Vol. 85, No. 2, 1979

Recent Issues
Vol. 307: 1  2
Vol. 306: 1  2
Vol. 305: 1  2
Vol. 304: 1  2
Vol. 303: 1  2
Vol. 302: 1  2
Vol. 301: 1  2
Vol. 300: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Editorial Board
Subscriptions
Officers
Special Issues
Submission Guidelines
Submission Form
Contacts
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Author Index
To Appear
 
Other MSP Journals
On the completeness of sequences of perturbed polynomial values

Stefan Andrus Burr

Vol. 85 (1979), No. 2, 355–360
Abstract

If S is an arbitrary sequence of positive integers, define P(S) to be the set of all integers which are representable as a sum of distinct terms of S. Call a sequence S complete if P(S) contains all sufficiently large integers, and subcomplete if P(S) contains an infinite arithmetic progression. We will prove the following theorem: Let n-th term of the integer sequence S have the form f(n) + O(nα), where f is a polynomial and where 0 α < 1; then S is subcomplete. We further show that S is complete if, in addition, for every prime p there are infinitely many terms of S not divisible by p. (We call any sequence satisfying this last property an R-sequence.) We will then extend these results to considerably more general sequences.

Mathematical Subject Classification
Primary: 10L05, 10L05
Milestones
Received: 12 July 1977
Revised: 11 May 1979
Published: 1 December 1979
Authors
Stefan Andrus Burr