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Let A: X —»Y be a  densely defined closed operator
where X and Y are Banach spaces. Let F be a locally
convex topological vector space and H: X — F an operator
such that N(H) and D(A) have nontrivial intersection and
D(H*) is total over F. We compute A% and A% where Ay
is the operator determined by A on N(H) and Azx)=
(Azx, Hzx)t.

We also characterize certain closed extensions of Ay
and the adjoints of these extensions. In particular applic-
ation is made to the problem of determining self-adjoint ex-
tensions of symmetric operators restricted by boundary
conditions in a Hilbert space.

1. Introduction. Suppose X, ¥ and A are as above. Let H
be an-operator having domain in X and range in a locally convex
topological vector space (l.e.t.v.s.) F. Assume that D(A) N N(H) is
nontrivial. Then the system

Ax = f

(.1 Hx=r

is called a generalized boundary value problem (b.v.p). We call the
first equation of (1.1) the operator part of the b.v.p. and the second
the boundary condition. H is the boundary operator. If » = 0 the
problem is said to be homogeneous, otherwise it is nonhomogeneous.
In the nonhomogeneous case, (1.1) determines an operator .o7%: X —
Y % F and in the homogeneous case an operator A,cCA: XY on

D(Ag): = {xe D(A): Hx = 0} .

In this paper we are going to construct the adjoints A} and
57, * and compare their structure. Knowledge of 4% and .o7,* yield
at once statements of Fredholm alternative solvability conditions
for the original b.v.p. We will also be interested in the following
extension problem. Suppose 4 and B: Y* — X* are 1-1 and B*D A.
Let K: Y*— G (G al.c.t.v.s) be a boundary operator. Then (rough-
1y . speaking)

1.2) Ay, cAcCB}.
One can now ask for the structure of all closed extensions of A4,
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which are restrictions of B%. In the special case when X = Y=
Hilbert space and H = K A, is symmetrie, and the problem amounts
the determination of all self-adjoint extensions of Aj.

Both the adjoint and extension problems for generalized b.v.p.
have been investigated in several recent papers, notably [5], [6], [9].
In [6] for example A is a linear relation in X XY and 4, = AN*B
where *B is the preadjoint of a finite dimensional subspace B in
Y* x X*. Such a representation is always possible if H is conti-
nuous on G(A) and F is finite dimensional. This “subspace” inter-
pretation of A, leads to an elegant construetion of (AN *B)* and also
to a solution of the extension problem when (in our notation)

dim G(AR)/G(Ay) < o .

The contributions of the present paper are twofold. In the
first place we extend the theory by letting F' be an infinite dimen-
sional t.v.s. Secondly there is a change in point of view distinguishes
this paper from [6]. We represent the boundary condition directly
in terms of the null space of the boundary operator given in the
problem. Thus we bypass the task of finding *B. Furthermore
because much of the theory presented here is an abstraction of
ideas in the writers earlier papers [2], [3] on Stieltjes b.v.p., our
technique gives simple formulas and characterizations which are
easy to apply both to this and other types of conecrete b.v.p.

We now briefly summarize the paper. Notational conventions
and fundamental definitions are introduced in §2. Here in parti-
cular we discuss the notion of an abstract boundary condition and
prove that every closed restriction of a closed linear relation A is
an “4;” with reference to a certain l.c.t.v.s. FF and a boundary
operator H. Section 3 is devoted to the computation of 4%. F is
assumed to be both finite and infinite dimensional; and significant
differences in the structure of the adjoint are pointed out. In the
infinite dimensional case we first assume that G(—A*) is complement-
ed (Theorem 3.6). However since this is an inconvenient hypothesis
in a non Hilbert space setting we investigate several ways in which
it can be weakened.

The final result (Corollary 3.14) is an especially simple construc-
tion of A} when A is 1-1. We illustrate this construction by an
example. Section 4 solves the extension problem mentioned above:
first in the finite dimensional case and secondly for extensions having
closed range. Finally §5 treats the nonhomogeneous case. .94* is
determined and its structure compared with A%.

Although we occasionally illustrate the theory with examples,
most applications to Stieltjes, and interface b.v.p, to evolution and
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functional differential operators, and to calculus of variations and
control theory (extending some preliminary ideas already presented
in [3]) will be reserved for a fortheoming paper.

2. Notation and preliminaries. If T is a linear operator or
relation I(T), R(T), N(T) will stand for its domain, range, and null
space respectively. T* denotes the congugate transpose, dual, adjoint
or preadjoint of a matrix, space, or linear mapping according to the
context, (we write the transpose of a matrix M as M?’. The nota-
tions S or the terms “closed”, “continuous” signify weak* closure of
a set ScX or weak* continuity if X is a dual space; otherwise we
are referring to the closure of S or strong continuity in the topo-
logy of X. Similarly S* means either the preannihilator, i.e.,

{seX: [s, '] =0, 5 €S}
or the annihilator of -S, i.e.,
{seX* [¢,s]=08€8}.
If X is a space and X* is its dual [-, -] signifies the sesqui-
linear pairing on X x X* given by
[z, 2*] = 2*(x) .
If X, Y are spaces and X+ is total on X and Yt is total on Y we
define a pairing on (X X YY) x (X+ x Y*) by
[, v), @ y)]: =y, ¥'] + [=, 2*] .

If X and Y are normed we define 2 norm as X X Y by

G, = 2]l + ol

A linear relation 4: X —Y where X, Y are linear spaces is a
set valued mapping whose graph G(A) is a subspace of X X Y.
Unless otherwise mentioned all relations are assumed closed; i.e., to
have closed graph. For a e D(A) we denote the image of a in R(A)
by A(a); the notation (a, 4.) will signify an arbitrary element in
G(A) such that A,€ A(a). It is easily checked that A(0) is a sub-
space of R(A) and elements B, a € A(a) if and only if 8 = amod
A(0); i.e., the induced mapping A': X — X/A(0) is an operator. A
relation is an operator if and only if it is single valued; i.e., if and
only if A(0) = 0. If A is a closed operator D(4) is a Banach space
with respect to the graph topology defined by the norm

lelll: = llellx + Azl .

A is then a continuous operator with respect to the graph topology.



298 R. C. BROWN

We will also write BC 4 if G(B) € G(A); in this case. B is said to
be a restriction of A and A is called an extension of B.

DEFINITION 2.1. The adjoint A*: Y*— X* of A: X — Y 1s the
relation with graph

{(le, ﬁ): [y; a] - [x’ B] = 0: (x’ y) eA} .

DEFINITION 2.2. The preadjoint of B*: Y* — X* is the relation
with graph

{(, B):la, y] — [8, @] = 0; (x, y) € B} .

As indicated above A* means either the adjoint or preadjoint
of A depending on the context. A complete discussion of the pro-
perties of adjoint and preadjoint relations may be found in [1] or
[6]. We specifically mention here only a generalization for relations
of the classical Banach closed range theorem for operators (see [6]
for the proof).

THEOREM 2.8. If A:X—Y 1is a closed relation then mnorm
closure of R(A) is equivalent to both the morm and weak* closure
of R(A*). Similarly if B: Y* — X* is a weak* closed relation the
norm closure of R(B*) is equivalent to both the morm and weak*
closure of R(B).

Suppose B is a (closed) restriction of a relation A: X — Y. De-
fine an operator
H: G(A) — G(B)**
by
H(y, Ay){e, ) = [Ay, a] + [y, 8], (@, B) e G(B)" .

G(B)'* under the weak* topology is a l.c.t.v.s. By the deﬁnition of
this topology H is continuous. It is clear that the nullspace of H
is exactly G(B). We fix these ideas with a definition.

DEFINITION 2.4. Let A: X — Y be a relation and F a l.c.t.v.s.
Then an operator H: X X Y — F such that D(H)>D G(A) is called a
boundary operator provided D(H*) is total over F, and the condition
H(y, Ay) = 0 s called a boundary condition.

In terms of Definition 2.4 the previous discussion has shown.

LEMMA 2.5. B is a closed restriction of A if and only if
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B = A,. The boundary operator H 1is continuous with range in a
l.c.tw.s. If A is an operator H can be viewed as an operator such
that D(H)D D(A) which is continuous in the graph topology on G(A).

The importance of Lemma 2.5 is “existential”’: every restriction
of A is determined by a certain “canonical”’ boundary condition. In
most cases however a boundary operator H is given a priori; it and
the canonical operator supplied by the lemma may not be the same
(only equivalent in the sense that their nullspaces are the same.)
Indeed the canonical operator may be hard to find. Therefore the
results in this paper will be expressed soley in terms of an arbitrary
boundary operator considered to be given in the problem and Lemma
2.5 will be used only as a theorem proving tool.

We close this section by mentioning a simple result frequently
used in the proofs of this paper.

LemMMA 2.6. (Linear dependence primciple). Let - X —C,
1=1 -+, m, and é: X — C be linear functionals such that

N()D N N(yp,) .
Then (provided ¢ = 0)
¢ = Z Ci"fvf‘z

where not all of the constants ¢, are zero.
Proof. See [10] p. 62.

3. The adjoint of A;. Let A: X— Y be a closed densely de-
fined operator and let H be a boundary operator for A. In this
section we determine A} in terms of A* and H*.

As stated in Definition 2.4 XX YO D(H)DG(A). Hence H*: F'*—
X* x Y* is in general a relation (unless H is densely defined) and
H*(0) is a subspace of

G(—A"): = {y, —A"y)} .

We have assumed that D(H*) is at least total over F. To see the
significance of this assumption, let (V,, U,) denote an arbitrary re-
presentative in H*(¢). Then

[H(y, Ay), o] = [(Ay, v), H*($)]
= [Ayy V¢] -+ [y, Ué] .

Since F' endowed with the weak topology relative to D(H*) is a
l.e.t.v.s (see [10] p.62) such that F* = D(H*) the above equation

(38.1)
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shows that H: G(4) — F is now ‘“weakly” continuous. Thus (pro-
vided D(H*) is total) we can assume with no loss of generality that
H is continuous on G(A) by redefining the topology on F if necces-
sary.

DEFINITION 3.1.
D}: = DAY +{Vs:p€ F*}.
Dj: = D(A¥) + m(R(H™))
where 7, denotes projection on Y *.

$(2): = {g:2 — V; e D(A")}
(@) = {(4ry, 4r0) € RE™): 2 — 4r, € D(A%)} .
Further let Aj;, A; be the relations in Y* x X* such that
G(A7): = {(z, A%z — V,) — U,): g € 4(2)}
G(Af): = {z, A*(z — ) — Yot (Y, P) €9(2)} .

LemMMA 3.2. The following is true:
(1) Aj is well defined modulo representatives (V,, U,) in H*(¢).
(2) DicD@A*) + (Ve Fr).
(83) A*C AjcCAj.
(4) Au0) = {A%(V,) — Us: g € 9(0)}.
Aj(0) = A;(0)
= {A*(Q/ﬁ) — ot (Y1, Yro) e’*f'f(o)} .
Proof. We demonstrate only (1) since (2)-(4) are immediate from
the definition. Suppose (V,, U,), (V,, U}))e H*($). Since
(Ve — V., Uy — U)) e H*(0) = G(—A"),
it is clear that
Ui—U;= A"V, = V)
and
A¥z — V) — Ui — (A*(z — V) — U,)
=AXV, = V) — (U, = U))=0.
THEOREM 3.3. A;* = A,.

Proof. Since A}, D A*, Aj;* c A** = A. Thus if (y, Ay) e G(A};
[Ay, 2] — [y, Alz] = [Ay, 2] — [y, A*(z — V,) — U]
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= [Ayy V¢] + [y; U¢]
= [Hy, ¢]
=0.

Since D(H*) is total, Hy = 0 and y € D(Ay). Thus A;*C Ay. How-
ever if y e D(Ay) (so that Hy = 0), the above computation shows im-
mediately that A, c A}*.

THEOREM 3.4. If F is finite dimensional Aj; = A}.

Proof. In view of Theorem 3.3 it is only necessary to prove
that G(A%)c Af. Let (a, B)eG(A}). Define the functional ar.,:
G(A™) — C by

Vap(@): = [A2, a] — [, B] .
Since
N(pas) D G(AZ) = N(H) N G(A™)
it follows by Lemma 2.6 that

[Ax’ a] - [.’X], B] = [H(Awl x): ¢]
= [(4z, ), H*(¢)]
= [Ax: V¢] + [x9 U¢]

for some ¢ in F'*. Transposing we conclude that a — V,e D(A4*)
and 8 = A*(a — V;) — U,.
We now consider the case where F is infinite dimensional.

LeMMA 3.5. If G(—A*) is complemented there exists an operator
H*. F* — G(—A*) such that

[Hy, ] = [(Ay, v), H/] .

Proof. Let
(3.2) H*(¢): = (I — P)H*(9)

where P is the weak™ continuous projection of Y*x X* onto G(—A*).
That elements of H; satisfy (38.1) is obvious. If (V;, U)), (V,;”, U;j") e
H*(g) then it follows from (3.1) that

(Vi = V5 U — Ul eG(—AY) .
Since

(Vi =V, U — U eG(—A)
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by (3.2),
Vi=Vi=U;=U}.

THEOREM 3.6. If G(—A*) is complemented A% = Aj.

Proof. By Theorem 3.3 and the standard theory of adjoints

% =A%, Thus it suffices to show that Aj = A}. To this end

suppose that <(z,> is a net in D} converging to z in the weak*

topology of Y* and that 3, e A}z, is the general term of a net con-

verging to @ in the weak* topology of X*. Using Lemma 3.5 we
write

(V¢, U¢) = (V¢+; UJ) =+ (I7¢, U¢)

where
3.3) V3, U) = A = PV, U,) e G(—AYY
(Vi, Uy) = P(Vy, Uy) e G(— A7) .
Since
2, — Vi e D(A*)
and

Bu€A*(2, — V,,) — U, = A%z, — Vi) — Us) ,
(c.f. Lemma 3.2(1)),

(3.4) (2, — Vi, —(Ba + Ui)) e G(— A7) .
Adding (3.3) and (3.4) we obtain (z,, —8,). Hence
(3.5) (Vi, Ug) = (I — P)(24 — )

(3.6) (2, — Vi, —(B, + UJ)) = P(z,, B.) -

We conclude that the net (V;}, U)> converges weak™ to (v, 4,) in
R(HYYcR(H*). Finally (8.5), (8.6) and the closure of G(— A*) imply
that
(@ — 4y —(8 + ) € G(—4%)
i.e.,
(2, B) € G(A3)

and thus AL cC Aj.
To show the reverse inclusion, suppose (v, Ay)eG(4y) and
(7, A*(z — ) — ) € G(A%). Since
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[Ay! z— "lh‘l] = [y’ A*(Z - "FI)] ’
it follows that
[Ay, z] - [y’ A*(z - "1"1) - "/fz] = [Ay, "/"1] =+ [yy "/’2] .

Since (yry, 9,) € R(H*) and weak™* closed sets are also strongly closed,
given ¢ > 0 there exists (V,, U,,) such that

[y — Vi | <e/(l| Ayl + ¥l
[y, — Uy, | < e/(| Ayl + |lwl]) .

Consequently

[[Ay, "#1 - V¢;] + [y’ "/fz - U¢s]| é €

(recall that [Ay, V, ]+ [y, Uyl = 0 for y in D(A,). It follows from
(3.7) that

3.7)

[Ay, 2] — [y, Aiz] =0,

proving that

+

Ay DAL = A} .

=

COROLLARY 3.7. Aj* = A,,.

Proof. Immediate from Theorem 3.6 and the fact that A} = Aj.

A

Il

ok

COROLLARY 3.8. If R(H) is a Banach space A} = A}

Proof. By Theorem 2.3 R(H?*) is closed and the assertion is
immediate from Definition 3.1.

If X and Y are Hilbert spaces G(—A*) is trivially complement-
ed. But almost nothing seems known about this concept in other
spaces. (It is not even clear for example if the fact that G(A) is
complemented implies that G(—A*) is complemented.) We can how-
ever demonstrate the following sufficient condition that G(—A*) be
complemented in reflexive Banach spaces.

THEOREM 3.9. If A is a generalized Fredholm operator; i.e.,
N(A) and R(A) are complemented spaces in X and Y, then G(—A¥)
18 complemented.

Proof. It is well known (e.g., [4]) that if A is a generalized
Fredholm operator then so is A* and that the class of generalized
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Fredholm operators is equivalent to the class of operators admitting
a generalized inverse, in other words a bounded linear operator
A*+: Y — X satisfying the relations

AATA=A
ATAAT = A*

Hence there exists a generalized inverse A**+ for A* —in fact

A*t = A**. Let J be the operator defined by J(z)=-—=. Define
A**: Y* - X* by

Are = A% JA* AR

Now
(— AN A*+(— A*)(2) = JA*A*+JA* A*+JA*(x)
= JA*A*+J2A*(x)
= —A*x .
Also
AxH(— A*A*+) = A*HJA*A* T JAX A*+J A Ax+
= A*+tJA* A*+J2A* A*+
= A*+ .

Thus —A* is a generalized Fredholm operator. Let @ be a projec-
tion on R(—A*) (e.g., —A*A*+). Let S be a projection on N(—A*)
N(A*). Define P: Y* X X* — G(—A*) by

P(y*, *) = (I — S)A*+*Quz* + Sy*, Qz*) .
P is obviously continuous and onto since
Ply*, —A*y*) = (y*, —A"y") .
Furthermore

P y*, 2*) = P((I — S)A*+Qx* + Sy*, Qx*)
= (I — S)A**Qx* + O + Sy*)
= P(y*, =) .

The inconvenience of Theorem 3.9 is that it requires that R(4)
be closed at least if Y is a general Banach space. Since we do not
know any other sufficient condition, it seems worthwhile to explore
ways in which the hypothesis that G(—A*) be complemented can be
weakened. We devote the remainder of this section to this task.

Then next theorem and its two corollaries are generalizations
of Theorem 3.9; while Theorem 3.13 and Corollary 8.14 represent a
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new approach.

THEOREI\NII 3.10. If G(—A + AD)* 1is complemented for some \
then A} = Aj.

Proof. Let A;: = A+ A\I. Then by Theorem 3.9 A}, = Af,.
But A¥, = A% + ZI. Therefore
(3.8) Af = Aty — NI .
Now

[Hy, ¢] = [Ay + 7\'?/, VM] + [y’ UM]
= [Ay, V¢] + [y; U¢] .

Hence

0=[Ay, Viy— V] + [y, \Vy + Uy — Uy] .
And so
(3.9) VM —_ V¢ € D(A*)

VM + UM - U¢ = A*(V¢ - Vz,{,) .
From (3.9) we conclude that

D = D+,
Further
Afy(2): = A¥a — Vi) + Mz — Vi) — Uy
=A%z — Vi + Vs — V)
+ Mz — Vi + Vo — V) — Uy
= A*(z — V) + AV, — V)
+ Xz — Vi) + XNV — Vi) — Uy
= A*(z — V¢) + XVM + U1¢ — U¢
+ XMz — V) + XV = ANV — Uy — Uy,
=A%z — V) +x2— U,
= A}z + Nz .
Since

A} + NI = A} + NI,
it follows from Theorem 3.9 that At, = A5 + NI. By (3.8)

COROLLARY 3.11. If A+)\I1s Fredholm or a generalized Fredholm
operator (with X, Y reflexive) then
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N

Af =

+
H -
COROLLARY 3.12. Suppose A is a differential operator. Then
if A has a nonempty essential resolvent
Ar = A; .

Proof. If A has nonempty essential resolvent o(A) A + I is
Fredholm for )€ p(A4) cf. [8] Ch. VI.

THEOREM 3.13. Suppose N(A*) is complemented in Y* and
H= M-A. Assume that D(M)* is complemented in Y* and that
D(M*) is total over F. Define Al, A} as in Definition 3.1 (taking
Vse M*(g), Us = 0). Then

A= AL =A

=+

Proof. It is readily verified that A;* = 4, and that Aj(z) is
independent of the choice V, in M*(¢). It remains to check that
A} = AF. Since the technique is the same as in the proof of
Theorem 3.6 we only sketch the main steps. Note first that

(8.10) G(A*) + (PR(M*), 0)

where P is the projection on N(A*) is a direct sum. Let <{z,> be
net converging weak* to z in Dj. Let {(B,) be a net such that
B. €A} and B, converges B weak* to 8. Let @ be the projection
of Y* onto (D(M)*). Then QM} e M*(¢) and is an admissible V.
Now

24y Bn) = (2, — (I — P)QM, — PQM;, 8,) + (PQM;;, 0) .

Since the first term of this expression is in G(A*) it follows by
(3.10) that

PQM;, = R(z., B.)

where R is a continuous projection in X to ((NA*), 0). Therefore
the nets (PQM;> and {((I — P)QM}) converge weak*. Hence
QK} — 4 in R(M™).

COROLLARY 3.14. Suppose A is 1-1 and N(A*) is complemented.
Let A*: Y — X satisfy A*A = 1. Assume further that D(HAM)* is
complemented and D(HA*)* is total over F. Let V;e (HA)*(¢), U,=0.
Then
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A% = Ay .

Proof. Let M = HA*. Then the hypotheses of Theorem 3.13
are satisfied.

Corollary 3.14 shows that in the case of 1-1 operators A the
hypothesis that G(— A*) is complemented can be replaced by weaker
conditions. Moreover HA*+ and (HA*)* are usually easy to calculate.
(A* can often by identified with a Green’s function.)

The following example is intended to illustrate some of the
ideas in this section with special reference to Corollary 3.14.

ExampLE 3.15. Let A: LY[0, ) — L0, ) be given by ¥%” on
D: = {y e L'[0, ): y(0) = %'(0) = 0; ¥’ is absolutely continuous
and y” e LY0, «)}.

Let F be the space of bounded sequences C. Let Ft+ be the
space C, of sequences with finitely many nonzero terms. Define a
pairing on C x C, by

[0(, B] = Zazﬁz ’ (XGC,BGCOO .

Then F+ is total. Under the weak and weak* topologies F and F'+
are l.c.t.v.s such that F’* = F'+ and F** = F.
Define H: D— F' by
Hy: = {y(n)) .
A+ = St & — 8)(-)ds .
0
A is obviously 1-1. It is known see [8] (Ch. VI) that A*: L*[0, o )—
L7[0, «) is given by 2" on
D*. = {ze L]0, «): 2’ is abs. cont. and
2" e L7[0, o) ; lim 2(O)y'(t) — 2(t)'y(t) =0, yeD}.
Then on R(A) AtA = 1T and
HAw = <S(n — s)w(s)ds> , weR(A) .
Since N(A*) is finite dimensional it is complemented. Also
D(HA+)** = R(A)* = N(4%) .

This discussion shows that the hypotheses of Corollary 3.14 are
satisfied. It is easily verified that D(HA*)* = C,, and that R(HA*)*
consists of the space of piecewise linear functions of compact sup-
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port with corners on a finite subset of R,. A simple limiting
argument (see [3] §5.5 for similar reasoning) implies that R(HA™Y)
consists of piecewise linear functions in L™[0, o] with infinitely
many corners.

Application of Definition 3.1 and Corollary 3.14 now gives the
following characterization of A%.

D(AY) = {#e L™[0, ): 2’ is abs. cont. on (n, n + 1), ne Z,;
2’ has arbitrary jumps on Z, ;
lim (z()y'(M) — (') + 3, @'(n") — 2Z'(w)y'®) = 0),
ye DA} .

A% is given by z” on D(A}).
Note further that since

[Ay) Z] - [yy AEZ] = [Hy: ¢] .

H (and also HA*): D— F is continuous if D is given the graph
topology and F' the weak topology defined above.

It is easy to show that R(A) is dense and not surjective in
L~[0, ). Hence by Theorem 2.3 R(A*) is not closed. Further
R(A%) = R(A*). Applying the closed range theorem again we see
that R(A,) is not closed either, so that the closure of R(A4) is not
affected by the “perturbation” H. Obviously this fact can be general-
ized to give the following result.

COROLLARY 3.16. Let the hypotheses of Theorem 3.6 or Theorem
3.13 be satisfied them R(Ap) is closed if and only if R(A) is closed.

4. Extension theory. Suppose A: X — Y and B: Y* — X* are
densely defined operators such that B¥x2A. If H: X—> F, K: Y*—G
are boundary operators, for A and B then

Ay,cAc B*cC BE.

The purpose of this section is to determine the structure of all re-
lations between A, and Bj.

We make the following assumptions concerning A, and By:

(1) N(A*) and N(B*) are complemented spaces.

(2) H= M-A, K= NoB where D(M)>R(B*) and D(N)DR(A*).

(3) D(M*) and D(N*) are total over F' and G.

(4) D(M)* and D(N)* are complemented spaces.
It follows from Theorem 3.13 that A% = A} and B = Bi. In A}
oy € ROM*) and +, = 0. Similarly for Bi «,e R(N*), 4, =0. (To
avoid confusion we write “y,” in Bt as “n,” when we are discussing
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A} and B} at the same time.)
We consider first the case when dim G(B%)/G(4Ay) < . Two
preliminary lemmas will be required.

LEMMA 4.1. Suppose S: X—C* and T: X— C™ are operators
such that N(T)DN(S). Then T = MS where M 1s a m X n matriz.
If furthermore the component functionals of T are linearly inde-
pendent m =< n and M is of full rank.

Proof. Let m, be the projection onto the ith coordinate of C*
or C™. Since

ker 7,(T) D N(T) > N(S) = N ker w,(8S),
it follows by Lemma 2.6 that
7(T) =¢'S,1=1, ---,m,cieC*,

Choose M to be the matrix

¢

Ch

Suppose the component functionals 7z, (T) are linearly independent.
If the rows of M are not linearly independent there exists d e C™
such that d’M = 0. Hence

d'T = d'(MS) = (d*'M)S =0,

contradicting the independence of the component functionals of T.
Thus rank M = m and since row rank = column rank m < x.

LEMMA 4.2. (A generalized Greew’s identity). Suppose that
XY, Z#:Y* > X* are relations such that &7 C Z* and

4.1) dim G(*)/G(FZ) = G(ZH)|G(Y) =n < oo

Then there exist an n X n nonsihgulm' matriz B and continuous
operators _F:G(F*)—C*. _Z:G(¥*)— C" with linearly inde-
pendent coordinate functionals such that

[y, 2] — [y, 7 *2] = £ (2, 7 *2)*B_F (y, Z*Y)
on G(*)XG(F*). Moreover in a Hilbert space setting (X =Y a
Hilbert space) #* = .w*, and &7 symmetric them B is skew-
hermitian.
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Proof. By Lemma 2.5 G(<%#) is the nullspace of a functional
F G — (G()Y)*. Now
(G G(Z ) = G(Z) .
By (4.1)
(G )[G(ZN** = (G )G(Z)* =C".

Hence (G(<#)*)* = C*. The components of j must be independent;

for otherwise it would be equivalent to a functional with range of

dimension < n. The existence of _# follows by a similar argument.
Fix an element (a, B) in G(.57*). Then

['@*yr a] - [y’ B]

determines a functional whose nullspace contains N(_#). By Lemma
4.1 there exists k(a, 8) € C* such that

[Z ™y, al — [y, 8] = kla, B)* F (y, Z*v) .

Since the component functionals of _# are independent k(a, B) is
unique. A simple calculation verifies that k: G(.o7*) — C* is linear.
If _F(a, B8 =0k, B)* £y, &*y) =0 on G(.or*). Since £ is
onto, k(e, B8) = 0. Hence N( jN) c N(k). Applying Lemma 4.1 again
we find that k(a, B8) =B f (a, B) where B is a n» X n nonsingular
matrix.

We now show that B is skew-hermitian if .o = & c .97* and
S is defined on a Hilbert space H. To see this note that (4.1)
becomes

L&y, 2] — ly, 2] = £ (2, SL*2)B_F (y, S™Y) .
Taking congugate transposes and interchanging v and z gives
ly, s7*2] — [y, 2] = £ (2, 7 YIB*_F (y, 7 ™Y) .
Hence
SRS+ SV F =0
which implies that B* = —3.

REMARK 4.8. Note that if .o~ and <& are Fredholm operators
then (4.1) is always true; for if &£ denotes the index of an operator,

then
G()|G(Z) = D(.r*)|D(Z) = k(S77) — £(F)
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(4.2) = — k() + £(Z*) = D(Z™)/D(™)
= G(F")|G(7) .

(See [8] Theorem IV. 2.3.) (4.2) also holds if . and <# have a
nonempty Fredholm resolvent. This may be demonstrated by rea-
soning similar to Corollary 3.11.

Suppose

dim D(B*)/D(A) = D(A*)/|D(B) = n .

By Lemmas 2.5 and 4.2 A = B} and B = A* where J, J are bound-
ary operators with range C”. Since A* and B* are operators J and
J can be viewed as continuous operators with respect to the graph
norms on D(B*) and D(A*). Thus we will write Jy instead of
J, Ay).

If zeD} and +,€+(2) we write Z for z + +,. Similarly if
y € Diy means y + 7, for some 7,€7(y). In terms of this notation
we have the following “generalized Green’s identity”.

LEMMA 4.4. For all y in D% z in D%, ,, and +,
[Biy, 2] — [y, 4iz] = (J2)*BJY + [1,, A*Z] — [B*G, v.] .
Proof. By Lemma 4.2
[Biv, 7] — [7, Afz] = (J2)*BJ7

since Biy: = B*y and Ajz = A*2. Adding [7,, A*Z] — [B*7, 4] to
both sides gives the result.

THEOREM 4.5. Suppose .7, & are relations such that G(7)/
G()=n<c. Then .7 C¥E CZ if and only if there exists a
kX nk < n) matric Z of full rank such that

G(7©) = NZ_F)N G(=Z)

where _Z 1is a boundary operator for .o7.

Proof. Suppose . % < <%. Then G(¥) is the nullspace of
some nonzero boundary operator S£:G(Z#)—C* k<n. Since
NEZ)DN( F)o# = Z_F by Lemma 4.1 where & is a kX7
matrix of full rank. The converse is trivial since 2 _Z is a bound-
ary operator.

It is sometimes convenient to give a “parametric” rather than
a boundary operator description of extensions & between .o and

K
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COROLLARY 4.6. & 1is an relation between .o and Z* if and
only if there exists a subspace S, of C™ such that

3.3) D(Z) = {ye NZ*): [ £y, ZY), ¢l =0; $€8}.

Proof. Let S, = R(=*).

We now turn to the description of € *. We introduce the fol-
lowing notation if S is a finite dimensional space let (S) signify a
matrix whose columns form a basis of S.

THEOREM 4.7. If &YC & C & then F*C&*C ™ and
4.4 G(&™*) = {(y, 7 *y): (N(2))*B*J(y, .7 *y) = 0} .

Proof. We consider only the last statement. Let (o, .%7*a)e

G(#*). Then by Lemma 4.1 f*(a.%a) is a functional on G(.7*)
whose nullspace includes N(=Z _#(-)). Hence on all of G(./)

FHa, B F =D F
where ¢ C*, k < n. This implies
B*_Z (@, 7 *a)e R(D™) .
Equivalently
(N(2)*8*_F(a, or*a) = 0.
On the other hand if (q, .%7«a) satisfies (4.4)

(F*a, £a)B_F (y, BY)* = F*(y, F*Y)B*_F (@, 7 *a)
= Sy, Z*D*$
= (Z_F (y, Z*yY))*¢
=0.

So that (a, &7*a) e G(&*).

COROLLARY 4.8.

G(&) = {(y, ") [B* £ (y, & ™y), 6] = 0 for all 6 Sz} .

COROLLARY 4.9. Suppose ¥ 1is a symmetric relation (i.e.,
7 C.7*) defined on a Hilbert space 57 and

dim G(.7*)/G(.) = n < o ,
Let _Z be the boundary operator for .o. Then &7 CE C.7* is
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self-adjoint if and only if there exists a k X n(k < n) matriz of full
rank <& such that

Z = (N(2))*B*
or equivalently
DB I2* =0
where B is the skew-hermitian matrix of Lemma 4.2.

Proof. Apply Theorems 4.5 and 4.7. It is clear that rank &
must be less than =.

If we can find boundary operators _Z, / determining A, and
By as restrictions of B and A}, Theorem 4.5 — Corollary 4.8 can be
applied verbatim to determine all extensions between A, and B and
their adjoints. Let us assume that D(H), D(J)DG(B%). Then

-
-

where K, H are boundary operators determining B* and A* as re-
strictions of B and A%. Clearly the only novelty is the determin-
ation of K and H.

LEMMA 4.10. Suppose R(K) = C* and R(H) = C*. Then
(4.5) K(y, Bxy) = [6,, (R(N->B))]
(4.6) H(z, A}2) = [(R(Mo A)), 4] .

Proof. By definition K is an operator on G(B%) whose nullspace

is exactly G(B*¥). If ¢, is the ith row of (R(IN°B)). Choose 2, € D(B)
such that

NoBz, =e;.
Define

K(y, Bty) = | [Biy, 2. — [y, 2]
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By Lemma 4.4

K(y, Bty) = ([m, :Bzi]>

= ([021: .Z\}OBZZ]>

= [01;’ (R(N-B))] .
(Note that K is well defined since 7, — 7, € R(B) = N(B*).) If

[6,, (R(N>B))] = 0, then 6, ¢ R(NoB) — 7, ¢ R(B) ¢ N(B*)
— (y, B¥y) e G(B*) .

So that N(K)cG(B*). The réverse inclusion is trivial. This proves
(4.5). The proof of (4.6) is similar and will be omitted.

THEOREM 4.11. If C is a closed relation between Ap and B
then

H
G(C*) = N[(N[(@))]*EB*( J ) NG(A3) .
K
Equivalently
g i
D(C*) = lz: %(i)e S, = R(Z*)
K

where B is the n+ m + k X » + m + &k nonsingular matriz given
in Lemma 4.2 taking

”M*” — A; Il.@*ll — B;é

K H
njn — (J)u/u — (j’) .
H K

ExAMPLE 4.12. For fixed 1 £ p < o let

Wh?[a, b]: = {y ey’ is abs. cont., ¥’ e L*[a, b]},
v’la, b]: = {y € W**[a, b]: y(a) = y(b) = 0} .

Define A on W;'*[0, 1] by Ay:= —iy’ and Bon W0, 1], 1/p + 1/q = 1,
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by Bz:=—12'. Then A* is given by —iz’ on W%‘a, b] and B* is
given by —iy’ on W?[a, b]. Further AcCcB* and BCA*. Let G =
F = C and define

H: W0, 3) + W*"*(3, 11— C by Hy: = y(3") .

Similarly let K: W90, 3) + W43, 1] — C be given by ky = y(3").
By the methods of §8 (ef. Example 3) it is readily shown that A}
and Bj are given by —iz/, —iy’ on W¥0, 3) + W*(3,1] and
wh2[0, 3) + W[}, 1] respectively.

Clearly Ky = y(3*) — y(37) and a boundary operator #Z defining
Ay as a restriction of B¥ is

y(*3) — y(D)
_ (%0

(e

y()
Similarly B, c A% is determined by

2(3") — 2(37)

ALY

A short calculation reveals that B is the skew-Hermitian unitary
martix

00 0 —1
02 0 O
00— 0]
-3 0 0 0
Thus if
9_(1010)
“ Vw0201’
N(=) is spanned by
1 0
0 1|
-1/’ ol’
0 -1

and application of Theorem 4.7 gives the ajoint boundary conditions
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~(e3) — 237) — #0) = 0
—2(1) + 23%) = 0

for C*.

If G(B%)/G(Ay) is not finite dimensional the foregoing extension
theory breaks down because the linear dependence principle is not
available.

We conclude this section with a new approach which works in
the infinite dimensional case for extensions with closed range, and
a new characterization of self-adjoint extensions in Hilbert space.

LEMMA 4.12. Let S be a subspace of Y* and N, be a closed
subspace of N(B*). Let
D(®): = {y e (D(B*) N N(B*)") + N,: [B*y, ] =0,
vesSh.
Define G(€) by B* on D(€). Then € is closed.

4.7

Proof. If y,—y and B*y,—z y€ D(B*) and z = B*y since B*
is closed. Further [B*y, 4] =0 V4 €S by the continuity of the
pairing and ¥y must lie in the closed set N(B') + N..

Let S, be a subspace of R(N*), S a closed subspace of R(M*),
N, a closed subspace of N(B*) and N a subspace of N(A*). Define

D(C): = {y e (D(B*) N N(B*)" + N,) — 8.:
4.8) B*j 1 S* + N¥}
G(C): = {(v, B*y): y ¢ D)} .

We call C the relation determined by S, S!N, and N*. Clearly
Ay,cCc B and

(4.9) G(C) = G(€) — (QS,, 0)

where € B* is defined relative to N, and N(B*)’ + N, by (4.7) and
@ is a projection on N(B*). Since G(€) is closed by Lemma 4.12
and (4.9) is equivalent to a direct sum, C is closed. This proves
the following result:

THEOREM 4.13. Let the hypotheses of Theorem 3.13 hold. Let
8., S¥*, N, and N¥ be subspaces of R(N¥), R(M*), N(B*) and N(A*)
such that S, and N, are closed. Then there exists a unmique closed
relation between Ay and BE determined by S,, S¥, N, and N*.

The following is a partial converse to Theorem 4.13:
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THEOREM 4.14. Suppose C is a closed relation between A, and
B then there exist closed subspaces N,C N(B*), N*C N(A*), S*c R(M*)
and S, R(N*) such that

S, = 4: D(C)*
(4.10) R(C)* = S¥ + N¥
N(C)= S8, + N,.

Moreover if C has closed range C is determined by S, S*, N, and
NE.

Proof. Set S¥:=R(C)'NR(M*), N}:=R(C)* N N(A*), S,: =N(C)N
R(N*), N,: = N(C) N\ N(B*). Since Cc B%, S, = +: D(C). Clearly
R(C)*>S¥ + N¥ and N(C)DS, + N,. However since A,cC and
Cc B}

R(C)" C R(A%)*" = N(A}) = R(ML*) + N(4%)
N(C)c NBj§) = R(N*) + N(B*) .

Applying the definitions of S¥* NZ¥, S, and N, gives the reverse-
inclusions. Now suppose C has closed range. Let C’ be the rela-
tion determined by S¥* NZ¥, S. and N, according to Theorem 4.13.
Obviously ¢’ > C. Since

R(C")* = R(C): = S* + N}
and R(C) is closed, R(C') = R(C). Thus R(C’) = R(C). From (4.8)
and (4.10) N(C") = N(C). Let (a, B8)eG(C’). Then there exists a’e

D(C) such that (o', B8) e G(C’'). Hence a — a’e N(C') = N(C). Thus
ae D(C) and B = C(a).

THEOREM 4.15. If C is a relation with closed range between Ay
and B%, C* is a relation with closed range between By and A} and
C* 1s determined by S, = Sk, S¥ = S,, Ni = N,. and N% = N.,.

Proof. We verify only the last statement

S.: = N(C*) n R(M*) = R(C)" N R(M*): = St
S.: = R(C*)* N R(N*) = N(C) N R(N™): = S,
N,. = N(C*)N N(A*) = R(C)* N N(A*) = N}
x = R(C*)* N N(B*) = N(C)N NB*) =N, .
The following result is an alternate characterization of D(C*)
without the space N,. that is available if A is a finite dimensional
L ¢: D(C):={¥,: z€ D(C)}.
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restriction of B*

COROLLARY 4.16. Suppose dim D(B*)/D(4) < . Then

D(C*) = {ze D}: 4, e St A*Z 1S, ;

(4.11) - _ .
J2)*BJy=0,vy in D)} .

Proof. If ze D(C*), 4,eS¥ and A*z 1. S, by Theorem 4.15. If
ye€ D(C), by (4.8) ye D(€) for any 7,. Similarly by Theorem 4.15
and (4.8) if ze D(C*) Ze D(C*). Since C and C* are mutually adjoint,
by Lemma 4.4 (JZ)*BJ7 = 0 (taking 7y, 4z = 0). Therefore D(C*)
satisfies (4.11). Conversely if z satisfies (4.11), application of Lemma
4.4 and the definitions of S* and S, gives

for all y in D(C). Hence z¢ D(C*).

REMARK 4.17. The analogue of (4.11) can in the same way be
proved for C, i.e.,

D(C) = {yeDi:n,e8,; B*y L S¢
(J2)*BJF = 0, Vze D(C*)} .
We turn now to the characterization of self-adjoint extensions
in a Hilbert space setting. Here the hypothesis that C has closed
range is no longer needed, the next two theorems give simple neces-

sary and sufficient conditions for the existence of a rich supply of
self-adjoint extensions between A, and A%.

THEOREM 4.18. Let A be a symmetric operator defined on a
Hilbert space H. Then if A has a self-adjoint extemsion €, for

each closed subspace S of R(M*) there exists a self-adjoint extension
C, of Ay such that
D(C,) = {ye D) — S: A*y 1L S}

4.12
(4.12) G(C) = (v, A*7): ye DG} .

Proof. Let Ay C,c A% be the relation determined by (4.12).
Then

[Csy) Z] - [y; Csz] = [A*:’_j) E] - [?7’ A*z]
- [A*?—j) “pz] + [771/9 sz]

where ¥y =y +7,,Z =2 + 4, and 7, 4,€S. By (4.12) and the self-
adjointness of € the right side of (4.18) is zero, showing that C, is

(4.13)
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symmetric. Now suppose (a, 8) e G(C¥). Since C¥c A}, B8 = A*a.
Further

[Cy, al — |y, A*aj = 0
(4.14) = [4*y, a} — [y, A*a]
- [A*?_jx "1’&] + [77117 A*&] .
Since
Yo € N(C¥) N R(M*) = R(C,)* N R(M¥)
=S
and
n,€SC N(C,) = R(CY) ,

the last two terms in (4.14) vanish and hence

(@, A*@) e G(€*) = G(B€) .
Thus o € D(€) — S. Since 7, is arbitrary in S, A*@ L S. We conclude
that (a, B) e G(C,) and that C, = C¥.

THEOREM 4.19. Let A be o symmetric operator defined on a
Hilbert space 57. Suppose C is a self-adjoint extemsion of Ag.
Then A has a self-adjoint extension €. Moreover if S: = R(€), C
is the self-adjoint extenston C, determimed by € and S given by
Theorem 4.18.

Proof. Define € by

G©): ={#, A*p):ye D)} .

Obviously by € > 4. It follows at once from (4.13) that € is sym-
metric since 7, 4, € N(C) L R(C). Suppose (&, A*@)e GE*). Let
dreap: D(C) = N(C). Then by (4.13) again

[(Cy, & — v] — [§, A*a] = [, Aa] .
Hence
[Cy, & — ] — [y, A*a] =0,
so that
@ — 4, A*@) e G(C*) = G(C) .

We conclude that @ — re D(C), (@, A*@)e €., Thus €*C€ and € is
self-adjoint.

Since R(C) = R(C) and R(C)' < N(A}) = R(M*), S is a closed
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subspace of R(M*). By Theorem 4.18 there exists a self-adjoint
extension C, determined by € and S. By (4.12) C = C..

COROLLARY 4.20. Suppose A is a symmetric operator on a
Hilbert space 27 with equal deficiency indices. Let R(H) be a
Banach space and let the hypotheses of Corollary 3.14 be satisfied.
Further let S be a closed subspace of R(H). Then Ay has a self-
adjoint extension determined by the boundary conditions

[HA*(A*2), 4] = 0,9€ S
ze@

where € is a self-adjoint extemsion of A.

Proof. Since A has equal deficiency indices there is a self-
adjoint extension € of A. By Corollary 3.8 A% = A};. By Corollary
3.14 M = HA*. Now apply Theorem 4.18.

EXAMPLE 4.21. We use Corollary 4.20 to find self-adjoint ex-
tensions of A, in Example 4.12 when p = 2. Here

T
At = 7,5 (-)ds
0
on L0, 1]. Further
[HA*z, ¢] = &S‘%dt
0

1 _
= SOZ’iN[O.l,g](t)QSdt

so that (HAY)*¢= —1ihy,,q(t)p. Since z = z + (HA*)*¢ is absolutely
continuous Z(3*) = z(37) and we obtain ¢ = 1(z(3*) — 2(37)). Moreover

2+ 2(37) —2(37) 0=t<3

Z = {2(3%) t=3 ’
z t>3

and

HA*A*% = sz’ds

0

= 2(37) — 2(0) .

Thus if S = C applying Corollary 8.20 we find that one boundary
condition is 2(37) = 2(0). Since self-adjoint extensions € of A satisfy
the boundary condition z(0) = 2(1) we have also

2(0) + 2(37) — 2(37) = 2(1)
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so that z(37) = 2(1). On the other hand if S is trivial the boundary
conditions are z(1) = 2(0) and z(3}*) — 2(3™) = 0.

This method is a general one and can be applied to more dif-
ficult examples which we will consider systematically elsewhere.

5. The adjoint of .%%,. We end the paper with some remarks
on the adjoint theory of (1.1) when # = 4.

DEFINITION 5.1. Let .%: D(A) —» Y X F and 7, : Df X F¥-X*
be given respectively by .97y = (Ay, Hy)' and .7, (2, ) = A*Z where
¢ € ¢(2).

It is trivial that .97, and .97, are densely defined operators.
LEMMA 5.2. [.57, (2, ¢)] = [y, -, (z, ¢)] on D(A) X D(A}).

Proof. Immediate from Definition 5.1, Theorem 3.3, and the
definition of an inner product on (Y X F') X (Y* X F'*) (see §2).
The main result of this section is the following:

THEOREM 5.3. .9, = %, and .7, % = .

Proof. By Lemma 5.2 .97, C.%,* and . C .97, *. Suppose
(e, ¢), B) € G(-57,*). Then

(5.1) [Ay, a] + [Hy, ¢] = [y, 8] .
On the other hand ¢ € ¢(z) for some z in Dj;. By Lemma 5.2
(5.2) [Ay, z] + [Hy, ¢] = [y, A*Z] .

Subtracting (5.2) from (5.0) we find that
[Ay, a — z] = [y, B8 — A*z] .
Thus a — 2€ D(A*), Vae D}; and
B =A%+ A*(a — 2)
= A*@) .

We conclude that G(.97,*)CG(.57,%). Since H is continuous on G(A)
when F' is endowed with the weak topology, .57 is easily verified
to be closed. Hence .7, t* = .97,

REMARK 5.4. Note the adjoint theory for nonhomogeneous b.v.p.
is much simpler than for A4, in that .o, are always closed oper-
ators and that there are no analogues of Aj.
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