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S. A. RaNkiN, C. M. RE1s AND G. THIERRIN

It is well-known that a semigroup is subdirectly ir-
reducible if and only if it has a minimum nontrivial con-
gruence. From this point of view, it is natural to call a
semigroup right (left) subdirectly irreducible if and only if
it has a minimum nontrivial right (left) congruence. It
turns out that such semigroups are exactly the subdirectly
irreducible semigroups for which the minimum nontrivial
congruence is also a minimum nontrivial right (left) con-
gruence. These semigroups form a class of subdirectly
irreducible semigroups for which results similar to those
obtained by Schein for commutative subdirectly irreducible
semigroups are obtained. In fact, since a commutative
semigroup is subdirectly irreducible if and only if it is
right subdirectly irreducible, some of the results of this
paper offer additional knowledge on the structure of sub-
directly irreducible semigroups of the third kind.

The set of all right subdirectly irreducible semigroups will be
partitioned, for the purpose of investigation, into ten classes, each
class being defined in terms of idempotents. Six of these classes
contain exactly one semigroup each. Several of these semigroups
have also been described in a related study by Baird and Thierrin
[1]. A right subdirectly irreducible semigroup S does not belong
to any of these six exceptional classes if and only if the set of
idempotents E(S) of S is contained in {0, 1}. The remaining four
classes of right subdirectly irreducible semigroups correspond then
to the four possible subsets of {0, 1}.

As for notation, we shall let _#~ denote the set of natural
numbers. If S is a semigroup and ae€S, we shall let A:S— S
denote left translation of S by a (i.e., x —ax for all zeS) and
{ay = {a*lie #7}. If HCS, |H| shall denote the cardinality of H.
Moreover, we shall define a right congruence ¢, on S by z = y[s,]
if and only if Hx = Hy. If H is a singleton, say H = {a}, then we
denote ¢, by ¢,. TFinally, if ¢ is any equivalence relation on S, let
#(a) denote the equivalence class of acS.

2. Right subdirectly irreducible semigroups. It is clear that
a right subdirectly irreducible semigroup must have a minimum
nontrivial (i.e., not a singleton) right ideal. Since every left trans-
late of a minimal right ideal is a minimal right ideal, the minimum
right ideal of a right subdirectly irreducible semigroup is a two-
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sided ideal, called the core [5] of S, and denoted by K = K(S).
The minimum right congruence shall be denoted throughout by
e = o(S). All nontrivial p-classes are contained in K.

LEMMA 2.1. Let S be right subdirectly irreducible and acS.
If there exists x €S such that |ap(x)| > 1, then N, is injective.

Proof. If ), is not injective then ¢, = ¢ and so p < ¢,.
A right subdirectly irreducible semigroup is obviously subdirectly
irreducible. With the preceding lemma, we can say more.

THEOREM 2.2. The minimum nontrivial right congruence on a
right subdirectly irreducible semigroup is a two-sided congruence.

Proof. Let S be right subdirectly irreducible. If ¢ €S is such
that A, is not injective, then |apo(z)] = 1 for all x€S. On the other
hand, if A, is injective, then [aK|>1 and so aK = K. Define a
congruence o, by x = y[p,] if ax = ay[p]. Let x and y be distinct
elements of K such that xpy. Then z = as and y = at for distinct
s and ¢ from S. But then s =t[p,] and so p,=¢. Thus p=<p,
and so xpy implies axpay.

We proceed now to investigate the set E(S) of idempotents of
a right subdirectly irreducible semigroup S. It will be shown that
except for six exceptional semigroups, the set of right subdirectly
irreducible semigroups can be partitioned for investigation according
to the following four types:

(i) EES)={)

(ii) E(S) = {1, 0}

(iii) E(S) = {0}

iv) ES) = 0.

Of these four cases, the type (ii) are the most accessible. We
have been able to say very little about the remaining types (i), (iii)
and (iv).

THEOREM 2.3. FHach idempotent of a right subdirectly irreduct-
ble semigroup is either a left zero or a left identity.

Proof. Suppose ec E(S) is not a left zero. Then eS +# ¢ and so
KceS. But then ¢, restricted to K is the identity and so p does
not refine ¢,. Thus ¢, = ¢ and since for all a €S, ea = als.], ea = a
and so e is a left identity for S.

LEMMA 2.4. Let S be right subdirectly irreducible with a left
identity e which is not a right identity. Then o has exactly one
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nontrivial class p(a), where a ¢ Se and S = Se U {a}, p(a) = {a, ae}.

Proof. Since e is not a right identity, there exists a € S such
that ae # a. Define a right congruence ¢ on S by x =y iff x, ¥y ¢
{a, ae} or x = y. Since this right congruence is not ¢, it must be p.
But then for the left identity e, there is at most one such element
a and so for all xeS\{a}, x¢ = 2. Thus S = Se U {a}, a ¢ Se.

COROLLARY 2.5. If S 4s right subdirectly irreducible and has
exactly ome left identity (mot a right identity), them S has a left
zero.

Proof. If ¢ is the left identity of S, then S = Se U {a}, a ¢ Se
and p(a) = {a, ae}. If a*=a, then a is a left zero and ae =a, a
contradiction. Thus a*cSe. If acaS, say a = ax, then = # a.
Thus axe = ax = a Whence ae = a, again a contradiction and so
a¢aS. Since p(a) = {a, ae} C K, p(a) must be contained in every
nontrivial right ideal and so |aS| =1. Thus aS = {ae} and S = eS
whence aeS = {ae}.

THEOREM 2.6. A right subdirectly irreducible semigroup has
at most two left identities. A semigroup S is right subdirectly
irreducible with two left identities iff S is the right zero semigroup
of order 2 with or without an adjoined zero.

Proof. It is easily seen that the right zero semigroup of order
2 with or without an adjoined zero is right subdirectly irreducible
with K = S. If S has no zero, then p = w, the universal congruence.
Otherwise p is the principal congruence [5] of the zero.

Now let S be right subdirectly irreducible with a left identity
e. Then S=S8SeU{a},a¢Se. If f is a left identity for S, then
either f =a or feSe whence ¢ = fe = f. Thus if ¢ = f we have
f=a and S = SeU{f}. Similarly, S=SfU{e},e¢Sf. Thus S=
(SenSf)Ule, f} and T=Sen Sf is an ideal. If |I| > 1 then the
Rees congruence for I is not refined by p since o(e) = p(f) = {e, f}.
Thus |I| <1 and so I = @ or else S has a zero and I = {0}.

THEOREM 2.7. A semigroup S 138 right subdirectly irreducible
with a unique left identity e {which 1s mot a right identity) iff
S = {a, ¢, 0} with a* = ae = 0.

Proof. Clearly S = {a, ¢, 0} is right subdirectly irreducible with
K = {a, 0} and p the Rees congruence of K. On the other hand, if
S is right subdirectly irreducible with a unique left identity e which
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is not a right identity, then S = Se U {a}, ¢ Se; and f = ae¢ = a? is
a left zero, so K = {a, f}. For each xzeS, either za = a or else
2a = f and occordingly, either 2f = xae = ae = f or else xf = xae=
fe=f. Thus f=0. DefineS, = {xeS|xa=a}and S, = {x € S|za =0}.
Thus S, and S, form a partition of S and S, is an ideal. Since
a €8S, {S, S;\{a}, {a}} defines a right congruence on S which is not
refined by p, whence |S,| <1, |S)\{a}| £1 and so S, = {¢}, S, = {a, 0}.

LEMmA 2.8. A right subdirectly irreducible semigroup has at
most two left zeroes. If there is exactly onme left zero, it is a zero,
while if there are two left zeroes, ¢ and f, then K = {e, f}.

Proof. Let ¢ be a left zero of a right subdirectly irreducible
semigroup S. Then for all a€ S, ae is a left zero. If S has only
one left zero, ae = ¢ for all a € S whence e is a zero. If S has more
than one left zero, then since each subset of the set of all left
zeroes is a right ideal, S has exactly two left zeroes and they form
the minimum right ideal.

THEOREM 2.9. A semigroup S is right subdirectly irreducible
with two left zeroes iff K = {e, e,} 1s the left zero semigroup of
order 2 and S is one of the following semigroups:

(i) S=K

(ii) S= K"

(iii) S=K'U{a}, a* =1,

ae, = e, ae, = e,.

Proof. If S= K or K!, then S is obviously right subdirectly
irreducible with the Rees congruence of K as the minimum right
congruence. If S = K'U {a}, then {a, 1} is a group and K an ideal
and again the Rees congruence of K is a minimum right con-
gruence.

Conversely, if S is right subdirectly irreducible with two left
zeroes ¢, and e, then K = {e, ¢;} and we consider the right ideals
{z|2K = ¢} and {x|zK = ¢,}. Since they are disjoint and both meet
K, they must each be singletons. Thus for a ¢ S\K, ), determines
a permutation of K. Let S, ={xecS\K|ze,=¢} and S,={zx¢
S\K|ze, = ¢;}. Then {S, S,, {e}, {e.}} is a partition of S which de-
fines a right congruence. This congruence is not refined by p and
so [S)|=L1S, /1. If S, # @, then S, = {e} and ¢ = e¢ {e, ¢},
whence by Theorem 2.3 ¢ is a left identity for S. Since S,S,c S,
and Ke = K, e is also a right identity for S and so ¢ =1. Thus if
S, = @ then S = K* while if S, = {a} then a® = 1 since S,S,c S..

3. Right subdirectly irreducible monoids. From now on, we
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consider only right subdirectly irreducible semigroups S for which
E(S)<z{0,1}. If S is a semigroup for which E(S)<{0, 1}, then S
is right subdirectly irreducible iff S* is right subdirectly irreduci-
ble.- Thus we need only consider right subdirectly irreducible
monoids. ‘

THEOREM 3.1. Let M be a right subdirectly irreducible monoid.
Then M is a group or else there exists a subgroup G = G(M) of M
whose identity is 1 and I = M\G is an ideal of M.

Proof. Suppose ax =1 for a,xeM. Then zaxe = xa and so
xa € E(M). If xa = 0 then a = axa = 0 which is not possible. Thus
xa = 1. That is to say, every left divisor of 1 is a right divisor of
1 and the result follows from Lemma 2.9 of [4].

LeMMA 3.2. Let S be a right subdirectly irreducible semigroup.
Then for x,yeS, 2y =y if =1 or y = 0.

Proof. Let yeS, y# 0, whence KcyS. If there exists xe S
such that xy = y, then for k¢ K we have k = yt for some tcS.
But then zk =k and so z is a left identity on K. The right con-
gruence defined by ¢ = b if (®)aN<x)db # @ is then the identity on
K, hence the identity on S. But za =« for allaeS and so za = a
for all ae€S. Thus z is a left identity for S and so z = 1.

COROLLARY 3.3. Let S be right subdirectly irreducible. If S is
not a group then for all a€ K, Ka + K.

Proof. If Ka = K then ta = a for some {ec K. Since a =0,
t=1. But if 1S and S is not a group, then S = GUI with 1¢G,
KclIand GNI= @. Thus 1¢ K, a contradiction and so Ka + K.

COROLLARY 3.4. If M is a right subdirectly irreducible monoid
then for all nonzero ac M, |Ga| = |G|.

Proof. If ga = ha for g, heG, then g7*h = 1 whence g = h.

Note that a group is right subdirectly irreducible iff it has a
minimum nontrivial subgroup.

THEOREM 3.5. Let M be a right subdirectly irreducible monoid.
Then G is right subdirectly irreducible or G = {1}.

Proof. Suppose |G|>1 and let {G,.lac4} be the set of all
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nontrivial subgroups of G. Let H = N{G.|a€4}. Denote the right
congruence ¢z, by #,. Then o < ¢, for all ac 4. Let a €M be such
that |p(a)] > 1, say bep(a), b # a. Since p(a) C g.(a) = G.a, then for
each aecd there exists g,€G., 9. #1, such that b =g.a. Thus
9.0 = gsa for all @, Be4d and so gi'gsa =a. If a =0 then p(a)C
G.0 = 0 implies that b = 0 = a, a contradiction. Thus a # 0 and so
Jg. = g i.e., 9. €G; for all e A whence |H| > 1.

We shall use H to denote the minimum subgroup of a right
subdirectly irreducible group G.

From McAlister and O’Carroll [3] it is known that a right sub-
directly irreducible group is a p-group for some prime p and
|H| = p.

THEOREM 3.6. Let G be a right subdirectly irreducible group.
Then H is contained in the center of G.

Proof. LetbeG,aec H. Then since H is normal in G, badb™ = o’
for some integer j, and so for each me. ¢ bv"ab™ = ai". If
[Xby| = p*, then we have a = b""ab™®" =a' for ¢ = j?", whence
t = 1(mod p). But t = j(mod p) and so 7 = 1(mod p). Thus badb™ = «.

So we have seen that if M is a right subdirectly irreducible
monoid, then M is the disjoint union of a group G and an ideal I
(or I = @), where if |G| > 1, then G is a p-group with minimum
subgroup H, |H| = p.

THEOREM 3.7. Let M be a right subdirectly irreducible momnoid
with |G| > 1. Then G is a p-group and each montrivial p-class
contains p elements. In fact, if |p(a)| > 1 then po(a) = Ha.

Proof. Since p < ¢, we have p(a) = Ha. Thus for b € p(a), b + a,
we have b =h'a for some 1<¢1=<p—1 and so aph’ec implies
k'aph¥a. By induction we obtain {a, k'a, h¥a, ---, h? ™V} C p(a).
Since h*a %= a for 1 <k < p — 1, p(a) = Ha.

COROLLARY 3.8. Let M be a right subdirectly irreducible monoid
with |G| > 1. If M has a zero then |[p(0) =1, t.e., 0 28 not dis-

Junctive.

Proof. If |p(0)| > 1, then p(0) = H-0 = 0, a contradiction.
Thus if |G| > 1, 0 cannot be disjunctive.

COROLLARY 3.9. Let M be a right subdirectly 1rreducible monoid
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with |G| > 1. Then K is the union of nontrivial o-classes (umion
zero if M has a zero).

Proof. 1f for some a € K, x € M we have |p(a)] > 1 but |p(ax)| =1
then for each & € H, apha and so ax = hax. Since H = 1, this implies
that ax = 0 or else no such xe M exists. Thus the union of the
nonsingleton p-classes (union zero if M has a zero) is a right ideal.

THEOREM 3.10. Let M be a right subdirectly irreducible monoid
with zero. If al =0 for some monzero ac K, then K = aG UDO.
Furthermore, if |G|>1, then K\0 is the wunion of nontrivial
o-classes.

Proof. (aGUOM = (aGUOGUI) =aGUaGl =aG U0. Thus
K =aG U0. Since G acts transitively on the right of aG, each
o-class in K\0 is nontrivial.

LEMMA 8.11. Let M be a right subdirectly irreducible monoid.
Then for all ae M/K, al #+ 0.

Proof. If aeG then al = I. Suppose now that for some a € I\K,
al =0. Then {xel\K|xl =0}U0 is a nontrivial right ideal which
does not contain K, a contradiction.

4., Periodic right subdirectly irreducible semigroups.

THEOREM 4.1. Let S be right subdirectly irreducible. If aeS
18 aperiodic, then X\, is not injective.

Proof. Since a is aperiodic, the right congruence z =y if
{ayx N {a)y # @ is nontrivial and so xpy implies {(a)x N {a)y + @.
Suppose then that xpy but = y. Now 0e<{a)>zx iff 0¢e {(a)y whence
there is a smallest ne€. 4" such that a2 =0. Thus t=a"x %0
and at = 0 = a0 whence )\, is not injective. Suppose now that 0¢
{ayx U {a)y. We have afx = a’y for some j,ke. 4 . If a’x = a%y
for some p,qc._4#", with p =k, then a’'y = a**a*x = a? *aiy=
a?Fiy. M q>p—k+j,sayq=m+ p—k+ j, then a™(a? *+iy)=
a? *tiy whence a™ = 1, a contradiction. We obtain a similar con-
tradiction if ¢ <» —k+j. Thus p—q=k— 7. Let n,=Fk— j.
Then if a2 = a’y, » — s = n,. Now for any t .+, {aDx N {aDHy* D
and so for some 7,s€..47, a"'x = oy whence (r — s)t = n,. Thus
each te_4  divides 7, and so n, = 0. We then have a*x = a*y for
some k€. 4" and we may assume that %k is the least such natural
number. Thus a* ¢ 5= a* 'y and so A, is not injective.
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COROLLARY 4.2. Let S be right subdirectly irreducible. If
a el is aperiodic then |ap(x) =1 for all z€S.

Proof. By Lemma 2.1, if |ao(x)] > 1 then ), is injective, whence
a is periodic.

COROLLARY 4.2. Let S be right subdirectly irreducible. Then
Ao 18 tnjective 1ff S has an identity and ac@G.

Proof. If S has an identity then )\, is injective for all a eG.
On the other hand, if ), is injective then a is periodic, say a” = a™
for some n, me. 4", n #+ m. But then a¢**'= a™'. By induction we
obtain a = o* for some k> 1 and so a¢*'a = a. Since a %= 0, this
implies that a* ! = 1 whence S has an identity and a €G.

LEMMA 4.3. Let M be a right subdirectly irreducible monoid.
If K* = K, then aK = K for all nonzero acl.

Proof. If M has no zero the result is obvious. Suppose then
that 0eM. If aK # K for some acl, then aK =0. Thus the
right ideal {x € S|zK = 0} is nontrivial and so contains K, whence
K*=0.

COROLLARY 4.4. Let M be a right subdirectly irreducible monoid.
If K?* = K then I\0 has no periodic elements.

Proof. If ael is periodic then 0e<a) and so aK = 0.

COROLLARY 4.5. Let M be a commutative right subdirectly ir-
reducible monoid with K®= K. Then M is a subgroup of the
P7-group.

Proof. Since K*=K we have aK=K for allae K. Thus Ka=K
for all ae K and so K is a group. Thus M = K or K = {0}. Since
|K|>1, we have M = K and so M is an abelian subdirectly ir-
reducible group. The result follows from Theorem 5.1 of [5].

The case of a right subdirectly irreducible semigroup S for
which K= K, K not a group, is very interesting. Since K*= K
we know that aK = K for all ac K. However, by Corollary 4.5 and
Theorem 4.1, \, is not injective and so by Lemma 2.1, |ap(x)| = 1 for
all zeS. Thus each nontrivial p-class is collapsed by »,. If Sis a
monoid with |G| > 1, then K\0 is the union of nontrivial p-classes,
each of size p. Thus there is a great deal of collapsing by A,, yet
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aK = K.

LEMMA 4.6. Let M be o periodic right subdirectly irreducible
monoid which 18 not a group. Then K is the annihilator of I and
K =aG UO for any ac K\0.

Proof. For each acI\0, {x|ax = 0} is a nontrivial right ideal
and so contains K. Thus aK =0 for all acl, ie., IK =0. Now
let a € K\O whence alcK. If al +# 0 then al = K whence at = a for
some te€l. But then at" =a for all ne._+ and so ¢ =0, a con-
tradiction. Thus al = 0 for all a € K, whence KI = 0.

By Lemma 3.10, K =aG U0 for each ac K\0. Let A ={xe¢
M|zl =Ix =0}. Then Kc Acl. If be A\0 then bG U0 is a non-
trivial right ideal. But then aG U0 bG U 0 and so a = bg for some
g€@G, whence b = ag*e K. Thus 4 = K.

If M is a right subdirectly irreducible monoid for which G is
finite and |G| > 1, then G is a cyclic group of prime power, or G
is a generalized quaternion group. Moreover, if M is periodic then
since G acts semiregularly on K\0, (if M + &), we have | K| =1 + |G|.

THEOREM 4.7. If M s a finite right subdirectly irreducible
monotd which is not a group, them |M| =1 mod (|G)).

Proof. G acts semiregularly on M\0 by Lemma 3.2.

LeMMA 48. If M 1is a finite right subdirectly irreducible
monoid which is mot a group, then I" = K for some ne._4". For
all xeI*\K, I = K.

Proof. Let n be such that I" =0 but I*** =0. Then Kc I~
For xeI™ we have al = Ix =0 and so € K. Thus K=1I"*. If
reI"\K, then I =+ 0 by Lemma 3.11 and so Kzl I* = K. Thus
xl = K.

Thus if M is a finite right subdirectly irreducible monoid which
is not a group, then there exists ne_s" and that

I21r2...21"'2I"=K.

LeEMMA 4.9. If M s a finite right subdirectly irreducible
monoid which is not a group, then |I'| = 1(mod |G|) for all i€ 1.

Proof. G acts semiregularly on I°\0.
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COROLLARY 4.10. For each ¢, |I'\I'*'} = O(mod |G ).

Given any m, ne .47, n > 1 there exists a right subdirectly ir-
reducible monoid M which is not a group, and for which |M|=
1+ np™.

ExaMPLE 4.11. Let me._s" and let G be a group of order p™
with minimum subgroup H = 1. Letne._4" and define G, = G,=+--=
G, = G. Define M to be the disjoint union S = G, UG, U--- UG, U0.
Multiplication in M is defined as follows:

. A
if (g)e G, (h); € Gy then (g)(h); = {TWers LTI =%

Then M is a right subdirectly irreducible monoid with G = G,,
I=G6GUGU---UG,U0, K=G,U0,I"=K,and |[M| =1+ (n + Dp.
Note that [I\I**'| = |G| for 1 <1 < n. It is clear that the example
can be modified in such a manner that |I\I'*!| =xn,|G| for
1<t n—1,n, arbitrary.
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