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We study semi-free (=free off the fixed-point set) smooth
actions of a compact Lie group G on disks and spheres
with fixed-point set a disk or sphere, respectively. In dimen-
sions =6 and codimension *2 we obtain a complete classi-
fication for such actions on disks and a partial classification
for spheres, together with partial results in dimension 5 or
codimension 2. We show that semi-free smooth actions of
G on the n-disk D*, n =6 - dim G, with fixed-point set an
(n-k)-disk, k+2, are classified by two invariants:

(1) a free orthogonal action of G on the (k-1)-sphere
S*1 (the representation at the fixed points) and

(2) an element of the Whitehead group Wh(xz.(G®)).

In fact (§ 4, Theorem A), there is a bijection = from the set
2" of such actions, with a given representation po: G — O(k) at the
fixed points, onto Wh(z (G)), and for n — k = 2, &o»* is a group
under equivariant boundary connected sum and z is an isomorphism.
The corresponding set .&»* of actions on spheres also forms a group
(§ 4, Corollary 4).

For G = Z,, = Z/mZ we show (§4, Corollary 5) that these actions
on D" restrict to distinct actions on 0D" = S*! if n — 11is odd. For
n = k these actions on S*' are free (since S"**' = S = @) and,
in fact, are the same as those constructed by Milnor in [20], where
he used Reidemeister torsion to distinguish infinitely many of them.
We observe that his later application [21, Corollary 12.13] of the
Atiyah-Bott fixed-point formula [1, §7] implies they are all distinet.
For n >k we use Whitehead torsion to distinguish them, employing
the result of [11] and [3, Prop. 4.14] that Wh(Z,) is free abelian.
(For analogous applications of Reidemeister torsion wversus Whitehead
torsion com- pare [19] vs. [37] and [33, 36] vs. [31].)

Thus for m+1,2,3,4 or 6, which according to [11] implies
rank Wh(Z,) > 0, we obtain (§4, Corollary 6) infinitely many dif-
ferent semi-free smooth actions of Z, on every sphere of odd
dimension greater than four, with fixed-point set a sphere of any
even codimension at least four. These actions are not smoothly
equivalent to linear actions, although they are topologically linear
according to [38] and [9].

Invariant (1) of a semi-free action is equivalent to a represen-
tation p: G — O(k) that is “fixed-point-free”, i.e., such that p(g) has
no eigenvalue equal to +1 for g€ G, g # identity. The only G which
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admit such a representation are the finite “fixed-point-free” groups
classified by Wolfe [40, Theorems 6.1.11 and 6.3.1] and S, S$* and the
normalizer of S' in S* (see Bredon [5, p.153]). We do not use Wolf’s
classification in this paper, and the only place we use Bredon’s result
is in §4, Corollary 2, which states in part that every semi-free
smooth action of a compact Lie group G of positive dimension on
D™ with fixed-point set an (n — k)-disk is smoothly equivalent to a
linear action if n =6 +dim G and % % 2. This is proved without
assuming %k # 2 in [5, VI. 9.1].

The rest of the paper is organized as follows. In §1 we discuss
(G, p) equivariant orientations and define ™" and $“%*. In §2 we
define equivariant connected sum operations on &Z%* and &“%*, in-
troduce the group DS;* of equivalence classes of (G, p) orientation-
preserving diffeomorphisms of S" equivariant with respect to the

linear action of G on S induced by G LA O(k) c O(n + 1), and define
the set C.&°7* (which is a group for = > k) of h-cobordism classes
of elements of /%% For n=k, and for n =%k —-1=5 if G is
cyclic, these sets are related by an exact sequence

0— D1t s rmrik £, g T, comi 2, goemr
in §3. Then §4 contains our main results, including the fact
(Corollary 5) that for G = Z,,n =5 odd, and » =k + 2, the exact
sequence of §3 breaks into
or—1
0 — Wh(Z,) &5 ot 2, gormt — 0
and

0 — DSYE —2s SFurtk ()

where 7: Zt* - Wh(Z,,) is the isomorphism of Theorem A in §4.
The proofs of some of the results in §§2, 3, 4 are postponed to §5
in the hope of facilitating the exposition of the earlier sections.
Some of our results on 7%* for n =%k and G cyclic, have also
been obtained by Sebastiani [29].

Finally, a word on the genesis of this paper. Some of the re-
sults were announced in [34, 35], where semi-free actions were
called relatively free. An early version of the paper was first
circulated as a preprint in 1969. It appears as a reference in the
following papers (this list is not necessarily meant to be exhaustive):
[6], [7], [26, 27, 28], [15] and [25], which contains a generaliza-
tion of Theorem A(1). [23, 24] are expository lecture notes on the
subject. [30] and [39] are related.

1. Definitions. Let G be a compact Lie group. Let o:G —
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GL(k) be a linear representation, where GL(k) is the general linear
group on k real variables. The pair (G, p) will be fixed throughout
the discussion. We say that p and p": G — GL(k) are equivalent if
they differ by an inner automorphism of GL(k). We consider
GL(k) cGL(k + 1)< --- cGL{k + r) in the usual way and thus con-
sider a homomorphism p: G — GL(k) as, a fortiori, a homomorphism
into GL(k + r). We say that p: G — GL(k) and p’: G — GL(r) are
stably equivalent if they are equivalent considered as homomorphisms
of G into GL(s), s sufficiently large. It follows by the reducibility
theorem that if p and o' are stably equivalent then both factor
through GL(min(k, »)) and are equivalent in GL(min(k, 7)).

Let M be a C* manifold along with a continuous homomorphism
v: G — Diff(M), the latter having the C” topology. Let F(M) denote
the set of points of M fixed by every element of G under the action
of G on M induced by v. Then M (or more precisely the pair
(M, v)) will be called a (G, p) manifold if for each xze F(M) the
induced representation of G on the tangent space TM, of M at x
is stably equivalent to p. (This makes sense since the group of
nonsingular linear transformations of TM, can be identified uniquely
up to inner automorphisms with GL(dimension (M)).) Obviously
this property involves only the stable equivalence class of p. If
F(M) = @ then the condition is vacuously satisfied.

Let M be a (G, p) manifold of dimension =, let TM denote the
tangent bundle of M and set F(TM) = TM|F(M). Then the action
of G on F(TM) via the differential induces (see [10, §38.2]) a re-
dution of the structural group of the bundle F(TM) from GL(n) to
C(@), where C(G) is the centralizer of p(G) in GL(n). A (G, p)
orientation of M is a further reduction of the group of the bundle
F(TM) from C(@) to C(@),, the component of the identity of C(G).
Note that if F(M) is simply connected such a reduction always
exists. In general, the obstruction to such a reduction lies in
HFM)Y, Z, P Z,PD --- ® Z,) where the number of factors of Z,=
Z[2Z depends on p. Then number of distinet reductions is a® where
a = number of components of C(G) and b = number of components
of F(M).

An oriented (G, p) isomorphism from one (G, p) manifold M to
another M’ is a G equivariant diffeomorphism f: M — M’ which
preserves the (G, p) orientation.

A (G, p) manifold M is semi-free if G acts freely on M — F(M).
Let V»* denote the set of (G, 0) isomorphism classes of (G, o)
oriented semi-free (G, p) manifolds M, where dimension of M is =.
Let 2% ={Mec V»*|M and F(M), with C* triangulations, are com-
binatorially equivalent to disks} and %% = {Me V>*| M and F(M),
with C> triangulations, are combinatorially equivalent to spheres}.
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The main aim of this paper is to obtain some results on the struec-
ture of the sets Z%* and .

REMARK. We will often without warning use the same symbol
(M, 4, Z, ete.) to denote a (G, p) oriented manifold, its underlying
smooth manifold, its underlying action, and/or its (G, p) isomorphism
class in 2%* or .&4™*. We hope the context will make the intended
meaning clear.

2. The groups DSy* and C%,™* and additive structures on
™% and 2%* The representation p is equivalent to an ortho-
gonal one, and we may as well assume p = 700, where p,: G — O(k)
and ¢ is the natural inclusion of O(k) into GL(k). Thus G acts on
St~* and D* via 0,(G) and on S" and D™ for » =k — 1 via the in-
clusion of O(k) into O(n + 1). So S" and D' with this action are
(G, p) manifolds. They will be denoted by S»* and D%*"*.

If MeV>* (thus M is semi-free) and if the dimension of F(M)
is g then » — ¢ is the smallest integer ¢ such that p: G — GL(k)
factors through a representation o’: G — GL(t). To simplify notation
we assume ¢ = k (otherwise replace p by o). If V;* is nonempty
for some n then the action o of G on S*' must be free and to
avoid vacuity we now assume this is the case. (For G # Z, this
forces k to be even.) Then S»* for » =k — 1 has fixed-point set
S** (where S~ = @), and TS"|S** has a natural reduction to the
trivial group. Thus S»* represents an element in V}'* and thus in
™k, Similarly, D**"* has D**'"* as fixed-point set and represents
an element of &7™"*. Furthermore, the restriction of the oriented
(G, o) structure on Dz*"* to its boundary is just the (G, p) oriented
manifold S7*,

Let DS%* for n =k — 1 be the set of equivalence classes of
oriented (G, p) isomorphisms f of S¥* to itself, where two of them,
f and f’, are equivalent if f'o f~*: S* — S* extends to an oriented
(G, p) isomorphism of D7™* to itself. Under composition of iso-
morphisms DS%* is a group with the identity map as the unit.

It is possible, if one is ecareful, to define an addition on the
sets 4% and 2%* for w >k, using equivalent connected sum
and boundary connected sum of manifolds, respectively.

To do this we utilize the notion of (G, p) orientation. First
consider the (G, p) oriented manifold D%»*, with = >k. Now
D"cR" = R*XR"™ and he @ acts on the point (x, ¥) € D"CR*x R**
by h(x, y) = (o(h)x, y). Let j': D% — D * be an orientation-revers-
ing isometry, that is, 5'eO(n — k) — SO(n — k). Then j: D*— D"
defined by iz, ¥) = (2, 7'(%)) (that is, 1 = 1x 7' € 1x0(n — k)cO(k) X
O(n — k)cO(n)) is a G equivariant diffeomorphism. The pullback of
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the standard (G, p) orientation of D%* by j induces a new (G, o)
orientation, and D7%* with this new (G, p) orientation will be denoted
by Dvt. Note that if G = {¢} then this reduces to reversing the
orientation in the usual sense, and in any case is independent of
the particular choice of j'.

Now let M be any semi-free closed (G, p) oriented manifold of
dimension n. Let xze F(M). Then by [4] there exists a G equi-
variant embedding f: D%»* — M with f(0) = x. By replacing f by
feoL for some Le C(G) — C(G),, if necessary, we may assume that f
is (G, p) orientation-preserving. The G equivariant embedding
foj: D" — M defines uniquely a new reduction of the structural
group of TM|F(M), to C(G),, where F(M), is the connected com-
ponent of F(M) containing x. Thus picking one point out of each
component of F(M) determines a new (G, p) orientation of M. M
with this new (G, p) orientation will be denoted by M. Note that
M is defined only if dimension of M > k. (See [29] for dim M = k.)

With these preliminaries out of the way we can now define
connected sum and boundary connected sum in our category. Let
M and M’ be two (G, p) oriented manifolds of dimension =, with
n>k. Let f and f' be G equivariant (G, p) orientation-preserving
embeddings f: D% — M — oM and f': D% — M’ — oM’. Set

M+ M = (M- f(Int D) s H“M) (M’ — f'(Int D)),
where j: D* — D" is the orientation reversal defined above. After
smoothing corners in the usual way, M + M’ is a (G, p) oriented
manifold. _

Now let N and N’ be two (G, p) oriented manifolds of dimen-
sion n +1, with » >k. Let f and f’ be G equivariant (G, p) orient-
ation-preserving embeddings f: D%*—dN and f': D%*—dN’'. Set
NG N = NUjj;—1 N', where the union is taken along the images
of fand f'. Again after smoothing corners we get NP N’ as a
(G, p) oriented manifold.

The following are proved in § 5.

ProrositioN 1. If F(M) and F(M') are connected, then the
(G, p) isomorphism class of M + M' is uniquely determined by M
and M’', i.e., it is independent of the particular maps f and f'.
Similarly if F(N)NON = F(ON) and F(N')N 0N’ = F(ON’) are con-~
nected, the (G, p) isomorphism class of N@ N’ is independent of f
and f'.

COROLLARY. If n >k, then + as defined above induces a binary
operation on %™ which is independent of the choices of basepoints
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z and & and embeddings f and f'. Under this operation 5™* is
an associative, commutative monoid with Sv* as the identity. (See
[29] for the case n = k.) The same thing is true for 2% with
D% as the identity.

REMARK. The above corollary is true because we are working
in the category of (G, p) oriented manifolds. It is not possible to
drop this notion and still get a well-defined addition. (However,
see Remark 1 in §4.)

We now define another set C.&%™* as follows: Let X and X’ re-
present elements of .&2™*. We say X is h-cobordant to X’ if there
is a (G, p) oriented semi-free (@, p) manifold W such that W and
F(W), with C* triangulations, are combinatorially equivalent to
S” %[0, 1] and S**x[0, 1], respectively, and dW as a (G, p) oriented
manifold is (G, p) isomorphic to the disjoint union of X and 3.
Then h-cobordism is an equivalence relation and the equivalence
classes are the elements of C.&4™* It is simple to check that addi-
tion preserves h-cobordism and hence induces a monoid structure
on C<4™* for m >k. Furthermore, the natural map y:.&5"* —
C<4™k is an epimorphism of monoids. The usual proof (see [13])
goes through to show that = + £ bounds an element in Dtk
Hence X + 5 is h-cobordant to the unit S%*in C.54™*. Thus C.55™*
contains additive inverses and is an abelian group for » > k.

3. Some morphisms and an exact sequence. We now wish
to examine the relations among the sets D.&5"*, &4 ™*F ntt* and
C<,™*, which are monoids for » > k. We already have the surjec-
tion v: &4"* — C,™*. We define some other functions.

(3.1) a: DSwt —— o bk

Define a as follows. Let f: S»*— S»* be an oriented (G, p) iso-
morphism. Set a(f) = D% J, D**, where 0D%* = S%* is identi-
fied with a(D»+*%) = §»* under f. Then a(f)e.&%"%k, It is not
difficult to see that a is well-defined. We prove in §5 that it is an
injection for n =k — 1 and a monomorphism of monoids for n = k.

3.2) B: Ak ——s G

Let X represent an element of &4™* and let xe F(X). Choose
an equivariant (G, p) oriented embedding f: D3* — X with f(0) = x.
Set B(Z) =% — fInt D*). If n >k, then B induces a well-defined
map from .&,"* to 2%* which is a morphism for n >k + 1. This
follows from the proof of Proposition 1 in §5.

(3.3) d: Gtk s gomk
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The boundary map o is clearly well-defined for n =% — 1 and a
morphism for n > k.

PROPOSITION 2. The following sequence is exact for n < k.

8

a a v
0 ,DS’;,k >%n+1,k 5 glzﬂ,k %n,k , C._%'""k 0 .

The proof is straightforward and will be omitted.

Note. DS%* is a group for any n. For n >k the first and
last terms are groups while the other terms are monoids.

COMPLEMENT. The above sequence (of sets) is also defined and
exact for n =k —1=5 and G cyclic.

Proof. For n =%k —1 and Ze.5""* the fixed-point set
F(X) = S° is just two points. The map B8 is a priori not well-
defined here, i.e., it may depend on the choice of x¢ S’. However,
it follows easily from Milnor’s application [21 Corollary 12.13] of
the fixed-point formula of Atiyah-Bott [1, §7] that for n =5 and
G cyclic, B is well-defined and in fact is the constant map B(.& %)=
Dk e gnttk Then exactness of the sequence follows easily.

4. Main results. Our main result is a computation of <Z*
for k#2 and n-dim G =6, where dim G = dimension of G as a
manifold, and a partial computation for n-dimG =5 or k¥ = 2. The
proof is in § 5.

THEOREM A. Assume k + 2 and let © = n(Q) = G/G, where G,
is the component of the identity of G. Then there is a function

T: D% —— Wh(n) ,

where Wh(z) denotes the Whitehead group of w (see [Milnor 4, §6]),
such that

(1) 7 is a morphism for n >k + 1,

(2) if n-dim G = 6, then T 18 a bijection,

(8) for n-dim G = 5, the set D3* contains a subset F,™* such
that 7| #,™* is a bijection onto the subgroup ©(F,™*) = {x + E|xe
Wh(z)}, which has finite index in Wh(z) (see {21, §6.10 and §11.5].
For the definition of conjugation T see below and [21, p. 373 and
p. 398].) If n>k+ 1 and Wh(xn) is free abelian (e.g., if @ 1is
cyclic, see [11] and [3, Prop. 4.14}), then F,™* is a subgroup of
the monotd Z™* and | .Z,™* is an isomorphism onto its image.
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ADDENDUM. For k = 2 and n-dim G = 6, we have &, *= {D%?,
where Z* = {de D4 — F(4) has the homotopy type of the circle
and @, (04 — OF(4)) is Z}.

REMARK 1. From the definition of ¢ (see §5) one sees that
7(d) for 4e &;»* depends only on the action and not on its (G, o)
orientation. Thus, for n-dim G = 6 and k& = 2, the function from
M to |zm¥, defined by “forgetting” the (G, p) orientation, is a
bijection, where | =2,~*| denotes the set of equivariant diffeomorphism
classes of semi-free actions of G on D" with fixed-point set an
(n — k)-disk and representation p at the fixed points. This is be-
cause every such action can be (G, p) oriented and 7 is injective.
In particular, any two (G, p) orientations of such an action are re-
lated by an oriented (G, p) isomorphism.

COROLLARY 1. A semi-free action of a compact Lie group G on
the n-disk, n = 6 + dim G, with fixed-point set an (n — k)-disk, k + 2,
18 smoothly equivalent to a linear action if and only if its White-
head torsion vanishes. Two such actions are smoothly equivalent
if and only if they have equivalent linear represemtations at the
fized points and the same Whitehead torsion.

Proof. This follows immediately from Theorem A and Remark 1.

COROLLARY 2. If Whx) = Wh(#, () = 0, then Z>* =0 and
DSy = gk = C4™" for n 2 6 + dim G and k + 2. In particular,
this is true if dimG >0 or of G = Z,, Z,, Z, or Z,.

Proof. For n >k the first statement follows immediately from
Theorem A and Proposition 2. In case n =k, we have DSt =
bk, This gives &,~* a group structure which is preserved by
y: . Fkk — C4*F. Since kery = 0, the result follows.

The second statement is true because if dim G > 0 then (see [5,
p.153]) G = S, 8% or the normalizer of §' in §° so that, in any
case, 7,(G) =0, Z,, Z,, Z, or Z;,. and thus Wh(r,(G)) = 0 (see [11] and
[3, Prop. 4.14]).

REMARK 2. The case dim G >0 is proved in [5, VI. 9.1] without
assuming & # 2.

COROLLARY 3. If n=6+dimG, >k +1 and k +# 2, then
% under @ is an abelian group.

Proof. The additive inverse of an element de F»* is —4=
77 —17(4)).
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Caveat. It is mot A(=4 with opposite (G, 0) orientation as de-
fined in §2). In fact, 4 =4 in &,™*. See Remark 1.

COROLLARY 4. If n=5+dimG,n >k and k=2, then .-7™*
is an abelian group under-+.

Proof. This follows from an easy algebraic argument applied
to the exact sequence of Proposition 2, knowing that <,>"** and
C.&%™* are groups.

Under the hypotheses of Corollary 4, all the monoids in the
exact sequence of Proposition 2 are groups and all the morphisms
are homomorphisms.

Let d: Z"*"* — &,»* denote the composition d = B3, which is
defined for n >k (and for n =k if » =5 and G is eyeclic). For
% >k + 1 the function d is a morphism and d* = 0. Under the
hypotheses of Theorem A(2) we can interpret d: Wh(x) — W(z). We
would like to give an algebraic description of d.

The action of G on R* — 0 via the representation p induces a
homomorphism v: G — Aut(H,_,(R* — 0)) = Aut(Z) = Z, = {—1, 1}.
Clearly G, is in the kernel of ». Hence v induces a homomorphism
w: T — Z,. Then w induces an anti-automorphism —, with square
the identity, on Z[x], the integral group ring of x, characterized
by @ = w(a)a™ for all aerc Z[r]. This anti-automorphism of Z[x]
induces an automorphism of Wh(z) still denoted by—with z = =z,
for all xe Wh(z). In our situation G acts freely on R* — 0 and
from this it is easy to show that w(r) =1 unless G = Z, in which
case Wh(G) = 0.

The following is proved in §5.

THEOREM B. Set g =dimG. If n >k and k + 2, then
7(d4) = (d) — (—1)"*z(d)

for de ok Hence if in addition n —g =6, then d: "™ —
M can be identified with the homomorphism d: Wh(m)— Wh(x)
defined by dx) =x — (—=1)""9%. This makes sense for m — g =>5
(via Theorem A (8)) and is true if Wh(r) is free abelian, e.g., if ©
18 cyelie.

COROLLARY 5. Let G = Z, and let p: G — GL(k), k + 2, be a re-
presentation such that G acts freely on S**, i.e., S*7'/o(Q) is a lens
space. Then for n odd, n =5 and n =k, the function B: .F " -
Dk s zero. Hence,

o‘:"l
0 — Wh(Z,) =5 gomk 2, Copmt —
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is a short exact sequence and a: DS¥* — 5k is an isomorphism.

Proof. Since Wh(Z,) is free abelian, conjugation is the identity
(see [21, Corollary 6.10]). It follows, therefore, from Theorems A
and B that if » =5 is odd and n >k # 2 then d: g,"** —> Z,™* is
injective (in fact, d is multiplication by 2 in a torsion-free group).
Furthermore, from the exact sequence of Proposition 2 it follows
that B: . o»*F — g »* is zero since d is injective and doB = 0.
Hence, the exact sequence breaks into

0 v
0 l@;’m&l,k %n,k > %n,k >0

and
0 — DS3 AN k()

Applying Theorem A again completes the proof.

COROLLARY 6. Assume » =5 1s odd, k =4 is even, n — k=—1
and m =5, m #= 6. Then there exist infinitely many distinct semi-
free actions of Z, on S* with fived-point set an (n — k)-sphere. In
Jact, the set of equivariant diffeomorphism classes of nonlinear
semi-free actions of Z, on D" with fixed-point set an (n — k + 1)-
disk is infinite and the restrictions of these actions to 0D"* = S
are all distinct.

Proof. According to [11] Wh(Z,) has positive rank if m = 1, 2,
3,4, or 6. Now, any smooth manifold 4 homeomorphic to D** is
diffeomorphic to D™ if n =5 by [32]. Thus for n —k =1 the
result follows from Corollary 5 and Remark 1. For n =%k — 1 we
must show that 6oz maps Wh(Z,) one-to-one into .S5** (for n>k
this follows from exactness). To do this assume 04, = o4, for 4,
4,e 2%, Let f:04,— 04, be an equivariant diffeomorphism. Glue-
ing 4, and 4, together equivariantly along their boundaries produces
an element Y e.95%*. It follows from the sum and duality theorems
for Whitehead torsion (see [21, §7.4 and §10]) that (B(2))=
7(d,) — f(z(4)). But f, is the identity since f is equivariant. Since
conjugation is the identity in Wh(Z,) it follows from the Comple-
ment to Proposition 2 that z(4,) — (4, = 7(B(2)) = 0. Hence 4, = 4,
as required. This completes the proof of Corollary 6.

REMARK 3. It is easy to see that these free nonlinear actions
of Z, on S* ' are the same as those constructed in {20], where Milnor
showed that infinitely many of them are distinct, using Reidemeister
torsion invariants, while we have observed that his later result
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[21, Corollary 12.13] implies they are all distinct.

From Theorem B it follows by a well-known result [8] that
ker d: Z2,"* - 2, ** modulo imd: Z,**"* - F** is H,_,(Z,; Wh(r))
where Z, acts on Wh(z) via conjugation —. The groups H,(Z,; Wh(x))
are of course periodic of period 2.

Now dofB =0, so B(s45*"*) ckerd. Since d = 8.9 we have a
well-defined

il C%”_H’k — H,,, [(Z,; Wh(x)) .
Let 4, be the composition

a v
DS;——l,k — %n,k — C%u,k .

We have d(kerd) c a(DS%>*) and d(imd)=0. Thus o induces a
map v, H, ., (Z,; Wh(r)) — DSk,

PROPOSITION 8. Assume n —g=n—dimG =6, n=k+1 and
k # 2. Then the following sequence s exact

%
S H e o(Zs; Wh(T)) 22 D3t

P cogrrr YL gL (2 WhiT)) s
Y1 . Vs n—1,k V2 %,k
— m+1—y(Z2’ Wh(ﬂ:)) — D. p T C‘% e
Proof. This follows from Proposition 2 and Theorem B by an
elementary algebraic argument.

5. Proofs. The proofs of this section depend on the following

LEMMA (Equivariant covering isotopy theorem). Let N and M
be compact smooth manifolds with oM = &, and let G be a compact
Lie group acting smoothly on N and M. Assume that )\ is an
equivariant isotopy of N in M, i.e., a smooth family of equivariant
embeddings N N— M. Then there exists an equivariant covering
isotopy of M, i.e., an equivariant isotopy +r of M such that rone = \,
for te]0, 1].

Proof. By the (nonequivariant) covering isotopy theorem (see
[22], [16] or [18]) there exists an isotopy @ of M such that @¢,=
identity and @,0n, = A, for £€[0,1]. Then by Theorem 3.1 of [5,
Chap. VI] there exists an equivariant isotopy + of M such that
P | M N) = P, | N(N). This completes the proof.

Proof of Proposition 1 and its corollary. We wish to show
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that the sum and the boundary sum operations for (G, p) oriented
manifolds are well-defined. We consider only the sum operation,
the argument for boundary sum being the same except for trivial
modifications.

Let M and M’ be two n-dimensional (G, p) oriented manifolds.
We wish to show that M + M’ is defined uniquely up to oriented
(G, p) isomorphism and that + on isomorphism classes is commutative
and associative, provided F(M) and F(M') are connected. What we
have to show is that the result is independent of the (G, p) equiv-
ariant orientation-preserving embeddings f: D*— M and f': D*— M'.

Suppose we replace f by f: D" — M, where f(0) = f(0) and f is
a (G, p) orientation-preserving embedding. Then uniqueness of equiv-
ariant tubular neighborhoods [5, p.310] implies that f is equivari-
antly isotopic to f,, and f to f., such that f, = fieqr, Where
A D™ -» D™ is an equivariant linear map, i.e., € C(G). Since f and
f were chosen as (G, p) orientation-preserving, it follows that
» e Cy(GF). Thus o is equivariantly isotopy to the identity. It fol-
lows that f and f are equivariantly isotopic.

Now suppose we replace f by f where f(0) = f(0). Since we
assumed F(M) is connected, there is a path in F(M) joining f(0) to
f(0), that is, an equivariant isotopy of f(0) to f(0). Using the equiv-
ariant covering isotopy theorem, we can then equivariantly isotop
f to f with f(0) = f(0). Then the argument above shows f is equi-
variantly isotopic to f. Hence, f is equivariantly isotopic to f for
any other (G, p) equivariant orientation-preserving embedding
fD*— M.

Thus we can apply the equivariant covering isotopy theorem to
get an oriented (G, p) isomorphism h: M — M with hof = f. This
proves that the sum is well-defined up to (G, p) oriented isomorphism
class. Associativity and commutativity are immediate from the
definition since we may assume j = j'.

Proof that a: DSy VF — &4™F is an injection for n =k and a
morphism for n =k + 1.

We assume n =k + 1 (a similar proof goes through for n = k).
Recall that @ is defined as follows. Given an oriented (G, p) iso-
morphism f: S;* — S»tk set a(f) = Df Uy D, where D} = Dp*
and Dy = D»*. Now let h: D* U; D — D& U, D be a (G, p) orient-
ed diffeomorphism. Since n =k + 1, the fixed-point set F(a(f)) is
connected. Hence by the proof of Proposition 1 we can equivari-
antly isotop & to W': DF U, D — D U, D such that A'|Dp is inclu-
sion. It follows that »”" = &'|Dr: D! — D is a (G, p) oriented iso-
morphism such that »”|oDp is exactly f'f~'. Hence f'f extends
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over D** and thus f = f’ in DS;™"*. Hence « is injective.

To show that @ is a morphism of monoids one simply chooses
carefully the disks used in constructing the equivariant connected
sum of (G, o) manifolds. For a(f) = D¢ U, Dy use the disk D7 while
for a(f’) = Df Uy D* use DP. With this choice the construction
for a(f) + a(f’) yields a(f’ f) on the nose.

Proof of Theorem A.

DEFINITION OF 7. Let 4 represent an element of Z,™*. Let
e: T— 4 be a closed G equivariant tubular neighborhood of F(4) in
4. (For a semi-free action F'(4) = ¢ since no nontrivial group can
act freely on a disk.) Let 6(T) be the associated sphere bundle to
T. For k=2, it follows easily that e@(T))cd — Int(e(T)) is a
homotopy equivalence, while for 4 = 2 the hypothesis of the Ad-
dendum to Theorem A implies this. Let V = ¢(0(T))/G = é(T)/G=
D *x 8G and W = (4 — Int(e(T)))/G be the decomposition mani-
folds. Since they are the base spaces of principal G bundles the
inclusion ¢: V— W is a homotopy equivalence, under our hypothesis.
Hence (see [21, §9]) there is defined a Whitehead torsion invariant
(&) e Wh(z(V)). By abuse of notion we define ¢(d4) = z(¢).

For k>2 we have that 7(V) = n,(D"*x S*!/@) is isomorphic to
T = (@) = G/G, = the group of covering transformations of the
universal cover V = D" *x 8 /G,. This isomorphism is unique up
to inner automorphisms, which induce the identity automorphism
of the Whitehead group. Hence there is a canonical identification
Wh(z(V)) = Wh(r) and we have (4) ¢ Wh(x).

From the uniqueness theorem for closed equivariant tubular
neighborhoods, the equivariant covering isotopy theorem, the in-
variance of Whitehead torsion under diffeomorphism, and the fact
that the canonical identification Wh(z(V)) = Wh(x) is preserved
under equivariant diffeomorphism, it follows that z: 2,* — Wh(r)
is well-defined for & > 2.

If k¥ =2, then (V) = Z or 0, hence Wh(z,(V)) =0 by [11]. If
k=1, then G = Z,s0 n,(V) = 0 and thus Wh(z,(@)) = 0. Therefore
7 is well-defined in all cases.

Proof that © is a morphism for m >k + 1. We have defined
7. Z,"* > Wh(m). For m >k + 1 we have a monoid structure on
both the domain and range of . We wish to show that 7 is a
morphism. To do this, let 4 and 4 represent elements of ™.
We can assume that 4, 4/ and D% *x][0, 1] (with G acting trivially
on [0, 1]) are pairwise disjoint. Let f: D3 ™% — 04 and f’: D* %% — o4
be equivariant (G, p) oriented embeddings. Set 4, = (D% *x [0, 1/2])
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Uy 4, where f glues D3 ¥x[0, 1/2] to 4 along D»**x {0} = f(D3~"*),
and 4 = (D3 ¥ x[1/2,1]) U, 4', where f’ glues D *¥x[1/2,1] to &'
along D7 *x {1} = f/(D%»**). Then clearly as elements of Z** we
have 4, = 4 and 4, = 4'. Furthermore, 4 4" is represented as an
element of Z,™* by 4,U 4;, where 4, is glued to 4; along D% "*x {1/2}=
4, N 4.

Now choose equivariant tubular neighborhoods T, of F(4,) and
T, of F(4;) such that T= T, U T, and T, = T.N T, are equivariant
tubular neighborhoods of F(4,U4;) and F(D"»**x {1/2}), respectively.
Using the notation of the definition of 7, we have W= W,UW,,
Wi=W,NW, V=V, UV, and V,=V,NV,. Now by the sum
theorem of [14] () = z(¢) + 7(&,) — 7(t;), where ¢V — W and
¢: V,— W, are inclusions, 2=1,2,8. But z(,) =0 since V,=
D~ *1x 8 G and W, = V,x][0,1], with ¢@) = (x,0) for zeV,.
Hence

4D L) =1(4, D &) = () = 7(8) + (&) = () + T(4)
=7(4) + (L) .

This completes the proof.

Proof that T is surjective for n =6 + dim G. G acts freely on
S*~* under p and hence freely on S**x D*7* via h(z, y) = (o(h)x, ¥),
where he G. This action extends to an action on D*x D" * defined
by the same formula.

Set V = (§¥*x D**)/G = S*'/Gx D**. If n-dim G = 1 + dimen-
sion of V' =6 then Sallings’ construction [37] (see [21, §11.1]) gives
a manifold W which is an h-cobordism between V and V’, with
VNV =¢ and W = VUV’'UV"”, where V" is a product cobordism
between 0V and o0V’, such that the Whitehead torsion (W, V) is
equal to any preassigned element 7, of Wh(n) = Wh(z,(V)). Let
p: W — W be the principal G bundle over W induced from the G
bundle S¥**x D**— V by a deformation retraction of W onto V.
Then p™ (V) = S*'x D" * with the given action of G on it. Let 4
denote the identity map of » (V). Then after smoothing corners
D¥*xD**|J, W becomes a contractible manifold with 1-connected
boundary and hence by [32] is diffeomorphic to D*. The actions of
G on the summands piece together to give the required action 4 of
G on D™, with 7(4) = 7,, proving surjectivity (compare [20]).

Proof of vart (3). the case n-dimG =5. For n-dimG =5,
Stallings’ construction is replaced by the “wedge” construction of
Siebenmann-Sondow [31] (extended easily to manifolds with boundary)
which provides invertible h-cobordisms between 4-manifolds with any
torsion of the form % + Z. The rest of the above recipe for n-dim
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G = 6 goes through unchanged, proving that there is a function
o: H— =% such that roo = identity, where H is the subgroup
H = {& + Z|x € Wh(n)} of Wh(z). Set F#,™* = o(H).

If Wh(z) has no elements of finite order, then for every he H
there exists a unique x€ Wh(z) such that A =z + Z. (Proof: If
x4+ x=2,+7%, then 2(x —2,) = (& — %) — (x, — %,). But 2 — % and
x, — %, have finite order by [21, Corollary 6.10]. Therefore, so does
& — %, S0 ¢ = &,.) Then the uniqueness theorem for h-cobordisms
(see [21, §11.3]) implies that ¢ is a morphism from the group H to
the monoid &z,»* if » >k + 1 (compare the proof of invertibility
in [31]). Hence #,™* = ¢(H) is a group and 7|.&#,"* = ¢7": F,* -H
is an isomorphism. This completes the proof.

Proof that © is injective for n-dim G = 6. Using the notation
of the definition of 7, let &': 7" — 04 be a closed G equivariant
tubular neighborhood of 0F(4) a4 such that T)0F(4) = T CInt T
and ¢’|T’ = ¢|T’. Introducing a corner along d(7"")/G we have that
W is an h-cobordism between V and V' = (34 — Int ¢"(T"))/G, with
oW = WUV'UV"”, where V" is a product cobordism between oV
and oV".

Now given 4,, 4,6 Z,»* we apply this construction to each and
get h-cobordisms (W,; V,, V)),1=1,2. Each T, is a G equivariant
bundle over a disk D**, so T, when considered as a bundle with
group C(G) is still trivial, i.e., each T, = D*x D"** with G action
defined by h(z, ¥) = (o(h)x, y) for he G. It follows that, up to iso-
topy, there is a well-defined equivariant diffeomorphism f: T, — T,
which we may assume is (G, p) orientation-preserving (since other-
wise we may replace f by Lof for some LeC(G) — C(G),). Then
Flo(T): 6(T,) — 6(T,) covers a diffeomorphism f,: 6(T)/G — o(T,)/G.

If 7(4,) = 7(4,) then, by definition, the ineclusions ¢;: V, — W, and
4, V, — W, have the same torsion invariant. Since n-dim G =dimension
of W, =6, the uniqueness theorem for h-cobordisms implies that
fo: V,— V, extends to a diffeomorphism f;: W, — W,. Then by ele-
mentary bundle theory this lifts to a G equivariant diffeomorphism
of principal bundles f;: W,— W, such that f,|V,= f|8(T). Thus
f and f, piece together to yield an oriented (G, 0) isomorphism
fUF:4,— 4,, Hence 7 is one-to-one for n-dim G = 6. This com-
pletes the proof of Theorem A.

Proof of the Addendum. It follows easily from the definition
of &,~* that the above construction applied to any element 4¢ &,™»*
yields an h-cobordism (W;V, V’'). In defining ¢ we saw that
Wh(z,(V)) is trivial. Hence the s-cobordism theorem of [2], [17]
and [37] (see [12]) implies that W is a product cobordism. The
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above proof then shows that 4 is the trivial element 4 = D%%*e &2
This completes the proof.

Proof of Theorem B. We wish to calculate the Whitehead torsion
t(dd) for 4e Z,»* and d: 2t —> Fmk.  Let f: D** — 04 be an
equivariant (G, p) oriented embedding. Then d4 = 64 — f(Int D»*) ¢
%, Choose a closed equivariant tubular neighborhood &: T'— 4
of the fixed-point set F(4) in 4 such that T|F(f(D*»*) and T|F(d4)
are closed equivariant tubular neighborhoods of F(f(D**)) and F(d4)
in f(D%»*) and d4, respectively. Set W= (4 — e(T))/G, W,=
(F(DE*) — (TIF(f(D))IG and W, = (d4 — o(T|F(d4))/G where T
is the open disk bundle associated to T, i.e., T= T — o(T). Also set
V =0o(T)/G, V,= @(DIF(f(Dy")/G and V, = (6(T)|F(d4))/G. Let

6 V,— W,

aV—Ww

o W, — W

e WU W,— W

19 V,— V

oV, — W
denote the inclusions. We wish to compare z(d4) = z(,,) with
4y =1(). Now oW=VUW,UW, with Vn(W,UW, =dV=
W, UW,) = V,UV,. Since W,= V,x][0,1], where V, is identified
with V,x0 and W,N W, = V,x1, it follows that z(¢,) = 7(3,). By
the duality formula of [21, §10] we have 7(¢) = (—1)**"'z(3,), since

n—g+1=dim W. Hence 7(¢) = (—1)"""'z(7). Now factor the
inclusion V,— W in two ways:

W,
lz/l \?:1
/ N
V., w
\\’l:s l/
NS
|4

Hence (see 21, §7]) 7(¢) + (1) = t(t;) + 7(¢). On the other hand we
can also apply duality to 4, to get (i, = (—1)*="ic(3,). However,
V = D" xS !G and V, = D**x S*!/G and i, is the natural in-
clusion. Hence 7(3,) =0. Therefore (i) =0. Thus 7(,)+7(%,) = ().
Therefore 7(d4) = 7(3,) = 7(¢) + (—1)**"7(@) = (4) + (—1)*"z(d), as
required.

For nw — g = 5 the “wedge” construction of [31] is used in the
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proof of Theorem A (3) to produce an action o(h) € F#,»*C 2,™* such
that z(o(h)) = h, for any he H = {x — Z|lx ¢ Wh(n)}cWh(z). It is not
difficult to see that o(h) = dr'(x) for some € Wh(x) such that
h =21 + % In other words, given x€ Wh(x) the wedge construction
yields the same element o(x + %) = dz7'(z) = B((z7'(x))) € Z,»* as
does our construction of taking the action z7'(x) € &,**"* which has
Whitehead torsion equal to x, then restricting the action to the
boundary o(z"*(z)) and finally removing (via 8) a copy of the trivial
action D»* at a fixed point. Thus we have

o(H) = 7 cd(z,") ct™(H)

because 7(dd) = t(4) — (—1)"*z(d) € H since n — g = 5 is odd.

Now if Wh(n) is free abelian ¢! = 7|7 ,»*: #,»* — H is an iso-
morphism by Theorem A (3). Moreover, rodor™': Wh(x) — H is an
isomorphism since it is x+ 2z in a free abelian group. Therefore,
A, = F,m* and d. g F,~F is the isomorphism d=
go(todor*)oz. This completes the proof of Theorem B.
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