Recently, L. Carlitz extended certain known generating functions for Laguerre and Jacobi polynomials to the forms:

\[\sum_{n=0}^{\infty} c_n^{(\alpha,\lambda)} t^n/n! \quad \text{and} \quad \sum_{n=0}^{\infty} d_n^{(\alpha,\beta,\lambda,\mu)} t^n/n! , \]

respectively, where \(c_n^{(\alpha)} \) and \(d_n^{(\alpha,\beta)} \) are general one- and two-parameter coefficients. In the present paper some generalizations of Carlitz's results of this kind are derived, and a number of interesting applications of the main theorem are given.

1. Introduction and the main results. Motivated by his generating function [2, p. 826, Eq. (8)]

\[\sum_{n=0}^{\infty} L_n^{(\alpha+\lambda,\mu)}(x)t^n = \frac{(1 + v)^{\alpha+1}}{1 - \lambda v} \exp(-xv) , \]

where \(\alpha, \lambda \) are arbitrary complex numbers and \(v \) is a function of \(t \) defined by

\[v = t(1 + v)^{\lambda+1} , \quad v(0) = 0 , \]

and by its subsequent generalization due to Srivastava and Singhal [9, p. 749, Eq. (8)]

\[\sum_{n=0}^{\infty} P_n^{(\alpha+\lambda,\beta,\mu)}(x)t^n = (1 + \xi)^{\alpha+1}(1 + \eta)^{\beta+1}[1 - \lambda \xi - \mu \eta - (1 + \lambda + \mu)\xi\eta]^{-1} , \]

where \(\xi \) and \(\eta \) satisfy

\[(x + 1)^{-1}\xi = (x - 1)^{-1}\eta = \frac{1}{2}t(1 + \xi)^{\lambda+1}(1 + \gamma)^{\mu+1} , \]

Carlitz [3] has recently derived generating functions for certain general one- and two-parameter coefficients [op. cit., p. 521, Theorem 1 and Eq. (2.10)]. Our proposed generalizations of Carlitz's main results in [3] are contained in the following

Theorem. Let \(A(z) \), \(B(z) \) and \(z^{-1}C(z) \) be arbitrary functions which are analytic in the neighborhood of the origin, and assume that

\[A(0) = B(0) = C'(0) = 1 . \]
Define the sequence of functions \(\{f_n(\alpha)(x)\}_{n=0}^{\infty} \) by means of
\[
A(z)B(z)\exp(xC(z)) = \sum_{n=0}^{\infty} f_n(\alpha)(x)\frac{z^n}{n!},
\]
where \(\alpha \) and \(x \) are arbitrary complex numbers independent of \(z \).

Then, for arbitrary parameters \(\lambda \) and \(y \) independent of \(z \),
\[
\sum_{n=0}^{\infty} f_n(\alpha,\lambda)(x + ny)\frac{t^n}{n!} = \frac{A(\zeta)B(\zeta)\exp(xC(\zeta))}{1 - \zeta[\lambda B'(\zeta)/B(\zeta) + yC'(\zeta)]},
\]
where
\[
\zeta = t[B(\zeta)]^y \exp(yC(\zeta)).
\]

More generally, if the functions \(A(z), B_i(z) \) and \(z^{-i}C_j(z) \) are analytic about the origin such that
\[
A(0) = B_i(0) = C'_j(0) = 1, \quad i = 1, \ldots, r; \quad j = 1, \ldots, s,
\]
and if
\[
A(z) \prod_{i=1}^{r} [B_i(z)]^{\alpha_i} \exp\left(\sum_{j=1}^{s} x_j C_j(z)\right) = \sum_{n=0}^{\infty} g_n(\alpha_1,\ldots,\alpha_r;x_1, \ldots, x_s)\frac{z^n}{n!},
\]
then, for arbitrary \(\alpha_i \)'s, \(\lambda_i \)'s, \(x_i \)'s and \(y_i \)'s independent of \(z \),
\[
\sum_{n=0}^{\infty} g_n(\alpha_1,\lambda_1,\ldots,\alpha_r,\lambda_r;x_1 + ny_1, \ldots, x_s + ny_s)\frac{t^n}{n!} = \frac{A(\zeta) \prod_{i=1}^{r} [B_i(\zeta)]^{\alpha_i} \exp\left(\sum_{j=1}^{s} x_j C_j(\zeta)\right)}{1 - \zeta\left(\sum_{i=1}^{r} \lambda_i[B'_i(\zeta)/B_i(\zeta)] + \sum_{j=1}^{s} y_j C'_j(\zeta)\right)},
\]
where
\[
\zeta = t \prod_{i=1}^{r} [B_i(\zeta)]^{\lambda_i} \exp\left(\sum_{j=1}^{s} y_j C_j(\zeta)\right).
\]

Remark 1. For \(x = y = 0 \), our generating function (1.7) would evidently reduce to Carlitz's result given by his Theorem 1 [3, p. 521].

Remark 2. The general result (1.11) with \(r = 2 \) and \(x_j = y_j = 0, \quad j = 1, \ldots, s \), is essentially the same as a known result on generating functions for certain two-parameter coefficients, which is due also to Carlitz [3, p. 521, Eq. (2.10)].

Remark 3. Formula (1.7) with \(\lambda = y = 0 \) and its generalization...
(1.11) with $\lambda_i = y_j = 0$, $i = 1, \ldots, r$; $j = 1, \ldots, s$, evidently correspond to the generating functions (1.6) and (1.10), respectively.

2. Proof of the theorem. By Taylor's theorem, (1.6) gives

\[(2.1) \quad f^\alpha_n(x) = D^n_z[A(z)[B(z)]^n \exp (xC(z))] \bigg|_{z=0},\]

whence

\[(2.2) \quad f^{(\alpha + \lambda n)}(x + ny) = D^n_z[f(z)[\phi(z)]^n] \bigg|_{z=0},\]

where, for convenience,

\[(2.3) \quad f(z) = A(z)[B(z)]^n \exp (xC(z)), \quad \phi(z) = [B(z)]^2 \exp (yC(z)).\]

From (2.2) we have

\[(2.4) \quad \sum_{n=0}^{\infty} f^{(\alpha + \lambda n)}(x + ny) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \frac{t^n}{n!} D^n_z[f(z)[\phi(z)]^n] \bigg|_{z=0},\]

where $f(z)$ and $\phi(z)$ are given by (2.3).

We now apply Lagrange's expansion in the form [6, p. 146, Problem 207]:

\[(2.5) \quad \sum_{n=0}^{\infty} \frac{t^n}{n!} D^n_z[f(z)[\phi(z)]^n] \bigg|_{z=0} = \frac{f(\zeta)}{1 - t\phi'(\zeta)},\]

where the functions $f(z)$ and $\phi(z)$ are analytic about the origin, and ζ is given by

\[(2.6) \quad \zeta = t\phi(\zeta), \quad \phi(0) \neq 0,\]

and the generating function (1.7) follows readily from (2.4) under the constraints (1.5) and (1.8).

The derivation of the multivariable (and multiparameter) generating function (1.11) runs parallel to that of (1.7) as described above, and we skip the details involved.

3. Applications to special polynomials. We begin by recalling the generating function [8, p. 78, Eq. (3.2)]

\[(3.1) \quad \sum_{n=0}^{\infty} G_n^{(\alpha)}(x^{1/r}, r, p, k)z^n = (1 - kx)^{-\alpha/k} \exp (px[1 - (1 - kx)^{-r/k}]),\]

where $G_n^{(\alpha)}(x, r, p, k)$ are the polynomials considered by Srivastava and Singhal [8] in an attempt to present a unified study of the various known generalizations of the classical Laguerre and Hermite polynomials, the parameters α, p, k and r being arbitrary (with, of course, $k, r \neq 0$).

Compare (1.6) and (3.1), and we have
(3.2) \(A(z) = 1 \), \(B(z) = (1 - kz)^{-1/k} \), \(C(z) = p[1 - (1 - kz)^{-r/k}] \), and
\[
f^{(n)}_a(x) \longrightarrow n! \, G^{(n)}_a(x^{1/r}, r, p, k).
\]

It follows from (1.7) that
\[
\sum_{n=0}^{\infty} G^{[\alpha + \lambda n]}(x + ny)^{1/r}, r, p, k) t^n
\]
\[
= \frac{(1 - \zeta)^{-\alpha/k} \exp (px[1 - (1 - \zeta)^{-r/k}])}{1 - k^{-1}\zeta(1 - \zeta)^{-1}[\lambda - rpy(1 - \zeta)^{-r/k}]},
\]
where
\[
(3.4) \quad \zeta = k t(1 - \zeta)^{-1/k} \exp (py[1 - (1 - \zeta)^{-r/k}]).
\]

Put \(\zeta = w/(1 + w) \), so that
\[
(3.5) \quad 1 - \zeta = \frac{1}{1 + w} \quad \text{and} \quad \frac{\zeta}{1 - \zeta} = w.
\]

Thus (3.3) can be put in its equivalent form:
\[
\sum_{n=0}^{\infty} G^{[\alpha + \lambda n]}(x + ny)^{1/r}, r, p, k) t^n
\]
\[
= \frac{(1 + w)^{\alpha/k} \exp (px[1 - (1 + w)^{r/k}])}{1 - k^{-1}w[\lambda - rpy(1 + w)^{r/k}]},
\]
where
\[
(3.7) \quad w = k t(1 + w)^{1 - 1/k} \exp (py[1 - (1 + w)^{r/k}]).
\]

Some special cases of (3.3) and (3.6) are worthy of mention. Indeed, the polynomials \(G^{(\alpha)}(x, r, p, k) \) can be specialized to a number of familiar classes of polynomials by appealing to the relationships given, for example, by Srivastava and Singhal [8, p. 76]. First of all we make use of a relationship with Laguerre polynomials, viz [8, p. 76, Eq. (1.9)]
\[
(3.8) \quad G^{(\alpha)}(x, 1, 1, 1) = L^{(\alpha)}(x).
\]

Thus, our formulas (3.3) and (3.6) with \(r = p = k = 1 \) reduce to the corresponding generating functions for the Laguerre polynomials. These generalizations of (1.1) were considered by Carlitz [3, p. 525].

Next we recall that [8, p. 76, Eq. (1.8)]
\[
(3.9) \quad G^{(\alpha - 1)}(x, 2, 1, 1) = \frac{(-x)^n}{n!} H_n(x).
\]

By setting \(\alpha = 1, \lambda = -1, r = 2, \) and \(p = k = 1, \) (3.3) thus reduces
to

\[(3.10) \quad \sum_{n=0}^{\infty} H_n(\sqrt{x + ny}) (t\sqrt{x + ny})^n = \frac{\exp (x(\zeta^2 + 2\zeta)(1 + \zeta)^{-2})}{1 - 2y\zeta(1 + \zeta)^{-2}} , \]

where

\[(3.11) \quad \zeta = t(1 + \zeta) \exp (y(\zeta^2 + 2\zeta)(1 + \zeta)^{-2}) . \]

Similarly, (3.6) yields

\[(3.12) \quad \sum_{n=0}^{\infty} H_n(\sqrt{x + ny}) (t\sqrt{x + ny})^n = \frac{\exp (x(2w - w^2))}{1 - 2yw(1 - w)} , \]

where

\[(3.13) \quad w = t \exp (y(2w - w^2)) . \]

The generating functions (3.10) and (3.12) for Hermite polynomials are believed to be new. Notice, however, that if in (3.1) (with \(a = 0, r = 2, p = 1, \) and \(k = -1\)) we replace \(x\) by \(x^2\), use the relationship \([8, \text{p. 76, Eq. (1.8)}]\)

\[(3.14) \quad G_n^{(0)}(x, 2, 1, -1) = \frac{(-x)^n}{n!} H_n(x) , \]

instead of (3.9), and then apply our theorem directly, we shall obtain a known generating function for Hermite polynomials \([3, \text{p. 524, Eq. (4.4)}]\).

Yet another set of special cases of our generating functions (3.3) and (3.6) would follow if we put \(p = r = 1\) and apply the easily verifiable relationship

\[(3.15) \quad G_n^{(\alpha+1)}(x, 1, 1, k) = k^n Y_n^\alpha(x; k) , \]

where \(Y_n^\alpha(x; k)\) are one class of the biorthogonal polynomials introduced by Konhauser \([4]\) for \(\alpha > -1\) and \(k = 1, 2, 3, \ldots\).

From (3.3) we thus find that

\[(3.16) \quad \sum_{n=0}^{\infty} Y_n^{\alpha+2n}(x + ny; k)t^n = \frac{(1 - \zeta)^{-(\alpha+1)/k} \exp (x[1 - (1 - \zeta)^{-1/k}])}{1 - k^{-1}\zeta(1 - \zeta)^{-1}[\lambda - y(1 - \zeta)^{-1/k}]} , \]

where

\[(3.17) \quad \zeta = t(1 - \zeta)^{-1/k} \exp (y[1 - (1 - \zeta)^{-1/k}]) , \]

while (3.6) gives us
\begin{equation}
\sum_{n=0}^{\infty} Y_{\alpha+\lambda n}^{\alpha}(x + ny; k)t^n = \frac{(1 + w)^{(\alpha+1)/k} \exp (x[1 - (1 + w)^{1/k}])}{1 - k^{-1}w[\lambda - y(1 + w)^{1/k}]} , \tag{3.18}
\end{equation}

where

\begin{equation}
w = t(1 + w)^{1+\lambda/k} \exp (y[1 - (1 + w)^{1/k}]) . \tag{3.19}
\end{equation}

For \(y = 0 \), the generating functions (3.16) and (3.18) reduce essentially to a result due to Calvez et Génin [1, p. A41, Eq. (2)]. Furthermore, since

\begin{equation}
Y_{\alpha}^{\alpha}(x; 1) = L_{\alpha}(x) , \tag{3.20}
\end{equation}

in their special cases when \(k = 1 \), (3.16) and (3.18) naturally yield the aforementioned Carlitz's results involving Laguerre polynomials.

Finally, we give a simple application of our multiparameter generating function (1.11). Indeed, for the Lauricella polynomials (cf. [5, p. 113])

\begin{equation}
F_{\beta}[\alpha, \beta_1, \ldots, \beta_s; \lambda_1, \ldots, \lambda_s] = \sum_{m_1, \ldots, m_s = 0}^{\infty} \frac{(-n)_{m_1+\cdots+m_s}}{(\alpha)_{m_1+\cdots+m_s}} \frac{(\beta_1)_{m_1}}{m_1!} \cdots \frac{(\beta_s)_{m_s}}{m_s!} z^n , \tag{3.22}
\end{equation}

where \((\alpha)_n = \Gamma(\alpha + n)/\Gamma(\alpha), it is readily observed that

\begin{equation}
\sum_{n=0}^{\infty} \frac{(\alpha)_n}{n!} F_{\beta}^{\alpha}[-n, \beta_1, \ldots, \beta_s; \alpha; \gamma_1, \ldots, \gamma_s] z^n = (1 - z)^{-\alpha} \prod_{j=1}^{s} \left(1 + \frac{\gamma_j z}{1 - z}\right)^{-\beta_j} , \quad |z| < 1 . \tag{3.23}
\end{equation}

Compare (3.22) and (1.10) with \(r = s + 1 \), and we get

\begin{equation}
A(z) = 1 , \quad B_1(z) = (1 - z)^{-1} , \quad B_{s+1}(z) = \left(1 + \frac{\gamma_j z}{1 - z}\right)^{-1} , \quad x_j = 0 , \quad j = 1, \ldots, s , \tag{3.24}
\end{equation}

and

\begin{equation}
g_{\mu}(\alpha, \beta_1, \ldots, \beta_s; 0, \ldots, 0) \longrightarrow (\alpha)_n F_{\beta}^{\alpha}[-n, \beta_1, \ldots, \beta_s; \alpha; \gamma_1, \ldots, \gamma_s] . \tag{3.25}
\end{equation}

It follows at once from (1.11) that

\begin{equation}
\sum_{n=0}^{\infty} \frac{(\alpha + \lambda n)_n}{n!} F_{\beta}^{\alpha}[-n, \beta_1 + \mu_1 n, \ldots, \beta_s + \mu_s n; \alpha + \lambda n; \gamma_1, \ldots, \gamma_s] t^n = \frac{(1 - z)^{-\alpha} \prod_{j=1}^{s} \left(1 + \frac{\gamma_j z}{1 - z}\right)^{-\beta_j}}{1 - z(1 - \zeta)^{-1} \left[\lambda - \sum_{j=1}^{s} \gamma_j \mu_j (1 - \zeta + \gamma_j \zeta)^{-1}\right]} , \tag{3.24}
\end{equation}

where

\begin{equation}
w = t(1 + w)^{1+\lambda/k} \exp (y[1 - (1 + w)^{1/k}]) . \tag{3.19}
\end{equation}

For \(y = 0 \), the generating functions (3.16) and (3.18) reduce essentially to a result due to Calvez et Génin [1, p. A41, Eq. (2)]. Furthermore, since

\begin{equation}
Y_{\alpha}^{\alpha}(x; 1) = L_{\alpha}(x) , \tag{3.20}
\end{equation}

in their special cases when \(k = 1 \), (3.16) and (3.18) naturally yield the aforementioned Carlitz's results involving Laguerre polynomials.

Finally, we give a simple application of our multiparameter generating function (1.11). Indeed, for the Lauricella polynomials (cf. [5, p. 113])

\begin{equation}
F_{\beta}[\alpha, \beta_1, \ldots, \beta_s; \lambda_1, \ldots, \lambda_s] = \sum_{m_1, \ldots, m_s = 0}^{\infty} \frac{(-n)_{m_1+\cdots+m_s}}{(\alpha)_{m_1+\cdots+m_s}} \frac{(\beta_1)_{m_1}}{m_1!} \cdots \frac{(\beta_s)_{m_s}}{m_s!} z^n , \tag{3.22}
\end{equation}

where \((\alpha)_n = \Gamma(\alpha + n)/\Gamma(\alpha), it is readily observed that

\begin{equation}
\sum_{n=0}^{\infty} \frac{(\alpha)_n}{n!} F_{\beta}^{\alpha}[-n, \beta_1, \ldots, \beta_s; \alpha; \gamma_1, \ldots, \gamma_s] z^n = (1 - z)^{-\alpha} \prod_{j=1}^{s} \left(1 + \frac{\gamma_j z}{1 - z}\right)^{-\beta_j} , \quad |z| < 1 . \tag{3.23}
\end{equation}

Compare (3.22) and (1.10) with \(r = s + 1 \), and we get

\begin{equation}
A(z) = 1 , \quad B_1(z) = (1 - z)^{-1} , \quad B_{s+1}(z) = \left(1 + \frac{\gamma_j z}{1 - z}\right)^{-1} , \quad x_j = 0 , \quad j = 1, \ldots, s , \tag{3.24}
\end{equation}

and

\begin{equation}
g_{\mu}(\alpha, \beta_1, \ldots, \beta_s; 0, \ldots, 0) \longrightarrow (\alpha)_n F_{\beta}^{\alpha}[-n, \beta_1, \ldots, \beta_s; \alpha; \gamma_1, \ldots, \gamma_s] . \tag{3.25}
\end{equation}

It follows at once from (1.11) that

\begin{equation}
\sum_{n=0}^{\infty} \frac{(\alpha + \lambda n)_n}{n!} F_{\beta}^{\alpha}[-n, \beta_1 + \mu_1 n, \ldots, \beta_s + \mu_s n; \alpha + \lambda n; \gamma_1, \ldots, \gamma_s] t^n = \frac{(1 - z)^{-\alpha} \prod_{j=1}^{s} \left(1 + \frac{\gamma_j z}{1 - z}\right)^{-\beta_j}}{1 - z(1 - \zeta)^{-1} \left[\lambda - \sum_{j=1}^{s} \gamma_j \mu_j (1 - \zeta + \gamma_j \zeta)^{-1}\right]} , \tag{3.24}
\end{equation}

where
where

\[(3.25) \quad \zeta = t(1 - \zeta)^{-1} \prod_{j=1}^{s} \left(1 + \frac{\gamma_j \zeta}{1 - \zeta} \right)^{-\mu_j}. \]

Replacing \(\alpha \) by \(\alpha + 1 \) and \(\zeta \) by \(\zeta/(1 + \zeta) \), (3.24) may be rewritten in its equivalent form:

\[
\sum_{n=0}^{\infty} \left(\frac{\alpha + (\lambda + 1)n}{n} \right) F_{\beta}^\lambda[-\mu, \beta_1 + \mu, n, \ldots, \beta_s + \mu, n; \\
\alpha + \lambda n + 1; \gamma_1, \ldots, \gamma_s] t^n
\]

\[(1 + \zeta)^{s+1} \prod_{j=1}^{s} (1 + \gamma_j \zeta)^{-\beta_j}
\]

\[1 - \zeta \left[\lambda - (1 + \zeta) \sum_{j=1}^{s} \gamma_j \mu_j (1 + \gamma_j \zeta)^{-1} \right] \]

where \(\zeta \) is now given by

\[(3.27) \quad \zeta = t(1 + \zeta)^{\lambda+1} \prod_{j=1}^{s} (1 + \gamma_j \zeta)^{-\mu_j}. \]

For \(\mu_1 = \cdots = \mu_s = 0 \), the multiparameter generating function (3.26) is derivable also as a special case of a known result \([7, p. 1080, Eq. (6)]\) involving the generalized Lauricella functions of several variables.

A number of additional applications of our theorem can be given by using some of the examples considered earlier by Carlitz \([3]\).

REFERENCES

Received April 25, 1979. Supported, in part, by NSERC grant A-7353.

University of Victoria
Victoria, British Columbia, Canada V8W 2Y2
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $84.00 a year (6 Vols., 12 issues). Special rate: $42.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Older back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1979 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Charles A. Akemann and Steve Wright, *Compact and weakly compact derivations of C*-algebras* ... 253
Dwight Richard Bean, Andrzej Ehrenfeucht and George Frank McNulty, *Avoidable patterns in strings of symbols* .. 261
Kenneth Alexander Brown and John William Lawrence, *Injective hulls of group rings* ... 323
Jacob Burbea, *The Schwarzian derivative and the Poincaré metric* 345
Stefan Andrus Burr, *On the completeness of sequences of perturbed polynomial values* ... 355
Peter H. Chang, *On the characterizations of the breakdown points of quasilinear wave equations* ... 361
Joseph Nicholas Fadyn, *The projectivity of Ext(T, A) as a module over E(T)* ... 383
Donald Eugene Maurer, *Arithmetic properties of the idèle discriminant* 393
Stuart Rankin, Clive Reis and Gabriel Thierrin, *Right subdirectly irreducible semigroups* ... 403
David Lee Rector, *Homotopy theory of rigid profinite spaces. I* 413
Raymond Moos Redheffer and Wolfgang V. Walter, *Comparison theorems for parabolic functional inequalities* .. 447
H. M. (Hari Mohan) Srivastava, *Some generalizations of Carlitz’s theorem* ... 471
James Alan Wood, *Unbounded multipliers on commutative Banach algebras* ... 479
T. Yoshimoto, *Vector-valued ergodic theorems for operators satisfying norm conditions* ... 485
Jerry Searcy and B. Andreas Troesch, *Correction to: “A cyclic inequality and a related eigenvalue problem”* 501
Leslie Wilson, *Corrections to: “Nonopenness of the set of Thom-Boardman maps”* ... 501