Vol. 86, No. 2, 1980

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Representations Naimark-related to -representations; a correction: “When is a representation of a Banach -algebra Naimark-related to a -representation?”

Bruce Alan Barnes

Vol. 86 (1980), No. 2, 397–402
Abstract

Let A be a Banach -algebra. A theorem is proved concerning a sufficient condition for a continuous representation of A on a Hilbert space H to be Naimark-related to a -representation of A on H. One corollary of this result is that a continuous (topologically) irreducible representation of A on H is Naimark-related to a -representation of A on H if and only if some coefficient of the representation is a nonzero positive functional of A.

One purpose of the paper is to correct in part a previously published result the proof of which contains a serious gap.

Mathematical Subject Classification 2000
Primary: 46K10
Secondary: 46L05
Milestones
Received: 27 February 1979
Revised: 17 July 1979
Published: 1 February 1980
Authors
Bruce Alan Barnes