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For all results obtained, attention is restricted to
algebraically closed fields of characteristic zero. An affine
algebraic group is said to have property (*) if the inter-
section of its center and its radical is unipotent. Given a
Lie algebra L, a characterization is obtained of those affine
algebraic groups G having property (*) for which an in-
jection L -> ̂ (G) exists whose image is algebraically dense.
This is applied to obtain a result concerning the embedding
of Lie algebras into algebraic Lie algebras, and to ques-
tions about the Hopf algebra of representative functions of
a Lie algebra L in the case where L is algebraic.

1» Introduction* Let L be a finite-dimensional Lie algebra
over a field F of characteristic zero. Let ^ ( L ) denote the universal
enveloping algebra of L. If ^ ( L ) is given a topology wherein the
two-sided ideals of finite codimension constitute a fundamental system
of neighborhoods of 0, then the continuous dual SffiJS) of ^ ( L ) is
the Hopf algebra of representative functions on <&(L). SίfiJU) may
be viewed as a two-sided ^(L)-module as follows: for u e %f(L)
and / 6 2ί?(L\ u / and f-u are defined by (u f)(x) = f(xu) and
(/ u)(x) = f(ux) for all x e %S(L).

An element / e SffiJS) is termed a semisimple element of βέf(L)
provided / is associated with a semisimple representation of L. That
is the case if and only if the left ^(L)-module %f(L) /, or equi-
valently the right ^(L)-module / ^ ( L ) , is semisimple. The sub-
algebra T of the trigonometric elements of 3ίf{L) consists of the
semisimple elements of SίfiJU) which are associated with representa-
tions that are trivial on the commutator ideal [L, L], The following
result is known from [1] and [2]. There exists a left ^(L)-stable
(or equivalently, left stable under the comultiplication of £ί?(L))
subalgebra B of ^f{L) satisfying the following:

(1) B is finitely-generated as an F-algebra;
(2) JT(L) = T0B;
(3) the subalgebra of the semisimple elements of B coincides

with the portion of 3f?(JS) annihilated by the radical of L by left
translation.

Any such subalgebra of SffiJS) is termed a normal basic subalgebra.
Since B is finitely-generated as an F-algebra, so is the smallest Hopf
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subalgebra of £ζf{L) containing B. This Hopf subalgebra, which
will be labeled J5*, is uniquely determined [5, pp. 173-174],

We assume from now on that F is algebraically closed. The
affine algebraic group D, consisting of the i^-algebra homomorphisms
B* -» F will be termed the basic group of L. The map obtained by
composition of the natural injection L —> Jίf(βί?(L)) and the restric-
tion Lie algebra homomorphism £f{β(?{£l)) -» J*?(B*)9 which by [1,
Thm. 6] is an injection, will be called τ. A Lie subalgebra H of
the Lie algebra J*f(G) of an affine algebraic subgroup G is said to
be algebraically dense in J^(G) if the smallest algebraic subgroup
of G whose Lie algebra contains H has for its Lie algebra Jίf(G).
Then the image of L by τ is algebraically dense in Jtf(D).

If F is algebraically closed, the subalgebra T of £(f{L) is
generated by its group-like elements. If A is any Hopf algebra and
Δ is the comultiplication of A, the group-like elements of A are
those nonzero elements q e A such that Δq — q ®Q The set of
group-like elements of £έf(L) will be labeled Q.

When speaking of affine algebraic groups or Lie algebras, the
following notation will be used throughout. For an affine algebraic
group G, Go will denote the center of G, Grad the radical of G, Gu

the unipotent radical of G, and Gx the connected component of the
identity element of G. Similarly, for a Lie algebra L, Lo will denote
the center of L and Lrad the radical of L. An affine algebraic group G
will be said to have property (*) if GonG r a d is unipotent. For any Lie
algebra L, the basic group D of L has property (*), [5, Thm. 3.2].

Standard results and terminology used herein concerning affine
algebraic groups may be found in [4]. The author wishes to thank
Dr. G. Hochschild for reading over this paper and offering many
helpful suggestions.

2* The basic group* Let (G, C) be the structure of a connect-
ed affine algebraic group having property (*). Let L be a finite-
dimensional Lie algebra and assume there exists an injection σ: L —>
Sfiβr) whose image is algebraically dense in £f(β). Then from [5,
Thm. 3.2], there is a surjective rational homomorphism p:D-+G
whose differential φ coincides with the identity on L if L is identified
with its image by τ and by σ. Consequently, σ = φoτ and the poly-
nomial algebra C of G may be identified with a subalgebra of JS*.

Let H denote the kernel of p, then £f(H) is the kernel of φ.
By [4, Prop. 13.1], if the Lie algebra N is algebraically dense in
the Lie algebra L(G) of an affine algebraic group G, then [N, N] =

Observe that φ{[τ{L\ τ(L)]) - φ{[Sf{D\
- [σ(L\ σ(L)], hence the restriction of ψ to

has a trivial kernel. Thus 5f(H)Γ[[3f{D\ ^f(D)] = (0); since
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£f(H) is an ideal, we also obtain [£f(H), Sf{D)\ = (0).
In general, an abelian Lie subalgebra Z of a Lie algebra L is

a direct summand of L if and only if ZaL0 and Z Π [L, L] — (0).
Indeed, if Z satisfies these conditions, a subspace (hence ideal) R of
L exists such that Ru[L, L], Rf)Z=(Q), and R+Z = L. This gives
the direct sum decomposition L — R 0 Z\ Z will be called an abelian
direct summand (ADS) of L, and R a direct sum complement of Z
in L.

For a connected affine algebraic group G, given an algebraic
subgroup K of G such that £f{K) is an ADS of £?(β), and a sub-
group M of G such that for all meM and # 6G, mgm^g'1 eK, we
show MCLGQ. For meM, consider the map i]rm:G-^G given by
ψΆϋ) = mgm"ιg~ι. Since G is connected and ψm is a polynomial
map, the Zariski closure of the image ψm(G) is connected. On the
other hand, by assumption, ψm(G) c [G, G] n i£ and since Sf{K) is
an ADS, [G, G] Π if is a finite subgroup of G. Thus, necessarily,
ψm(G) = 1G, which gives the desired result. If K is normal, setting
M — K gives that K is central. In particular, H, the kernel of p,
is a central subgroup of Zλ

We now establish some properties of ADS's. Let L be a finite-
dimensional Lie algebra. Let W be a subspace of Lo such that Lo =
1^0 (Lo Π [I/, I/]); T^ is seen to be a maximal ADS of L. Let S be
a direct sum complement of Win L, so L = TF0 S. Since S D [L, L],
S Π I/o - So 3 [L, L] Π Lo On the other hand, Lo = TF0 (S n £<>) =
TF0 So, so necessarily So = L0Π [L, L] c [L, L] = [S, S]. Conversely,
if L = Zξ&R with ^ any ADS of L, and Rocz]R, R], then Z is a
maximal ADS, since Lo = ^ 0 (22 Π Lo) = Z φ 22O, and 22O c [L, L\.

Now let Z and Zr be ADS's of L of equal dimension and let W
and W be maximal ADS's of L containing Z and Z' respectively.
If S and S' are direct sum complements of W and TF' in L, we have
L = S © T F = S ' Θ Ϊ 7 ' . Observe that Wn S' aWf) S'o cTFn [L, L] =
(0). From the above paragraph, W and TΓ' have the same dimen-
sion, so L— TF0S ' and thus S ^ S' & L/W. Hence an automor-
phism a of L may be chosen so that a{W) — W and a(S) = S'.
Since we may say W = Z 0 7 and W = Z'®> Y', and Γ and Γ'
have the same dimension, we may further choose α so that a(Z) = Z',
and, if Z = Z', that α is the identity map on Z. We state results
from the above in Lemma 2.1.

LEMMA 2.1. Lei J£ be an ADS 0/ α finite-dimensional Lie
algebra L and let R be a direct sum complement of Z in L. Then:
(a) Z is maximal if and only if Roa[R, R] = [L, L]; and (b) if
Z' is an ADS of L of dimension equal to that of Z, then
LIZ ** LIZ'.
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LEMMA 2.2. Let G be a connected affine algebraic group having
property (*) and let Z be an ADS of S^{G). Then there is a direct
product decomposition G — J x Gz where Gz is the smallest algebraic
subgroup of G such that £f(Gz) contains Z. Moreover, Sf{Gz) — Z
and Gz is an algebraic vector group.

Proof. Let G — M GU be a standard decomposition of G, where
M is a maximal reductive subgroup of G. Since G has property (*),
Za^f{Gu). Since ZΠ[J5?(G\ 3f(G)] = (0), we may choose an ideal
N of L(GU) such that &>(GU) = Z®N and 2SΓ=>[j2f(G), J^(G)]rad =
\Sf{β\ Sf(G^\. N is also an ideal of £f(G), hence the unipotent
algebraic subgroup GN of G, whose Lie algebra is N, is normal both
in Gu and in G; moreover, we have Gu = Gz x GN. If we then define
J = MGj, by the normality of GN in G, J is an algebraic subgroup,
and since #=> [j2f(G), J^(G)]rad, jδf(J) => [ J ^ ( G ) , j2f(G)] and J is
normal in G. Clearly JG^ = G and J n Gz = GN f) Gz = 1G, so G =
J x Gz and Lemma 2.2 is established.

We now establish group automorphism results analogous to those
obtained for Lie algebras. Let G be a connected affine algebraic
group having property (*), let Z and Z' be ADS's of £f(G) of equal
dimension and let W and W be maximal ADS's of Jίf(G) containing
Z and Z'. By Lemma 2.2, G = / x Gw = J ' x G^;. by Lemma 2.1,
j ^ ( j ) n W = (0), so necessarily £?(J)® W =£f(G). Make the observa-
tion that j 2 V ) n J ^ ( G J = j ^ ( J ί Ί GJ. Since TΓc.Sf(GJ, ^{JίΛ Gu) 0
TΓ' = £?(GU). It follows that (JnGJxG^, = G%9 and from the con-
struction in the proof of Lemma 2.2, it is seen that G = JGW' = JxGw*.
Hence J ^ GjGw> ^ J' and we may define a rational automorphism
β of G such that β{J) = J ' and β(G>) = Gw,. Moreover, if we write
W = Zξ&Y and TΓ# = Z' 0 Γ', for the algebraic vector groups G^
and Gw>9 we have Gw = Gz x Gγ and G /̂ = Gz/ x Gγ» so we may
additionally specify that β{Gz) = Gz, and β(Gγ) = Gτ>. If Z = Z\
we may take β as the identity map on Gz.

LEMMA 2.3. Let G be an affine algebraic group and let σ:L—>
^f(G) be an injection of the Lie algebra L into £f(β) whose image
is algebraically dense. Then if Y is central or an ADS of L, σ(Y)
is central or an ADS respectively of

Proof. Recall that if V is a finite-dimensional polynomial re-
presentation space for G and Vx and V2 are F-subspaces of V such
that V2 c V19 then if L* is a Lie subalgebra of £f(G) which by the
induced representation of J*?(G) on V sends Vx into Vif [Lf], the
algebraic hull of L', also sends VΊ into V2. Consider the adjoint
representation of G on £f(G). In the above terms, we will have
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V = £f(G), V, = σ(Y) and V2 = (0). Assume first that Y is central
in L. Then, since adσU)σ(Y) is trivial, it follows that adia{L)]a(Y),
or ad&mσ(Y) is trivial, hence σ(Y) is central in Jί?(G). Further,
by the algebraic density of σ(L) in «£f (G), and since σ is an injection,
the preimage of {Sf (G), £f(G)\ is exactly [L, L]. Whence, if 3Γ is
an ADS of L, α(Γ) is an ADS of .Sf(G).

We now give our first principal result. L and D shall have the
same meaning as in the introduction and w and x shall signify the
dimensions of the maximal ADS's of £f(D) and L respectively.

PROPOSITION 2.4. Let G be a connected affine algebraic group
having property (*) such that an injection σ: L —> Jzf{G) exists whose
image is algebraically dense. Let p be the canonical surjective
rational homomorphism D—>G of [5, Thm. 3.2], Let H be the
kernel of p, so G f^ DjH. Then H is in the center of D, Hι is an
algebraic vector group, and there is a direct sum decomposition
D — J x Hx such that the restriction of p to J is a covering of G,
i.e., a surjective rational homomorphism with a finite kernel. The
ADS's of £f(G), of £f(J), and those of Sf{Ό) which contain ^f(H)
are in bijective correspondence. These, in turn, are in bijective
correspondence with the abelian direct factors of G, of J, and those
of D which contain H^ The injective images of the ADS's of L
in Jί?(G), Jίf(J), and J*f(D) are ADS's of each respectively. Lastly,
dim (£f(H)) £ w - x.

Proof. ^f(H) is an ADS of £f(D) and D property (*), hence
the direct product decomposition follows from Lemma 2.2. J Π H
is finite, so the restriction of p to J is a covering of G. The dif-
ferential of the covering J-+G is an isomorphism J*f(J)
hence gives a bijective correspondence between the ADS's of
and those of £f(G). There also exists a clear bijective correspondence
between the ADS's of £f(J) and those of Sf{D) containing £f(H).
Since G, J, and D, all are connected and have property (*), it follows
from Lemma 2.2 that each ADS of Sf{G), £?(J), or £f(D) determines
a corresponding abelian direct factor of G, J, or D. These corres-
pondences are all bijective, and the ADS's of ^(D) containing J*f(H)
correspond to the abelian direct factors of D containing H^ From
Lemma 2.3, it is seen that the ADS's of L have for their injective
images by the given injections of L into ^f{G), J*f(J), and Jzf{D),
ADS's of each of these three respectively. Hence w must exceed
x by an amount not less than dim (Jίf(H)). This completes the proof
of Proposition 2.4.
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Lemma 2.5 is preliminary to Proposition 2.6, which is a partial
converse to [5, Thm. 2.3] and Proposition 2.4.

LEMMA 2.5. Let G be an arbitrary connected affine algebraic
group and let K be a normal algebraic subgroup of G such that

is an ADS of £f(G). (Hence K, is central.) Then (G/K^ Π

ad = (Go Π GradViΓi. If G has property (*), then G/K has
property (*).

Proof. Say (G/Kx)0 - M/Kλ. Then M is the subgroup of G con-
sisting of all elements m such that for all g eG, mgm~ιg~x e Kx.
Prom the argument of pg. 289, MaG0, thus M == Go. Since iξcGw,
CrΓad/.Ki = (Cr/iQrad is immediate from the corresponding fact for Lie
algebras. Thus (G/jKi)0 Π (G/iξU = G0/^i Π G^/K, = (Go Π Grad)/iξ,
and if G has property (*), so does G/Kx.

G/K ** (G/KJKK/KJ and K/Kx is a finite, normal algebraic sub-
group of G/Klf hence a central reductive subgroup. We show in
general that if H is a connected affine algebraic group having
property (*), and T is a finite, central subgroup of H, H/T has
property (*). It follows from the argument of pg. 289 that (H/T)o =
Ho/T. Since T is a central reductive subgroup of H, T f] HrΆά is
trivial. Hence THVΆύ/T = (T x HΐΆά)/T ^ iTrad is a connected algebraic
subgroup of T/H clearly equal to (T/iJ)rad. Thus (fl/Γ)0 Π (H/T)IΆά =
(So Π (Γ x Hrad))/Γ = (Γ x (flo n ίίrad))/Γ since TdH0. Thus (fl/Γ)0 Π
(ίί/Γ)rad ^ JEZQ Π J?"rad which gives the desired result.

PROPOSITION 2.6. L^ί D be the basic group of a finite-dimensional
Lie algebra L. Let H be a central subgroup of D such that £f(H)
is an ADS and dim (JΪ?{H)) <; w — x. Let φ be the differential of
the quotient morphism D -» D/H. Then D/H has property (*). Then
also there exists a rational automorphism β of D having differential
a such that φ°a°τ is an infection of L into J5f(D/H) whose image
is algebraically dense.

Proof. D/H has property (*) from Lemma 2.5.

Let Z be a maximal ADS of L. By Lemma 2.3, τ(Z) is an ADS
of £f(D). Let W be a maximal ADS of £f{β) containing τ(Z) and
let V be a subspace of W such that W = F 0 τ(Z). Then τ(L) Π PΓ
is an ADS of τ(L) and τ(L) Π T^ contains r(Z), so τ(L) Π TΓ = τ(Z)
and hence r(L) Π F = (0). Let W be a maximal ADS of -Sf (Z>)
containing Jzf(H). By hypothesis, W contains a subspace F of
dimension x such that 7 n ^ ( £ ί ) = (0). Thus we write W = ?70 Γ
where
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As pointed out on pg. 290, a rational automorphism β of D exists
such that β(Dw) = Dw> and we may further specify that β(Dτ{z)) = Dγ

and β{Dv) = DU9 so Sf{H)aa{V) and it follows that (αoΓ)(L)n
J*f(H) = (0). Therefore ^ α ° τ is an injection. To show that the
image of α<>r is algebraically dense in J*f(D), for a Lie subalgebra
1/ of .£f(Z>), let [Lf] denote the algebraic Lie algebra hull of ZΛ
Then τ(L) c ^ ( [ ( α o τ)(L)]) and since α"1 preserves algebraicity, the
latter is an algebraic Lie algebra. Hence [τ(L)]=J^(D)<za~\[(a°τ)(L)])
and thus J*f(D) — [(α©r)(L)]. It is thus immediate that the image of
φoaoτ is algebraically dense in £f(DjH). This completes the proof
of Proposition 2.6.

For an arbitrary Hopf algebra A with comultiplication Δ, an
element p e A is called a primitive element of A if Δp = 1® p +
p (x) 1. The exponential map of £ί?{L)9 which is a group isomor-
phism from the vector i^-group P of the primitive elements of £$f(L)
onto the multiplicative group Q of the group-like elements of J%f(L)
will be called p. An element δ e j*f(<%?(L)) is in the image of the
natural injection L —> Sf{£$f{L)) if and only if δ(p) — δ(p(p)) for all
peP. Henceforth we shall label as Po the F-subspace span (p~\B* Π Q))
of P, and as P t the i^-subspace P^{D)o of P.

PROPOSITION 2.7. w — a; = dim (Po) — dim (Po n Pi).

Proof. Identify L with its image in £f(D) by r. By Lemma
2.3, and since D has property (*), Lo c £?{O\ c £f(Du), so Lo = L Π
^^(^o. If δ e ^ ' φ j , P * n Q ) = 0 since D. fixes the semisimple
part of B* by right and left translation; thus from the defining
property of L in £f(Ό) it is seen that δ e LQ if and only if δ e £f(D\
and δ(fi-\B*ΓiQ)) - 0. Let K be the fixer in D of ρ"1(B*πQ); then
K fixes Po and £f{K) consists of those elements δ of ^f(D) such that
δ(PQ) = 0. Evidently, Lo - J^(D)0 Π ̂ f (ίΓ).

We signify by " ' " the restriction of a differentiation on B* to
F[P]; then L'Q = (^f(D)0 Π ̂ ( ^ ) ) ; . Consider δ 6 ^^(JD)J n £f(K)';
necessarily, there exists δ0 e J*f(D)0 such that δj = δ e ^f(K)\ hence
δo(Po) = 0 and δ0 6 J^(£>)0 ΓΊ -Sf W , thus δ e (&>φ\ Π ̂ ( ϊ ) ) ; . Since
clearly (^(D) o n ^ ( ϊ ) ) ' c ^(f l) i n ^ ( ί ) ' , we obtain that L[ =
. ^ ( D X Π ^ ' W . The space of differentiations of F[P] is now identifi-
ed with Hom^P, F). For any subspace iSΓof P, we label by N° those
differentiations on F[P] which annihilate N. Then (Pz°)° = L[, (P^0 =
^(D) o

f , and (Po)° = ^^(JΓ)', hence (PL°)° - (Po)° n (Pi)0. In view of
the natural homomorphism between P and Hom^ (HomF (P, F), F),
we obtain from the latter equality PL° = Pλ + Po. Consequently,
dim (PLή = dim (Po) + dim (P2) - dim (Po n Pi).
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Let Z and W be maximal ADS's of L and Sfijΰ) respectively.
Then Pz = p*+<*onc«]> = pL*y and similarly PIF = Plf so we write for
the above:

(1) dim (Pz) = dim (Pw) + dim (Po) - dim (Po n Pi) .

For any ADS Y of £f(D), we obtain from Lemma 2.2 that D =
J x Z)Γ, where DF is an algebraic vector group. Thus (B*)J, which
may be regarded as the polynomial algebra of Dγ, is F[PJ], hence
dim(Γ) = dim(P J). Since Pσr = PF, it follows from the F-space
decomposition P = Pγ ® PJ that dim (Γ) = dim (P) - dim (PF). In
particular, w = dim (P) - dim (P^) and x = dim (P) - dim (P z). These
two equalities, combined with equation (1), give w — x — dim (Po) —
dim (Po Π Pi). This completes the proof of Proposition 2.7.

Propositions 2.4, 2.6, and 2.7 are now summarized in Theorem
2.8. Let L and D be as in the introduction, and let P, Po, and P t

be as for Proposition 2.7.

THEOREM 2.8. G is a connected affine algebraic group having
property (*) for which an injection σ: L -> J*f(G) exists whose image
is algebraically dense if and only if G ** D/H where H is a central
algebraic subgroup of D, £f(H) is an ADS of £?(D) and dim (£f(H)) ^
dim (Po) - dim (Po n Pi).

3* Lie algebra embeddings* Our main result will be a charact-
erization of the Lie algebra of an aίίine algebraic group of smallest
dimension (equivalently, algebraic Lie algebra of smallest dimension)
into which a finite-dimensional Lie algebra L may be embedded. As
expected from Theorem 2.8, such a Lie algebra is a quotient algebra
of the Lie algebra of the basic group of L by an ADS.

The next lemma is a result already known from [6]. This
alternate proof is given because it is of interest that the characteri-
zation of algebraic Lie algebras of Theorem 4.1 is independent of
Goto's characterization of algebraic Lie algebras.

LEMMA 3.1. If L is a finite-dimensional algebraic Lie algebra,
there exists a connected affine algebraic group with a unipotent
center whose Lie algebra is L.

Proof. Let G be some connected affine algebraic group whose
Lie algebra is L. By the standard decomposition of Go into uni-
potent and reductive components, we have Go = (G0)u x (Gfo)r. If we
label £?((GO)U) as U and ^((G 0) r) as Z then LQ=U@Z. Now con-
sider Y = Lo Π [L, L]; Y is central in [L, L], so 7 c [L, L] rad, and in
the Lie algebra of any affine algebraic group [L, L]TΆd c
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Hence Y f] Z = (0), and a maximal ADS, W, of L may be chosen so
that Wz)Z; then Lo - Γ φ W and W=(UΠW)@Z. Thus Gw, =
Gunw x ((G0)r)i and G> is a central algebraic subgroup of G.

Label G/G^ by G', then the Lie algebra of G' is L/W which we
label M. By Lemma 2.1, ilf0 c [ilf, Λf ], so as above, Λf0 c [M, M] r a d c
.Sf(Gi). Hence the reductive component T of G[ is a finite group.
Therefore G'/T, which we label G", has Lie algebra M and a uni-
potent center. Now let V be an algebraic vector group whose
dimension is that of W. Then the affine algebraic group H = G" x F
has a unipotent center and ^ ( i ϊ ) = £f{G") @£f(V) f* (L/W) φ
W p** L; the latter isomorphism holds because W is an ADS of L.
This completes the proof of Lemma 3.1.

Let L and D be as in the introduction and let Z be an ADS of
£f(P) of dimension equal to dim (Po) — dim (Po Π Px). We now label
the Lie algebra Sf{D)jZ as I Λ By Lemma 2.1, L* is uniquely
determined up to isomorphism class.

Let G be an affine algebraic group and L be a Lie algebra and
suppose σ: L -> «Sf (G) is a Lie algebra injection. We adopt the
notation (G, σ)L for this circumstance. For any finite-dimensional
Lie algebra, L, if G is the basic group of L, σ exists so that (G, σ)L

holds. In case Jίf(G) is of minimal dimension, we have the follow-
ing.

THEOREM 3.2. If L is a finite-dimensional Lie algebra, given
(G, σ)L such that £?({*) is of minimal dimension, £f(G) ^ I/*.

Proof. Since L is fixed for the duration of the argument, we
supress the subscript L from the notation (G, σ)L. Given any pair
(G, σ), we first show a pair (G;, σ') exists such that (1) dim CS (̂G')) ^
dim C£f (G)), (2) Gf has property (*), and (3) the image of σ' is al-
gebraically dense in £f(G'). Hence from Theorem 2.8 it will follow
that dim (=Ŝ (G)) ̂  dim (£f(G')) ^ dim (^f(D)) - dim (Po) + dim (Po n Pi) =
dim(L*).

Given (Gk, σk), a: (Gk, σk) -> (Gfc+1, <7fc+1), termed construction a,
will mean that Gk+1 is the smallest algebraic subgroup of Gk whose
Lie algebra contains σk{L) and σk+1 = σk. Given (Gjf σs)9 β: (Gd, σs) —>
(Gj+1, σj+1), construction β, will mean that G i + 1 has property (*),

** <£f(Gj+1), and for some Lie algebra isomorphism λ: £f(Gό) -»

1), σj+1 — X°σd. By Lemma 3.1, construction β can always be
performed. Let (G, σ) be an arbitrary pair and consider a sequence
of pairs in which the first pair is (G, σ) and the n + 1st pair is
obtained by applying constructions a and β in succession to the wth
pair. A sequence of affine algebraic groups is obtained in which
affine algebraic group of the sequence has dimension greater than
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or equal to its successor. Hence some affine algebraic group in the
sequence after the first, say G' of the pair ((?', σ')f has the same
dimension as its successor. Then it is easily verified that the pair
((?', σ') satisfies (1), (2), and (3).

It remains to be shown that a pair (G, σ) exists such that
.Sf (Gr)^L*, and that if (Guσγ) is another pair such that dim (£f(GJ) =
dim (I/*), then ^f(G±) p& L*. Recalling Proposition 2.7, it is clear that
£?{U) has an ADS Z of dimension dim (Po) - dim (Po n Pi). If Dz is
the central algebraic subgroup of D whose Lie algebra is Z, then
by Lemma 2.1, D/Dz has Lie algebra isomorphic to L*. Applying
Theorem 2.8 with H = Dz, we see a pair (D/Dz, σ) exists. Let (Gl9 σx)
be another pair such that dim (GJ = dim(L*). Apply the construc-
tion β: (Gί9 σt) —> (G2, σ2). The image of σ2 is necessarily algebraically
dense in Jϊf(G2); if not a: (G2, σ2) —• (G3, σ8) would yield a pair such
that dim (£f(G3)) < dim (L*) which, as shown above, is impossible.
Hence, applying Theorem 2.8 again, we find ^f{Gx) & £?(G2) ** £f(D)j

where £f{H) is an ADS of £?(D). Thus by Lemma 2.1,
e* L*. This completes the proof of Theorem 3.2.

4* The algebra of representative functions of an algebraic
Lie algebra* Let L, D, Q, and J3* have their meanings from the
introduction, and Po and Px their meanings from Proposition 2.7.
Let alg dim (B* Π Q) signify the degree of transcendence of B* Π Q
over F. From [1, Thm. 5] and [2, Thm. 1], it follows that
dim (JS (̂ZO) = dim (£„*). Adding dim (J2f (£s)) - dim (L/Lrad) to both
sides, we obtain the jP-dimension of the space of differentiations on
B, i.e., dim (^f(D)) - sag dim (B* Π Q) on the left side, and dim (L)
on the right. Hence dim (£f(JD)) - dim (L) = alg dim (JB* n Q).

THEOREM 4.1. L is an algebraic Lie algebra if and only if
Po Π Pi = (0) and dim (Po) - alg dim (£* n Q).

Proof. Assume L is algebraic. By Lemma 3.1, a connected
affine algebraic group G having property (*) exists whose Lie algebra
is L. By Theorem 2.8, a central algebraic subgroup H of D exists
such that G^DjH and from Theorem 3.2 and the above, dim (£f(H)) =
dim (Po) - dim (Po n PJ = alg dim (£* n Q).

Let p o i = 1, , % be an F-basis of Po. We claim p{pτ) = qi9

i = 1, , ^ are algebraically independent, and hence dim (Po) <:
alg dim (J3* Π Q). Assume that

with each e€ a positive integer. Then qp qln = pie^ + + enpn)
is a distinct group-like element of Sίf{L) for each distinct w-tuple
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Oi, * , O since p is bijective. By [8, pg. 55], any collection of
distinct group-like elements of a Hopf algebra is linearly inde-
pendent, so necessarily /<βl,...,βΛ) = 0 for all %-tuples. Consequently,
alg dim (B* Π Q) = dim (Po) and Po Π Pi = (0).

For the converse, assume that dim (Po) = alg dim (B* Π Q) and
pof]P1 = (0). Then, by Theorem 3.2, there is an affine algebraic
group G of dimension equal to that of L such that a Lie algebra
injection σ:L->£f(G) exists, so necessarily L^Jΐf{G). This com-
pletes the proof of Theorem 4.1.

Now say A is a Hopf algebra satisfying the conditions of [7,
Thm. 2.1], hence A is isomorphic to the algebra of representative
functions £έf(L) of some Lie algebra L. We use p to signify a
group isomorphism from the additive i^-group PA of the primitive
elements of A onto the multiplicative group QA of the group-like
elements of A. If L is the Lie algebra determined by A and p such
that A & g£?(L)f we write L as L(A, p). The canonical image of
L(A, p) in Sf{A) is those differentiations δ e £f(A) such that δ(p) =
δ(p(p)) for all p e PA. If Φ is the canonical Hopf algebra isomorphism
A -> £ίf(L) and exp is the exponential map of SίfiJS), then exp =
φopoφ~ι [7, Prop. 2.4]. To obtain a complementary result, let Ax

and A2 be two Hopf algebras that satisfy the conditions of [7, Thm.
2.1], and let px and p2 be group isomorphisms from the primitive
elements onto the group-like elements for Ax and A2 respectively.
Say further that there is a Hopf algebra isomorphism λ: A1 —• A
such that λoft = |02oλ. It is then easily verified that for the Lie
algebra isomorphism ^f(A2) —> ^f(A±) induced by λ, which is given
by δ->δo\ for δecSf(A2), the canonical image of L(A2, p2) in ^f(A2)
is mapped isomorphically onto the canonical image of L(Alf p) in
^ ( Λ ) ; thus L(Alt p,) ** LOO^), λo^oλΓ1) ^ L(A2, p2). Recall that for
any Lie algebra L, Jg^(L) is known to satisfy the conditions of
[7, Thm. 2.1]. If exp is the exponential map of £έf(L) then surely
L{J%f(L), exp) = L. Therefore, let A be as above, let L be any Lie
algebra such that A F* £έ?(L), and let λ be a Hopf algebra isomor-
phism A -> 2i?{Jj). It then follows that L(Af λ'^expoλ) & L(<&?(L),
exp) = L. It cannot be asserted that λ is the canonical isomorphism

•2

By hypothesis, A has a left-stable, finitely-generated subalgebra
E such that A = E (x) F[Q J and the semisimple elements of E are
a fully stable subalgebra of E with no proper affine unramified ex-
tension. We call such a subalgebra regular. From [7, Prop. 2.3],
the image of a regular subalgebra by the canonical isomorphism
Φ is a normal basic subalgebra of έ%f(L). If E* is the smallest
Hopf subalgebra of A containing E, it follows that the image of E*
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by Φ is the Hopf algebra B* of 2f?{Jj). Thus # * is a uniquely-
determined, finitely-generated subalgebra of A which contains all
regular subalgebras of A. If ΰ 4 = &(E*)f the restriction Hopf
algebra isomorphism Φ: E* -^B* induces a rational isomorphism D-^
DA, so DA is isomorphic to the basic group of L(A, p) for any p.
Clearly the image by Φ of E* Π QA is B* Π Q, and it is easily seen
further that the image by Φ of Pf {DA)0 is Px. Hence we identify
E* with i?* and identify PA, QA, and Z^ with their counterparts
in relation to £έf{L), dropping the subscript. These identifications
are possible it is emphasized, because these features of A are all
independent of p.

THEOREM 4.2. Let Abe a Hopf algebra satisfying the conditions
of [7, Thm. 2.1]. Then A & βέf(L) for some algebraic Lie algebra
L if and only if dim (P) - dim (Px) ^ alg dim (JB* Π Q).

Proof. Assume that A ^ £έf(L) for an algebraic Lie algebra L.
Let exp be the exponential map of <§ίf{L) and let Po be the subspace
span (exp"1 (J5* Π Q)) of the primitive elements of 3ίf{L). Then by
Theorem 4.1, dim (Po) = alg dim (£* Π 0) and Po Π Pi = (0). Thus
dim (P) ^ dim (Po + Px) = alg dim {B* Π Q) + dim (PJ. From the previ-
ous discussions, it is clear that the numbers dim (P), dim (Px), and
alg dim (B* Π Q) are the same for A as for any £ίf(L) such that
L = L(A, p) for some ô, and moreover, that given an L such that
A ^ ^f{L)y a |0O exists such that L •= L(A, <tfo) Hence our conclusion
for έ%f(Jj) gives the same result for A.

Conversely, let A be as hypothesized, and let i?* be the smallest
Hopf subalgebra of A containing a regular subalgebra of A.
î [jB* nQ] is a fully stable subalgebra of i?* hence is finitely-
generated. Thus &(F[B* Π Q]) is a toroid and we may write
F[B* Π Q] as î ttfi, if1, , qn, q^1]. Then q19 , qn is a maximal
algebraically independent subset of 5* n Q. By hypothesis, a sub-
space P' of the primitive elements of A exists such that dim (P;) =
w = alg dim (£* Π Q) and P ' n Pi = (0). Let plf *-pn be a basis of
P\ Label ρ~\q%) by mέ, i = 1, , n and let Fo be the rational sub-
field of F. We now demonstrate the existence of a group homo-
morphism p': P-^Q such that p'ipd = g< for i = 1, , n. Assume
2Γ=i TiMsi = 0, with r, 6 Fo and some rt Φ 0. Multiplying by a suitable
integer, we may assume the r/s are integers. Then we have

πΠ
so Π?=i 9ί* — 1 = 0, contrary to the algebraic independence of the
g/s. Thus the m/s are linearly independent over Fo so an jP0-linear
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automorphism θ of P exists such that θ(pz) — mt for i = 1, , n;
we choose pf = p © θ.

We have therefore span (p'~\B* Π Q)) = P\ If Φ is the canonical
isomorphism A —• <βί?(L)9 where L = L(A, p')> the exponential map
exp of £tf{L) is given by Φop'oφ-\ thus exp-1oφ = Φop'~\ It
follows that span (exp"1 (JB* Π Q)) = Φ(P'), so by Theorem 4.1, L(Λ, p')
is algebraic. This completes the proof of Theorem 4.2.

THEOREM 4.3. Let A be a Hopf algebra satisfying the condi-
tions of [7, Thm. 2.1]. Let ft and p2 be two group isomorphisms
from the primitive elements of A onto the group-like elements of A
such that Lx = L(A, ft) and L2 = L(A, p2) are both algebraic. Then
Lx & L2.

Proof. If B* is the smallest Hopf subalgebra of A containing
a regular subalgebra of A, then gf(i?*) = D is the basic group for
both Lx and L2. By Theorems 3.2 and 4.1, L1^cSf(D)/Z1 where Z1 is an
ADS of £?(D) and dim(Z1) = algdim(JB*nQ); similarly L2 ̂  £?(D)/Z2f

Z2 is an ADS of £f(D) and dim (Z2) = dim (Z,). Hence from Lemma
2.1, Lx <** L2.

COROLLARY 4.4. Let Lx and L2 be two algebraic Lie algebras
such that £lf{Jjύ <** βίf{L^. Then Lx ^ L2.

Proof. Let λ be a Hopf algebra isomorphism
and let ρx and p2 be the exponential maps of ^f{L^ and
respectively. Then Lx = L{^f{Jj^), p,) and L2 =

λ"1 op2oλ). By Theorem 4.3, L{3if{L^, λ
ft) since both are algebraic, so Lλ p& L2.

A stronger result than Theorem 4.3 is available for the case of
complex analytic groups. From [3, Thm. 3.2] we see that if G is a
complex affine algebraic group and G' is an arbitrary complex
analytic group such that Sίfiβ) ** £ίf(G'), then G ** G' as complex
analytic groups. The following example shows that our Theorem
4.3 cannot be strengthened to a similar extent.

Consider a four-dimensional algebraic Lie algebra L determined
as follows. Let V be a two-dimensional abelian Lie algebra generated
by elements \ and λ2. Let λ3 be a linear endomorphism on V that
sends λx to λ2 and λ2 to 0. Then considering FXS to be a one-
dimensional Lie algebra, we label as N the three-dimensional nilpotent
Lie algebra V + Fxs where the sum is the natural semidirect Lie
algebra sum. Since N is nilpotent, N is the Lie algebra of a uni-
potent affine algebraic group U; U may be identified with the group
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of triples of elements of F with group composition

(al9 bu cΐ){a2, δ2, c2) = (a, + α2 + cj)2, 6X + δ2, cx + c2) .

Let λ4 be a linear endomorphism on N that is the identity map on
V and trivial on λ3 and label by L the Lie algebra JV + F\. Cor-
respondingly, let JF* act on U by t (α, δ, c) = (<α, £6, c) for teF*;
then L is the Lie algebra of the affine algebraic group obtained by
the semidirect preduct F* U.

For L, we have [λ3, λ j = [λ4, λ2] = λ2, [λ4, λ j = \ and [λx, λ2] = [λ2, λ3] =
[λ3, λ j — 0. A normal basic subalgebra B of Sίf{L) is generated by
elements blf b2, b3, and 64 with &3 and b4 the generators of the F-
space of the primitive elements of Sίfijj). If Δ is the comultiplica-
tion of £ίf(JS), we have, for the non-primitive generators of έ%f(L),

δ ^ e x p ( — 64) + 1(8)6! and Δ(b2) = l(g)62 + δ3Θ&i + 62(8)βxp ( — 64).
is generated by 6^ &2, 63, &4, and the elements exp (r&3 + s&4)

with r, seF, and J5* = ^[δ^ 62, 63, 64, exp (±64)]. The elements of L
are given on B by λ^δ^ ) = δii9 where δtί = 1 if ί = i and δ^ = 0 if
i ^ i. The center of Sf (2?*) is those elements r̂ which satisfy ^(ftj =
^(δ2) = ΰΦz) = 0, and βf(exp (64)) = 1, hence Px = span (6S).

Let exp' be a group isomorphism from the primitive elements
of <%?(L) onto the group-like elements of £ίf{L) defined such that
exp' (68) = exp (64). Then if generators of U = L(βέf(L), exp') are
defined on B by Xίφ/) = δijt the Lie algebra bracket of U is given
by [λί, λί] = λί + λ2, [λί, λ2] = λj, and [λί, X2] = [λj, λl] - [λj, λl] =
[λj, λ4] = 0. Since exp'"1 (JB* Π Q) Π PI is nontrivial, 1/ is not algebraic,
so lί & Lf but J^XL) « ^T(L').
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