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Three special classes of abstract Witt rings are studied.
The classical description of the annihilator of a round form
is generalized as is the description of the torsion subgroup
of the Witt ring of a field. We translate some results of
a previous paper into this abstract setting and also study
Pfister forms there. We show how our special classes of
abstract Witt rings relate to the Witt ring of classes of non-
degenerate symmetric bilinear forms over a semilocal ring.

0. Introduction. This paper introduces various hypotheses on
Witt rings for an elementary 2-group G, [14, Def. 3.12], that enable
us to prove abstract counterparts of results known for Witt rings
of bilinear forms over fields, often with very similar proofs. We
consider three special classes of abstract Witt rings: “sucecinet”
(Definition 2.10), “representational” (Definition 2.2), and “strongly
representational” (Definition 4.1), each class being included in the
one listed after it. The notion of representational was suggested
by a similar definition in [17, 18] for reduced Witt rings for G. Our
results are, of course, applicable to the Witt ring of a semilocal
ring with mild restrictions on this semilocal ring.

Section 1 introduces the basic definitions and notations we need;
these are carried over from [8]. In the second section we introduce
the sucecinet and representational properties and investigate how
they carry over to residue class Witt rings. We also show that in
a representational Witt ring the description of the annihilator of a
round element and in a succinet Witt ring the deseription of the
torsion subgroup, are the usual ones. Several other known results
are generalized, including a condition for a character of G to induce
a ring homomorphism from a Witt ring for G to Z. The section
ends by showing that a reduced representational Witt ring comes
from a space of orderings in the sense of [17].

In §3 we generalize some of the results of |8] and [20] to
Witt rings for G. In particular we give necessary and sufficient
conditions for the existence of certain types of abelian group homo-
morphisms (semisignatures) from a Witt ring for G to Z, and then
use these homomorphisms to determine when an element of the
Witt ring is weakly isotropic in an abstract sense. The section
ends by adapting the proof in [20] for the equivalence of WAP and
SAP, [7, Def. 1.5], to the case of a representational Witt ring for G.
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In §4 we introduce strongly representational Witt rings for G
and generalize several of the results concerning Pfister forms to be
found in [6, 7] to this setting. We show that Pfister forms still are
round and generalize the classical result that an isotropic Pfister
form is hyperbolic to the abstract situation.

In the fifth section we show that some of the results of [3, §5]
carry over to representational Witt rings. We generalize [3, Prop.
5.1, Thm. 5.3 (b), (c)] to certain classes of Witt rings for G. We
further point out that by virtue of the main results of [17],
Theorem 5.3(a) of [3] also carries over to representational reduced
Witt rings for a finite group G.

In §6 we consider the Witt ring W(C) of classes of nondegene-
rate symmetric bilinear C-forms where C is a connected semilocal
ring. In order to apply the previous results, we show that W(C)
is succinet if all the residue class fields of C have at least 38 ele-
ments, and that W(C) is strongly representational if 2 is a unit in
C or C is a field of characteristic 2. By means of an example, we
show that W(C) need not be representational if C is local with 2
not a unit in C. We also give another proof of the deseription of
the annihilator of a round quadratic C-space of rank =2 due to
Knebusch in [11], in case all the residue class fields of C contain at
least 3 elements.

We conclude this paper with a discussion in §7 of the derivation
of some of the results in [8] and [20] from those in earlier section.

1. Notations. In this section we collect the definitions and
notations we need from [8]. For a group G of exponent 2, a ring
R = Z[G]/K is called a Witt ring for G if R,, the torsion subgroup
of R, is 2-primary [14, Def. 3.12]. For g in G we denote the image
of gin R by g although we shall often write 1 for the identity
element of both G and R. Every element of R may be written as
S(£3,) for not necessarily distinet elements g, of G. We denote
the multiplicative subgroup of Z[G] consisting of the elements +g,
g in G, by G’ and write g’ for =*g.

DEFINITION 1.1. For » in R, dim,#, or dim+» if there is no
possibility of confusion, is the smallest number » such that »=
S . g, 9; in G'. Clearly for »,---,7, in R, we always have
dim(Sp ) < S dim 7.

DerFINITION 1.2. For ¢’ in G’, the element » in R is said to
represent the element ¢’ of G’, if there is an element p in R with
r =g + p and dimp < dim». The subset of Z[G] represented by
» will be denoted by Dg(r) = D(r).
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For the relation of these concepts with the presentation of R,
cf. Remark 6.14.

DerFinITION 1.8. For g, ---, ¢, in G', the element Y2g; of
Z{G] is said to be anisotropic for R if dim(3.7 g} = n. Otherwise
» g, will be called isotropic for R.

Lemma 1.4. (cf. [8, Lem. 1.4}). For » in R, let Srg; be an
anisotropic representative of v in Z[G]. Then S\ g, + ¢', for some
g n G', is an element of Z|G] isotropic for R if and only if —¢
18 in D(r).

DEFINITION 1.5. If R is a Witt ring for G, the set of ring
homomorphisms R — Z is denoted by X(R) and called the set of
signatures of R.

REMARK 1.6. For ¢ in X(R), the ideal ker o is a minimal non-
maximal prime ideal of B and the mapping o — ker ¢ is a bijection
of X(R) onto the set of minimal non-maximal prime ideals of R
{14, Lem. 3.1 and Rem. 3.2]. Of course, by passing to inverse images
in Z|G], the set X(R) is also bijective with the set of minimal non-
maximal prime ideals of Z[G] containing K. By [14, Prop. 3.4],
X(R) #+ @ if and only if R, = Nil R, the nilradical of R. Thus a
Witt ring for G, with X(R) # ©, is reduced if and only if it is
torsion free, and in such a ring z =y if and only if o(x) = o(y)
for all ¢ in X(R). Finally, since for all ¢’ in G’, we have ¢g” = 1,
we must have (§)==x1 for all ¢ in X(R) so that X(R) may be
identified with a subset of the character group G of G.

DerFINITION 1.7. (cf. [15, §4]). (i) For any subset M of G' in
Z|GF], we set V(M) = {0 in X(R)lo(g’) =1 for all ¢" in M}.

(i1) For Y X(R), we put I'(Y) ={¢' in G'|o(@) =1 for all ¢
in Y}.

(ili) A subset Y of X(R) is saturated if Y = V({I'(Y)).

(iv) For YCX(R), we set I(Y) = ),y ker o, an ideal of R.

(v) For any subset M of G’ in Z[G] we denote the (proper)
ideal of R generated by 1 — g’, ¢’ in M, by a(M).

DeFINITION 1.8. An additive homomorphism z: R — Z is called
a semisignature if for all ¢’ in G’ we have z(g')==*1.

2. Representational and succinct Witt rings for G.

LEmMMA 2.1. (i) For ¢ in G and r in R we have ¢'Dy(r)=
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D.(g'r).
(ii) For ¢ in G' we have D(F)cDA +g) if 1 +g #0 in R.

Proof. (i) According to Definition 1.2 an element h; of G’
lies in D(r) if and only if there exists an element p, of R with
dim p, < dim # such that 7, + p, = r, and an element A} of G’ lies in
D(g'r) if and only if there exists an element p, of R with dim p, <
dim g’» such that A, + p, = g’». Now from Definition 1.1 it is clear
that for all ¢ in R we have dim(g’q) = dimgq, so that ¢’h, lies in
D(g'r) and ¢'h, lies in D(r). Since h, = ¢'(¢g'h;) this proves (i).

(ii) By [8, Rem. 1.24, Lem.], dim(1 + g’) = 2 since 1 + g’ # 0,
and so 1+ ¢’ is anisotropic for R. Now if A’ lies in D(g’), then
I'=g. Thus 1+ %" =1+ g and since dim1l =1, 2" isin D + g)
according to Definition 1.2.

DeFINITION 2.2. (cf. [17, 0,]). A Witt ring R for G is called 7e¢-
presentational if for o, =0, r, # 0 in R with dim(», + 7,) = dim »,+
dim 7, and ¢’ in D(», + 7,), there exist g; in D(r;), 7 = 1, 2, with ¢’
in D(g; + g,). For the relation of this definition with the presenta-
tion of R, cf. Remark 6.14.

LEMMA 2.3. If R is a Witt ring for G and gj, and »; j =1, 2
are as im Definition 2.2, then ¢; + g, is amisotropic for R; in
particular, g, + g, + 0 in R.

Proof. Since g; lies in D(r;), = 1, 2, by Definition 1.2 we have
Ji + p; =74 and dim p; < dim r;. Thus», + 7, = (9: + G2) + p, + ..
Now if ¢! + g, were isotropic for R, then by [8, Rem. 1.24, Lem.],
g, + g» = 0. Hence dim(», + 7,) = dim(p, + p,) < dim 7, + dim 7. This
contradicts the hypothesis on », + 7, and so g, -+ g is anisotropic
for R.

PROPOSITION 2.4. Let R be a Witt ring for G and 7,1 =1, 2,
two elements of R. Then R 1is representational if and only if
whenever dim(r, + #,) <dim ¢, + dim r,, there exists an element g’ of
G" with g" in D(r) and —g’ in D(r,).

Proof. Suppose R is a representational Witt ring and let
7y = >0 05 1 = 1,2, with n, =dims,. Since >, g; + 372,05 is
isotropic for R, but 3.7, ¢;, is anisotropic for R, there exists a
natural number %, with k& < m,, such that >\7 ¢ + 3%, ¢}, is an-
isotropic for R but 3371, ¢} + >iiil g is isotropic for R. By Lemma
1.4 then —gj,,, lies in DML, G5 + Sk, G;,). Since R is representa-
tional there exist g, in D™, 35) and g, in D%, ;) such that
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— i1 lies in D(g; + §,). Hence for some element 4’ of G’ we have
~Grirz T+ B = g. + 9. or R =g+ G: + Jks1,, S0 that gi + g0 + girve
is isotropic for R. Furthermore, there exists an element p in R
~with g, +p =3%.,55, and dimp <k. Therefore g, + Giu. + 0=
Skt gt and so if g) + g4, Were isotropic for R, so would kgl
be, contradicting dim 7, = n,. Since g, + ¢i... is anisotropic for R,
but ¢, + ¢: + gi4.. is isotropic for R, Lemma 1.4 shows that —g; is
in D@ + Gri1.) < D1 G)) € D(r,), which shows that the condition
holds.

Now suppose that whenever dim(r, + »,) < dim 7, + dim »,, for
any r, 7, in R, there exists ¢’ in D(r,) such that —g’' is in D(»,).
The proof that R is then representational is based upon the proof
of [18, Lem. 1.3]. Thus, let »,7=1,2 be elements of R with
dim(», + 7,) = dim », + dim »,, and let ¢’ be in D(», + r,). By Lemma
1.4, dim(», + 7, — §') < dim s, + dim#, + 1. Now dim(r, — ') =
dimr,+1. If dim(r,—g')<dim7,+1 then by Lemma 1.4, ¢’ is in D(r,)
and so ¢’ is in D(g;+g’) for any g in D{(r,). So suppose dim(r,—g’) =
dim 7, + 1, then there is a g; such that ¢; is in D(r,) and —g, is in
D(r, — §). Again by Lemma 1.4, this means dim(r, — g’ + 7)) <
dim 7, + 2. Now if §’ = g:, then ¢’ lies in D(g, + g.) for any g¢g; in
D(r,). So assume dim(—g’ + §,) = 2. Then there is a g, in D(r,)
with —g} in D(—g’+9!). Thus, there exists an 4’ in G’ with —g.+h'=
—§F+g.or g +h" =7, + g,. By Lemma 2.3, g + g, is anisotropic,
which means ¢’ lies in D(g; + §,). Thus R is representational.

Let X be any character of G, i.e., a homomorphism from G to
{#1}. The mapping X extends to a ring homomorphism Z[G]— Z
via >, n,9 — >, n,X(g) which we also denote by X.

LEMMA 2.5. Let R be a representational Witt ring for G and
X a character of G such that if X(¢g') =1 and 1+ g’ %0, then
XD(1+9) =1 Then tf L+ Drg: is an element of Z[G] an-
1sotropic for R and X(g;)) =1,i =1, ---, n, then X(DA + rg)) =1,
also.

Proof. We shall use induction on #» and note that the lemma
is true for » = 1 by hypothesis since by [8, Rem. 1.24, Lem.] dim
(1+ g') =2. Suppose Lemma 2.5 holds for » — 1. Let ¢’ lie in
DA + 31 g + g.). Since 1+ 3irg; is anisotropic for B we clearly
have # + 1 = dim(l + 3/ 9) = dim(1 + 37* ) + dim g, and so, since
R is representational, there exist kA, in D1 + 3.*'g;) and h, in
D(g,) with ¢’ in D(h] + h.). Since 1 + 3*g; is anisotropic for R, it
is clear that 1 + g, # 0 in R, and thus by Lemma 2.1(ii), h; lies in
D + g.). Hence the induction assumption and the hypothesis of
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Lemma 2.5 yield X(h})) =1,5=1,2. But by Lemma 2.8 we have
1+ hih; # 0 and so by hypothesis X(D(1 + klh,)) = 1 since X(hihl)=1.
Finally, since ¢’ lies in D(h, + k) = h.D( + hihi) by Lemma 2.1(i),
we obtain X(¢’) = 1, proving Lemma 2.5.

THEOREM 2.6. Let R = Z[G]/K be a representational Witt ring
for G with X(R) + @ and X a character of G. If for all ¢’ in G’
with 1+ 3 #0 in R and X(¢g') =1 we have X(D@ + §’)) = 1, then
X(K) =0, so that X induce a signature of R.

Proof. Let g, ---, g, be elements of G’ such that X(g}) =1,
1=1, .-+, n, and suppose for all ¢ in X(R) we have o(g;)=—1 for
at least one i =1, ---,m. Let P=TIr + 7)) = 3¥"d; with d; in
G'. Since o(1 4+ g;) = 0 for at least one g; and every ¢ in X(R),
we have o(P) = 0 for each ¢ in X(R). By [14, Prop. 3.15], P lies
in R,, so that there is a natural number m with mP = 0. Hence

2.3 d; is isotropic for R. Since d; = 1 is anisotropic for B there
is a natural number [ so that = = >\, S\rdior S >rd + Sii'di,
I’ < m) is anisotropic for R but x + d;,(or  + d;) is not. By
Lemma 1.4 then, —d;,, (or —d;) lies in D(%), where ¥ denotes the
image of £ in R. By Lemma 2.5, therefore, X(—d;.,) (or X(—d})) is
1, contradicting X(d;) =1,7=1, ---,2*. Hence there exists a o in
X(R) with 0(g;) =1,7i=1, ---,n. Now let k¥ denote an element of
the ideal K of Z[G]. We write k= 3 9: + >, hi with X(g:) =1,
X(hy)=—1. But then there exists a signature ¢ of R with ¢(g;})=
o(—h}) =1 and since o is a ring homomorphism of R to Z we must
have 0 = 3, 0(7;) + 3, o(hl) = X(k). Thus X(K) =0, and X induces a
signature on R.

REMARK (i) Theorem 2.6 has already been proved in case G
is finite and R, =0 in [17, Thm. 4.1].

(ii) Let C be a connected semilocal ring and W(C) the Witt
ring of classes of symmetric nondegenerate bilinear C-forms. If no
residue class field of C contains 2 or 4 elements an analogue of
Theorem 2.6 has been proved in [15, Prop. 2.4]. However our
Theorem 2.6 only yields this result if 2 is a unit in C, since we
shall show in Example 6.8 that if 2 fails to be a unit in C then
W(C) may fail to be representational, but will prove in Proposition
6.7 that if 2 is a unit in C then W(C) is representational.

PROPOSITION 2.7. Let R be a representational Witt ring for G
and 7, -, r, nonzero elements of R with dim(C ' »,) = > rdimr,.
If g’ lies in D(S\Fr,) there exist g; in D(r,),1 =1, ---, », such that
g’ is in DS g and dim X7 gl = n.
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Proof. For m = 2 this is simply Definition 2.2 and Lemma 2.3.
We use induction on n > 2. Let p = 3.7, then clearly dimp=
S»dim »; and so dim(r, + p) = dim #, + dim p. By Definition 2.2 and
Lemma 2.8, there then exist g; in D(»,) and A’ in D(p) with ¢’ in
D(g; + k') and g, + k' anisotropic for R. This means that there
exists an element 3’ in G’ with §' + % =g, + k' since 3’ =g, + '
would mean that g; + A’ is isotropic for R, contradicting Lemma 2.3.
Now by the induction assumption, there exists g; in D(r,), 1 =2, - -+, n,
with A’ in D2 g;) and >, g; anisotropic for B. Thus there is an
element ¢ in R with dimg<n—2 and 2’ +q =33, Hence
g +h +q=g +% +q=37r7g. Since g, lies in D(r,), we
have for ¢ =1, ---,m, g; + ¢, =7, with dimg¢, < dim», — 1. Now
Sirdimr, =dim X rr, < dim 37 §; + S, dim », — n, which clearly forces
dim 3 g; = n. Thus >\'g: is anisotropic for R and dim(7’ + ¢) <
1+ —2=n—1<dim>rg. Hence g’ lies in D" 7)), proving
Proposition 2.7.

LeMMA 2.8. Let R be a representational Witt ring for G and

o D gihi; be an element of Z[G) which is isotropic for R but

with p; = D™, hi; anisotropic for R. Then there ewist t; in D(D,)
with S\ git; isotropic for R.

Proof. The element gihl, is anisotropic for R whereas the
element 37, >\™, gihi; of Z[G] is isotropic for R. Thus summing
in the usual order there is a first place where the sum becomes
isotropic for R, at g..hi..., say. This means that z, = SFgip, +

Y2\ Oriihiy,,; is anisotropic for R but 2z, + gi..hi.,, is isotropic for
R. (If 1 =1, the empty sum >;Z} gi.:1hiss,; is taken to be 0.) By
Lemma 1.4, —g¢;. i, is in D(Z,), where z, denotes the image of 2,
in B. Since z, is anisotropic for R we have dimz, = Y fdimp, + 1 —1
and Proposition 2.7 is applicable, yielding elements «;, y; in G,
i=1 - kj=1---,1—1, with 2} in D(@Pp), ¥; in D@ihiss),

gk+1hk+1l ln D(Zz 1xi -+ Zy 1y:) and Zz 1x2 + Z‘J lyj anisotropic
for R. By Lemma 2.1(), t; = gix; lies in D(p,) and x; = git;. More-
over, since y} is in D(g}..hr.,,;) We must have ¥; = Gi\hr.y,;. Hence
—Grrihis; lies in D(Z,) where 2, = >\ git;i + 352k 9eiihiy,;, and
dimz, =k +1—1. Thus once more by Lemma 1.4, the element
2y + Grihiy: of Z[G] is isotropic for R. Hence if | = 1 we are done
with i, = ks, and, for 7>k + 1, the element ¢, an arbitrary
element of D(p,).

If I > 1, then since ik W1, = Di+ 1S anisotropic for R so is

by Oriihisy,;.  On the other hand, 2, + gii.hiy,, is isotropic, hence
there exists a natural number s <k — 1 with 2z, = D\, grihisr ;i +
N1 git: anisotropic for R, but 2, + gi+.t.+, isotropic for B. Again by
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Lemma 1.4, this means that —g,..t.+, lies in D(;). Now clearly
dimz, = [ + s so that we may apply Proposition 2.7 again to obtain
elements %z, v, ¢t =1, ---, 8 in G’ with —gl, ¢, in D(ir,, + 34 77),
Upsy iN Dk, Trsihirn,;), and @) in D(git}). Then ;= git; and by
Lemma 21(1), u;cﬂ = g;¢+1t;c+1 Wlth t;c+1 in D(Z§=1 Ellc+1,:‘) CD(z_’kﬂ)-
Hence —g,itis, lies in D(g; k1 + S0 Git:), which by a final applica-
tion of Lemma 1.4 shows that > g:t;, with ¢, in D(p,), is isotropic
for R, where for s+ 1<:7=<%k and + >k + 1, ¢ is an arbitrary
element of D(p,).

LEMMA 2.9. Let R be a Witt ring for G and r an element of
R. If for a semisignature ¢ of R (Definition 1.8) we have 7(r)=
dim », then ©(g') = 1 for all ¢' in D(r).

Proof. Since ¢’ is in D(r) there exists an element ¢ in R with
dimg < dim~ and g’ + ¢ = . Thus we have 7(g') = t(r) — 7(q) for
any semisignature z. Since |7(¢)] < dimgq always, if () = dim 7,
then 7(g’) > 0 and so (') = 1.

DEFINITION 2.10. A Witt ring R for a group G is called suc-
cinet if for any nonempty saturated set of signatures Y of R,
elements g;, i=1,---, n, of G, and elements t;; of I'(Y), j=1,---, m,,
such that >, S\mi git;; is isotropic for R, there exist ¢; in I'(Y),
1 =1, -+, m, such that 3\ git; is isotropic for R.

THEOREM 2.11. A representational Witt ring for G is succinct.

REMARK. We shall see in Remark 6.9 (i) that the inclusions
{Witt rings for G} D {succinet Witt rings for G} D {representational
Witt rings for G} are all proper.

Proof of Theorem 2.11. Note that since for all ¢ in Y, we
have o(t;;) =1 we have o(374, ti;) = m,, for the ¢; and Y of De-
finition 2.10. Hence the element 7, ti; of Z[G] is anisotropic for
R. By Lemma 2.8 then, there exist elements ¢; in D(3 7, 7;;) with
S» git; isotropic for R. Furthermore, by Lemma 2.9, since for ¢
in Y, we have o3, Ti;) = dim(3\7, ¢3;), we must have o(f;) =1,
so that ¢, lies in I'(Y) and Theorem 2.11 is proved.

COROLLARY 2.12. _Let R be a representational Witt ring for
G,p=37"7,q9=>"h; elements of R with dimp = n and dim g = m.
If dim pq < mnm then there exist t; in D(q) with 37 git: tsotropic
for R.
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Proof. This is immediate from Lemma 2.8 with h;; = h} and
m; = m.

LEMMA 2.13. Let R be a Witt ring for G and ® an element
of an R-module. Let T be the subgroup of G' consisting of all g’
in G with §'@ =@ and denote the amnihilator of @ in R by
Anng(@). If for every » im Anng(®), p = S g:;, dimp = n, there
exist &, m T,i=1,---,n, with >git; isotropic for R, then
Anng(®) = a(T), the ideal generated by 1 — t, with t in T.

Proof. Clearly a(T)CAnng(®). To prove the opposite inclusion
we proceed by induction on dim p. Since all elements of R of
dimension 1 are units, Anng(®) only contains elements of dimension
>2. Let (. + 39 =0. Then —glg;is in T and thus g + g.=
1 — (—g:92) isin «(T). If p = 3*G;, dimp = n, is an element of
Anng(), then by hypothesis there are elements ¢, 4 =1, ---, n, in
T with dimC ) git)) <m. But p =375 —t) + 0 git: = X1 git:
mod a(7T'). By the induction assumption, 3\ git; lies in a(T') since it
clearly is still in Anng(®), so p does also, proving Ann.(®) Cca(T)
and Lemma 2.13.

DEFINITION 2.14. Let R be a Witt ring for G. An element
r# 0 of R is called round if for all ¢’ in D(), we have g'r = r.

THEOREM 2.15. Let r be a round element for a representational
Witt ring R for G. Then Anng(r) = a(D(r)).

Proof. By Definition 2.14, we have D(r)CT = {¢’ in G'|g’'r = 7}
and by Corollary 2.12 and Lemma 2.13, then Anng(r) = a(T). Let
S»g: be an anisotropic representative of . Clearly g; lies in D(r)
so that » = gir = 1 + 32 5.G;. Hence for t’ in T, we have » =t'r=
t' + >rt'gg; so that t' lies in D(») according to Definition 1.2.
Hence D(r)D T so D(r) = T and Anng(r) = a(D(7)).

ProposITION 2.16. (cf. [6, Thm. 1.4; 4, Satz 14, Kor. 2]). Let
R be a representational Witt ring for G and let r be a round
element of R. If 0= q lies in Rr, there exists an element p in R
with ¢ = pr and dim q = dim p dim . Further, for g’ in D(q) there
exists an element p in R satisfying the above condition and with
g’ in D(p).

Proof. Let p be an element of R of minimal dimension such
that ¢ = pr. Let p = >\ g; with n = dim p and set dim» = m. If
dim g < mn, then by Corollary 2.12, there exist ¢; in D(r) with
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Sr git; isotropic for R. Since » is round and ¢; lies in D(r) we
have Zjr = r so that ¢ = pr = X giZ))r and since dim(Z}* §it:) < »,
this contradicts the choice of p so that dim¢q = mn.

Now if ¢’ is in D(q) = D gir), Proposition 2.7 proves the ex-
istence of k) in D(g.r) such that ¢’ lies in D(Z*R}) and dim(? ki) =n.
Now by Lemma 2.1(i) we have D(gir) = g:D(r); hence there are t; in
D(r) with h}, = gjt;. But then (Srh)r =pr =q and 3"k, is the
required element.

DEFINITION 2.17. An m-fold Pfister element in a Witt ring R
for G is any element of the form [[7 + 7)) = 32" d..

LEMMA 2.18. Let R be a Witt ring for G and Y a saturated
set of signatures of R. Then I(Y) is the union of all Anny(P)
where P is an m-fold Pfister element T (L + &), t: in T =1I(Y),
m = m, for a fired natural number m, = 1.

Proof. Since Y is saturated, we have Y = V(I'(Y)). Then by
[8, Prop. 1.83i1)], I(Y) is the radical of a(/(Y)). But then the
proof of [15, Lem. 4.17] carries over verbatim to the case of a
Witt ring for G to yield Lemma 2.18.

COROLLARY 2.19. If r, r, are two elements of a Witt ring R
for G and Y a saturated set of signatures of R, then if r, =7, mod
I(Y) there exists a Pfister element P = [I" 1 + &) = 3"d}, t, in
I'(Y) such that r.P = »,P. If r,=>g: dimr, =n, and dimr, >
dim », then Y2, 3T gid; is isotropic for R.

Proof. The first part is clear from Lemma 2.18, while the
second part follows from Definitions 1.1 and 1.8 and the equality
rP=rP in R.

In [8, Def. 1.18] a Witt ring R for G was called dimensional
if for all elements » of R and natural numbers s, we have dim sr=
sdim 7.

PROPOSITION 2.20. Let R be a succinct Witt ring for G and Y
any saturated set of signatures of R. Then R/I(Y) is a dimen-
stonal Witt ring for R.

Proof. Since Y = V(I'(Y)) [8, Prop. 1.8 and 14, Rem. 3.13(ii)]
show that R/I(Y) = R is a Witt ring for G. Let >\’g; be an-
isotropic for R but suppose 3.7sg; is isotropic for R, where s is a
natural number. By Corollary 2.19 there is then a Pfister element
P=TI"A + ) =" d, with ¢, in I'(Y) such that 32, 33" sgid; is
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isotropic for RB. Now, for all ¢ in ¥ we have o(P) = 2™, hence
o(d}) =1, for all ¢ in Y, i.e., d; is in I'(Y),j =1, ---,2". Since R
is succinet, there then exist %, ---, 7, in I'(Y) such that 3.* gif; is
isotropic for B. But clearly > git; = 3,*g: mod I(Y) and so 3 g;
would be isotropic for R, a contradiction. Hence for all natural
numbers s, the element 37 sg; of Z|G] is anisotropic for R so that
R is dimensional.

COROLLARY 2.21. Let R be a representational Witt ring for G
aond Y a saturated set of signatures of R. Then R[I(Y) is dimen-
stonal.

Proof. This is immediate from Proposition 2.20 and Theorem
2.11.

REMARK. If R is a reduced Witt ring for G, then I[(X(R)) = 0.
Therefore a succinct or representational reduced Witt ring is dimen-
sional.

PrOPOSITION 2.22. Let R be a Witt ring for G and Y a non-
empty set of signatures for R. Then if Y is closed in the Zariski
topology of R and I(Y) = a(l'(Y)) then Y is saturated. If R is suc-
cinct (or representational), then Y 1is saturated if and only if
IY)=a(l'(Y)) and Y is closed.

Proof. From the definition of the Zariski topology the closure
of Y ={o, in X(R)kero,0I(Y)}. Now if I(Y) =a(l(Y)) and o lies
in V(I'(Y)) then clearly kero>a(l'(Y)) = I(Y), so that if Y is
closed also, ¢ isin Y. Hence V({(Y))CY. Since the opposite
inclusion is always true, Y is saturated.

Now suppose R is succinet and Y is saturated. Let » be in
I(Y). We shall show by induction on dim » that » lies in a(I'(Y)).
By Lemma 2.18 there exists a Pfister element P = [[™1 + )=
S d; with ¢, and d; in T = I'(Y), and #P =0. If dim~» =1, then
r is a unit in R, so that this case is impossible. If dim » = 2, then
r=g;+ g and so §iP=—g,P or P=—gGiP. Now for all g inY
we have o(P) = 2". Hence for all ¢ in Y, we have 2" = o(—g.g;)2"
or o(—g.gy)=1, i.e., t=—glg; is in T and 7,4+ 7:=7.(1—1) is in a(T).
Suppose now all » in I(Y) with dim »<n lie in a(T). Let » = >\ g
and dim#» =n. Then »P =0 forces >\r, 327 gid; to be isotropic
for R. Since R is succinct (or if R is representational, by Theorem
2.11) there exist %, ---, £, in T with 3" ¢if; isotropic for R. Now

r=rgl — 1) + Sr 9.1, and since o(r) = o(3* 7.2} forallo in Y,
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the element 37 gif; is in I(Y) and by induction assumption, in a(7').
Since » = S,* git;mod a(T), the element r is in a(T) also, and we
have proved that I(Y)ca(T). The opposite inclusion is clear so that
IY) = a(T).

Finally since Y = V({'(Y)) it 1is clear that Y ={o, in
XR)o(T) =1} = {0, in X(R)|kero, D {1 — t}} = {0, in X(R)|kerd,D
I(Y)} which means that Y is closed.

COROLLARY 2.23. Let R be a succinct or representational Witt
ring for G such that X(R) # @. Then the torsion subgroup of R,
R, = o(I'(X(R))), i.e., R, is generated by 1 — t' with o(t') = 1 for all
o in X(R).

Proof. By [14, Thm. 3.9(v) and Prop. 3.15] R, = I(X(R)). Since
V(I'(X(R))) = X(R), Proposition 2.22 applies with Y = X(R) and
yields the result.

PROPOSITION 2.24. (ef. [17, Thm. 2.2; 18, Thm. 2.2]). Let R be
a representational Witt ring for G and Y a saturated set of sign-
atures of R. Then R = R/I(Y) is again representational.

Proof. Let 7, be elements of B with dim; 7, =n, % =1, 2, and
suppose dimz(7, + 7)<n, + n,. Let 37, gi; be anisotropic represen-
tations of 7, and let », = 3\7¢, Gi; in R. By Definition 1.1, dimz; 7, <
dim, 7, < n,, so that dim; 7, = n, too. By Corollary 2.19 there ex-
ists an m-fold Pfister element P = [[7(1 + i) = 33" d;, ti, di in I'(Y)
with dim, (P + »,P) < 2"(n, + n,). Now in R we have o(rP) =
o(2"r,) for all ¢ in Y. Hence 7,P = 2"7, in R, where P denotes the
image of P in R. By Corollary 2.21 the ring R is dimensional, so
that 2mn, = dimz(#,P) < dim, +,P < 2™n,. Since R is representational,
Proposition 2.4 yields ¢’ in G’ with g’ in D(»,P) and —¢’ in D(r,P).
From Definition 1.2, it is clear that ¢’ is in Dz(# P) = Dz(2"¥,) and
—g' is in Dz(#,P) = Dz(2"%,). But by [8, Thm. 1.17] we have
Dz(2"F,) = Dz(7,) so that by Proposition 2.4, the ring R is represen-
tational.

LEMMA 2.25. Let Y be a saturated set of signatures of a Witt
ring R for G. Then all signatures of R = R/I(Y) are induced by
signatures in Y and a subset Y' CY is saturated as a set of sign-
atures of R if and only if it is saturated as a set of signatures
of R.

Proof. By [8, Lem. 3.5] all signatures of R are induced by
signatures in Y. Let Y’ be a subset of Y and let I'(Y’) denote
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the set of ¢’ in G’ such that 5(§’) =1 where & is the signature of
R induced by ¢ and g’ is the image of g’ in B. Clearly 6(g’) = o(3’)
so that I'(Y") =I'(Y"). Now Vx(I'(Y)CVI'(Y) =Y so Y'=
Ve(I'(Y") if and only if ¥’ = Vz(I'(Y’)) where Y’ denotes the sign-
atures of R induced by the signatures in Y.

PROPOSITION 2.26. Let R be a succinct Witt ring for G and Y a
saturated set of signatures of R. Then R=R/I(Y) is again succinct.

Proof. Let Y’ be a saturated set of signatures of E. By
Lemma 2.25, the lifted set of signatures Y’ of R is again saturated.
Suppose now for ¢; in G',t=1,---,n, and ¢ j=1,---, m; in
(Y =I'(Y)>I'(Y) the element 37, >\7, git:; is isotropic for E.
Then by Corollary 2.19 there is a Pfister element P = [[(1 + 51)=3. d;
in R with s; and d; in I'(Y) such that >, 3%; 3, giti;d: is isotropic
for R. Since by Lemma 2.25, the set Y’ is also saturated as a
subset of X(R) and all ¢;d; lie in I'(Y’), the fact that R is succinct
then yields elements ¢, ---, ¢, in I'(Y’) with 37 git; isotropic for R.
But then clearly 3.*git; is also isotropic for R and since I'(Y")=
I'(Y"), Proposition 2.26 is proved.

Finally, we show that the definitions O, of [17 and 18] and our
concept of representational coincide for reduced Witt rings. We
begin with

DEFINITIONS 2.27. (i) Let R be a Witt ring for G. For r=
S\rgi in R, let M,(r) = {h' in G'| there exist hy, ---, h;, in G’ with
r=nh"+32h}. Thus if n =dim», we have M,(r) = D(r) by De-
finition 1.2.

(ii) R is said to satisfy O, (cf. [17, Introduction]) if given
= >0, 05,1 =1,2, in R, with ¢’ in M, ., (r, + r,) there exist g
in M, (r), 1 =1,2, with ¢’ in Mg, + 7.).

LEMMA 2.28. Let R be a Witt ring for G and » = > G; an
element of R with dimr <n. Then M,(r) = G’.

Proof. We may write, by Definition 1.1, » = 3" h} with m < n.
By [8, Rem. 1.24, Lem.], n — m is even so that for any ¢’ in G’
we have r» = 3\" &l + ((n — m)/2)(@ — §’) and by Definition 2.273i), ¢’
lies in M, (7).

PROPOSITION 2.29. Let R be a Witt ring for G. Then R is
representational if and only if it satisfies O,.

Proof. Let r,t =1, 2, be elements of R that can be written
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as the sum of m, i =1, 2, elements of G’. Suppose first that R
satisfies 0,. Assume 7, = dim », and dim(r, + 7,) = %, + n,, so that
by Definition 2.27 (i) we bhave M, (r,) = D(r;) and M, i, (7, + ) =
D(r, + 7). Hence for ¢’ in D(r, + 7,) there exist g; in D(r,), 1 =1, 2,
with ¢’ in Mg, + 9.). By Lemma 2.3, 7, + g. has dimension two
so that My(9: + g.) = D(g; + g;) and R is representational.

Suppose now that R is representational. Then if #n, = dimr,,
1 =1, 2, and dim(r, + ,) = n, + n, we see immediately that O, holds
for all elements of M, ., (7, + 7). Next, still supposing =, = dimr,,
t=1, 2, let dim(r, + »,) <n, +n,. By Lemma 2.28, M, .,,(r,+ 75) =G’
and by Proposition 2.4 there is a ¢’ in G’ with ¢’ in D(r,) and —g’
in D(r,). But then we have G' = Mg’ + (—g')), again by Lemma
2.28, so O, is true for all elements of M, ., (v, + 7).

Finally, if n,>dim»,, then G' = M, 1,,(r, + 7,) = M, (r,) and any
¢’ in G’ is in My9' + 9:) where g; is any element of M,(r;), so
that O, holds here also.

REMARK 2.30. Let R be a reduced Witt ring for G and X(R)
its set of signatures. By Remark 1.6 we have 7, = », in R if and
only if o(r) = o(r,) for all ¢ in X(R). For each ¢ in X(R) we de-
fine a character X of G'/I"(X(R)) by X(¢'I'(X(R))) = ¢(g’) and denote
this set of characters by X. Now it can be verified that the Zariski
topology of the set of minimal prime ideals of Z[G] induces the
usual topology used in Pontryagin duality on the character group
of G'/I'(X(R)). Since X(R) corresponds to all minimal prime ideals
of Z[G] containing the ideal K, the set X(R) is closed in the Zariski
topology and so X is closed in the character group of G'/I'(X(R)).
Thus the pair (X, ¢’/'(X(R))) satisfies O,, O,, O, of [17]. Now by de-
finition, the pair (X, G'/(I' X(R))) satisfies O, of [17] if and only if R
satisfies O, of Definition 2.27 (ii) or, by Proposition 2.29, if and only
if R is representational. Thus if R is a representational reduced
Witt ring for G, then (X, G'/'(X(R))) is a space of orderings as de-
fined in [17].

We point out explicitly that if R is a reduced representational
Witt ring our Proposition 2.24 is now seen to be equivalent to [18,
Thm. 2.2].

3. Applications to succinct and representational Witt rings.

In this section we show how some of the results proved in [8]
for R = W(C)/I(Y) can be carried over to succinet Witt rings for
G. Here C is a connected semilocal ring with every residue class
field containing at least 3 elements, W(C) is the Witt ring of
classes of symmetric nondegenerate bilinear C-forms, and Y is a
saturated set of signatures of W(C). We also give a version of
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some of the results of [20, Thm. 2.2] and [13, Thm. 1] for Witt
rings R for G with R/I(X(R)) representational.

LEMMA 3.1. Let R be a succinct Witt ring for G, Y a saturated
set of signatures of R, and R = R/I(Y). Then an element 3¢,
of Z[G] is isotropic for R if and only if there exist t, ---,t, in
r'Y) with 3\ git; isotropic for R.

Proof. Since X git: = >rgimod I(Y) it is clear that if 37 git:
is isotropic for R then 3.'g; is isotropic for K. Conversely, if
S g is isotropic for R, there exists by Corollary 2.19 a Pfister
element P = [["(1 + 5})) = 3" d} of R with s}, d} in I'(Y), such that

" gid; is isotropic for R. Sinece R is succinet there then
exist &, ---, t, in I'(Y) with 3* git; isotropic for R.

DEFINITIONS 3.2. Let R be a Witt ring for G, and A, T subsets
of G'.

(i) T is called saturated if T = I'(V(T)) with the notations
of Definition 1.7.

(ii) The pair (A4, T) is said to be anisotropic for R if all finite
sums >, a;t; of Z[G] with, not necessarily distinct, a, in A4, ¢, in T,
are anisotropic for R.

(iii) Dy(A) = {g’ in G'|g’ in D *ait,) for some, not necessarily
distinet, a; in A4, ¢, in T, and arbitrary =}.

(iv) Denote by Z(A, T') the set of all semisignatures (Definition
1.8) 7 of R which are constant on the cosets of 7 in G’ and with
(@) =1 for all a in A.

THEOREM 3.3. Let R be a succinct Witt ring for G, T a satu-
rated subset of G', and A an arbitrary subset of G'.

(i) The pair (A, T) is anisotropic for R if and only if
Z(A, T)+ @.

(ii) If Z(A, T) # @ then Di(A) = Neinzia,nT ‘D).

Proof. (i) Let Y = V(T). Since T =I'(V(T)) we have
V(YY) = V(V(T)) = Y, so that Y is also saturated. Now let
R = R/I(Y) and for ¢’ in G’ denote its image in R by 3’. By Pro-
position 2.20 the Witt ring R is dimensional and by Lemma 3.1 all
finite sums {3} a;a; in A} are anisotropic for R if and only if the
pair (A, T) is anisotropic for R. But this condition on A yields by
[8, Th. 1.17] a semisignature 7 of B with z(@) =1 for all a in A.
Now for all ¢ in T, we have d(g’ — g't) = 0 for all ¢ in Y, so that
g =g't mod I(Y). Hence 7, the lifted semisignature of 7 on R, is
constant on cosets of T in G’ and clearly (@) =1 for all a in A.
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Conversely, let 7 be in Z(A, T). Then, clearly 7(a(T)) = 0. By
Proposition 2.22, the ideal o(T) = I(Y), so that 7 induces a semi-
signature 7 on RB. Since for all @, in A we have T7(3\ra@,) = n we
must have 3)*a; anisotropic for R, which again by Lemma 3.1
means that the pair (A, T') is anisotropic for K.

(ii) For ¢’ in D,(A), there exists @, in A, ¢, inT,1 =1, ---, n,
with ¢’ in DS *a,t,). Now for all 7 in Z(A4, T) we have St a.t,)
n = dim 3* @, so that by Lemma 2.9, we have 7(§’) = 1. Thus
Dr(A)CNeinziant (D).

Now if ¢’ is not in D,(A) then (A U{—g’}, T) is anisotropic for
R by Lemma 1.4. Thus by (i) Z(AU{—g'}, T) # @ and there exists
a semisignature 7 constant on cosets of T in G’ with z(—g")=
(@) = 1 for all @ in A. Thus 7 is in Z(4, T) but ¢’ is not in z7'(1).
Consequently, Dy(A)DNeinzu,nT (1), completing the proof.

DEFINITION 3.4. Let R be a Witt ring for G and » an element
of R. Then 7 is weakly isotropic if there exists a natural number

m with dim(mr) < m dim #.

LEMMA 3.5. Let R be a succinet Witt ring for G. Amn element
r=37g; of R with n = dimr s weakly isotropic if and only if
there exist t;, ---, t, in I'(X(R)) such that >\ git; is isotropic for R.

Proof. If r is weakly isotropic then for some natural number
m the element > mg; is isotropic for R, i.e., D7, S ™g;-1 is iso-
tropic for R. Sinece 1 lies in I'(X(R)) and R is succinet there then
exist ¢}, ---, &, in ['(X(R)) with 3.7 git; isotropic for R.

Conversely, if there exist ¢;, ---, t, in I'(X(R)) with >.* git; iso-
tropic for R, then r = 37 git; = S\ hi mod I(X(R)) with I <=n. By
Corollary 2.19 then, there is a Pfister element P = [[*(1 + §)) = 3" d;
of B with s, d} in I'(X(R)) with dim»P < »2". Now for all ¢ in
X(R), we have o(rP) = 2"0(r) = 0(2™r). Thus P — 2"r is a nil-
potent element of R. By [14, Prop. 3.15] then there exists a natural
number s such that s(»P — 2™r) =0, or srP =2"sr. But then
dim 2"sr = dim sPr < 2™sn so that » is weakly isotropiec.

THEOREM 3.6. Let R be a succinct Witt ring for G, Y a satu-
rated set of signatures of R, T =I'(Y), and r = >} 7. an element
of R with dim» =n. Then if for all semisignatures t of R con-
stant on cosets of T in G’ we have |t(r)| < m, there exist t], ---, t,
. T with >.7 giti isotropic for R.

Proof. Let R = R/I(Y) and 7 be the image of » in B. Then
by [8, Prop. 1.25] we have dimz(7) < dimgzr = » since by Proposition
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2.20 the ring R is dimensional. Thus X! g¢; is isotropic for R, and
so by Lemma 3.1, there exist ¢, ---, ¢, in T such that X7 gt is
isotropic for R.

COROLLARY 3.7. Let R be a succinct Witt ring for G and r
an element of R with dim» = n. If for all semisignatures t of R
we have |t(r)] < m, then r is weakly isotropic.

Proof. By [8, Rem. 1.10(i)], Theorem 3.6 is applicable to Y=
X(R). Hence, if r = >.7g:, there exist ¢}, ---, ¢, in I'(X(R)) with
S rgit! isotropic for B. Lemma 3.5 then completes the proof.

DEFINITIONS 8.8. Let R be a Witt ring for G and consider
X = X(R) in the Zariski topology of R.

(i) R satisfies SAP if every clopen (closed and open) subset
of X is of the form V(g¢’) for ¢’ in G’.

(ii) R satisfies WAP if the family of clopen subsets {V(g')lg’
in G'} forms a basis of the topology of X.

THEOREM 3.9. (cf. [20, Thm. 2.2; 13, Thm. 1}). Let R be a
Witt ring for G with R = R/I(X(R)) representational. Then SAP
and WAP are equivalent.

Proof. It is clear that SAP = WAP.

WAP = SAP. Just as in the beginning of the proof of [20,
Thm. 2.2] it suffices to show that if Y = N V(g) = Ur V(h}) there
exists a ¢’ in G’ with V(¢’) = Y. Let », = II?A + g}, r, = [[2(1—
hY. Then

o(r) =2 o(r,) =0 for oin Y
(3.10) .
o(r,) =0,0(r) =2 for oin X — Y.
Thus for all ¢ in X(R), we have o(r; + r,) = 2" = ¢(2"). Hence if
7 denotes the image of » in B and & the signature of R induced
by o, we have (¥, + 7, — 2") = 0 for all ¢ in X(R) = X(R). But in
R we clearly have I(X(R)) =0 so that #, + 7, = 2" = 3"1. Hence
dimz(7, + 7,) < 2". On the other hand from (3.10) it is clear that
since G(F7) = o(r), we have dimz7, = 2" 4 = 1, 2. Thus by Proposition
2.4, there is a ¢’ in G’ with ¢’ in Dz(7,) and —g’ in Dz(7,).

Now let g’ denote the image of ¢’in B. Then for all ¢ in X(R)
we have 0(7’") = 6(g’). Hence (3.10) coupled with Lemma 2.9 shows
that o(@') =1 for ¢ in Y and o(@)=—1 for 0 in X — Y. Thus
Y = V(g").
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REMARK. The hypothesis that R is representational is needed
in Theorem 3.9 since it has been noted in [5, §3] that WAP and
SAP are not necessarily equivalent for arbitrary Witt rings for G.

4. Strongly representational Witt rings.

DEFINITION 4.1. A representational Witt ring R for G is said
to be strongly representational if for g), ¢g; in G’ with g, + g, # 0
in R and ¢’ in D(g, + g;) we have

9 +9799.=9.+79:.

PROPOSITION 4.2. If R is a reduced Witt ring for G with
X(R) = @, then R is representational if and only if it is strongly
representational.

Proof. One implication is trivial. Suppose now R is represen-
tational. If ¢ is in D(g; + §;) with gi + g; = 0 then by [8, Rem.
1.24, Lem.] there exists an A’ in G' such that g’ + k' =g! + g in
R. Squaring this leads to 2.5, = 2§’h’ in R. As noted in Remark
1.6, the ring R is torsion free so that g5, =g'h’ or h' = g§'5.g.
which proved Proposition 4.2.

Proposition 4.2 is false in case R, # 0, c¢f. Remark 6.14.

We now proceed to record some of the results of [6] and [7]
concerning Pfister elements that remain vaild for strongly represen-
tational Witt rings for G. Most of the proofs of these results are
essentially just the proofs in the cited references with some suitable
modifications for the abstract situation. We give a fair number of
these proofs in detail and then just record further results without
proofs since these can be supplied by the (willing) reader on the
basis of the literature referred to and the modifications made in the
earlier proofs.

LEMmA 4.3. (cf. [6, Cor. 1.9, 1.10; 16, Prop. 1.3 p. 276]). Let R
be a strongly representational Witt ring for G and let gi, g, h' be
elements of G'.

(i) If 1+g:#+0 4n R and K lies in DA + g) then
L+ gy + g =@+ g + h'g).

(ii) If gi+9:#0 in R and h' lies in DG + g, then
@+ g + g7) = A + r)A + §:g7).

Proof. (i) By Lemma 2.1(i) g:h' lies in D(g; + 9;9;). Since R
is strongly representational, gih' + §.0:h’ = g, + 9.5, which proves
(- o

(ii) Since R is strongly representational, &’ + h'GlG; = . + 0,
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hence (1 + gL + 70 = (L + A1 + 7.92).

ProprosIiTION 4.4. (cf. |6, Prop. 2.2; 16, Prop. 1.5, p. 278]). Let
R be a strongly representational Witt ring for G. Let P=
MMra+g)=1+P', with dimP" =2"—1n=1, be a Pfister
element of R and let hl be in D(P’). Then there exist hl, ---, k. in
G’ with P = [[*(1 + h)).

Proof. We use induction on n. If » =1 we have P’ = g] and
so il =g, and 1+ g =1+ h,. Hence we assume n=2 and that the
proposition is true for (n —1)-fold Pfister elements. Let Q=T[?" 1+
9) =1+ Q. Then P=Q(1 +9.) =Q + 7.Q. Hence P' =Q" + 7.Q
and 2" —1=dmP’' <dim@ +dimg,@ <2"*—1+ 2"t =2" -1,
so that dim Q" = 2" — 1 and dim 7,Q = dim @ = 2",

By hypothesis 7] is in D(P’) = D(Q' + g,Q). Since R is repre-
sentational there exist 2 in D(Q'), ¥ in D(Q) such that A, is in
D& + g.y). Since @ =1 + Q' there exists an element z in D(Q')
such that y is in D(1 + z). By induction there exist z, ---, 2,_, in
G'" with Q=1 +2)]Iy*1 +%,). Now by Lemma 2.3 we have
1+ 7z +# 0 so that Lemma 4.3(i) shows that P=Q1 +g,) = (1 + %)
A+ag)lli*A+z)= A+ 20 + yg)I[I:7A + z) = 1 + ¥7.)Q.
Since z lies in D(Q’) the induction hypothesis again yields AJ, - - -, h,_,
in G with Q=1 +2) I + i), so that P= (1 + &)1 - ¥7.)
7@ + k). Again by Lemma 2.3, ¥ + 7, # 0 in R, so Lemma
4.3(3ii) shows (1 + Z)(L + %7,) = 1 + AD(A + 2yg,). Hence P = (1 L))
(1 + wygl) TI2* (1 + h}), proving Proposition 4.4.

COROLLARY 4.5. (cf. [6, Cor. 2.3] although our proof is dif-
ferent). Let R be a strongly representational Witt ring for G and
P=TIrAd +g), 9 in G, an n-fold Pfister element of R. If
dim P < 2" then P = 0.

Proof. We again use induction on n. The corollary is clear if
n =1 by [8, Rem. 1.24, Lem.]. Assume it is true for (n — 1)-fold
Pfister elements. Again let @ = [[*'(1 + g)) so that P =@ + 7.Q
and P/ =Q" + ¢9,Q. If dim@ < 2" then @ =0 and so P = 0 also.
Hence we suppose []?*(1 + g}) is anisotropic for R, i.e., dim Q = 2"

If dim P’ = 2" — 1 then by Lemma 1.4, the element —1 lies in
D(P’) and so by Proposition 4.4 we see that (I + (—1)) is a factor
of P, whence P=0. Thus we may also suppose dim P’ < 2* — 1.
By assumption, dim Q' =2"*—1 and dimg,Q = 2" but dim P'=
dim(@" + 7,Q) < 2" — 1+ 2"t = 2" — 1. Thus Proposition 2.4 shows
the existence of ¢’ in G' with —¢’ in D@Q') and ¢’ in D(F.Q) =
7.D(®), by Lemma 2.1(i). Proposition 4.4 shows that then Q=
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(1 — §)Q, and since R is representational and @ =1 + Q' there ex-
ists an B’ in D(Q’) such that ¢’ is in D@, + g.h’). Since R is
strongly representational this means g’ + g'h’ = g, + g.h'. Again
by Proposition 4.4, we may write @ = (1 + 2’)S. Hence 7.Q = §'Q
and P=Q+7.Q=01+9)Q =1+ 7)1 — §)Q, = 0, completing the
proof.

COROLLARY 4.6. (cf. [6, Cor. 2.4; 16, Cor. 1.7, p. 279]). Let R
be a strongly representational Witt ring for G. Then a monmzero
n-fold Pfister element, P, of R is round (Definition 2.14).

Proof. By Corollary 4.5 we have dim P =2". Let ¢’ lie in
D(P) = D(1 + P’). Since R is strongly representational there exists
an k' in D(P') such that ¢’ is in DL + k') and 1+ A’ =g + g'h’
in R. By Proposition 4.4 we may write P = (1 + 1')Q. Hence §’'P=
(@ + §'h")Q = P and P is round.

LEMMA 4.7. Let R be a strongly representational Witt ring
for G and let P be a Pfister element of E. Then for any b’ in
D(P) and any ¢’ in G' we have PA + §’') = PA + h'g’).

Proof. By Co_}‘ollary 4.6, P is round so that Ph’ = P and
Pl +g")=PQ+h'g).

ProrosiTION 4.8. (cf. [6, Thm. 2.6; 16, Thm. 1.9, p. 281]). Let

R be a strongly representational Witt ring for G with gi, Tty 9n
B, -+ hpinG,n=0,m=z1l If P=I[t1+7), Q=TIrQ + h))=
1+ Q' and ¢, lies in D(PQ’), then there exists ¢, ---, ¢, in G' such

that PQ = PII?(A + ¢,). In particular, if —1 lies in D(PQ’) then
PQ = 0.

Proof. If dim P < 2", then by Corollary 4.5 we have P = 0 and
D(PQ") = D0) = @. Thus we may assume dim P =2". We now
proceed by induction on m.

If m =1, then ¢, is in D(Ph!) = h.D(P) by Lemma 2.1(i). Hence
¢, = hid, with d, in D(P). Then, by Lemma 4.7 PQ = P(1 + ¢,).

We now assume m > 1. By induction hypothesis we may as-
sume the result for any element in D(PS’) with S = [[*'(1 + kD)=
1+ 8. Now if dim PQ < 2"**, we have PQ = 0 by Corollary 4.5
and for any ¢, in G’ D D(PQ'), PQ =0 = P1 + &) [I'A + (-1)).
Thus we also assume dim(PQ) = 2"*™, and consequently, dim(PQ’)=
2m» — 2*. Now @ = S(L + h%) = h,,S + S so that @ = k.S + S’ and
PQ =h,PS + PS’. Note dim(PQ’) = 2™+ — 2 = 2m+»~1 . (Qm+n~l_
2" = dim(2,PS) + dim PS’. Since R is representational and ¢, is in
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D(h.,PS + PS’) there exist « in D(PS) and y in D(PS’) such that ¢,
is in D(hLZ + ¥) and h,% + ¥ # 0 by Lemma 2.3. Applying the in-
duction hypothesis to y in D(PS’) we find ¢, ---, ¢,y In G’ with
PS = PA+ P Ir A+ ). Now PQ= PSA+ hlL) = PS(L+ xh,) by
Lemma 4.7, so that PQ = P(1 + %) + xh,) II77*(1 + ¢,), which by
Proposition 4.33Gi) is P + &)1 + xyh )71 + &,), the desired
result.

PROPOSITION 4.9. (cf. [6, Thm. 2.7]). Let R be a strongly re-
presentational Witt ring for G and P=1+ P, S, Q=1+ Q" re-
spectively n-fold, s-fold and r-fold Pfister elements of R with s=0,
r=1and n=7r+s. Suppose that there exists an element q in R
with P' = Q'S + q and dimq < 2" — 2™ + 2. Then there exists an
(n — (r + 5))-fold Pfister element of R, denoted by M, with P = SQM.

Proof. We first deal with the case dim P < 2", so that P =0,
by Corollary 4.5. If n > r + s, then P = SQ [ (1 + (—=1)) =0,
which is the desired result. Thus we suppose n =7r +s. If dim@Q’'S <
2rts — 2%, then dim@QS <2+ and P =QS =0 by Corollary 4.5.
If dim@'S =2 — 2°, then from —1 =P’ =@Q'S +q we obtain
Q'S=—1—¢q. Hence 2" —2° =dim Q@'S<dim(—1) +dimg <1 + 2,
which implies » =1 and dim Q'S = 2°. Then, by Definition 1.2, —1
is in D(Q’'S). Therefore, by Proposition 4.8, we have QS =0 = P,
which settles the case dim P < 2",

For the rest of the proof we may then assume dim P =2". If
dim @'S < 2+ — 2° then dim Q'S <2+ — 2° — 2 by [8, Rem. 1.24,
Lem.]. Hence 2" — 1 =dim P’ < dim Q'S + dimqg < 2™+ — 2* — 2 +
2 — 2t 4 2 = 2" — 2, which is impossible. Thus we may also as-
sume dim Q'S = 2"+* — 2° and dimq = 2" — 2"** 4+ 2°* — 1, The rest
of the proof is carried out by a double induction, first assuming
r =1 and inducting on s, and then inducting on 7.

Thus let » =1, Q=0 +%),2 in G'. If =0, then P’ =% + ¢
with dimq = 2* — 2. Hence « lies in D(P’) and the conclusion fol-
lows from Proposition 4.4.

Next, let s=1 and write S=S(1+7'), ¢ in G' with S,=
1+ 8 #0 an (s — 1)-fold Pfister element. Then P’ =Z%S + ¢=
7S, + (®g’S, + @) with dim (2g’S, + q) < 2" + 2" — 21+ 4 2° = 2" —
2¢+ 271, Thus by the induction hypothesis there exists an (n — 1+
(s — 1)) = (n — s)-fold Pfister element M =1+ M’ with P=
A+ BSM=Q+zSM + S, +2%S,. Now since dimP = 2", we
must have dim(1 + Z)S, M’ = 22" * — 1) = 2" — 2°. Also, P = xS+
g + 1 with dimzS = 2°, and dimq = 2" — 2° — 1, so that dim(g+1)=
2" — 2* and 1 lies in D(q + 1). Equating the two expressions for P,
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we get P=1+2S,M + 8, +%S,=2S+q+1=%S,+zg’S,+q+1,
since S=(1+ g')S,. Therefore ¢ +1 lies in RS,, where S, by
Corollary 4.6, is round. Hence, by Proposition 2.16, there exists an
element p in R, with 1 in D(p), suchthatq + 1 = S,p with 2" — 2:'=
dim(g + 1) = dim S,-dim p = 2°"'dim p. Hence dimp = 2"+ — 2,
Since 1 lies in D(p), there exists », in R such that p = 1 + p, with
dim p, < dim p so that dimp, =2 — 3. Then ¢+ 1= 8Sp, + S,
and dim (¢ + 1) = 2" — 2° < dim(S,p,) + dim S, < 272"+ — 3) + 2=
2" — 2* so that dim S,p, = 2" — 3.2"7%,

Substituting for ¢ + 1 wenext find P = (1 + %S, M’ + S, + ZS,=
zS, + x9’S, + S, + S, or (1 + S M’ =xg’S, + S;p, = 29’ + 2g'S,+
S,p,. Now dim(zg’S, + S,p,) < dim(xg’S}) + dim S;p, < 27! — 1 + 2"—
3.2t =2"—~2"—1 < dim(1 + z)S,M’. Hence 29’ lies in D((1 + Z)S,M’),
so that by Proposition 4.8 there exists an (» — s — 1)-fold Pfister
element N such that P = (1 + #SM = (1 + Z)S,(1 + xg")N. Direct
computation shows (1 + zZ)(1 + xg") = (1 + Z)(1L + g') so that finally
P=@1+ %A+ g")S.N = (1 + £)SN, proving Proposition 4.9 for »r = 1
and all s = 0.

Next suppose 7 = 2 and assume, as our induction hypothesis
that Proposition 4.9 is vaild for all (» — 1)-fold Pfister elements and
for all s-fold Pfister elements, s = 0, satisfying the hypotheses. We
write @ = (1 + #)Q, where y is in G’ and Q, =1 + @, is an (r — 1)-
fold Pfister element. Then Q' = Q1 + %) + ¥ and by hypothesis
P'=Q'S+q=@Q1+ S + (FS + ¢q). Since dim(yS + ¢) < dim FS+
dim g < 2° + 2" — 27+° 4 2° = 2 — 2U i+t 4 s+l we may apply the
induction hypothesis to the Pfister elements P, @, (1 + %)S, to obtain
an (n — (r + s))-fold Pfister element M such that P = Q,(1 + #)SM=
QSM, completing the proof.

COROLLARY 4.10. (cf. [6, Rem. (1), p. 192]). Let R be a strongly
representational Witt ring for G and P =1+ P’ an n-fold Pfister
element of R. If there exist g;, 9; in G', and q in R such that
P =g+ g, + q with dimq < 2" — 2, then there exists an (n — 2)-
fold Pfister element M in R such that P = (1 + g1 + 9,)M.

Proof. P'=g((1+39:) +q=@Q'S+q with @ =(=1+ 7)), S=
(1 + g.95). Since dimg < 2" — 2 = 2" — 21+ 4+ 2! we must have n=2
and thus all the hypotheses of Proposition 4.9 are fulfilled with
r = s =1, so that there is (n — 2)-fold Pfister element M in R with
P=Q1+g)1+ g.9)M =1 + g)A + g-)M.

COROLLARY 4.11. (cf. [6, Rem. (2), p. 192]). Let R be a
strongly representational Witt ring for G and P and S respectively
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n-fold and s-fold Pfister elements of R. If there exists an element
q in R with P' = P —1=8+ q with dim q < 2" — 2°, then P = 2SM
for some (n — s — 1)-fold Pfister element M in R.

Proof. Proposition 4.9 is applicable with @ = (1 + 1) = 2.

COROLLARY 4.12. (ef. [6, Rem. (3), p. 192]). Let R be a
strongly representational Witt ring for G and P and @ respective-
ly n-fold and r-fold Pfister elements of R, n=+r=1. If there exists
an element ¢ in R with P =@ + q with dimqg < 2" — 2" + 1, then
there exists an (n — r)-fold Pfister element M with P = QM.

Proof. Since P=Q + ¢q, we have P’ = Q" + q. Proposition 4.9
with s =0, S =1, then yields the result.

The proofs of the following results will be omitted since they
are obtained by subjecting the proofs in [6] and [7] to changes
similar to those made in proving Propositions 4.3-4.9.

ProposITION 4.13. (ef. [7, Thm. 2.1]). Let R be a strongly
representational Witt ring for G and P, Q respectively n-fold and
r-fold Pfister elements im R with m = r. Then the following are
equivalent:

(i) There exists an (n — r)-fold Pfister element M in R with
P = QM.

(i) P lies im QI™", where 1™ 4is the ideal of R generated
by all (n — r)-fold Pfister elements.

(iii) P lies im RQ, with P+ 0 if » = n.

DEFINITION 4.14. (cf. [6, Def. 4.1]). Let P, ---, P, be n-fold
Pfister elements in a Witt ring R for G. These are said to be
r-linked if there exists an »-fold Pfister element @ in R and (n — 7)-
fold Pfister elements M, ---, M, such that P, =QM,1=1, ---, m.
The natural number 2 is called the linkage number if P, ---, P,
are r-linked but not (» + 1)-linked. If the linkage number is
>n — 1, then P, ---, P, are called linked.

PrOPOSITION 4.15. (cf. [6, Prop. 4.4]). Let R be a strongly
representational Witt ring. Two n-fold Pfister elements P, P, in
R are r-linked if and only tf dim(P, — P,) < 2" — 2™, equality
oceuring if ris the linkage number. In particular, ¢f dim(P,— P,)<2"
then P, and P, are linked.

ProPOSITION 4.16. (cf. |6, Thm. 4.5]). Let R be a strongly
representational Witt ring for G; P, Q mnonzero mn-fold Pfister
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elements in R and g', h' elements of G'. Then dim(g’P + h'Q)=2"+"
or 2" — 21 where r>0 is the linkage number of P and Q.

REMARK 4.17. The proof of [4, Satz 16] can also be extended
to torsion free representational Witt rings keeping in mind that
such a ring 1is, by Corollary 2.21, dimensional, so that for any
element » in it we have dim(mr)=mdim+ and D(mr) = D(r),
where m is any natural number. This yields

PROPOSITION 4.18. Let R be a reduced representational Witt
ring for G. Let r be a round element of R with dim» =n. If
n = 2'u with (2, w) = 1, there exists a wumique Pfister element P in
R with » = uP.

REMARK. The hypotheses of Proposition 4.18 are fulfilled in case
R = S/I(Y) with S a representational Witt ring for G and Y a
saturated subset of X(S) by Proposition 2.24. Since, as we shall
show in Proposition 6.7, the ring W(F') is representational for F a
field of characteristic = 2 and the rings W, of [4] are of the form
W(E)H/I(Y) ([8, §2]), Proposition 4.18 does yield [4, Satz 16].

5. Remarks on [3]. In this section we show that [3, Prop.
5.1] is valid for dimensional Witt rings and that by [17] some of
the results of [3, 5] also carry over to the case of representational
Witt rings. We have preferred, for the readers sake, to give fairly
complete proofs of Theorems 5.4 and 5.8, but wish to emphasize
here that the main ideas of the proofs come from [3].

LEMMA 5.1. Let R be a reduced Witt ring for G and 3 g; =
Sk an element of R. Then (—1)»»" 072 T[rg; = (—1)m»—112  [» !
n R.

Proof. Since R is reduced, by Remark 1.6 two elements x and
y of R are equal if and only if o(z) = o(y) for all ¢ in X(R). Now
for a fixed signature o, let p of the o(g;) and p’ of the a(h}) be 1,
so that » — p of the ¢(g)) and m — p’ of the o(h}) are —1. Then

p—n—p)=2p—n=p"—(m—p")=2p" —m.
Thus
O.l:(_l)wm«nw ﬁ ﬁ:] — (___1)(%!7»—1)»‘2»;-4;—1: — (___1)("2—{—%—-213))"3 .

But (n’+n—2p)/2=n’+n—2p—4pn+4p*/2=((n—2p)*+(n—2p)/2 mod 2.
Hence 0.[(_1)(n(n—'1))/2 HIL g;] — (___1)((1»—-2?)2(7»—2111)/2 — (___1)((m—2p’)2+(m—2p’))/2 —
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o[(—1)mm—me e b} proving Lemma 5.1.

LEMMA 5.2. Let R be a Witt ring for G and Y a set of sig-
natures of R such that R = RJI(Y) is dimensional. Let r = 37!
and 7 be elements of R with » = 27 mod I{Y) and let the image of
» in R be denotes by 7. Then if dimz? = n, the element —g|+
S gh of Z|G] is isotropic for R.

Proof. By [14, Prop. 3.14], R is also a Witt ring for G. Since
dimz7 = n, Definition 1.2 shows that g/ lies in Dz(#). In R we have
7 = 2F so that g] also lies in Dz(27) = D#(#) [8, Def. 1.18 and Thm.
1.17(iii)]. Hence 7 = g, + x, where 2 is an element of R with
dimzx < dimz¥. But n = dimz;7 = dim; 27 = 2 dimz¥ [8, Thm. 1.17(i)].
Therefore dimzx <n/2. Thus in B we have S\7g, =g, + g,+ 2 with
dim;2¢ = 2dimzx < n. Then —g + 379} =2x in R, so that by
Definition 1.3, the lemma follows.

LEMMA 5.3. Let R be a Witt ving for G and YOV, 7 =1, 2,
sets of signatures of R. Let r =317, be an element of RJI(Y)
with n even such that 117 g: = (—L)"* in R/IY). Assume there
exist elements vy, in R/I(Y;) with 7= 2ry, in R[I(Y;) where F
denotes both images of » in RII(Y,). If dim,, .y, 7y, = (0 — 2)/2 and
R/I(Y,) is dimenmsional then 3.7 gi is isotropic for R/I(Y,).

Proof. In R/I(Y,) we may write 37§, =222}, for h, in
G'. Since there is a natural homomorphism R/I(Y)— R/I(Y,),
Lemma 5.1 shows that (—1)"® = = (1) 2@ in R/II(Y,).
Straightforward computation yields (—1)**=—1 in R/I(Y,). Since
R/I(Y,) admits homomorphisms to Z, we have —1 =1 in R/IY,) so
that =»/2 is odd. If 3,7g: were anisotropic for R/I(Y,), then
dim,,,,;y,2ry, = » and so by [8, Thm. 1.17(3)] dim,;y,7y, = n/2. But
then again by Lemma 5.1 and using the homomorphism R/I(Y) -~
R/I(Y,), we have (—1)™» (-1 = (1) in R/I(Y,) so that
(—1y?*=11in R/I(Y,). Just as above —1 =1 in R/I(Y,). This con-
tradietion proves Lemma 5.3.

THEOREM 5.4. (cf. [3, Prop. 5.1]). Let R be a Witt ring for
G, Y a closed set of signatures of R and F a family of subsets of
Y such that an element of Z[G] is isotropic for R/I(Y) if and
only if it is isotropic for R/I(Y') for all Y' in . Suppose fur-
ther that for all Y' in %, the ring R/I(Y') is dimensional. Let
C(Y,Z) be the ring of continuous functions from Y (with the
Zariski topology) to Z (with the discrete topology), and let f be an
element of Z-1 + C(Y, 2Z). If for all Y’ in $§ there exist elements
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vy i R such that the restriction of f to Y' is given by f(o)=0c(ry)
Jor all 0 in Y', there exists an element r in R with f(o) = o(r)
Jor all o in Y.

Proof. Since Y is closed it is clear that X(R/I(Y)) =Y. By
[15, Thm. 3.18@1)] for any f in C(Y, Z) there exists an element 7,
of R/I(Y) and a natural number m such that (2"f)(¢) = o(r,) for all
o in Y. It clearly suffices to treat the case m = 1, for once this is
done, Theorem 5.4 is proved for 2"'f, which then yields the result
for 2m72f, ete.

Thus for fin Z-1 + C(Y, 2Z) we may suppose 2f(c) = o(r,) for
all ¢ in Y and some element 7, in R/I(Y). Hence for all ¢ in Y,
with Y’ in %, we have d(#,) = 20(ry.), so that 7, = 27, in R/I(Y"')
by Remark 1.6. Let dimg,;y7, =% and 7, = X,*g.. Since Theorem
5.4 is obviously true for constant functions, we may assume without
loss of generality that f(Y) < 2Z. Thus for all ¢ in Y, we have
o(r,) =0 (4). For a fixed ¢ in Y, let o(@), 1=1,---,n, be 1L »
times so that [[7o(g}) = (—1)"? in R/I(Y). Then 2p —n =0 (4) so
that »# is even and » =n/2 (2). Thus [I7o(g;) = (—1)** or, by
Remark 1.6, [[rg; = (—1)"* in R/I(Y).

If for some Y’ in § we had dimg,y,7y = (n — 2)/2, Lemma
5.3, shows that >."g; would be isotropic for all R/I(Y"”) with Y’
in &%, which by the hypothesis on & would make >} g; isotropic for
R/I(Y), a contradiction. Hence for all Y’ in & we know dimg,; 7y
#(n — 2)/2.

If >\rg: is anisotropic for R/I(Y'), with Y’ in {, Lemma 5.2
shows that —g; + D7 ¢g; is isotropic for R/I(Y’). If >\tgi is iso-
tropic for R/I(Y') with Y' in %, then by [8, Rem. 1.24, Lem.]
dimg,; 7 = n — 2. Since dimg,; 17, = 2dimg,;y,7y [8, Thm. 1.17
(i)], this together with the last paragraph shows dimg;z,7y <
(n — 2)/2. Now, in R/I(Y’), we have —g, + 3\ g: = 27 — g, — J..
Since, in R/I(Y’), the element 27, is the sum of fewer than » — 2
images of elements of G’, the element —g; + 37 ¢gi is again isotropic
for R/I(Y'). Hence —g! + 3.7 g¢, is isotropic for R/I(Y).

Now setting 7, =7, — g, — g, we see that dimg,yr <
dimyg, ;7. Let fi, in C(Y, Z) be defined by fi(c) = f(o) — o(g;) for
all ¢ in Y. Then 2f,(¢) = o(r,) and for all ¢ in Y’, we have f,(0)=
o(ry, — g1); thus the proof is completed by induction on =n=
dimg,; 7, since if n = 2 the above proof shows », = g; + g, and

flo) = a(g)).

REMARK. By [8, Cor. 2.12], Theorem 5.4 applies to R = W(C),
the Witt ring of classes of nondegenerate symmetric bilinear C
forms when C is a connected semilocal ring all of whose residue
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class fields contain at least 3 elements if Y and the elements of
are saturated. Since [8, Thm. 2.11] shows that the notion of iso-
tropic used here and that used in [3] coincide and [8, Thm. 2.15]
shows that the Witt rings of [3] are of the form W(C)/I(Y) with
Y saturated, Theorem 5.4 really does yield [3, Prop. 5.1] in case C
is a field of characteristic # 2.

The interest in Theorem 5.4 lies in the light it sheds on the
image of R/I(Y) in C(Y, Z) since by [15, Thm. 3.18(iv)] this image
is always contained in Z-1 + C(Y, 2Z). In [3, §3 and Cor. 5.2] it
is shown that in case R = W(C), with C a field of characteristic£2,
the family § may be taken to be the family of finite saturated
subsets of Y. Thus in the framework of [3] the description of
Im(R/IY)) in C(Y, Z) is reduced, as we shall show below, to the
case of Witt rings for finite groups. Unfortunately we are unable
at this time to prove an analogue of [3, Cor. 5.2] for representa-
tional Witt rings for G. Nevertheless, as we now point out, part
of [3, Thm. 5.3] does carry over to the abstract situation.

LEMMA 5.5, Let R be a Witt ring for G and Y # @ a subset
of X(R). Then Y is finite if and only if G'/I'(Y) is finile so that
RII(Y) is a Wilt »ing for the finite group G'/I'(Y).

Proof. It Y = {0, ---, 0,} then the sequence
1— I(Y) = (o) — & — 11 {£1}

is exact, so that G'/I'(Y) is finite. Conversely, if G'/I'(Y) is finite,
since Y may be identified with the characters it induces on G'/I'(Y),
it is bijective with a subset of the character group of a finite
abelian group and so is finite.

DEFINITION 5.6. Let R be a Witt ring for G and Y a subset
of X(R). Then Y is a fan [4, Satz 20(ii)] if every character of
G’/I(Y) that maps —I'(Y) to —1 induces a signature of Y.

LeMMA 5.7. Let Y be a fan and let g, be an element in G’
with gl (Y)=—1'(Y). Then Y' ={oin Y|o(@,) = 1} is also a fan.

Proof. Any character of G'/I'(Y') induces a character of
G'/I(Y) since I'(Y')DI'(Y). Thus any character of G'/I'(Y’) send-
ing —I'(Y’") to —1 induces a signature of Y which sends g; to 1,
i.e., a signature of Y’, so that Y’ is, indeed, a fan.

TeEOREM 5.8. (cf. [3, Thm. 5.3(b), (c)]). Let R be a Witt ring
for G and YC X(R). For any finite set P denote by |P| the card-
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inality of P. Then the following are equivalent:
(i) For each finite fan Y' CY we have Y.y f(0) = 0 mod|Y"’|.
(il) Let f be in C(Y, Z). For every finite fan Y'Y there
18 an element ry. in R with f(¢) = o(ry) for all 0 in Y'.

Proof. (i)=(ii). Let Y’ be a finite fan and f an element of
C(Y, Z). We identify Y’ with all the characters of G'/I'(Y') send-
ing —I'(Y’) to —1. Now since every element of G’/I'(Y’) has order
2 and G’/I'(Y’) is finite by Lemma 5.5, we may write G'/['(Y')=
{r(Y"), —I'(Y")} xH and Y’ is then identified with H, the character
group of H. Now we also write f for the function from Hto Z
induced by f and define functions f,: H — Z by f,(X) = X(h) for each
h in H. Then if we set m;, = 1/|H|) X mp fSO)X(h) it is an im-
mediate consequence of the orthogonality relation (10) on p. 181 of
[21] that f =3, m;.f,. By (i) mys, lies in Z.

Next, we show that m;,, is in Z for all » in H. Let S(h)
denote the characters in H for which X(k) =1. We may then write
H={1, h}x H, and may identify S(») with H,. Thus |Sh)| = |H,|=
(JH{/2) and by Lemma 5.7 S(kh) = H, is the subfan Y” of Y’ con-
sisting of all singatures sending ¢.['(Y')=h to 1. Now my,=
U HD S sosr f D) — Snorinsof D] = @I HD SysmsinfX) — 1/IH)
S>mn f(X). Applying (i) to the fan Y” shows that first term is in
Z and since the second term is m;, we have shown that m,, lies
in Z.

Finally, let 7y = 3,uxm;,§° where ¢'I'(Y’) =h. Then for
all ¢ in Y’, we see 0(ry) = Souing Ms0@") = SpingMys X(h) =
(Znina s fi)X) = fX) = f(o), proving (ii).

(ii)= (i) Suppose first that for all ¢ in Y’ there exists ¢’ in
G’ with f(6) = a(g’). If ¢’ lies in I'(Y')U —I'(Y"), then 3, inp f(0)=
+|Y’|, proving (i) in this case.

If ¢I'(Y")=s=I'(Y’') or —I'(Y’) then we again write G'/I'(Y")=
{r(Y", —I'NY")}x H with ¢'T(Y")=#1 in H, and identify Y’ with
H, the character group of H. Then 3.y f(0) = Syms X(h) for
h=¢g'I'(Y'ys=1in H. By (8) on p. 181 of [21] this sum is O and
80 (i) is also valid in this case.

For an arbitrary f, by (ii), there exists an 7, in R so that for
all ¢ in Y’ we have f(o) = o(ry). Let 7y, = 37g;.. Then f(o)=
S o) and 3uy f(0) = 2 Doy 0(F7) = Omod |Y'| by what was
proved above.

Next we point out that by using the main result of [17] the
remainder of [3, Thm. 5.3] is valid for representational Witt rings
for finite groups:

By Remark 2.30, if R is a reduced representational Witt ring
for a finite group @, then (X, G'/[(X(R))) is a finite space of order-
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ings as defined in [17 and 18]. By [17, Thm. 4.11 and 18, Rem.
1.8], there exists a pythagorean field F with X = the space of
orderings of F, G'/[(X(R)) = F/F* and R = W(F). Hence [3, Thm.
5.8(b) = (a)] yields the following:

THEOREM 5.9. Let R be a representational reduced Witt ring
for a finite group G with I'X(R)) =1. Then if for f in C(X(R),
Z) there exists ry for each fan YCX(R) with f(o) = a(ry) for all ¢
in Y, there exists r in R with f(o) = a(r) for all ¢ in X(R).

ReMARK. It is possible, by using [17], to prove Theorem 5.9
without any reference to fields and valuations. Essentially the
analogues of the results of [3, §4] hold for reduced representational
Witt rings for finite G whose space of signatures is connected in
the sense of [17]. On the basis of this, the proof in [3] can be
adapted to the abstract situation.

6. Witt rings of semilocal rings, In this Section we prove
results about Witt rings of bilinear forms over semilocal rings that
enable us to apply the results of the previous sections. Throughout
the rest of this paper C will denote a commutative connected semi-
local ring and U(C) its group of units. By a space over C we shall
mean a pair (E, B) where FE is a finitely generated projective
(whence free) C-module and B is a symmetric nondegenerate bilinear
form on E. Isometries will be written as = and for any natural
number m, the space K L --- 1 E(m times) will be denoted by mKE.
An element e of E is called primitive if it can be augmented to a
basis of E. A space (E, B) is isotropic if there is a primitive
element ¢ in E with B(e, ¢) =0, and weakly isotropic if for some
natural number m, the space mFE is isotropic. The space Ce, | --- 1
Ce, with B(e, ¢,) = a, in U(C) will, as usual, be denoted by {(a, ---,
@,>. The Witt ring of equivalence classes of C-spaces will be denoted
by W(C) and the class of a space (¥, B) in W(C) by [F]. For any
C-space (K, B) there always exist a, ---, a, in U(C) with [EF]=
[Kay, *--, a,], [14, Thm. 1.16].

We shall also, very briefly, consider quadratic C-spaces {19, pp.
110-111] and the left W(C)-module W, (C) of equivalence classes of
quadratic C-spaces [19, pp. 110-111]. We shall use similar notations
for quadratic spaces as for spaces.

By [14, Cor. 1.21], R = W(C) is a Witt ring for the group
UC)Y(U(C)?. We shall view the signatures of R as defined in §1
either as homomorphisms of R to Z or as homomorphisms of U(C)
to {£1} sending (U(C))* to 1. If Y is a set of signatures of W(C)
(or C) we shall slightly alter one of the notations of §1 and some-
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times consider 7(Y) and D([E]) as a subset of U(C) instead of
U)oy

PROPOSITION 6.1. Let R = W(C) where C is a connected semi-
local ring all of whose residue class fields contain at least three
elements. Then R 1is succinct.

Proof. Let Y be a saturated set of signatures of R, a,,---, a, be
elements of U(C) and t,;, 1=1,---, n, j=1,---, m,;, elements of I'(Y).
Denote 17, L7 <at;y by E. If the element >, 3\ at,(U(C))*
of Z[U(C)/(U(C))?] is isotropic for R then [E]=[E’'] in W(C)
with rank E’< rank FE, whence by [8, Lemma 2.2] the space 6F
is isotropic. But then by [8, Lemma 2.7(iii)] there exist ¢, ---, ¢,
in I'(Y) such that a,t,+ --- +a,t, =0 in C and a,t,+ --- +a;t; is in
U(C) for all I <m. Thus by [8, Lem. 2.10] there exist ¢, ++-, ¢,
in UC) with [<at, :--, a,t,>] =[{c, + -, ¢,_oy] which means that
the element 3.7 a,t,(U(C))* of Z[U(C)/(U(C))] is isotropic for W(C).

COROLLARY 6.2. Let C be a comnected semilocal ring all of
whose residue class fields contain at least 3 elements. Let Y denote
a saturated set of signatures of W(C). Then W(C)/I(Y) is succinct.

Proof. This is immediate from Propositions 6.1 and 2.26.

COROLLARY 6.3. Let C be a connected semilocal ring all of
whose residue class fields contain at least 3 elements and such
that X(W(C)) = @. Then (W(C)), = Nil W(C) is generated as an
ideal of W(C) by [1, —t'>] with t' in ['(X(R)).

Proof. This is immediate from Proposition 6.1 and Corollary
2.23.

REMARK. Corollary 6.3 was proved with the additional hypo-
thesis “2 in U(C)” in [15, Cor. 4.19] and in full generality in [12,
p. 52].

PROPOSITION 6.4. Let C be a conmnected semilocal ring all of
whose risidue class fields contain at least three elements and let Y
denote a saturated set of signatures of W(C)=R. Then R =
W(C)I(Y) is stromgly representational.

Proof. Let 7,1 =1, 2, be two elements of R with dimz7F, = n,
and dimz(7, + 7,) < n, + n,. Then denote by 3%, a,;UC), i =1, 2,
anisotropic representatives in Z[U(C)/(U(C))?*] of 7, so that



SUCCINCT AND REPRESENTATIONAL WITT RINGS 129

S, a;(U(C)) + iz, a0;(U(C))? is isotropie for B. By [8, Thm. 2.11]
there then exist ¢,;, 1=1, 2, j=1,--+, n;, in I'(Y) so that in C we have
A S A 2 S o P P L P 2V +a2n2t2n2:0 and @t +ate+ -+
Qintia, =% 18 @ unit in C. Hence —u = ayly + Auly+ - + Gsp,ls,,
and again by [8, Thm. 2.11}, the element u(U(C))* lies in D%(7,) and
—w(U(C))? lies in D#(7,). Therefore by Proposition 2.4, the ring R
is representational. Since R is reduced, R is strongly representational
by Proposition 4.2.

LEMMA 6.5. Let C be a connected semilocal ring. Suppose
either (a) 2 is wn U(C), or (b) C s a local ring of characteristic 2
with maximal ideal m and m* =0. If a space {a, ---, a,) 1S an-
isotropic then dimg[<a, ---, a,)] =n, and for two anisotropic
spaces E, and E, we have [E] = [E,] if and only if E, = FE,. In
addition, in case (a) and if C is a field imn case (b), then

dim, o[{ay, -+, ] = n if and only if {a, ---, a,) is anisotropic.
In particular, if E is a C-space with dimy [E]=mn, then there exists
a unique anisotropic space {a, ---, a,y with [E] = [{a,, ---a,>].

Proof. Suppose K = <a, ---, a,) is anisotropic. If 2 is in U(C)
then dim, [E] = n» is an immediate consequence of the definitions
and Witt cancellation [9, p. 2566]. If C is a local ring as in case
(b) and dimy[E] = m, m < n, then [E]=][b, ---, b,»]. Now re-
peated application of [10, Satz, 3.2.1, p. 106] shows that <b,, ---, b,)> =
M 1 L where M is metabolic and L is 0 or anisotropic with rank
L <m < mn. But in the latter case [F] = [L}], and so by [10, Thm.
8.2.1, p.119] we have E = L which is impossible. If L = 0, then
[E] =0 and so by [10, Lem. 8.2.2, p. 119] the space E is metabolic,
violating the anisotropy of E. Thus dimy[E] = n.

Suppose E,, E, are two anisotropic spaces with [E,] = [E,] in
W(C). In case (b) E, = E, follows from [10, Thm. 8.2.1, p. 119]
while the conclusion in case (a) is a well known consequence of
Witt cancellation [9, p. 256].

Now suppose, in addition, in case (b) that C is a field and let
E =<{a, ---, a,y with dim,[E] =n. If n =0 there is nothing to
prove. By repeated applications of [10, Satz 3.2.1, p. 106] E = M L L
where M is metabolic and L is anisotropic or 0. Now in both case
(a) and (b), an anisotropic space is proper, so that if L = 0 it has
an orthogonal basis ([14, Lem. 1.12]), i.e., L = ¢, -+, ¢,»>. By what
was proved above, dim, [L] =s. But [E] =[L] so L # 0 if n %0,
and s = n. Consequently M =0 and E = L is anisotropic.

LEMMA 6.6. Let C be a connected semilocal ring and suppose
either (a) 2 is in U(C) or (b) C is a local ring of characteristic 2
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with maximal ideal m and m* =0. Let £ = {a, ---, a,» be an an-
isotropic C-space. Then for any unit u in D((E]) there exist
x, ++, &, *n C such that u = axi+ --- +a,xi. In case (a), and if

C is a field in case (b), then this condition is also sufficient for w
to be in D([E]).

Proof. Let u be a unit of C which lies in D([E]). By Defini-
tion 1.2, there exist units u,, - - -, %, in C, m < n, with [{a,, -+ -, a,)] =
[{w, Uy +++, Uny]. Now if {u, u, ---, 4,y wWere isotropic, then by re-
peated application of [10, Satz 3.2.1, p. 106] <w, u,, -+, Uy =M L L
where M is metabolic, L is anisotropic or 0, and rank L <m < n.
Clearly 0 == [E] = [{u, %y, -+, x>} = [L], so that L 0. Since L
and E are both anisotropic, by Lemma 6.5, we have E = L, a con-

tradiction. Thus {(u, %, ---, 4,> is anisotropic and by Lemma 6.5
{Uy Usy vy Uy = B = {a,, -+, a,), so that m = n and there exist
2, -+, %, in C with v = a2+ -- - +a,x.

Now assume that there exist «,, ---, x, in C such that w =
a4 -« - +a,x: lies in U(C). Then if f is the vector (x, ---, x,) of
{a, ++-, a,y, the proof of Lemma 1.11 of [14] shows that
{a,, ---a,y =Cf L(Cf)-. Since <a,, :--, a,» is anisotropic so is
(CF)t. If 2is a unit in C or if C is a field of characteristic 2,
then every anisotropic space is proper. Thus by [14, Lem. 1.12]
the space (Cf)* has an orthogonal basis, i.e., (Cf)* = Uy ---, U,
for units wu,, ---, %, in C. Hence [{u)] + [{uy, -+, u,)] = [E] and so
uw is in D([E).

PROPOSITION 6.7. Let C be a comnected semilocal ring with 2
in U(C). Then R = W(C) is strongly representational.

Proof. Let E; = {a,, :-, ¢, 1 =1,2 with dim[E;] =n, and
suppose dim ([E, 1 E,]) < n, + n,. Then by Lemma 6.5, the space
E, | E, is isotropic so that by [2, Satz 2.7(c)] there exists a unit
represented in the classical sense by E,, such that —u is represent-
ed, in the classical sense, by E,. By Lemma 6.6 this means « is in
D(E] and —u is in D([E,]) so that by Proposition 2.4, the ring
W(C) is representational.

Next, suppose for units a, b, ¢ of C we have [{a, b)] # 0 and ¢
lies in D([<a, b)]). By [8, Rem. 1.2.4, Lem.] this means dim[<a, b)]=2
and there exists an element = in W(C) with dim» <1 so that
[Ke>]+r=[{a, b)]. Again by [8, Rem. 1.24, Lem.] the case dim+»=0
is impossible, so that there is unit d in C with [{c, d)] = [<a, b)].
By Lemma 6.5 this means <{e¢, d)={a, b). If {e, f} is the canonical
basis for <a, b), there exist elements «, 8 in C with B(ae + gf,
ae + Bf) =e, ie., a’a + 8% = c¢. But then {ae + Bf, Bbe — aaf} is
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easily seen to be another orthogonal basis of <a, b>, so that <{a, b) =
(¢, caby, and W(C) is strongly representational.

We shall now see that if 2 is not a unit in C, the ring W(C)
need not be representational.

ExaMPLE 6.8, Let F be a field of characteristic 2 with [F: F”]
infinite. For example, F' = F(x, ---) where F, is a field of charac-
teristic 2 and x, --- are countably infinitely many algebraically
independent elements over F,. Let

{ly Qyy Agy ** 7y bi; biy }

be a basis of F' over F° Let C be the ring of dual numbers over
F, ie.,, C=F+Fx with 2°=0. Then C is local with maximal
ideal m = Fx and C/mt = F. Note that C* = F?,

Consider next the C-spaces E, =, ay, +--, a,), £, = <{b, b, + 2,
by -+, by, We first verify that K, L K, is anisotropic: If ¢ -
Socia, + b, + (b, + ) + Srei’b, = 0, then since C* = F* we have
e=0¢=0and ¢/ =0,7% 2. Hence all ¢, and ¢ lie in m and
FE, 1 FE,is anisotropic. If R = W(C), Lemma 6.5 shows dim,([E, | E,])=
n + m = dimy([F.]) + dimy([E.]).

Let (v.},=1...n, {W.}i—i,....n be the canonical bases of F, and F, re-
spectively. Then in E, | E,, we have B(v, + w, -+ w,, v, + w, + w,)=
1+b +0b +2 =1+ 2 and by the first part of the proof of Lemma
1.11 of [14], E, L E, = Clv, + w, + wy) L (Clv, + w, + w,))*. Clearly
v, is in (Clv, + w, + w,))* and B(w, v,) = a, in U(C). Therefore by
[14, Lem. 1.12] (C(v, + w, + w,)" = {ey, *+*, Curny With e, in U(C).
Thus B, L E, = + 2, e, -+, ,r,yr and according to Definition 1.2,
we have 1 + ¢ lies in D([E, L E,]).

Let g, be units of C in D(E;]), ¢ =1,2. By Lemma 6.6 this
vields the existence of elements @, -+, @, A, --+, \,, in C with

9. = Pi+ 2 aPi # 0, g, = b\ + A + b+ M

with
Bo= b A - S0 .
3

The space {g,, g,) is again anisotropic: For if for v, y, in C
g Y, + g9, = 0 then Ay:=0. If y;=0 then ¢gy2=0 implies 4?=0 so
Y, Y. lie in nt. If 92=£0, then A =0 and the independence of
1, ay -+, b, b, - over F? = C*® forces ¥y =0, 9, in m and ¢* =0,
which is impossible.

Suppose now that 1 + 2 were in D([{g, 9,>]). Again Lemmas 6.6
would yield elements a, 8 in C with



132 JERROLD L. KELINSTEIN AND ALEX ROSENBERG

1+ 2 =da%g + B*h + B\ .

Then A} =1 and a’g, + g2 = 1. The independence of 1, a,, ---,
b, --- over F? = (C? then forces g*h = 0, which since 3% = 0, forces
h = 0, a contradiction. Thus 1 + 2 does not lie in D([{g, g.]) for
any g, in D([E/]), 1 =1, 2, and R = W(C) is not representational.

REMARKS 6.9(i). The inclusion relations {Witt rings for G}o
{succinet Witt rings for G}>O{representational Witt rings for G} are
all proper: In [8, Remark 1.19] an example of a torsion free Witt
ring R for G which is not dimensional was given. From Proposition
2.20 with Y = X(R) it then follows that R is not succinct. Fur-
thermore if C is the local ring of Example 6.8, the Witt ring W(C)
is succinet by Proposition 6.1 but fails to be representational.

(ii) The local ring C of Example 6.8 also furnishes another
example of a 2-fold bilinear Pfister form which is isotropic but
whose class in W(C) is+0: Let P,=<,1+ 2>, 1+ ax)=
A,1+ 2 1+ ax, 1L+ (a, + D). If (a, B, 7, 6)is an isotropic element
of P, then o>+ B%1 + ) +v(1 + ax) + 1L + (a, + Dx) = 0. A
routine computation shows that this forces a®* = g8°* = = 6% and,
indeed the element (1, 1, 1, 1) is a primitive isotropic element of P,.
Hence if VC P, is a totally isotropic submodule of P,, it is easily
seen that [V/mV: F]=1. But if P, is metabolic, then P, contains
a direct summand W which is totally isotropic and of rank 2 [10,
Satz 3.2.1, p. 106] and necessarily [W/mW: F] = 2, hence P, is not
metabolic and therefore by [10, Lem. 8.2.2, p. 119}, [P,] #0 in W(C).
In [1, Bemerkung (2.3), pp. 146-147] another such example is given
with C = Z/4Z. Our example shows that this pathological behavior
of isotropic bilinear Pfister forms can also occur for “very large”
residue class fields of characteristic 2.

PrROPOSITION 6.10. If C is a field of characteristic 2 then
W(C) 1is strongly representational.

Proof. Let 7r, be elements of R = W(C) with dim, 7, = n,,
1 =1, 2 and dim, (7, + 7,) = n, + #,. By Lemma 6.5 we have » =
[€@uy oy @)y 72 = [Cbyy ==, By] With Cay -+, @) and by, -+, b
anisotropic and {(a,, -+, @,, b;,, -, b,,» also anisotropic. Now let ¢
lie in D(r, + 7,). By Lemma 6.6, there exist «,, ---, @,, ¥, -, ¥,,
in C with ¢ = 3" ax? + 32 by: = 0. If both ¢, = Dt e} and ¢,=
S byt are = 0, then again by Lemma 6.6, ¢; lies in D(r,), i1 =1, 2
and since (e, ¢,y is clearly anisotropic, by Lemma 6.6 ¢ is in
D([{e, ep]). If ¢, =0, say, then once more by Lemma 6.6 we have
¢ lies in D([{e, b)) with ¢, in D(»,) and b, in D(r,) so that R is
representational.
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Now let [<a, b)] # 0 and ¢ be in D([<a, b)]). By [8, Rem. 1.24,
Lem.], dimy[<a, b)] = 2 so that <a, b) is anisotropic by Lemma 6.5.
Just as in the proof of Proposition 6.7 there exists d in U(C) with
e, d>] = [£a, b)]. By Lemma 6.5 this implies <{¢, d)=<a, b) whence,
just as in the proof of Proposition 6.7, we have {a, b)={¢, cab) and
W(C) is strongly representational.

COROLLARY 6.11. Let C be (a) either a connected semilocal
ring with 2 im U(C) or a field of characteristic 2, or (b) a con-
nected semilocal ring with all residue class fields containing at
least 3 elements. Then if r is a round element of R = W(C) in
case (a) and of R = W(C)/I(Y), for a saturated set of signatures
Y in case (b), then Anng(r) = a(D(r)).

Proof. In case (a), Proposition 6.7 and Proposition 6.10 and in
case (b), Proposition 6.4 shows that the R in question is representa-
tional. Theorem 2.15 then completes the proof.

[8, Thm. 2.11] in case (b) and Lemma 6.6 in case (a) yield an
explicit deseription of D(r). Thus by Lemma 6.6, the case (a) in
Corollary 6.11 is already contained in [11, Thm. 4.1 and Bemerkung
4.4]. We now show how Lemma 2.13 combines with [2, Satz 2.7]
to reprove [11, Thm. 4.1].

Let (&, q) be a quadratic C-space. A unit u of C is said to be
represented by (X, q) if there is a primitive element ¢ in F with
gle) = u. As in Definition 2.14, the space (%, q) is called round if
[uq] = [q] in W,(C) for all units represented by q.

PROPOSITION 6.12. Let C be a connected semilocal ring all of
whose residue class fields contain at least three elements and (E, q)
a round quadratic C-space of rank = 2. Then if R = W(C) and
[q] # 0 in W, (C), we have Ann,([q]) = a(T') where T is the sel of
units represented by [q].

Proof. Letr=[{a, ---, a,y]liein Ann,([q]). Then {a,, - -, a.> QF
is hyperbolic and so, in particular, isotropic. Now <(a,, ---, a, ) RE=
1rqFE. If n =1, then r is a unit in W(C) = R and so [¢] = 0. If
n = 2 then by [2, Satz 2.7(b)] there are units u,, u, in C, represent-
ed by (&, a,q) and (F, a,g) respectively, with u, + u, = 0. Now
u, = a,9(e;) = a;it; with ¢, in T,7=1,2. Hence a,, + a,t, = 0 and
[<t>1la] = [q]- Then by [10, Satz3.2.1, p. 106] we have [{at, a,t,)]=0
so the element a,t,(U(C))* + at,(UC))? of Z[U(C)/(U(C))?] is isotropic
for R. If n > 2 we apply [2, Satz 2.7(b)] to L} ?*e,ELla, FlaFE
to obtain units », v,_,, v, in C, represented by L7 *a.F, a,_ K, a,F re-
spectively, such that v +wv, , +v, =0. As before, v, , = a, ,t,,,
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v, = a,t, with ¢,_,, 7, in 7. A final application of |2, Satz 2.7(b)]
to the unit v yields units ¢, %, ---, £,_. represented by ¢ such that
v=at 4+ 4 a, st, so that we finally have a,f, +---+ a,f, =0
with a,f,+---+a, ,t,, in UC). By [8, Lem. 2.10] the element
S, T (UC)) of Z[U(C)/(U(C))] is isotropic for R. Hence by Lemma
2.13, we have Anny([E]) = o(T") where T’ is the subgroup of U(C)
consisting of all units ¢ with [{¢>][q] = [¢]. That T = T’ is stand-
ard [1, Bemerkung (1.2), p.127].

REMARK 6.13. As we pointed out in §4, most of the proofs in
that section are adaptations to our situation of the corresponding
proofs in [6, 7, 16]. There the results are proved for spaces over
5 field of characteristic not two and use the relations of isometry
and p-chain equivalence where we use equality in a Witt ring for G.

In Propositions 6.7 and 6.10 we showed that W(C) is strongly
representational when C is a connected semilocal ring with 2 in
U(C) or any field. A little argument now shows that the original
Elman-Lam results are a consequence of ours up to isometry (rather
than p-chain equivalence) for C a connected semilocal ring with 2
in U(C) and even remain largely true for C a field of characteristic 2:
Let P, @ be two n-fold Pfister spaces over C, where C is as above.
If P is isotropic then by Lemma 6.5 dim[P]< 2" so that by
Corollary 4.5, we have [P] =0. If C is afield of characteristic 2,
then P is metabolic by [10, Lem. 8.2.2, p.119]; if C is a connected
semilocal ring with 2 in U(C), then using Witt cancellation [9, p.
256] we see that P is hyperbolic. Thus Corollary 4.5 yields [6,
Cor. 2.3] exactly when C is a connected semilocal ring with 2 in
U(C) and a modified version, substituting “metabolic” for hyperbolic
when C is a field of characteristic 2. In either case, if [P] =[Q] % 0
then by Corollary 4.5 and Lemma 6.5, the spaces P and @ are an-
isotropic and hence isometrie. If [P] =]Q] =0 then we ecan, of
course, only conclude that P and @ are hyperbolic and so P = @,
in ecase C is a connected semilocal ring with 2 in U(C).

These observations together with Lemmas 6.5 and 6.6 are suf-
ficient to allow deduction of [7, Thm. 2.1 (1, 2, 3)] and Theorem 2.7
and Remark, Corollaries 1.9, 1.10, 2.5 and part of Corollary 2.4 of
[6] from their analogues in Propositions 4.9, 4.13, Corollaries 4.6,
4.10, 4.11, 4.12 and Lemmas 4.3 and 4.7 for spaces over connected
semilocal rings with 2 in U(C), or for fields of characteristic 2
whenever the statements in [6, 7] are restricted to anisotropic
spaces. Furthermore, these observations also yield, up to isometry,
[6, Prop. 2.2, Thm. 2.6] from Propositions 4.4 and 4.8, respectively,
when, in the notations of [6, Prop. 2.2, Thm. 2.6], the Pfister
spaces, @ and 77 are anisotropic. If @ and 7v are isotropie, or as
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we have noted, [p] =[cv] =0, then in the case of a connected
semiloecal ring C with 2 in U(C), it is an easy matter to see that
[6, Prop. 2.2 and Thm. 2.6] follow in this case also. Finally, {6,
Prop. 4.4, Thm. 4.5] follow readily in both cases for anisotropic
Pfister spaces from Propositions 4.15 and 4.16, respectively, noting
that for an arbitrary C-space E, we have rank F = dim [E] + 2X
(Witt index of E). Again it is an easy matter, in the semilocal
case, to deduce [6, Prop. 4.4, Thm. 4.5] whenever, in the notation
of [6, Prop. 4.4, Thm. 4.5] the Pfister spaces @ or v are isotropic.

REMARK 6.14. We owe the substance of this remark to a con-
versation with Roger Ware.

Let R be a Witt ring for G and also for H. Then it may well
happen that for » in R both dim 7 and the image of D(») in R de-
pend on the particular presentation of R. For example, if R = R,
and G = U(R) with (UR))? =1, then R is a Witt ring for UR)
and if u, are elements of G, then X u, lies in the unique maximal
ideal of R containing 2 [14, Lem. 2.13] and thus is nilpotent [14,
Prop. 3.16]. Thus for %, in G the element Y. **'u, = » is again in
G and so dim# = 1. Moreover for u, in G we have > ™2y, = u,+
Sy, so that dim (G *+*u,) = 2 or 0. Furthermore, if % is in G we
have D(u) = w and for u,, u, in G, w, #* —u,, D(u, + u,) = G because
for any v in G we have %, + u, = v + (4, + 4, — v). Using Proposi-
tion 2.4 it is then easily verified that R is representational as a
Witt ring for U(R). Now let F be a field of characteristic not
two, containing V" —1, and possessing an anisotropic space of rank
3, Q@) is such a field, for example. Then since R = W(F') has
characteristic 2 it is easily verified that (UR)*=1 and R as a
Witt ring for U(F)/(U(F))* has elements of dimension 83 by Lemma
6.5, whereas as a Witt ring for U(R) it has only elements of dimen-
sion 1 and 2.

Next, let R = Z/8Z and treat R first as a Witt ring for G={1}.
Then dim3 = 3 since otherwise by [8, Rem. 1.24, Lem.] dim3 =1
and 3=+1 is impossible. Also D(3) = {1} is immediately verified.
Furthermore, 3 +3=—1+—1 so dim(3 +3) =2. By Proposition
2.4 then, since D(3) = {1}, the Witt ring Z/8Z is not representational
as a Witt ring for G = {1}.

On the other hand, U(Z/8Z) = {1, 8, 5, T} so that (U(Z/82))* = 1.
Thus by the above, Z/8Z is a representational Witt ring for
U(Z/8Z) with dim(3) =1. The Witt ring Z/8Z for U(Z/8Z) is,
however not strongly representational since 1 + 1 =38 + 7 so that 3
liesin DA + 1) but 1 +13+ 31-1). Thus by Propositions 6.7
and 6.10, Z/8Z cannot be isomorphic to W(C) for C a semilocal ring
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with 2 in U(C) or a field of characteristic 2 as either a Witt ring
for {1} or for U(Z/8Z).

The situation is quite different if R, = Nil R =0, for then
UR) = G’ [14, Rem. 3.22, Thm. 3.23], where R is a Witt ring for
G. Hence the dimension in R is independent of G and if R is also
a Witt ring for a group H of exponent 2 then Dg(r) and D,(»),
with the obvious notation, have the same image in R.

7. Remarks on [8] and [20]. Some of the results of this
paper are applicable to R = W(C)/I(Y), using the notations of §86,
to obtain alternate proofs of some of the results of [8] and [20].
Proposition 6.1 shows that W(C) is succinet for a connected semi-
local ring C all of whose residue class fields contain at least 3
elements. Consequently, [8, Cor. 2.12] becomes a direct consequence
of Proposition 2.20, while Proposition 2.22 yields a proof of [8, Lem.
2.14] which does not depend on [11, Thm. 4.1]. Theorems 8.8 and
3.6 are generalizations of [8, Thm. 3.2 (i), (ii) and Cor. 38.12] re-
spectively. In order to deduce these results of [8] from Theorems
3.3 and 3.6 we require [8, Thm. 2.11] and

LEMMA 7.1. Let R = W(C) with C a connected semilocal ring
all of whose residue class fields contain at least 3 elements, and Y
saturated set of signatures of R. Let a, i =1, ---, n, denote units
of C. Then there exist elements t, of I'(Y) such that >.7 at,(U(C))
wm Z{UCH/(U(C)H)?] is isotropic for R in the sense of Definition 1.3,
of and only if there exist s, im I'(Y) such that a,8,+:--+a,s, =0
i C and as,+---+a;8; 15 an UC) for all I < n.

Proof. By [8, Thm. 2.11}], the sum a,8,+--++a,s, = 0in C, with
a,8,+---+a;s; a unit for all | <mx, if and only if z = >} e (U(C))
in Z[U(C)/(U(C))] is isotropic for B = W(C)/I(Y). By Proposition
6.1, R is succinet, so that Lemma 3.1 shows that z is isotropic
for R if and only if there exist ¢, in I'(Y) such that 37 a,t,(U(C))?
is isotropic for R, in the sense of Definition 1.3.

Using Propositions 6.4 and 2.24, we can apply Theorem 3.9 to
R = W(C)/I(Y) where the notation is as defined in Lemma 7.1. This
application includes the special case proved as part of [4, Satz 24
and 25] of the equivalence of WAP and SAP in case C is a field of
characteristic 2. By virtue of Proposition 6.4, Theorem 3.9 can
also be applied to R = W(C). This yields [20, Thm. 2.2] without
needing the assumption that 2 be in U(C). It does not, however,
cover all of [13, Thm. 1], where the equivalence of WAP and SAP
is proved for arbitrary connected semilocal rings and for the Witt
ring of hermitian forms over an arbitrary connected semilocal ring
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with involution.
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