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INEQUALITIES INVOLVING DERIVATIVES

RAY REDHEFFER AND WOLFGANG WALTER

This paper deals with generalizations of classical results
on real-valued functions of a real variable which are of
the following type: Bounds for the function and for its
mth derivative imply bounds for the kth derivative 0 < k <
m. Our theorems extend these results in various directions,
the most important being the extension to functions of =
variables.

(A) The Hadamard-Littlewood three-derivatives theorem states
that if w(t) = o(1) and u”(¢) = O(1) as t— oo, then w'(t) = o(1). In
Theorem 1, the more general version “u(t) = o(1) and u™+"(t) = OQ1)
implies #'®(t) = o(1) for 1 < k < m” is generalized in three directions.
The assumption that u = o(1l) is weakened, the functions considered
are Banach-space valued, and the boundedness of u™+? is replaced
by a condition on ™ which is weaker than uniform continuity. A
similar result for functions of several variables is given in Theorem 4.

(B) Let u(t) be of class C™ in an unbounded interval J and let

U, = sup |u™(t)] .
ted

Inequalities of the form
UL < Alm, U UE" 0<k=m,

hold for such functions, as is well known. In Theorem 5 we extend
these inequalities to Banach-space valued functions wu(x) defined in
suitably restricted domains of R”. Counterexamples show that the
restrictions imposed on the domain are appropriate.

(C) If J is an interval of finite length |J|, the inequality (B)
is no longer valid. (It can be saved by imposing homogeneous boun-
dary conditions, but this will not be done here.) We shall show
that an inequality

U, £ A(m, B)U¥m(U )™, 0sk=m,
still holds, where
Ui = max(U,\J|™, U,) .

In Theorem 2 this result is presented for Banach-space valued functions
in bounded or unbounded domains of R".

It is not our aim to obtain the best or even good constants. In
the one-dimensional case, the problem of finding the optimal constants
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in the inequalities in (B) and (C) has a large literature. The complete
solution for the case J = R was given by Kolmogoroff (1939), for the
case J = R, by Schoenberg and Cavaretta (1970). More information
and biographic references with respect to the one-dimensional case
can be found in the book by Mitrinovié (1970, pp. 138-140) and in
Kallman-Rota (1967).

The motivation for this research stems from certain problems in
ordinary differerential equations, calculus of variations, and partial
differential equations of parabolic type. Except for a simple example
in the last section, such applications are not considered here.

2. Notation. Throughout this paper X denotes a real Banach
space with dual X*. The open ball in X with center at xz, and
radius r is denoted by

B(x, r) = {x e Xz |x — x,| < 7}

and its closure by B(x, 7). As usual, the real line and Euclidean n
space are denoted by R and R*, respectively. (This notation was
already used above.) We also set R, = [0, <), and we denote various
continuity classes by C™; for example, C™(R, X) is the class of
functions B — X with continuous mth derivatives. The letters m
and k denote integers and # and h denote real numbers, with

0<k<m, 0<0<-725, B>0.

Further notation is introduced as needed.

3. Functions of a real variable. In this section we prove a
generalization of the Hadamard-Littlewood three-derivatives theorem.

DeEFINITION 1. For v: R, — X and ac X the equation

lim* v(t) = a

t—o0
means that the outer Lebesgue measure of the set
M@®) = {se[t, t + 1]: |v(s) — a| > &
converges to 0 as £t — o for every ¢ > 0.

For convenience, we sometimes omit the subscript ¢ — o in lim*.

It is easily seen that lim* v(f) is unique if it exists; more gen-
erally, im* »(t) = lim* w(f) if v and w differ only on a set of finite
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measure. Also lim* is linear, and lim v(t) = « implies lim* v(f) = a
though the converse is, of course, false.

DErFINITION 2. The function w(t): B — R. is said to be a modulus
of continuity if @ s continuous and increasing and ®(0) = 0.

THEOREM 1. Let veC™(Ry, X) satisfy lim*v(t) =0 and the
Jollowing hypothesis (C™):

There exists a modulus of continuity @ such that

o = | [v™(8) — o™ = w(|s — DA + [V]m,s,0)
! —ZfOTO§S§t§S+1, where

[Vms: =sup |v®(@) s <t, 0ZkE<Sm.

Then lim,.., o™ () = 0,0 < k < m.

Proof. Let h(t) = max|v®@®)| for 0 <k < m and assume that,
contrary to the conclusion of the theorem,

hit)ze>0, t—t, =22, t,—> .

Let J, be an interval around #, of length 1 and choose s,eJ; such
that

M; = max(h(t)|J,) = h(s) = ¢ .

In what follows, 7 is fixed. For some k&, 0 < k < m, we have |v*(s,)| =
M,. Hence there exists ce X* |¢| =1, such that f() = c(@™ ()
satisfies

f(8) = [v¥(s)| = M, .
If & < m, then
Lf®)] = le@ @) | < |[v*9(@®)| = M, in J,,

hence

Lf® = f8) —|fO) — f)l =z M, — [t — 8| M, = M,/2,
if |t —s,| <1/2. Hence

f®ze2 in Jrcd,|JE =1/2.

If & = m then f(t) = c(v™(t)) satisfies

[f@®] = f(8) — | fF@) — flsd] =2 M, — (|t — s:)A + M) .
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Choose d < 1/2 such that @w(d) < ¢/(2 + 2¢), and note that the latter
expression is <M,/(2 + 2M,). We get

fO=z=M/2=¢/2 in JFf, where |Jfl=06, JFfcd,.

This statement holds for both cases k¥ < m and k= m, with 6 >0
independent of 1.

Now we use the following lemma which was given by Redheffer
(1974).

LEMMA 1. Let ¢ and 0 be positive constants, and let u be a
real-valued function which satisfies |[u®t)| = ¢ on an interval of
length 6. Then

lu(t)] = d%/2¥*+Y  om a subinterval of lemgth d/4* .

The function g¢(t) = c¢(v(f)) satisfies, according to Lemma 1,
2|g(t)| = eom/2mm+0 in  JF*CJF, |JEF] = o/4™ .

Since |v(t)| = |g(t)|, the last inequality holds also for |v(f)|, in con-
tradiction to the hypothesis lim* »(f) = 0.

4. Remarks. The hypothesis lim* [v(¢)| = 0 holds if |v(¢)| < p(?)
where p(t) satisfies the corresponding condition for functions R, — R..
As seen in [1] the latter class contains all functions in L?, 0 < p < oo,
as well as functions with limit 0. Hence, Theorem 1 generalizes not
only the three-derivatives theorem which forms the point of departure,
but also a number of theorems due to Boas and others for functions
satisfying various integrability conditions. We can even allow
functions p satisfying

141
lim § o( p(z) dr = 0

where @ is strictly increasing and @(0) = 0; for example, @(p) =
exp(—1/0*. Since the class of functions p satisfying lim* p(¢) = 0 is
closed under the formation of sums and products (cf. [1]) the hypo-
thesis lim* |v(t)] = 0 of Theorem 1 is more general than appears at
first glance.

If »"™ is absolutely continuous we have

o) — o(t) = o
and the condition (C™) can be deduced from corresponding hypotheses

on v™*Y, For example if |v™+"| < K then (C7) holds with w(f) = Kt.
The formulation of Theorem 1 has the advantage that the hypothesis
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does not involve derivatives of higher order than those in the con-
clusion.

It should be emphasized that the assumption lim* v(f) = 0 does
not imply that v is bounded, and the assumption (C?) does not imply
that v or any of its derivatives is bounded. For instance, if X = R,
the function »(t) = ¢' satisfies (C™), as does every polynomial. It is
true that both hypotheses together imply that » and its derivatives
are bounded but this is part of the conclusion, not part of the
hypothesis. We return to this matter in §10.

5. Cones in R". For x, y € R", we use the customary notation
Y = Y, + -+ 2,9, 2 =xx = |z>. A cone C(f, h) with vertex at
0, opening 26 and height % is the set of all x satisfying ex = |x|cos @
and |xz| < h, where ¢, is a unit vector defining the axis direction of
the cone. The reader is reminded that 2 > 0, 0 < ¢ < 7/2, as stated
in §2.

DErFINITION 8. A set GC R™ belongs to the class K(8, h) if for each
x el there exists a cone C(O, h) such that x + C@, h) CG. The set
G is said to satisfy a come condition if G e K(6, h) for some 6, h.

LEMMA 2. All sets considered here are subsets of R".

(1) If sets belong to K(6, h) so does their union.

(ii) If a set belongs to K(0, h) so does its closure.

(iii) C(0, h) belongs to K(0, h/4) for small 6, say, 0 < 8 < /8.

Proof. (i) and (ii) are easily proved. For the proof of (iii), we
assume without loss of generality that ~ = 1. In what follows,
e, e, e, are unit vectors and ¢, is the axis of the cone C(4, 1). Let
x=1te, 0 <t <1, ee =cosd, be an arbitrary point of the cone. If
0=<t<38/4, then x + C(9, 1/4) c C(0, 1), where C(9, 1/4) is the cone
with the same axis ¢, Indeed, If y = se, eje, = cosd, 0 < s < 1/4, is
an arbitrary point in C(4, 1/4), then |z 4+ y| =1 and (z + y)e, =
(s +t)ecosf = |x + y|cosb.

Now, since ee, = cos implies |e — ¢| = 28ind/2, C(4, 1) is con-
tained in the convex hull of {0} U B(e, 2sin #/2), and a similar state-
ment holds for cones of height 4. The cone C(f, 1) being convex,
it suffices therefore to prove that for x = te, e¢, = c0s9,3/4 <t < 1,
there exists a ball B(a, 2k sin 0/2) < C(4, 1) satisfying |la — 2| =h =
1/4. We choose a = se,, s = 2t/3. If ee, = cos /8, then |e — (3/4)e,| =
d < .43. Hence, for e¢, = cos7/8 and x = te, 3/4 < t < 1, there exists
always a point a = se, 1/2 < s < 3/4, such that 1/4 < |z —a| = d.
Since B(a, 2d sin §/2) < B(a, 1/2sin 6) < C(4, 1) (note that 1/2 sin § < 1/4),
part (iii) of the lemma is proved.
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LEMMA 3. Let G be an open subset of R which belongs to K(0, h)
with 0 < /8 and let G, be a compact subset of G. Then there exists
a compact set G, belonging to K(6, h/4) such that G,C G,CQG.

Proof. Let xeG, and let C(4, h) be a cone with axis e, satisfying
2+ C@l, h)cG. Let 6 >0 be chosen in such a way that the cone
C,=x — de, + C@, h) is still contained in &; this is possible since
x + C(f, h) is a compact subset of G. Since x €int C,, the sets int C,,
where 2 runs through G,, cover G,. Hence a finite number of the
sets C, cover G,. Their union has all the desired properties: it is a
closed, bounded subset of G, and it belongs, by Lemma 2, to K(4, k/4).

COROLLARY. If G is an open set belonging to K(0, h), where
6 < (8, then there exists an increasing sequence of compact subsets
of class K(0, h/4) with union G.

6. Functions of n variables. We use the notation
D* =95z - dxin, |l =a, + - + a,,
where the «; are nonnegative integers. For u e C™(G, X) we define
U, =sup{|{Du@)|: |a| =k, x€ G} .
The following theorem is the n-dimensional version of the inequality

quoted in (C).

THEOREM 2. Let G be a bounded or unbounded, open subset of
R" belonging to K(0, h), and let weC™(G, X), where m = 1. There
exists a constant A = A(m, n, 6) (independent of u, X and h) such that

U, < AU™~(UR™, 0=k=m,
where

U} = max(U,, Uh™) .

Proof. It suffices to establish the inequality for # = 1. Indeed,
if GeK(, h) and weC™(@G, X), then the set H = (1/h)G = {x/h: x € G}
is of class K(4, 1), and »(x) = w(hx)e C™(H, X). If V, denotes the
supremum of |D*w(x)| for |a| =k and z € H, and if the inequality

V. < AV ™ max(V,, V)"

is already established, then the inequality of the theorem follows
immediately since V, = h*U,.
For the sake of clarity we use |-|, to denote the Euclidean
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distance in R" in contrast to |-| which denotes the absolute value
in R and the norm in X. We assume m > 1, U, < oo, U, < co; if
one of these conditions fails, the result is trivial.

The case m = 2 is treated first. Let y € G be fixed, let C = C(4, 1)
be the cone belonging to v and let ¢ce X* with |¢| =1 and % be
chosen in such a way that |u.(¥)| < |u.,(¥)] = c(u,, () for j =1,

-o,m. Let f@)=clux) and let x=y +te, 0=t <1, ]e|]=1, be
a point in ¥ + C, where ec C is chosen in such a way that |f,(y)e| =
I fo(¥)l,sind. (Here f, denotes the gradient of f.) We have

[f@) — f)] = lu@) — u(y)| = 20U,
and

f@) — fy) = @ — Nfld) = (@ — P(y) + 8 — f:(¥)
where & = y + Me, 0 < A < 1. Since
£ei®) = fo )| S tlgrad £l < V' max | £y, | < V0.,

hence |f,(&) — f.(¥)|. = tnU,, we obtain

20U,z | fx) — f)| = |(@ — )| — [2 — y[f(8) ~ L),
= t|fo(w).siné — t*nU, .

Observing that
el = 1o = U 2 Ju (N, T=1---,n,

we get

[u,,(y)|sind < %UG + tnU, .

If U, <U, we choose t =V U,/U, otherwise t=1. Since ¥ is an
arbitrary point in G and j an arbitrary index, the inequality

U, < AU, max (U, U™, A=A@n,0) =210
sin 4
follows.

The general case is proved by induction on m. We fix » and 4,
write A,, for A(m, n, 6) and assume that the inequality of the theorem,
which is denoted by (H,), is true for the integer m = 2. Let ue
C"*'(G, X) and assume for the moment that U, is finite for 0 <k <
m + 1. To get (H,:,) we distinguish three cases.

Case I. U, U, Here (H,) gives U, < A, U, for 0 <k < m.
This gives (H,+,) for any A,., = A, (note that 4, = 1).
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Case 1. U, >U, U,_, >U,+,. By (H,) and (H,),
Um é AzUm-—l and Um—l S Am Uollm U’;Lm—l)/m ’

hence U,, =< (4,4,)"U,, which is the case k= m of (H,.). By (H,)
again,

U, = A UT"(ATARUY™, 0<k=m—1,
hence (H,,) with A, = (4,4,)".

Case 1II. U, >U, U, , <U,. By (H) and (H,),
U, = AU,..U,, = AU, A Um0,

hence
Unt = A"ARUUR,, .

This is the case k¥ = m of (H,.,). Using this relation and (H,), we
get

U, = AU U5 < AU (A A, UUsm e

This gives (H,.,) for 0 < k < m and finishes the induction proof. An
admissible constant A,., is given by A,.. = (4,4,.)™.

The additional assumption in the above proof that the U, are
finite can easily be disposed of. Let U, aud U,., be finite and let
C=ux+ C@, h) be an arbitrary cone in G. Since C is a compact
subset of G of class K(f, h/4), inequality (H,.,) holds with respect
to C (and % replaced by h/4). This gives a bound for | D*u|, |a| = m,
in C, which depends only on U, and U,.,. Since C is arbitrary, it
follows that the U, are finite. (Alternatively, use §5, Corollary).

THEOREM 3. Let G < R" be an open set of class K(6, h), bounded
or unbounded, and let we C™(G, X). In addition assume that w s
bounded and that the following hypothesis (C™) holds:

There exists a modulus of continuity w such that for |G| =m
jID"u(x) — Dhu(y)| = o(lez — ¥ DA + [%]ney)

whenever M + (L — Ny eG, |z —y| <h 0= N1, where
[%|moy = max | Du(px + A = NP1 || < m.

(C2)

Then there exists a modulus of continuity 0(s) depending only on
m, m, 0, h, ® (independent of u, X, G € K(6, b)) such that

Uu,+U,+--- +U, <60, .

In particular, all U, are finite.
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Proof. We may assume without loss of generality that m =1,
h =1 and that all the U, are finite; c¢f. the reasoning at the beginning
and end of the proof of Theorem 2.

Let k(1 £k <m), v with |v| =k and y € G be fixed, and let C =
C(4, 1) be the cone belonging to y. There exists ce X*, |¢| = 1 such
that f(x) =e(Dru(x)) satisfies f(y) =|D'u(y)|. Let B be obtained from
v by replacing one index v; > 0 by v, — 1, thus |@| =k — 1, and let
9(x) = ¢(Du(x)), i.e., f = g,,. There is a unit vector e¢ec C satisfying
le-g.(¥)| = 19.(¥)|.sind. For x =y +1te, 0 <t <1,

2U,_, = | D*u(x) — D*u(y)| = |g(x) — 9(¥)|
= [(@ — ¥)(@.(¥) + 9.(8) — 9.(¥))|
= tsinfd|g.(¥)]. — t19.(8) — 9.(9)]. »

where & =y + AMe, 0 <A < 1. We distinguish two cases

(1) k<m: 9.8 — 9.®)] < tnUp,,

(i) &k =m:g.6) — 9. ]. = Vno@t)1 +U), U=U,+ --- +U,
(cf. the proof of Theorem 2). Using |Du(y)| = |fW)| = 9., )| =
l9.(¥)]., we obtain

(1) tsind)| Du(y)| = 2U,-, + t*'n U4y

(ii) t(sin0)| Dru(y)| < 2U,_, + V' ntwt)1 +U)
in the two cases, respectively. Since yeG and v with |ly| =k are
arbitrary, the left hand sides of these inequalities can be replaced
by Ut sind. Hence,

U,siné g%U,,_l +tnU,, for 1<k<m-—-1,

(1) 9 N
U,sinf < 7Um_1 + 1V not)1 +U),

where 0 <t <1. Let V, =U,/1 +U) and t = V'V,_,. This gives
ngAl/Vk_l, A:2+n (k:l,-..,m___l)

sin @
Vm é Aw(.‘/V —1) ;

in the first case we used the fact that V,.; <1, in the second case
we assumed w(t) = ¢, which can be done without loss of generality.
It follows from these inequalities that

Vi< A VS A= A7 (0<k=m—1)
V., < Ao(BVZ™), B =A™ (0@t) = t)

and hence that

(2)

U
Vi+Vi+ - +V, = <dV,),
o+ Vi+ + N (Vo)
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where
ds) =s+ As”+ -+ + 4,8 " + Aw(Bs* ™) .
Let ¢ > 0 be such that d(e) = 1/2. If U, < ¢, then

U _ vy =dUy < —;—

1+U0 —
hence (1/2)U <U/(1 4+ U), which gives the desired inequality
U+ ---+U,=U=<2dU,) .

If U, > ¢, let & be defined by AU, =¢. Since A\ < 1, the function »u
satisfies the assumptions of the theorem, i.e.,

MU, + --- + U, £2d00U) = 1.
If 6 is defined by

_[2d(s) for 0<s=<e¢
- s/e for s> ¢,

o(s)

then ¢ is a modulus of continuity satisfying
v+ ---+U0,Z6U,).

This completes the proof.

7. Remarks. The hypothesis (CT) of Theorem 3 is required
only when 2ey + C where C is the cone belonging to ¥. Hence, by
the mean-value theorem, we can replace this hypothesis by a condition
on the next higher derivatives, | D*u| with |a| = m + 1. Inparticular,
if these derivatives are bounded, the hypothesis holds with w(s) =
(const)s.

If we have a Holder condition, w(t) = Ki* with 0 < p <1, the
choice ¢t = (V,_)Y** in (1) gives

(3) SinO)V, < 2 + VaK)NV,_ ) .

Using (2) with k =m — 1 for V,_, in (8) we get an estimate of form

Vi = (const) VI, p = 277"p/(1 + p) .

By (2) sharper estimates hold for V,, k<m — 1, and hence an estimate
of the same form holds for the sum V,+V,+ --- +V,. Passing
from V to U as in the proof of Theorem 3, we get the following
corollary:

COROLLARY. If wu satisfies the conditions of Theorem 3 with



INEQUALITIES INVOLVING DERIVATIVES 175

w(t) = Kt*, where K and p are constant, with 0 < o = 1, then there
exists a comstant L such that

u,+U,+---+U,= LUy for U,=1/L,
v,+U + --- +U, = LU, for U,>1/L

where n = 27"0/(1 + ).

8. Two theorems for unbounded domains. First, we extend
Theorem 1 to functions of n variables. Let v be a function G — X
where G is an unbounded domain in R", let a e X, and let 2 > 0 be
constant. We write

lim* v(x) = a

{2} -rc0

if the outer Lebesgue measure of the set
G@)={yeG: |y — x| <h, vy —a|l > ¢

converges to 0 as [x]| — <o for every ¢ > 0. This definition is analogous
to Definition 1.

THEOREM 4. Let G be an unbounded open subset of R" belonging
to K, h), and let u be a function in C™*(G, X), m = 1, which satisfies
the condition (C™) of Theorem 3 and

lim* u(x) = 0.

[k hded

Then

lim Du(x) = 0 for |v|Zm.

|z ]—»00

Proof. Assume that U, is finite and that w(x) — 0 as || — oo.
Then U, is finite for 0 < k < m according to Theorem 3. Now let G,
be the set of points in G such that |z| > » and let G} be the union
of all cones z + C(f, h) belonging to points in G,. For large r we
have seen that || is small in G}, hence the corresponding quantity U;
computed relatively to G} is small, and U} is small by Theorem 3.
This gives Theorem 4 when U, is finite and lim u(x) = 0.

The assumption that U, = « leads to a contradiction in the
following way. Let d(s) be the modulus of continuity corresponding
to w(t) and /4, according to Theorem 3. The function d6(s) is linear
for large s, say, d(s) = Ks for s = K (cf. the proof of Theorem 3).
Assume that |u(y,)| = K, |y,| — o as p — co. Then, with respect
to the cone C, =y, + C(0, h) C G, which is of class K(0, h/4), we have
Ui < KU;f where U is taken with respect to C,. Hence
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[u@)| = Ju(@,)| — [u(x) — u(x,)| ,
where 2, z,¢C, and |u(x,)| =Ux. If |z —x,| < 1/2V nK), we get
lu(m)l —_>—_ Uge - Ix - xpll/_’rTUl* Z U(;* _Z_ K/2 )

which contradicts lim* # = 0. Now that we have U, < o, a similar
argument gives a contradiction if |u(y,)| = K for any K> 0 as
|y,! — co. This completes the proof of Theorem 4.

In the next theorem we assume that each point in G is the
vertex of an infinite cone lying in G. A cone C(4, «~) with vertex
at 0 is the set of all x € R satisfying xe, = |x| cosd, where ¢, is a

fixed unit vector. The set GC R"™ belongs to K(4, ) if toeachzecG
there corresponds a cone C(f, ) such that x + C(4, «) CG.

THEOREM 5. Let G R™ be an open, unbounded set belonging to
K@, «), and let weC™(G, X). Then there exists a constant A =
A(m, n, 6) (independent of w, X, G € K(8, «)) such that

U, < AU Uk= for 0k m.

In particular, all U, are finite if U, and U, are finite.
This follows immediately from Theorem 2 for A — oo,

9. Remarks and counterexamples. Let X = R and n = 2. The
function u(x, ¥) = xy, considered in G:2 > 1,0 < y < 1/, yields U, =
1, U, =, U,=1. Hence Theorems 2,3 and 5 are not valid for
m = 2 without a cone condition. An even simpler counterexample
to Theorem 5, m = 2, is given by u(z, ¥y) =y, G =R x (0,1), U, =1,
U =1 U,=0. The functions # = zy™* and % = y™*, considered in
the same regions, serve as counterexamples to Theorems 2,83 and 5
for arbitrary m = 2.

As an application to differential equations, consider the equation

wmI(E) = (¢, u, w', -, wu™) >0
for w: R, — X and assume that &rg* u(t) = @ and
|t 2 oo 2| < LA+ [2] + oo + [2a) .
It is easily seen that the function v(f) = u(f) — & satisfies
[™(8) — v™ (@) = Lls — tmax 1 + [af + [v(@)] + -+ + [v™(@)]) .
Hence, by Theorem 1 with w(s) = L@ + |a| + m)s

U(t) — @, uPE) — 0 (=1, ---, m) 8s f—oco.
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The behavior of u™+"({) as ¢ — oo can now be determined by looking
at the differential equation.

Other applications to ordinary and partial differential equations
will be given elsewhere.

10. Interrelations among the theorems. It is evident that, in
the original one-dimensional setting, the three statements in (A), (B),
(C) are not independent of each other. Indeed, without considering
the optimal constants, (B) follows from (C) by letting |J|— <o, and
(A) follows from (B) or (C). In the same manner, Theorem 5, the
n-dimensional analog of (B), follows from Theorem 2, the n-dimensional
analog of (C). But it seems to be impossible to obtain Theorem 1,
our generalized one-dimensional version of (A), from either (B) or
(C), even if lim*v(¢) = 0 is replaced by the sharper assumption
lim, ., v() = 0. It should be noted in this connection that assumption
(C™ does not simply replace the boundedness of the derivative v™+V
by the uniform continuity of »"™. Indeed, the modulus of continuity
w is multiplied by a factor which becomes large if v or one of its
derivatives becomes large. These remarks apply also Theorem 4,
the m-dimensional version of Theorem 1.

Theorem 3 states that all derivatives of u up to the mth order are
small if « itself is small. The situation is similar to the one described
above in connection with Theorem 1. If the (m + 1)th derivatives
are bounded, then the conclusion of Theorem 8 is a consequence of
Theorem 2. The importance of Theorem 3 lies in the fact that the
same conclusion follows from the much weaker assumption (CZ) on
the mth derivatives, which is the n-dimensional analog of the same
assumption in Theorem 1.

Acknowledgment. At first we defined lim* v(f) = ¢ to mean
that the outer Lebesgue measure of the set {teR.:|v(®) —a|> ¢ is
finite. The more general formulation given in Definition 1 is due to
Professor P. Volkmann. The proof of Lemma 3 given here is due
to Professor R. Lemmert; our proof was more difficult. The fact
the results [1] should extend to functions R.— X was pointed out
to one of us by Professor P. Hartman in 1975.
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