ON THE SIGNATURE OF GRASSMANNIANS

PATRICK SHANAHAN
ON THE SIGNATURE OF GRASSMANNIANS

Patrick Shanahan

1. Introduction. Let \(G_{n,k} \) denote the manifold of linear subspaces of \(\mathbb{R}^n \) of dimension \(k > 0 \). Then \(G_{n,k} \) is compact and has dimension \(k(n-k) \). When \(n \) is even \(G_{n,k} \) is orientable and we may consider the topological invariant \(\text{Sign}(G_{n,k}) \). The cohomology algebra of \(G_{n,k} \) over \(\mathbb{R} \) was determined by Borel in [3] and thus in principle the problem of computing \(\text{Sign}(G_{n,k}) \) is a problem in linear algebra. In practice this is very awkward, and it is the purpose of this paper to compute this invariant by a simpler method:

THEOREM. The signature of \(G_{n,k} \) is zero except when \(n \) and \(k \) are even and \(k(n-k) \equiv 0 \pmod{8} \). In this case (with a conventional orientation)

\[
\text{Sign}(G_{n,k}) = \begin{bmatrix} \frac{n}{4} \\ \frac{k}{4} \end{bmatrix}.
\]

REMARK. When \(n \) is odd, \(G_{n,k} \) is nonorientable and \(\text{Sign}(G_{n,k}) \) is not defined; however, for odd \(n \) \(\text{Sign}(\widetilde{G}_{n,k}) = 0 \), where \(\widetilde{G}_{n,k} \) is the orientation covering of \(G_{n,k} \).

2. The Atiyah-Bott formula. We recall a few definitions. Let \(X \) be a compact orientable manifold of dimension \(4l \). The signature of \(X \) is defined by

\[
\text{Sign}(X) = \dim H^+ - \dim H^-,
\]

where \(H^{2l}(X; \mathbb{R}) = H^+ \oplus H^- \) is a decomposition of the middle-dimensional cohomology of \(X \) into subspaces on which the cup-product form \(B(x, y) = \langle x \cup y, X \rangle \) is positive definite and negative definite, respectively. When \(\dim X \) is not divisible by 4 one defines \(\text{Sign} X = 0 \).

More generally, let \(f: X \to X \) be a mapping of \(X \) into itself. When the decomposition of \(H^{2l}(X; \mathbb{R}) \) is invariant under \(f \) one defines

\[
\text{Sign}(f) = \text{tr} f^* | H^+ - \text{tr} f^* | H^-,
\]

where \(f^*: H^{2l}(X; \mathbb{R}) \to H^{2l}(X; \mathbb{R}) \) is the homomorphism induced by \(f \). \(\text{Sign}(f) \) is then independent of the choice of \(H^+ \) and \(H^- \). When \(f \) is homotopic to the identity mapping one obviously has \(\text{Sign}(f) = \text{Sign}(X) \).
Now suppose that X is an oriented Riemannian manifold. If $f: X \to X$ is an orientation preserving isometry, then at each isolated fixed point p of f the differential $df_p: T_pX \to T_pX$ is an orthogonal transformation with determinant 1. Let $\theta_1(p), \ldots, \theta_{2l}(p)$ be the $2l$ rotation angles associated with the eigenvalues of df_p. When the fixed point set of f consists of isolated points one has the formula of Atiyah and Bott ([1], p. 473):

$$\text{Sign}(f) = (-1)^l \sum_{p \text{ fixed}} \prod_{v=1}^{2l} \text{ctn} \left(\frac{\theta_v(p)}{2} \right).$$

We will apply this formula to a certain mapping $f: G_{n,k} \to G_{n,k}$.

Remark. When f is an element of a compact group acting on X (and this will be the situation in our application) the formula above is also a consequence of the G-signature theorem of Atiyah and Singer. (See [1], p. 582 or [6], §18.)

For simplicity of notation we confine our attention to the case $n = 2s$, $k = 2r$; the remaining cases can be dealt with by minor adjustments in the argument.

Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation which rotates the ith coordinate plane $P_i = \text{span}\{e_{2i-1}, e_{2i}\}$ ($i = 1, 2, \ldots, s$) through the angle α_i, where $0 < \alpha_i < \pi$. The transformation F induces a smooth mapping $f: G_{n,k} \to G_{n,k}$ which is clearly homotopic to the identity mapping. If P_I denotes the k-plane

$$P_I = P_{i_1} \oplus \cdots \oplus P_{i_r},$$

where $I = (i_1, \ldots, i_r)$ is a multi-index with $i_1 < i_2 < \cdots < i_r$ and $1 \leq i_r \leq s$, then $f(P_I) = P_I$.

Proposition 2.1. If the angles α_i are all distinct, then the points $P_I \in G_{n,k}$ are the only fixed points of f.

Proof. Let W be a k-dimensional linear subspace of \mathbb{R}^n not equal to any P_i. By regarding W as the row space of a matrix in reduced row echelon form one sees that there exists a $v \in W$ whose orthogonal projections v_i on P_i are nonzero for at least $r + 1$ indices i.

If $F(W) = W$, the vectors $v, F(v), \ldots, F^k(v)$ all belong to W, and hence there is a nontrivial relation

$$\sum_{v=0}^{v=k} a_v F^v(v) = 0. $$

But this implies
for all i. Writing $X_3- = \cos (\alpha,) + i \sin (\alpha,)$ it follows that the k-degree polynomial $q(x) = a_0 + a_1x + \cdots + a_kx^k$ has zeros λ_i and $\bar{\lambda}_i$ for each of the $r+1$ indices i for which v_i is nonzero. Since the α_i are all distinct, the coefficients a_i must all be zero, which contradicts our assumption. Thus when $F(W) = W$, the subspace W must coincide with one of the subspaces P_i.

3. The Normal angles $\theta,(p)$. We wish to show that with respect to an appropriate metric on $G_{n,k}$ the mapping f is an isometry, and then compute the normal angles $\theta,(p)$ at the fixed points p of f. We begin with some remarks about the differentiable structure on $G_{n,k}$.

The smooth structure on $G_{n,k}$ may be defined by identifying $G_{n,k}$ with the left coset space G/H, where $G = O(n)$ is the orthogonal group and $H = O(k) \times O(n-k)$ is the closed subgroup of orthogonal transformations which take span $\{e_i, \ldots, e_k\}$ into itself. The space $O(n)$ may be regarded as the space of orthogonal $n \times n$ matrices (and hence as a subspace of R^{n^2}), or, equivalently, as the space of orthonormal n-frames $a = (a_1, \ldots, a_n)$ in R^n. We denote the image of an element $a \in G$ under the natural projection $\pi: G \to G/H$ by \bar{a}, and the image of a tangent vector $v \in T_aG$ under $d\pi: T_aG \to T_{\bar{a}}G/H$ by \bar{v}.

The elements of the tangent space T_aG are determined by smooth curves passing through the identity matrix e. By differentiating the relation $aa^t = e$ one obtains the usual identification of T_aG with the space of skew-symmetric $n \times n$ matrices. As a basis for T_aG we may take the set $\{b_{rs} \mid r < s\}$ of matrices b_{rs} having -1 in column s, row r, 1 in column r, and row s, and 0 everywhere else. The ordering $\{b_{12}, b_{13}, b_{23}, b_{14}, b_{24}, \ldots\}$ then defines a standard orientation for G. More generally, the system of matrices $\{ab_{rs}\}$ may be taken as a basis for the tangent space T_aG at an arbitrary $a \in G$.

To obtain an oriented basis for the tangent space $T_{\bar{a}}G/H$ we simply restrict ourselves to vectors in T_aG which are orthogonal, as vectors in R^{n^2}, to $T_{\bar{a}}(aH)$. It is easily shown that the vectors ab_{ij} with $1 \leq i \leq k$ and $k + 1 \leq j \leq n$ provide such a system. The coherence of the orientations will follow from the proof of Proposition 3.1. Note that even when a and a' represent the same coset in G/H, the bases $\{ab_{ij}\}$ and $\{a'b_{ij}\}$ will in general be different bases.

These facts all have simple interpretations in terms of curves in $O(n)$ and $G_{n,k}$. For example, the tangent vector ab_{ij} may be viewed as the infinitesimal motion of the k-plane span $\{a_i, \ldots, a_k\}$
towards its orthogonal complement obtained by rotating the vector
a_i toward complementary vector a_j.

Proposition 3.1. There is a unique Riemannian metric on $G_{n,k}$
for which the standard bases \{ab_{ij}\} are all orthonormal. The
mapping $f: G_{n,k} \rightarrow G_{n,k}$ is an orientation preserving isometry with
respect to this metric. Moreover, the system of normal angles \{$\theta_\nu(p)$\}
is the same at each fixed point p of f.

Proof. To prove the first assertion it will be enough to show
that for arbitrary n-frames a and a' in $SO(n)$ the matrix of transition
between the bases \{ab_{ij}\} and \{a'b_{ij}\} is orthogonal. Let $a' = ah$, where
$h \in O(k) \times O(n - k)$. Then $a' b_{ij} = a' b_{ij} h^{-1} = ah b_{ij} h^{-1}$.

Let $hb_{ij} h^{-1} = \sum_{\nu, \mu} q_{ij,\nu,\mu} b_{\nu,\mu}$. Clearly $q = [q_{ij,\nu,\mu}]$ is the required
transition matrix. Writing

$$h = \begin{bmatrix} E & 0 \\ 0 & F \end{bmatrix}, \quad E \in O(k), \; F \in O(n - k),$$

we obtain $q_{ij,\nu,\mu} = e_{\nu,\mu} f_{\nu,\mu}$, that is, $q = E \otimes F$. Hence

$$\sum_{i,j} q_{ij,\nu,\mu} q_{ij,\nu',\mu'} = \sum_{i,j} e_{\nu,\mu} f_{\nu,\mu} e_{\nu',\mu'} f_{\nu',\mu'}$$

$$= \sum_{i,j} e_{\nu,\mu} e_{\nu',\mu'} f_{\nu,\mu} f_{\nu',\mu'} = \delta_{\nu,\mu} \delta_{\mu,\mu'},$$

which proves that $qq' = e$. Moreover, it follows from $\det q = (\det E)^{n-k}(\det F)^k = 1$ that the various bases are coherently oriented.

To see that f is an isometry it is enough to observe that

$$df_\alpha(ab_{ij}) = \overline{F(a)b_{ij}}.$$

Finally, let $p = \bar{a}$ be any fixed point of f. We will compare
the normal angles at \bar{a} with those \bar{e}.

Denoting $F(e)$ by c we have

$$df_\bar{a}(b_{ij}) = \overline{cb_{ij}} = \overline{cb_{ij} c^{-1}},$$

since $c \in O(k) \times O(n - k)$. On the other hand, $f(\bar{a}) = \bar{a}$ implies that
$F(a) = ah$ for some $h \in O(k) \times O(n - k)$. Thus $ca = ah$ and hence

$$df_\bar{a}(ab_{ij}) = \overline{F(a)b_{ij}} = \overline{ab_{ij} a^{-1} ca}.$$

Writing out the matrices D and D' of $df_\bar{a}$ and $df_\bar{a}$ with respect
to the appropriate bases we have

$$\overline{cb_{ij} c^{-1}} = df_\bar{a}(b_{ij}) = \sum_{\nu,\mu}^{} d_{ij,\nu,\mu} b_{\nu,\mu},$$

$$\overline{cab_{ij} a^{-1} c^{-1} a} = df_\bar{a}(ab_{ij}) = \sum_{\nu,\mu}^{} d'_{ij,\nu,\mu} ab_{\nu,\mu}.$$
Let \(ab_\varphi a^{-1} = \sum_{i,j} m_{ij} b_{ij} \), and \(m = [m_{ij}] \). Then (2) becomes
\[
\sum_{i,j} m_{ij} b_{ij} = \sum_{i,j} d'_{ij} m_{ij} b_{ij}.
\]
Substituting (1) we obtain
\[
\sum_{i,j} m_{ij} b_{ij} = \sum_{i,j} d'_{ij} m_{ij} b_{ij}
\]
for each \(i \) and \(j \). Thus \(md = d'm \). Since \(m \) is nonsingular this means that \(d' \) is similar to \(d \), and hence the normal angles of \(f \) at \(p \) are the same as those at \(\vec{e} \).

Proposition 3.2. At each fixed point \(p \) of \(f: G_{2s,2r} \to G_{2s,2r} \) the normal angles \(\{\theta(p)\} \) are the \(2r(s - r) \) angles \(\{\alpha_j \pm \alpha_i\} \) with \(1 \leq i \leq r \) and \(r + 1 \leq j \leq s \).

Proof. It is enough to compute the matrix \(m \) of \(df \) relative to the basis \(\{b_{ij}\} \). Since \(c = F(e) \in O(k) \times O(n - k) \),
\[
df(b_{ij}) = F(e)b_{ij} = cb_{ij} c^{-1}
\]
for \(1 \leq i \leq r \) and \(r + 1 \leq j \leq s \). Hence, as above, we have
\[
m_{i,j'} = e_{i,i'} e_{j,j'}.
\]
It follows that \(m \) is a sum of disjoint \(4 \times 4 \) blocks
\[
\begin{bmatrix}
cos(\alpha_j)B - \sin(\alpha_j)B \\
\sin(\alpha_j)B & \cos(\alpha_j)B
\end{bmatrix}
\]
where \(B = \begin{bmatrix} \cos(\alpha_i) & -\sin(\alpha_i) \\ \sin(\alpha_i) & \cos(\alpha_i) \end{bmatrix} \). Each such block is the image of the matrix \(e^{i\alpha_j}B \) under the standard monomorphism \(U(2) \to SO(4) \). Since the eigenvalues of \(e^{i\alpha_j}B \) are \(e^{i(\alpha_j \pm \alpha_i)} \), the proposition follows.

4. Computation of the signature. We apply the Atiyah-Bott formula to the mapping \(f: G_{n,k} \to G_{n,k} \) described above. Since \(f \) is homotopic to the identity mapping we obtain
\[
\text{Sign}(G_{n,k}) = (-1)^I \sum_{p \in I} \prod_{i \in I} \cotn(\alpha_j \pm \alpha_i)/2.
\]
Here \(I = (i_1, \ldots, i_r) \) is the multi-index which corresponds to the fixed point \(P_I = P_{i_1} \oplus \cdots \oplus P_{i_r} \) and \(J \) is the complementary multi-index.

With the aid of the formula for the cotangent of a sum the right-hand side may be written in the form
\[
\sum_{p \in I} \prod_{j \in J} \frac{1 - x_j x_i}{x_j - x_i}
\]
where $x_v = \cot^2(\alpha_v/2)$. Since the formula is true for all systems of distinct angles between 0 and π (noninclusive), it is true in particular when the angles $\alpha_1, \alpha_2, \cdots$ are taken between 0 and $\pi/2$ and the angles $\alpha_3, \alpha_4, \cdots$ are chosen to be their supplements.

Consider first the case s even, r even. Then the indicated choice of angles gives

\[
x_v = x_i^{-1}, \quad x_i = x_i^{-1}, \quad \ldots, \quad x_s = x_i^{-1}.
\]

For such a choice most of the terms in the sum vanish, since if there exists an $i \in I$ for which $x_j = x_i^{-1}$ for some $j \in J$, then

\[
(1 - x_jx_i)(x_j - x_i)^{-1} = (1 - x_i^{-1}x_i)(x_i^{-1} - x_i)^{-1} = 0.
\]

The only terms which survive are those for which no x_i^{-1} can be an x_j; for such I, the factors may be grouped in pairs of the form

\[
[(1 - x_jx_i)(x_j - x_i)^{-1}][(1 - x_jx_i^{-1})(x_j - x_i^{-1})^{-1}] = 1,
\]

and to evaluate the sum we need only count the number of such multi-indices I. Since these are precisely those multi-indices which are a disjoint union of pairs (odd, odd + 1) the sum in question is $\binom{s/2}{r/2}$.

If s is even and r is odd, some x_i^{-1} must be an x_j; thus in this case no terms survive and the sum is 0.

When s is odd x_s is not the inverse of any other x_v. For even r the contributing multi-indices are then exactly as in the first case, giving a value of $\binom{(s-1)/2}{r/2}$ for the sum. For odd r the contributing multi-indices are obtained from those already mentioned by adjoining the index s. The extra factors then occur in pairs of the form

\[
[(1 - x_jx_i)(x_j - x_i)^{-1}][(1 - x_j^{-1}x_s)(x_j^{-1} - x_s)^{-1}] = 1,
\]

giving a sum of $\binom{(s-1)/2}{(r-1)/2}$.

As for the sign preceding the sum, $(-1)^t = (-1)^{s-r} = 1$ for those cases in which the sum is nonzero.

This completes the proof of the theorem stated at the beginning of the paper.

5. Further remarks.

1. A similar argument may be used to compute the signature of the complex Grassmannian $G_{s,k}(C)$ of complex k-dimensional sub-
spaces of C^*. The normal angles at a fixed point in this case have the form $\alpha_j - \alpha_i$.

One obtains

$$\text{Sign}(G_{n,k}(C)) = \begin{cases} \left\lceil \frac{n}{2} \right\rceil & \text{if } k(n-k) \text{ even} \\ \left\lceil \frac{k}{2} \right\rceil & \text{if } k(n-k) \text{ odd} \\ 0 & \text{if } k(n-k) \text{ odd} \end{cases}$$

(For a different approach to the computation of $\text{Sign} G_{n,k}(C)$ see Connolly and Nagano [4] (their formula contains a minor error due to a counting mistake).) [Added in proof; see also Mong [5]].

2. The same line of argument used here to compute the signature of $G_{n,k}$ may be used to compute the Euler characteristic $E(G_{n,k})$. The Lefschetz fixed point theorem is used in place of the theorem of Atiyah and Bott, and instead of computing the normal angles $\theta_i(p)$ one need only determine the fixed-point indices $\text{Ind}_p(f)$. Since f is an isometry, these must necessarily be 1. One obtains

$$E(G_{n,k}) = \begin{cases} \left\lceil \frac{n}{2} \right\rceil & \text{if } k(n-k) \text{ even} \\ \left\lceil \frac{k}{2} \right\rceil & \text{if } k(n-k) \text{ odd} \\ 0 & \text{if } k(n-k) \text{ odd} \end{cases}$$

3. The assumption that the angles α_i used in the definition of the transformation F are all distinct was necessary to obtain a mapping f with isolated fixed points. When coincidences $\alpha_{i_1} = \alpha_{i_2} = \cdots$ are permitted the fixed point sets become submanifolds of $G_{n,k}$ of positive dimension. The G-signature theorem of Atiyah and Singer (see [2] or [6]) may then be used to obtain information about the normal bundles of these submanifolds.

References

Received October 3, 1978. This paper was written while the author was a visitor at the Mathematical Institute, Oxford.

College of the Holy Cross
Worcester, MA 01610
Somesh Chandra Bagchi and Alladi Sitaram, *Spherical mean periodic functions on semisimple Lie groups* 241
Billy Joe Ball, *Quasicompactifications and shape theory* 251
Maureen A. Bardwell, *The o-primitive components of a regular ordered permutation group* 261
Peter W. Bates and James R. Ward, *Periodic solutions of higher order systems* 275
Jeroen Bruijning, *A characterization of dimension of topological spaces by totally bounded pseudometrics* 283
Thomas Farmer, *On the reduction of certain degenerate principal series representations of SP(n, C)* 291
Richard P. Jerrard and Mark D. Meyerson, *Homotopy with m-functions* 305
James Edgar Keesling and Sibe Mardešić, *A shape fibration with fibers of different shape* 319
Guy Loupias, *Cohomology over Banach crossed products. Application to bounded derivations and crossed homomorphisms* 333
Rainer Löwen, *Symmetric planes* 367
Alan L. T. Paterson, *Amenable groups for which every topological left invariant mean is invariant* 391
Calvin R. Putnam, *Operators satisfying a G1 condition* 413
Melvin Gordon Rothenberg and Jonathan David Sondow, *Nonlinear smooth representations of compact Lie groups* 427
Werner Rupp, *Riesz-presentation of additive and σ-additive set-valued measures* 445
A. M. Russell, *A commutative Banach algebra of functions of generalized variation* 455
Judith D. Sally, *Superregular sequences* 465
Patrick Shanahan, *On the signature of Grassmannians* 483