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ONE-PARAMETER SEMIGROUPS OF ISOMETRIES INTO H?

EARL BERKSON

In this paper we explicitly describe all strongly con-
tinuous one-parameter semigroups {7} of isometries of H?(D)
into H?(D), where 1=p<co, p#2, and D is the unit disc
|2]<1 in the complex plane C. It turns out (Theorem (1.6))
that for each ¢, T,=¢,U,, where U, is a surjective isometry
and ¢, is an inner function (the families {¢,} and {U, are
uniguely determined provided {U,} is suitably normalized).
The nature of the family {¢,} depends on the set of common
fixed points of the family of Mobius transformations of the
disc associated with the family {U,}. If there is exactly
one common fixed point in D, then {T,} must consist of
surjective isometries (§4); otherwise {7,} consists of surjec-
tive isometries only in very special cases (§§2,5). The
families {¢,} are explicitly described in this paper.

1. Preliminaries. The linear isometries of H? into H? were
characterized by Forelli [7, Theorem 1]. For convenience we quote
here a part of the statement of Forelli’s theorem.

THEOREM. Let T be a linear isometry of H? into H?, 1 < p <
oo, p# 2. Then T has a unique representation

1.1 Tf = Ff(¢), for all feH”,

where F' is analytic on D, and ¢ is a nonconstant inner function.

Let R Dbe the set of real numbers, and Rt be {te R:t = 0}.
Let {T,}, te R*, be a strongly continuous one-parameter semigroup
of isometries of H” into H?, 1< p < e, p # 2. For each teR",
let F, and ¢, be as in the representation (1.1) for T,. From the
identity T+, = T.T. we get for all s, ¢t € R*:

(1'2) ¢s+t = ¢s°¢t
1.3 Foy = FFy($,),

where “o” denotes composition of maps. Let Z be the identity map,
Z(z) = z. Obviously F, = T.,1, and T.,Z = F,4,. It follows by strong
continuity that if weR* z,eD, and F,(z) # 0, then 6,(z,) — ¢.(%,)
as t —»u. From this and the fact that {¢,: £ € R*} is normal, we find
that ¢+ ¢, is continuous from R+ to the usual metric space of all
analytic functions on D. Using this and the pointwise equicontinuity
of {¢,:t e R*}, we infer that ¢,(2) is a continuous function of (¢, z)

403



404 EARL BERKSON

on R+ x D. It follows by [4, Proposition (2.2)] that ¢, is univalent
for all te R*. Since the singular factor of a univalent function on
D is trivial [6, Theorem 3.17], a univalent inner function (in parti-
cular, ¢, for t€ R*) is a Mobius transformation of the dise. Thus
|6.00)] = |7%(0)| for te R*. If {t,} < R*, and ¢, —t, it follows that
there is an r€(0,1) such that |¢;'(0)| <7 for »=0,1,2..-. A
standard integral representation for the inverse of a conformal
map [5, Prop. 3.7] coupled with the uniform convergence of {g, }
to ¢, on compact subsets of D gives the conclusion that ¢;'(0) —
¢:,/(0). Hence ¢;%(0) is a continuous function of ¢ on R*. For each
t let a, and b, be constants, with |b,| < 1 = |a,|, such that ¢,(z) =
a,(z — b)/(1 — b,z). We have just shown that ¢+ b, is continuous
on R*, and it follows that ¢+ a, is also continuous. Direct com-
putation now shows that ¢;'(z) is continuous in (¢,2) on R* X D.
For t < 0 define ¢, to be ¢-}. It is easy to see that {4,},tc R, is a
one-parameter group of Mobius transformations of D, i.e., t+ ¢, is
a homomorphism of the additive group of R into the group of all
Mobius transformations of D, and ¢,(2) is continuous in (¢,2) on
R x D. In particular [1, p. 231], ¢/(2) has a unique continuous
logarithm I(¢, 2) on R x D such that [(0, 0) = 0; moreover, I(t, 2z) is
analytic in z for each ¢, and, if (as will be done henceforth), we
standardize the branch of (¢/)?, for each ¢, by taking (¢))"? to be
exp [I(t, -)/p], then for all s,te R, (3,+.)""/(¢)"" = (¢,)""¢,. Applica-
tion of [7, (16)] to the family {F\}, t e R*, defined earlier, shows that
for each te R*, |F,| = |(¢))"? |a.e., on |z| = 1. Since (¢/)¥? is outer,
F, can be written as a product F, = (¢/)"?+, where «, is inner.
(Compare [7, p. 727] where this last technique is employed under
different hypotheses.) From (1.3) we have:

(1.4) Vori(2) = [ (D)][¥:(94(2))] for all s,teR*,zeD .
From the strong continuity of {T,} we easily infer:
(1.5) The function ¢+ 4, is continuous from R+ into HY(D).

We summarize the foregoing with:

THEOREM 1.6. Suppose 1L < p < oo, p+2. If {T},teR*, is a
strongly continuous one-parameter semigroup of isometries of
H?*(D) into H?(D), then there are a unique one-parameter group of

Mobius transformations of the dise, {¢,}, t € R, and a unique family
{v}, t € R*, of immer functions such that

L7 (Tuf)(2) = 9:(2)[(8:)*(2)] f (9:(2)) for all te R*, feH? zeD .
The families {¢,} and {4} satisfy (1.4) and (1.5). Conversely, given
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a one-parameter group {¢,} of Mobius transformations of the disc
and a family of inmer fumctions {y.}, t € R*, such that (1.4) and
(1.5) hold, (1.7) defines a stromngly continuous one-parameter semi-
group of isometries of H® into H?.

DEFINITION. For the semigroup {7} in Theorem 1.6 we shall
call {4}, te R, and {4}, t € R*, the conformal group and the inmer
coefficient of {T,}, respectively.

2. The case of trivial conformal group. Henceforth let K be
the unit circle |2z] = 1. A singular measure will be a measure on
K singular with respect to Lebesgue measure.

THEOREM 2.1. If {T.} is a strongly continuous semigroup of
isometries of H® into H?, 1 < p < o, p # 2, whose conformal group
is trivial (i.e., ¢, = Z for all t€ R), then there are a unique real
number 6 and a unique positive singular measure N such that

(2.2) T.f = eS'f for all te R, fc H”,

where S 1s the singular inner function induced by n. Conversely,
for ¢ and N\ as above, (2.2) defines a strongly continuous semigroup
of isometries with trivial conformal group.

Proof. Let {T,} be given with trivial conformal group, and let
{vr.} be its inner coefficient. If, for some u > 0 and z,€ D, +4,(2,)=0,
then by (1.4) for each positive integer u,r,.(2) = 0. Thus
(T..1)(z) = 0. Letting n — o gives a contradiction, and so ()0
for te R*, ze€ D. Thus each 4, can be written +, = a,S,, where «,
is a unimodular constant and S, is a singular inner funection. It
follows from (1.4) that a,., = a,a, and S,., = S,S, for s,te R*. For
te R*, (T\1) = a,S;; in particular, [(T,1)(0)| = S,(0). Thus for u € R+,
lim, ., S;(0) = S.(0), and lim,_, «,S,(0) = «,S,(0). It follows that there
is a real number 6 such that «, = ¢** for te Rt. We also have

2.8) NS;— S.ll,—0as t—u.

For each ¢t e R*, let \, be the singular measure corresponding to S,.
For each positive integer =, S, = (S,,.)*, and so A\,, = n™,. It fol-
lows that for each positive rational », A, = #A,. By (2.3) S, = (S))*
for ¢t e R*. This proves (2.2), uniqueness being evident. Conversely,
it is clear that (2.2) defines a semigroup of isometries. Let A(z) =

(2%)“18 (w + 2)(w — 2)7'dM(w), for zeD. Then ([6, Theorem 3.2])
K
Ae H5D) for s <1. In particular, the boundary function of S’ is

e '®, where B is the boundary funection of A. Strong continuity of
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{T,} is readily obtained from the Lebesgue dominated convergence
theorem.

REMARK. It is known that for 1 < p < <o, » # 2, the only one-
parameter semigroups of isometries of H? into itself, continuous in
the uniform operator topology, are the semigroups {e¢*’I}, te R+,
where ¢ is a real constant and I is the identity operator. For, by
general semigroup theory, such a semigroup automatically extends
to a one-parameter group with the same continuity. Now apply
[2, Theorem (2.8)].

3. Some properties of inner coefficients. In this section we
obtain properties of inner coefficients needed to find explicit repre-
sentations. Let {¢,},t€ R, be a nontrivial one-parameter group of
Mobius transformations of the dise, and {4}, ¢t € R*, be a family of
inner functions such that (1.4) and (1.5) hold. For the purpose of
classification we reproduce here [2, Proposition (1.5)]:

ScHOLIUM 3.1. Let Q2 be the set of common fixed points in the
extended plane of the fumnctions ¢, teR. 2 must be one of the
following:

(i) A doubleton set consisting of a point €D and T (the
latter to be = if ¢ = 0),

(ii) a singleton subset of the unit circle K, or

(iii) a doubleton subset of K.

If w is any real number such that ¢, is mot the identity fumction,
then 2 coincides with the set of fixed points (in the extended plane)

of Gu-

We describe {4,} as being of type (i), (ii), or (iii) in accordance
with the condition which holds in (3.1). Explicit characterizations
of the groups of each type are in [1, Theorem (1.6)]. It will some-
times be convenient to write ¢,(2) as ¢(¢, z). In the latter notation
partial differentiation will be indicated by numerical subseripts
(analogous comments apply to +(2)). We recall some basic facts
from [2, §1]. For each zeC, ¢,(0, z) exists; moreover, ¢(:, -) has
continuous partial derivatives of all orders on B X D. The function
$,(0, 2) on C is a polynomial of degree 1 or 2 whose set of zeros is
2NC. We denote this polynomial by ¢, and call it the invariance
polynomial of {g,). For teR,zeD, ¢t z) = q(4(t, 2)) [1, Theorem
(1.5)].

If we form the semigroup {7} in (1.7), then standard differen-
tiation theory of semigroups can be used to show that (-, -) has
continuous first partial derivatives on R* x D, and that (0, z) is
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an analytic function of z on D. We omit the details. Differentiate
(1.4) with respect to s, set s =0, and denote (0, 2) by W(z) to
get:

(3.2) Yt 2) = (L, 2)q(2) + ¥(t, ) W(z) for te R,z D.

For arbitrary (temporarily fixed) ze D, we have by direct differen-
tiation followed by substitution using (3.2)

(3.3) dyr(t, -.(2))/dt = (L, 6_.(2)) W(p_,(2)) for te R+ .

By using the usual type of integrating factor in (8.3) and noting
that «, = 1, we see that

(3.4)  (t, 6_,(2)) = exp BtW(gs_u(z))du] for te R*, zeD.

Replace z by ¢,(2) in (3.4) and transform the variable of integration
to get

(3.5) Wit 2) = exp [S:W(gss(z))ds] for teR*, zeD .

In particular, (¢, 2) never vanishes. Denote the exponent on the
right of (8.5) by L(, 2). Obviously L, and also +(-, ), have con-
tinuous partial derivatives of all orders on R+ X D. Moreover,

(3.6) L _ w(s2) for teR*, zeD.

ot

The relation (1.4) shows that |+,(2)| is a decreasing function of ¢
for each ze€ D. Thus

0> ; log |¥(2)| = Re L,(0, z) = Re W(z) .

&

PROPOSITION 3.7. Let {4}, t€ R, be a montrivial one-parameter
group of Mobius transformations of the disc, and let {3}, t € R, be
a family of inner functions such that (1.4) and (1.5) hold. Then
there is a function L(t, z) with continuous partial derivatives of all
orders on Rt X D such that (t, z)=exp [L(t, )] on R*xD. Further-
more there is an analytic function W(z) on D with Re W < 0 such
that (8.6) holds.

4. Semigroups with conformal group of type (1i).
THEOREM 4.1. Let (T}, tcR*, be a strongly continuous omne-

parameter semigroup of isometries of H? into H?, 1< p < oo, p#2,
with conformal group {¢}, t € R, of type (). Then there is a unique
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real comstant 0 such that
(4.2) T.f = e (90)""f(9,) for te R*, feH?.

On the other hand, for any real constant & and any one-parameter
group of Mobius transformations of the disc {¢,}, t € R, (4.2) can be
used for all teR to define a strongly continuous ome-parameter
group of isometries of H? onto H?.

Proof. Let {4}, te R*, be the inner coefficient of {7T,}. Let ¢
be the common fixed point in D of the group {¢,}. By [1, Theorem
(1.6)] the invariance polynomial ¢, which has 7 as its only zero in
D, has a simple zero at z. By (1.4) ¢+ +(7) is multiplicative, and,
by (1.5), this function is continuous on R*. So there is ae€C such
that +,(c) = e for te R*. Let L(-, -) and W{(-) be as in Proposition
3.7. L0, 7) = 40, 7). By (38.6) W(zr) = a. So there is an analytic
function A(z) on D such that W — a = qA. Let G be an antideri-
vative of A on D.

—gt—G(sét(Z)) = A(4:(2))q(4:(2)) = W($.(2)) — a = %(L —at).

So there is a function %(z) on D such that
L(t, 2) = G(¢,(2)) + at + k(z) for te R*, ze D .

If we take exponentials on both sides of this equation, and use the
fact that +, = 1, we obtain on R+ x D

(4.3) ¥(2) = exp [at + G(4,(2)) — G(2)] .

Let u be a positive number such that ¢,+, = ¢, for all te R (such
a u exists because {4} is of type (i) [1, (1.7)]). Taking ¢=wu in
(4.3), we have +,(2) = e for ze D. Since 4, is inner, ¢ = 9, where
0 is the imaginary part of «. Since () = ¢'* for te R*, the
maximum modulus theorem shows that +,(z) = ¢** for t € R, z€ D.

5. Semigroups with conformal group of type (ii) or type
(iii), The author is indebted to R. Kaufman for the idea of the
next proof. Before taking up the next theorem, let us observe that
if {¢,) is a group of type (ii) with common fixed point «, then there
is a unique nonzero real number ¢ such that the invariance polyno-
mial of {¢,} is given by q(z) = ic@(z — a)* [1, (1.8)]. We shall call
this ¢ the group constant.

THEOREM 5.1. Let {T,} be a strongly continuous one-parameter
semigroup of isometries of H? into H?, 1 < p < oo, p # 2, with
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conformal group {¢,} of type (ii). Let o be the common fixed point
and c¢ the group constant of {¢;}. Then there are a unique real
constant 0 and a unique momnegative constant p such that

T.f = {exp [i0t — topt® — pi(a + 2)(a — 2)7' )" f(4.)

5.2
52 for te R, feH”.

Conversely, if a s a unimodular complex number, ¢ 18 a nonzero
real number, and {4} is the type (ii) group having a as common
fixed point and ¢ as group constant, then (5.2) defines a strongly
continuous semigroup of isometries of H? into H? for de R, ¢t = 0.

Proof. Let {4} be the inner coefficient of {T,}, let L(-, -) and
W be as in Proposition (3.7), and let G be a primitive of W/q. Then
0G(9,(z)) /0t = W(s,(2)) = oLjot. It follows that

(56.3) P (2) = exp [G(4.(2)) — G(»)] for te R*, ze€ D.

Denote Re G by U. Let @ be the linear fractional transformation
given by Q(z) = (a + z)(@ — 2)™*. In particular, @ maps D onto the
right half plane P. Define g on P by g(w) = G(Q*(w)), and put
u = Reg = U@ Yw)). It is easy to see that i¢’(w)= W(Q *(w))/(2¢),
and so, writing w = 2 + 7y, we have ou/oy = (2¢)* Re W(Q'(w)).
Let 8 = —¢/|c|; then Rou/oy = 0. Applying the Herglotz represen-
tation theorem (for P) to Bou/oy gives:

(5.4) Bou/oy = ox + Sﬂnc[oc2 + (y — ) dv(r),

where ¢ is a nonnegative constant, and v = 0 is a certain measure,
which is finite on bounded Borel sets of R.

In order to make effective use of (5.4), we now examine the
boundary behavior of U and . Since Re W < 0, W belongs to the
Hardy spaces H*® for s < 1. Obviously (1/¢) belongs to H® for s <
1/2. Use of the Cauchy-Schwarz inequality now shows that G’ =
W/q belongs to H* for s < 1/4. By a theorem of Hardy and Little-
wood [6, Theorem 5.12] it follows that G belongs to H* for some
s > 0. Accordingly, for any te R*, we can pass to the boundary
of D in (5.8) to conclude that, with respect to Lebesgue measure m
on K,

(5.5) U(¢,(z)) — U(z) = 0 for almost all z .

If t <0, we can replace t by (—t) and z by ¢.(2) in (5.5) and get
equality for almost all z. Thus for each te R, (5.5) holds for m-
almost all z. It follows that for m-almost all z, (5.5) holds for
almost all ¢ (with respect to linear Lebesgue measure). In particular,
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pick z,€ K\{a} so that with z replaced by z, (5.5) holds for almost
all ¢. It follows that there is a real constant v(= U(z,) such that
for m-almost all z, the function U on D has a nontangential limit
equal to v at z. Hence for almost all ¥y € R (with respect to linear
Lebesgue measure) 4 on P has a nontangential limit equal to v at
1y. If ¥y, ¥, are any two such values of y, with y, < ¥,, then inte-
gration of (5.4) with respect to y between ¥, and ¥, followed by
interchanging the order of integration, readily gives the inequality:

Blut, ys) — ux, )] = g

— arctan [z 7 (y, — m)]}dv(») .

{arctan [ (y, — )]
Y1 <r<yy

(5.6)

Now, keeping ¥, and v, fixed, let « in (5.6) tend to 0 through a
sequence of positive values. At each » on the interval of integration
the integrand tends to n. Using Fatou’s lemma (or bounded con-
vergence) and the fact that the majorant in (5.6) tends to 0, we
infer that the interval y, < r < y, is y-null. Hence v(R)=0. Making
use of this, integration of (5.4) now gives:

6.7 Bu(x, ¥) = oxy + Lu(x, 0) .

In particular the Laplacian of wu(x, 0) must vanish. So there are
real constants a, b such that

(5.8 Bu(x, y) = oxy + ax + b .

Since u(Q(z)) = Re G(z) for ze D, we have from (5.8) and (5.3) that
for te R*, ze D

(5.9) :(2) = exp {—0iB[{Q(4:(2))}* — {Q())] + alQ(g:(2)) — ()]},

where o0, a, are real constants, with ¢, =0. Since 04, 2)/ot =
q(¢(t, 2)), it is easy to see that (a — 6,(2))™ = icat + (¢ —2)*. Using
this, we get the desired representation (5.2) from (5.9). Since the
exponential expression on the right of (5.2) defines a family {y.}, t €
R*, of inner functions for arbitrary e R, ¢ = 0, uniqueness of o
and ¢ for the given semigroup {7,} is obvious from Theorem 1.6.
For the converse, one sees easily that the exponential expression on
the right of (5.2) satisfies (1.4) and (1.5).

Before taking up the type (iii) case, it will be convenient to
introduce some further notation. If @ and 8 are unimodular complex
numbers, let o0,, and Q. be, respectively, the linear fractional
transformations (# — a)/(z — B) and (&8 — 1)o,, If {¢)} is a group
of type (iii), then ([1, (1.9)]) it has a unique representation of the
form
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(5.10) $:(2) = 02)5(e°04,5(2)) ,

where @ and B are unimodular complex numbers and ¢ > 0. The
invariance polynomial in this instance is ¢(z) =c¢(a—B)(z—a)(z—p).

THEOREM 5.11. Let {T,}, t€ R*, be a strongly continuous one-
parameter semigroup of isometries of H® into H?, 1< p < oo, p +*
2, and let {T,} have conformal group {¢.} of type (iii). If {4} has
the representation (5.10), then there are unique mnonmegative con-
stants L and v and a unique real constant o such that

T.f = {exp[idt — p(e* — 1)Qu.s

(5.12) -
+ (€™ — 1)/Qa,p)}(8) " f($0), for te R*, feH”.

Conversely, if a positive number ¢ and unimodular complex numbers
a and B are given, and if the type (iii) group {4} is defined by
(5.10), then (5.12) defines a strongly continuous semigroup of iso-
metries of H? into H? for e R, ¢t = 0,» = 0.

Proof. Let {4} be the inner coefficient of {7T,}, and let L(-, -)
and W be as in Proposition 3.7. Let G be a primitive of W/q on
D. As previously, (5.3) holds in the present situation. Let U =
ReG. We remark that once the proper conformal mapping for
transforming U is introduced, there will be some similarity with
the proof of Theorem 5.1. We shall omit details which are obvious
modifications of the proof of Theorem 5.1, and emphasize aspects
which are special to the case at hand. We observe that Q,, maps
D onto the right half plane, and hence M = Log (Q,,;) maps D onto
the strip Y given by |Im w|<z/2. Define F on Y to be G(M *(w)),
and put w = Re FF = UM ~Y(w)). By direct calculation we get that
dF|/dw = W(M*(w))/c. Hence, writting w = = + 4y, ou/ox < 0. The
relevant form of the Herglotz theorem for Y gives:

—ou/ox = p,e” cosy + o " cos Y

5.13
( ) + SR\[ ){e’” cos y/[e* cos* y + (e® sin y — 8)2]}dv(s) ,

where p,, o, are nonnegative constants, and v is a measure on R,
v =0, and v is finite on bounded Borel sets. Since G’ belongs to
Hardy spaces of index less than 1/2, G belongs to some Hardy space.
In particular, for te R*, (5.5) holds m-a.e. on K (in the present
setting). After observing that if ze K\{a, 8}, {$.(2):t € R} is the
component of z in K\{a, 8} [3, Theorem (2.5)], we find that there
are real constants A4 and B such that for almost all xe R (with
respect to linear Lebesgue measure) u(x,y) — A as y —7x/2, and
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w(x,y) > B as y— —n/2. If x, and x, are values of z for which
these limits (with respect to y) hold, and z, < x,, then integration
of (5.13) with respect to 2 from =z, to x,, followed by interchanging
the order of integration, shows that

w(@y, Y) — U@, Y)

(5.14) > Smm s~ arctan [(e* — (sin y)s)/(s cos ¥)]2Z22 dv(s) .

If we replace R\{0} in (5.14) by the interval e” < s < e¢®, and let
y — /2, we see that this interval is a v-null set. Similarly, if we
replace R\{0} by the interval —e™ <s< —e”, and let y — —7/2,
we see that the latter interval is a y-null set. Thus v(R\{0}) = 0.
Using this in (5.13) we find that there are real constants a and b
such that u(x, y) = —p,Re(e”) + p,Re (¢7) + aIm (w) +b. This yields
the following equation for G on D

(5.15) G = —0.Qus + (0:/Qu,p) — ai Log (Qus) + C,

where C is a complex constant (which can be disregarded in using
(6.3)). In view of (5.10) Q, (¢, = ¢'Q. ;. Using this fact, we get
(56.12) from (5.15) and (5.3).

To obtain uniqueness, let us note that if §;, y¢;, v;(7 = 1, 2) are
appropriate triples of constants such that for the given semigroup
{T,} (and {g,}, a, B, ¢) (5.12) holds with each triple inserted, then by
uniqueness of inner coefficient, the corresponding expressions inside
the “exp” sign in (5.12) must differ on Rt X D by 2zni, where n
is a constant (integer). After transposing this gives

(5.16) U0, — 0ot + [(vy — v)(e™ — 1)/Q] = (¢, — f)(e — DQ + 27n1 ,

where we have deleted subscripts in Q,,. If we fix £ at a positive
value in (5.16) and let z — a, the right-hand side approaches 2zmni,
whereas if v, # v,, the left-hand side approaches <. So vy, =y,
Similarly, let z — g to get g, = t,, and then 4, = J, follows.

Under the hypotheses of the converse it is straightforward to
see that the exponential expression in (5.12) is a family {y} of
inner functions, and that (1.4) and (1.5) hold.
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