CORRECTIONS TO: “NONOPENNESS OF THE SET OF THOM-BOARDMAN MAPS”

Leslie Wilson
Correction to

A CYCLIC INEQUALITY AND A RELATED EIGENVALUE PROBLEM

J. L. Searcy and B. A. Troesch

Volume 81 (1979), 217-226

Professor P. Nowosad, Rio de Janeiro, has informed us that the inequality \(S(x) > N/2 \) holds for \(N = 12 \) [1]. Furthermore, our belief that the inequality also holds for odd \(N \leq 23 \) has been stated, and strongly supported by numerical evidence, in [2].

Corrections to

CHARACTERIZATION OF A CLASS OF TORSION FREE GROUPS IN TERMS OF ENDOMORPHISMS

E. F. Cornelius, Jr.

Volume 79 (1978), 341-355

Received February 5, 1974 and in revised form June 7, 1978.

Corrections to

NONOPENNESS OF THE SET OF THOM-BOARDMAN MAPS

Leslie C. Wilson

Volume 84 (1979), 225-232

In [3] we showed that the set of Thom-Boardman maps is open if the Morin (\(S_{1,4} \)) singularities alone occur generically, and is not
open if S_2 singularities occur generically. However, we neglected to consider the $S_{i,i}$ singularities, $i \geq 2$ (recall that the subscripts denote corank, not kernel rank, and that $S_{1;k}$ means $S_{1,1,\ldots,1}$ with k 1's). In fact, the set of Thom-Boardman maps is not open if the $S_{1,2}$ singularities occur generically, which occurs whenever $n > p \geq 4$. Thus Theorem 1.1 of [3] should be stated: The Thom-Boardman maps form an open subset of $C(N, P)$ iff either $2p > 3n - 4$ or $p < 4$.

We will now indicate how the above claims are proved. Using Proposition 3 of [2], it is easy to calculate that the codimension of $S_{1,2}$ (which Mather denotes $\Sigma_0^{n-p+1,2}$; we assume $n > p$) is $n - p + 4$. Thus $S_{1,2}$ singularities occur generically iff $n > p \geq 4$.

The 3-jet at 0 of

$$f(x_1, \ldots, x_n) = (x_1, \ldots, x_{p-1}, x_p^2 + \cdots + x_{n-2}^2 + x_{n-1}^2x_n$$

$$+ x_1x_{n-1} + x_2x_n + x_3x_n^2)$$

lies in $S_{1,2,0} \cap \iota S_{1,2}$. That it lies in $S_{1,2,0}$ follows from Mather's algorithm for computing the Thom-Boardman type (see the last definition on p. 236 of [2]). That j^3f is transverse to $S_{1,2}$ follows from the last paragraph in [2].

For each k, $z = j^k f(0)$ lies in the closure of $S_{1;k}$. To see this, note that the contact class of $x^2y + Q$, Q a nondegenerate quadratic form in other variables, lies in the closure of the contact class of $x^2y - y^k + Q$ (consider the curve $x^2y - ty^k + Q$). By Table 3 of [1], the latter contact class lies in the closure of the contact class of $x^2 + y^{k+1} + Q$, which lies in $S_{1;k}$.

By the Transversal Extension Theorem of [3], there is a Thom-Boardman map g with $j^k g(0) = z$. By Lemma 3.5 of [3], there are maps g_m which converge to g in the Whitney C^∞ topology such that each g_m has $S_{1;k}$ singularities. The codimension of $S_{1;k}$ is $n - p + k$. Thus, choosing $k > p$, g_m cannot be a Thom-Boardman map.

REFERENCES

Charles A. Akemann and Steve Wright, *Compact and weakly compact derivations of C*-algebras* .. 253
Dwight Richard Bean, Andrzej Ehrenfeucht and George Frank McNulty, *Avoidable patterns in strings of symbols* 261
Kenneth Alexander Brown and John William Lawrence, *Injective hulls of group rings* .. 323
Jacob Burbea, *The Schwarzian derivative and the Poincaré metric* 345
Stefan Andrus Burr, *On the completeness of sequences of perturbed polynomial values* .. 355
Peter H. Chang, *On the characterizations of the breakdown points of quasilinear wave equations* .. 361
Joseph Nicholas Fadyn, *The projectivity of Ext(T, A) as a module over E(T)* .. 383
Donald Eugene Maurer, *Arithmetic properties of the idèle discriminant* 393
Stuart Rankin, Clive Reis and Gabriel Thierrin, *Right subdirectly irreducible semigroups* .. 403
David Lee Rector, *Homotopy theory of rigid profinite spaces. I* 413
Raymond Moos Redheffer and Wolfgang V. Walter, *Comparison theorems for parabolic functional inequalities* .. 447
H. M. (Hari Mohan) Srivastava, *Some generalizations of Carlitz’s theorem* .. 471
James Alan Wood, *Unbounded multipliers on commutative Banach algebras* .. 479
T. Yoshimoto, *Vector-valued ergodic theorems for operators satisfying norm conditions* .. 485
Jerry Searcy and B. Andreas Troesch, *Correction to: “A cyclic inequality and a related eigenvalue problem”* 501
Leslie Wilson, *Corrections to: “Nonopenness of the set of Thom-Boardman maps”* .. 501