible that \(X \) contains some isolated points. One need only consider the example mentioned at the beginning of this section illustrating that (6.1) may be a proper inclusion with \(T \) completely \(G_1 \). We do not know whether the condition of Theorem 5 on \(X \) is also sufficient, that is, whether any uncountable compact set of the real line must be the spectrum of the real part of some completely \(G_1 \) operator.

REFERENCES

1. S. K. Berberian, Conditions on an operator implying \(\text{Re} \sigma(T) = \sigma(\text{Re} T) \), Trans. Amer. Math. Soc., 154 (1971), 267–272.
13. ———, The spectra of operators having resolvents of first-order growth, Trans.

Received September 23, 1977. This work was supported by a National Science Foundation research grant.

Purdue University
West Lafayette, IN 47907
Somesh Chandra Bagchi and Alladi Sitaram, *Spherical mean periodic functions on semisimple Lie groups* .. 241
Billy Joe Ball, *Quasicompactifications and shape theory* 251
Maureen A. Bardwell, *The o-primitive components of a regular ordered permutation group* ... 261
Peter W. Bates and James R. Ward, *Periodic solutions of higher order systems* ... 275
Jeroen Bruijning, *A characterization of dimension of topological spaces by totally bounded pseudometrics* .. 283
Thomas Farmer, *On the reduction of certain degenerate principal series representations of $\text{SP}(n, \mathbb{C})$* .. 291
Richard P. Jerrard and Mark D. Meyerson, *Homotopy with m-functions* . 305
James Edgar Keesling and Sibe Mardesic, *A shape fibration with fibers of different shape* ... 319
Guy Loupias, *Cohomology over Banach crossed products. Application to bounded derivations and crossed homomorphisms* 333
Rainer Löwen, *Symmetric planes* ... 367
Alan L. T. Paterson, *Amenable groups for which every topological left invariant mean is invariant* ... 391
Calvin R. Putnam, *Operators satisfying a G_1 condition* 413
Melvin Gordon Rothenberg and Jonathan David Sondow, *Nonlinear smooth representations of compact Lie groups* 427
Werner Rupp, *Riesz-presentation of additive and σ-additive set-valued measures* ... 445
A. M. Russell, *A commutative Banach algebra of functions of generalized variation* ... 455
Judith D. Sally, *Superregular sequences* .. 465
Patrick Shanahan, *On the signature of Grassmannians* 483