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1. Introduction. Let G be the group with p elements where
p is a prime number and let k& be a field of characteristic p. Then

V., = klz]/(x —1)* forn=1,2 ---,p

are the only indecomposable k[G]-modules (observe that V, = k[G]
is free). The 7rth symmetric power S"V,:, can be written as a
direct sum of indecomposables. Let b,, denote the number of
indecomposables for p large (i.e., p > nr + 1) and define the “false”
Hilbert series by

Palt) = 3 bt -

One way to find e.g., ¥y(¢) is to actually compute the decompositions
of S*V, and counting the components. Then we get the following
series for b,,

1,1,2 8,56 8, 10, 13, 15, 18, 21, 25, 28, - - .

Guessing a difference equation and soiving for b,, and adding up we
get 4(t). For m =5 this method is too tedious and +; and 4 in
{1] were found by other methods (see Ch. V in [1]). After the
manuscript of [1] was completed I found that +, for 2, 8,4 agreed
with the generating function for the number of covariants of a
binary form of degree n in Faa de Bruno [4]. Later I learned that
Franklin and Sylvester a century ago computed «, for n=1,2, ---,
10 and 12 and that our 4, and + up to some misprints agreed with
theirs.

That this agreement is no coincidence is explained in §2. It
turns out that our G-invariants are identical with what Dickson [3]
calls a formal modular semi invariant. For p large they agree with
the leading terms (which are semi invariants) of covariants in
characteristic zero. Thus from [1] we get the following integral
formula for the counting function of covariants

_1_8“ 1+ coso
2w = ﬁ (1 — tein2%)

v=0

Pra(l) = do .

In §3 it is proved that
P07 = (=1 "1y, (2)
1
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thus solving Problem VI. 3.12 of [1]. The proof uses the integral
above and residue calculus. In a private communication R. P.
Stanley has given a proof using his “Combinatorial Reciprocity
Theorem” [5].

In §4 we try to compute the ring (S-V,)° when p =5. The
twelve generators are found in Dickson [3] and in Williams [8] and
the Hilbert series ¢,(t) of [1] tells us where to look for the relations.
There are at least 16 relations ranging from degree 6 up to degree
10. The eight worst ones were found by Jan Bohman. Using an
APL-program he had a computor write down the matrix and then
solved the system of equations by hand. The results were then
checked by the computor.

In [2] the number of non-free components of S"V,,, was com-
puted. In §5 similar formulas for the number of free components
are found. There are several corollaries that can be formulated in
pure combinatorial language with no reference to invariant theory.

R. P. Stanley corrected some mistakes in the first draft of this
paper. I am most grateful for this. Finally I wish to thank Jan
Bohman whose computations have been invaluable to me.

NOTATIONS.

p is an odd prime

A(m, n, r) = the number of partitions of m into at most n parts
all of size <r. pd,S = projective dimension of the A-module S.

2. Invariants, semi invariants and covariants.

2.1. Classical invariants. For the benefit of the reader we
first review some of the classical invariant theory. The coefficients
are the rational numbers. Let a binary form

€n n .
flz, y) = go. <z )aix"‘ly’
of degree n be given.
Then a polynomial
F(CLO, Uy * 00y Qyy T, y) = Z:

J=0

(e
J

is called a covariant of index N and order m if the following con-
dition is fulfilled (¢; = ¢;(ay, - -+, a,) are polynomials with integral
coefficients): Make the substitution
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RIS (ML
Y YO\ Ui
with det T 2 0. The form becomes

=0

Then

F(Am Ty Am E, 77) = (det T)IF(CI,O, crty Ay X, y) .
Assign a weight v to a,. Then ¢ia,, -, a,) is homogeneous of degree
7 wWhere

nr = 2n + m

and is isobaric (all terms have the same weight) of weight \ + 7.
We note the following facts:

PropOSITION 2.1. (i) F is uniquely determined by its leading
term c,.

(ii) The number of linearly independent covariants F of the
n-form f with leading term ¢, of degree » is

[

/

(see Faa de Brumo [4] p. 235).

A polynomial ¢ = ¢(a,, - -+, a,) € Z[ay, + -+, a,] IS a semi tnvariant
(for f) if it is invariant under the transformation

o)

PROPOSITION 2.2. ¢ s a semi invariant if and only if
(1) ¢ i8 homogeneous and isobaric

(2) c(“o; ay, Ay + 2a/l + Qoy a,+ (lf )an~1+<g >a‘n»2+ o +CL0>:

C((lo, Ay * vy (1,,,).

Then

2.2. Modular invariants. Now we consider polynomial with
coefficients in &k = Z/pZ. Let G = {d) be the group with p elements
(written multiplicatively). Let G act on kla, a,, - -, a,] via
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O'CLO = ao
oa, = a; + a,

n n
oa, = a, + 1 A, + 9 Ayt 00 +a,.

Then c(a,, - - -, a,) is a G-invariant if and only if

. n
(y) c<aoya1+a’0".‘yan+<

1>a'mﬁ1+ +a0> :c(ao: ”',a’n)-

This is exactly what Dickson [3] calls a (formal) modular semi
invariant for the binary form

n n L
f=2 < . >azx"“’yl .
=0 1

Then ¢€(S"V,+.)? in the notation of [1] means that ¢ is a modular
semi invariant that is homogeneous of degree ». Hence all results
in Chapter V in [1] are also results for modular semi invariants of
a binary form.

Let us now turn to the case when p is large. We introduce
the differential operator

0 0 0
Q= + 2 4+ .- p—— -
%o oa, % oa, + N oa,
If ¢(ay, -+, a,) is homogeneous of degree » and isobaric of weight

w then Q¢ is isobaric of weight w-1.

PROPOSITION 2.3. Assume that p > nr where degree ¢ = r. Then
¢ 18 G-invariant if and only if Q¢ = 0.

Proof. In Williams [8] it is proved that ¢ is a modular semi
invariant if and only if
Qe Q!
Q4+ 4+ =+ ) =0.
( pl | @p— DI °
But weight (¢) < nr < p and hence 2%¢ = 0 since 2 diminishes the
weight with one each time it is applied.

PROPOSITION 2.4. Assume that p > nr. Then there is a basis
of G-imvariants homogeneous of degree r consisting of 1isobaric
polynomials.

Proof. Assume that ¢ =¢, + ¢, + -+ + ¢, where the ¢;:s are
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[V

isobaric of weights

Wy > Wy > =0 > W, .
Apply 2

0=80¢c=%82c,+ -+ + Le¢, .

But weight (2¢,) = w;, — 1 and hence Q¢, = 0 for all 7.

THEOREM 2.5. Let h, ---, h, be a basis over @ for the covariants
having leading terms of degree r. Let ¢, ---, ¢, be their leading
terms (with coefficients im Z). Reduce the coefficients (mod p). If
p 18 large them ¢, -+, €, 18 a basis over Z/pZ for the homogeneous
G-invariants of degree r.

Proof. The ¢, ---, ¢, are isobaric and are semi invariants, hence
they satisfy Q¢, = 0. It follows that Q¢, = 0 and all the ¢,:s are
G-invariants. Now both the vector space of covariants having
leading terms of degree » and the homogeneous G-invariants of
degree » have dimension

S

over @ and Z/pZ respectively. Hence we need only to show that

¢, -, ¢, are linearly independent over Z/pZ. Express ¢, ---, ¢, as
linear combinations of Z of all monomials of degree # in a,, a,, -+ -, a,.
The resulting matrix has @-rank = s since ¢, ---, ¢, are linearly

independent. Then some s X s subdeterminant is nonzero. If p is
large enough then it is still nonzero after reduction (mod p). Hence
€, -+, €, are linearly independent over Z/pZ.

COROLLARY 2.6. Let b,, be the number of linearly independent
covariants with leading term of degree r. Then

_1_8” 1+ coso

— do .
2 J-= H (1 _ tei(n—zu)qa)
=0

b7 = ap(t) =

3. Proof of 4, (t7) = (—1)"t"+,(¢). In [1] it was proved that
(*) Pu(®) = 2=\ 0.(t, @)L + cos @)ip for 1] < 1

where

0.(t, @) =TI (1 — e,
v=0
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It is also proved that 4, is a rational function.
THEOREM 3.1. 4, (t77) = (—1)"t" ', (0).

Proof. If we simply change t to ¢t in the integral we will
get the wrong sign. This depends on the fact that (*) is not valid
for |t| > 1. We rather have

() o= gt P) (Lt cos PP = @) i 2> 1.

Put z = ¢** and write the integral as

2 271 < . n—2y
yl;[o (1 — tz"™™)

_ 1
= | F@xa

where I" is the unit circle in positive sense.
The rational funection

flo) = — L+
zz II (1 — tz'n—zu)

v=0

has the following poles (remember |f]| > 1).

(@) Imside I'. w;(t) = all solutions to the equations 2" = 1/t
for 0 < v < n/2.

(b) Outside I'. v;(t) = u;(t)™ = all solutions to the equations
227 =1¢ for 0 < v < n/2. Then

2_1_S f(@)dz = 3, Resf(s) = — 3 Resf(z)
Tl 1 z——uj(t) z=1.vj(t)

since the sum of the residues at all poles of a rational functionjis
Zero.

Let us now for a moment think of ¢ as satisfying |¢] < 1. Then
by (*) we have (since now the »,(t): s are inside I")

vult) = 2| f@de = 3, Res @
TrLJ1 z2=v ()
as a function of ¢. Hence for |#] > 1 again we get

0.t @)L+ cosg)p = — 3 Res fz) = —u(t)
T J—= z2=v (1)

and (#x) is proved. Now we observe that
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- t2)‘1<1 + 23 cos 2»¢>> if ¢ <1
(1 —2tcosp + tH)™* = ' .
—1 - t“’)“(l +23 ¢ cos 2»;0) it |>1.

Assume that n = 2m is even. Then

1
& p) = 1—-¢ (1 tz)mZd(t)COSl)¢1fltl<l
g, P 1 (=D &
ll P a tﬁ’"zd( >cos»¢1f ¢ >1

where the d.(t): s are rational functions of ¢. Multiplying by 1 +
cos @ and integrating over ¢ we get

1

® = 2| 0t, (1 + cos pap = L. 2
21 )~

T Ao O i <1

) = LA S S Gl VA S
) = 5o 0. 9L+ cos pip = o Uk (1)

if [t >1.

Hence for || < 1 we get

w1 (=1 _ gt
) = g O = T e ®

= "y (%) .
Similarly if n is odd we get

PutT) = =", (8) .
COROLLARY 3.2. Define H(v) by

Palt) = S:A([—'"'—”;—l] v n )t = 3, HOW .

Then

H(—v) = {0 if v=1,2, -.--, n
Hy—n—-1Difv>n+1.

Proof. First note that from Theorem 3.1 it follows that the
degree of the rational function 4,(f) is —(n + 1) < 0. Hence there
is for some N an Nth root of unity ¢ and polynomials p, ---, D,_;
such that H) = 375 {%p;(v). We thus can define H(—p) =
S C#p;(—v). The rest follows from 4.7 in Stanley [6].
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4. Computation of the ring of invariants in four variables
when p = 5. In this section we explicitly compute the ring S =
S-VE when G = Z/5Z. It can be described as the set of all poly-
nomials f in k|, x,, x, ®;] where chark = 5 such that

S, &, + 2o, T, + 22, + X, T3 + 32, + 3, + X)) = fl@g, T, Tpy Ty) .
The S is graded in a natural way by
S;={feS;deg f =1}

and
P(t) = 3 dim, (St

is the Hilbert series of S. In [1] @, was computed for all p and
for p =5 we get

_ _l—t4+ e+ ¢+200 1 —2t+ 28
B =00 =050 —ma-n  a-va-»"

Unfortunately @, does not give much information about the genera-
tors of S. In Dickson [3] and Williams [8] the following result is
found: S is generated by the following twelve polynomials (the sub-
seript indicates the degree)

Uy = X,

Wy = Lky — X3

Wy = X5k, + 22,22, + 203

vy = (20} — 22,2,)%; + L% — woX,

uy = (X%, — DX + (@2, — @)X, + T + X — X5x; — T,

v, = Toh — (XX, + X2y + 20007 — 225

Us = — XX — (L%, + 22T + (Ba,xi — xiad)a, + 252,25 — 22050, + X,

v, = X (xs — X + x5 — 205wk + wxi,)

w, = & + (227 — 2xx,)x; + Qake, — 2w0h)xi + (—xb + xt — x5 — 2wl
+ 200,27,),

ny = Lo — (20,22, + wHXs + (22i2; — wewdai + (o, + 2w, x; — 2 xi,

C ma)w, + xh + wiat — xxier — 2x5wk + 20ixs

Vg = — X8 + X5, + 223w, — 20,20

v, = (Qex? — 2x50,)w5 + X, (0 — xDXE — 2,205 + 22k + 25
+ x)xl + (—axdex, — 2wix,wd + 20230 — 20iw, + 2%,25)0,
+ (—xha} — 2w02} + 2xiwix, — X@IX; — 21§ + X5) .

Multiplying .@, with factors of the form 1 — t% where d, is the
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degree of the generator we get
Hy(8) = 048) = h(&)/(1 — )1 — t)(1 — ¢ (1 — ¢9*(L — &)*(L — &)1 — t7)
where
A(t) =1 — 3t° — 3t" — 5t® — 4t° — t*° + 6¢% + 13t + 19¢® + 19¢™
+ 9% — Bt® — 257 — 361° — 413 — 29¢ — 24 + 28t* + 3517

-+ 53t ++ 44¢% + 21¢% — 7 — 28t® — 41t* — 32t° — 2Tt — 61F
+ 9% + 13¢™ + 14¢% + 12¢% + 66% — 8™ —2t* + ¢ + 2t + 2t .

Let now A = kly, ---, 9] be the polynomial ring in twelve variables
and consider the free A-resolution of S.

T

0 M, cee M, M, A S 0
where T(y) = Uy =y 77:(?/12) = Un.
It follows that M, is the ideal generated by the relations
between the w,, ---, u;. Let {y,;} be a minimal A-basis for M, with

deg ¥,; = d,;. Then we get the Hilbert series
H(S) =1+ ; (—D)7%)H,(A)
= h()/(A — )L — )1 — )L — A — 1 — A — 7).

Unfortunately the Hilbert series does not completely determine the
number of relations, first syzigies ete. There can be cancellations
in the numerator. The following example (due to R. P. Stanley)
shows the difficulties: The ring

T = k=, y, 2, w]/(xw, yw, 2w, vyz)
has the Hilbert series

Qe 3
BT =122

but T has 4 relations and pd,.,,...;(T) = 3. Thus we should really
write

H(T) = L= B¢ + t(l) + S‘*ﬁ +) -t

Much work was spent on finding the relations. Let us indicate the
difficulties for the five relations of degree eight. There are 47

monomials uf, uiu,, ---, u,u, of degree 8. Expressing these in the
<8 ?3_ 3) = 165 monomials x§, xix,, ---, ©} we get a homogeneous linear

system of equations with 47 unknowns and 165 equations. Several
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reductions can be made but the relations were essentially found by
Jan Bohman by solving these equations by hand. Using the computer
language APL he could easily check the relations found.

THEOREM 4.1. Let p=5. Then S=S-V§ has 12 generators

Uy Uoy Ugy Vsy Uy Ug, Vs, Wy Ugy Vo, Uy and at least the following 16 7rela-
tions

R, = ui — ui — ujv,

R, = v} + u,u, — u) + Ui, — U0,

R, = uw; + wiu, + w0, + uiui

R, = uiuy + w30, + 2uiuUU; + Uz0; + UL,

R, = uu, + 00, — Uy — UsUy — WUV,

Ry = uwy + wiw, — wu, + 00, + U,

R, = U0s — U005 + UMUW5 — UyVsUy + WUy — U ULV,

R, = uuy — vy, — wiv, + 2uiuu, + w0, — U, — ulu, + 2uiu;

Ry = w,U; — Uty — Vs + 2UiUU, + 2Ui0, — uIU

Ry, = uius — sty + U U0 — 205 + uiug

Ry = usus — uiuy — U, + 0§ + UiU0, — Uiz + U
R, = wv,wy + w,ui — uduv, + v,0; + 0,05 — uUs
R

s = —2UiUv; + wudu, + wu: + 2uduw, — 2Uu; — v, + 2udul
— 2u,u;
R, = —ulu,ws + 200,08, — Vg — U5 + Wls — UiyUs + UTUV,

R, = uw0; + wiw; + U0, — Wik, + udu, — wUU, — 20U,
+ 2u5us — 20U,

Ry = wiuw, — wU,ws — UVU, — 2U UMy — 2UsU; + UV,V5 + U USU,
— WU, — U .

The case p =T. In his paper [8] Williams also found the 20

generators when p = 7. In this case the Hilbert series is

o) = LT L2+ 200+ 1+ ¢
’ - - —t9L —¢) "

Multiplying by the 16 factors 1 — ¢% corresponding to the other 16
generators we get

1-8°—t"—21°—48°— T — 5" — 442 4- 208 - - - ¥
A=A =) =)L —t)(L—2°)*(1 — (1 —2")*(1 —¢°)
(1 — t9)2(1 — tw)a(l _ tn)z(l — tu)

Oy(t) =

Hence there are at least 24 relations; probably 1 of degree 6, 1 of
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degree 7,2 of degree 8,4 of degree 9,7 of degree 10, 5 of degree
11 and 4 of degree 12. We see that the difficulties also increase
with the prime p.

Problem. (i) Compute the minimal number m = m(p, n) of
generators of S =S-V%, ..

(ii) Let A =Fkly, - -, ¥.] as above.

Compute pd,S.

5. The number of free components of S"V,., and some
combinatorial formulas. In Chapter III and V of [1] we studied
the decomposition of the symmetric power

STV,,L-H = éCjVj .
=1

We found methods to compute ¢; for 7 =1,2, ---, p — 1. Here we
find a simple formula for ¢,, the number of free components of
S™V,. To indicate the dependence on # and » we denote this
number by d,.. Recall that in [1] and [2] we get the following
results:

Let

@, = the number of components of S*V,,
¢,, = the number of non-free components of S*V,, .

Then

>, A(m, m, r) if » or n is even

m=(
2m=rn

A,y = n

Z A(m, m, ) if both 2 and » are odd .

2m=rn-il

e, = (___1)71,7‘( mzéo Alm, n, r) — mzzf) A(m, n, 7‘)>

om=rn am=rn1
(all congruences are mod p).
Then
d,,=a,,—e,,and we get

PROPOSITION 5.1. The number of free components of S™V, ., is

rn
>, A(m, n, r) if r or n is even
=0

2m=rndl

dﬂ,r =

rn

>, A(m, n, r) if both v and n are odd.

am=rn
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We get several corollaries that can be formulated in pure com-
binatorial language.

In all the following formulas 0 <7, n < p.

COROLLARY 5.2. If n+ r = p the S"V,+, is free and

COROLLARY 5.2". If n + » = p then

S Alm,n, )= 3 Am, m, 1) = i{”“’).
2m'rzn::r:)+l QmmE:;BIL p "
COROLLARY 5.3. If r +n =9 — 1 then
-1
i((p ) — 1) if n is even
i = D n

1

[[p—1 : .

—Q — 4+ 1) if n 1s odd .
b n

If » +n =p—1 then

1

y ;}_<<p B 1> - 1) if n is even
S, Am, n, 1) = "

m=rn - 1 . .
o l((p ) —p+ l> if n 1s odd and 1 is even
p n )
>

'p—1
A(m, r, m) = %((p > —p+ 1> if both m and r are odd .
m=0 n

COROLLARY 5.4. If r +n = — 2 then

COROLLARY 5.3'.

1

__<<p _2> — p+'n> if nis even
D n
d,.. = .

_1_(<p > — 'n> if n 1is odd.

D n

COROLLARY 5.4'. If r» +n =p — 2 then

— 2
. i((p >~—p+n> if n is even
Alm, n, vy = ) PV
741

r

ns
3

2m 1/<p—2>
— —n
p( n

> s n 1s odd and r is even
/
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p—2
S, Alm, n, r) = %(( b > —n } if both n and r are odd .

2METN

Proofs. 5.2 and 5.3 follow from III. 2.10 in [1] and 5.4 from
Theorem 2 of [2].

REFERENCES

1. G. Almkvist and R. Fossume, Decompositions of exterior and symmetric powres
of indecomposable Z[pZ-modules in characteristic p and relations to invariants, Sém.
P. Dubreil 1966-67, Springer Lecture Notes nr 641.

2. G. Almkvist, The number of non-free components of symmetric powers in charac-
teristic p, to appear in Pacific J. Math.

3. L. E. Dickson, On invariants and the theory of mumbers, The Madison Colloquium
(1913), AMS, reprinted by Dover, 1966.

4. F. Faa de Bruno, Théorie des formes binaires, Turin, 1876.

5. R. P. Stanley, Combinatorial reciprocity theorems, Adv. in Math., 14 (1974), 194-253.
6. ————, Hilbert functions of graded algebras, Adv. in Math, to appear.

7. J. J. Sylvester, Collected Mathematical Papers, Chelsea, 1973.

8. W. L. G. Williams, Fundamental systems of formal modular semi imvariants of

the binary cubic, Trans. Amer. Math. Soec., 21 (1921), 56-79.
Received April 24, 1978 and in revised form October 16, 1978.

INSTITUTE OF ALGEBRAIC MEDITATION
PL 500
S 24300 HOOR. SWEDEN






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
DONALD BABBITT (Managing Editor) J. DUGUNDJI
University of Galifornia Department of Mathematics
Los Angeles, California 90024 University of Southern California
Huco ROSSI Los Angeles, California 90007
University of Utah R. FINN AND J. MILGRAM
Salt Lake City, UT 84112 Stanford University

C.C. MOORE AND ANDREW OGG Stanford, California 94305

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFONIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

UNIVERSITY OF OREGON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 86, No. 1 November, 1980
Gert Einar Torsten Almkvist, Invariants, mostly old ones ................. 1
Hyman Bass, Groups of integral representation type...................... 15
A. Biatynicki-Birula, On action of SL(2) on complete algebraic
VAFICIIES . o oottt et et e e e 53

Frederick Paul Greenleaf and Martin Allen Moskowitz, Groups of
automorphisms of Lie groups: density properties, bounded orbits, and

homogeneous spaces of finite volume . ..................cccuuiiii.. 59
Raymond Taylor Hoobler, A cohomological interpretation of Brauer groups

Of FINGS oo e e e 89
Irving Kaplansky, Superalgebras . ............. ... ... 93
Jerrold Lewis Kleinstein and Alex I. Rosenberg, Succinct and

representational Witt FinGS . ......ouu e 99
E. R. Kolchin, On universal extensions of differential fields ............... 139
Andy R. Magid, Analytic subgroups of affine algebraic groups. I ......... 145
Calvin Cooper Moore, The Mautner phenomenon for general unitary

FEPFESENIALIONS . . . o oot et ettt e et e e et ettt 155
George Daniel Mostow, On a remarkable class of polyhedra in complex

RYPerbolic SPACE . . ... 171
Brian Lee Peterson, Extensions of pro-affine algebraic groups. Il . . ........ 277

John Henry Reinoehl, Lie algebras and affine algebraic gry
Maxwell Alexander Rosenlicht, Differential valuations . . .
John Brendan Sullivan, The second Lie algebra cohomolo

Moss Eisenberg Sweedler, Right derivations and right dj
OPETALOTS . . oo v ittt
Bostwick Frampton Wyman, Time varying linear discrete-



http://dx.doi.org/10.2140/pjm.1980.86.15
http://dx.doi.org/10.2140/pjm.1980.86.53
http://dx.doi.org/10.2140/pjm.1980.86.53
http://dx.doi.org/10.2140/pjm.1980.86.59
http://dx.doi.org/10.2140/pjm.1980.86.59
http://dx.doi.org/10.2140/pjm.1980.86.59
http://dx.doi.org/10.2140/pjm.1980.86.89
http://dx.doi.org/10.2140/pjm.1980.86.89
http://dx.doi.org/10.2140/pjm.1980.86.93
http://dx.doi.org/10.2140/pjm.1980.86.99
http://dx.doi.org/10.2140/pjm.1980.86.99
http://dx.doi.org/10.2140/pjm.1980.86.139
http://dx.doi.org/10.2140/pjm.1980.86.145
http://dx.doi.org/10.2140/pjm.1980.86.155
http://dx.doi.org/10.2140/pjm.1980.86.155
http://dx.doi.org/10.2140/pjm.1980.86.171
http://dx.doi.org/10.2140/pjm.1980.86.171
http://dx.doi.org/10.2140/pjm.1980.86.277
http://dx.doi.org/10.2140/pjm.1980.86.287
http://dx.doi.org/10.2140/pjm.1980.86.301
http://dx.doi.org/10.2140/pjm.1980.86.321
http://dx.doi.org/10.2140/pjm.1980.86.321
http://dx.doi.org/10.2140/pjm.1980.86.327
http://dx.doi.org/10.2140/pjm.1980.86.327
http://dx.doi.org/10.2140/pjm.1980.86.361
http://dx.doi.org/10.2140/pjm.1980.86.361

	
	
	

