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The biharmonic principal function problem is the con-
struction of a biharmonic function in a space which
““imitates’’ the behavior of a given singularity function.
In this paper we first define the notion of a biharmonic
operator which clarifies the modes of ‘“‘imitation.” We then
prove the existence and unigueness theorem of the bihar-
monic principal function. The theory is a generalization
of the harmonic principal functions to the larger family of
biharmonic functions. An indication of its application as
well as its further generalization to polyharmonic functions
is also given.

The theory of principal functions plays an important role in
the study of harmonic functions in that it allows for the global
construction of harmonic functions with a great variety of singularity
behaviors. See Ahlfors-Sario [1] or Rodin-Sario [3] for a com-
prehensive treatment of this theory and many of its applications.
Since the study of biharmonic and polyharmonic functions draws
heavily from the experience of harmonic theory, it has been felt
that a theory of biharmonic or polyharmonic principal functions
would be desirable. Except for some results in the thesis of Rader
[2] which constructs some interesting special examples, a general
theory is still in the waiting. In this paper, we will present another
step toward such a theory in first defining the basic concept of
biharmonic operator and then proving the existence and uniqueness
of biharmonic principal functions, one of the three main theorems
of the theory. Our paper is self contained except for a proof of
Sario’s ¢-lemma which can be found in [1] or [3]. An indication of
generalizing the results to polyharmonic functions is given at the end.

In §1, after a review of notations, we prove an alternating
lemma which is the main technical tool of our theory. From this,
the main existence and uniqueness theorem of Sario et al for the
harmonic theory follows rather easily.

In §2, we define the concepts of a biharmonic operator which
is basic for our theory. Examples and simple properties of this
operator are given. Next in §3, we prove the existence and
uniqueness theorem for biharmonic principal functions. Some appli-
cations are then given in §4 which includes the construction of
biharmonic functions with various singularity properties, e.g., the
classical singularity problem of closed manifolds, the biharmonic
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Green’s function v. Finally, in §5 we make some remarks about
the generalization to polyharmonic functions as well as some open
problems.

1. Let R be a Riemannian manifold, compact or noncompact,
and 4 = dé + éd the Laplace-Beltrami operator. A function u(x) is
called harmonic, quasiharmonic and biharmonic if 4u =0, du = ¢
with ¢ a constant and 4*uw = 44u = 0 respectively. We will denote
them, in symbols, by H(R), QR) and H*R) in that order. A quasi-
harmonic function ¢ such that 4¢ = 1 is called a normalized quasi-
harmonic function. This terminology is slightly different from the
one used by other workers in the field in that, in our usage, R &
H(R) € QR) < H*R) form a sequence of increasing vector spaces
under jpelusion where R is the set of real numbers.

We also consider manifolds with boundaries. Suppose that A is
a compact or noncompact manifold with boundary 0A.. The above
symbols H(A), Q(A), H*(A) will denote the family of harmonic,
quasiharmonic and biharmonic funections in the interior of A and
continuous through the boundary 0A. The following is the famous
g-lemma of Sario whose proof can be found in [1] or [3]:

Sario’s g-lemma. Let a be a compact subset of the interior of
a Riemannian manifold R. Then there exists a positive comstant
q <1 such that for all harmomnic functions u on R which change
signs on «a, we have

ginfu S u|la=qsupu.
yi4 R

Before we prove the technical alternating lemma, we recall
Sario’s notion of normal operator, here we rename it harmonic
operator. As above, let A be a compact or noncompact Riemannian
manifold with a compact boundary 6A. A linear transformation
L: C(0A) — H(A) is called a harmonic operator if it satisfies the
following conditions: (1) (Lf)|04A = f, (2) min,,f < Lf < max,,f
and (3) the flux condition: Sﬁ*dL f = 0 holds for any B homologous
to a.

ALTERNATING LEMMA. Let A, 2 be submanifolds of R such
that

1. dim A =dim Q2 = dim R,

2. A has a compact relative boundary oA, 2 has a compact
relative boundary oA, and 0A N2 = g,

3. AN is a nonempty open set, AN L2 has boundary 0AUoR,

4., L:C(A)—H(A) and K: C(02) — H(2) are harmonic operators
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with max K(f), min K(f) € int (2) for any nonconstant f,
5. w 18 a harmonic function on A Q2 continuous in AN L.

Then there are u € C(OA) and veCOR2) and a constant k such
that

w — (Lu + Kv) = ko ,

where @ 1s the harmonic function in AN 2 with boundary data 0
on 0A and 1 on 0R.
Further the constant k=0 if and only if the flux condition

Sg*dw = 0 holds for any B homologous to o = 0A.

Proof. Consider the sequence
(KL)"(w — Kw) , n=20,1,2 ---.

The ranges range (w — Kw) Drange (KL)(w— Kw) D range (KL )*(w—
Kw)>D --- form a decreasing sequence of closed sets by the defini-
tion of harmonic operators. Also, the maximum condition 4 of the
hypothesis for K implies that max (KL)"(w— Kw)> max (KL)"*'(w -
Kw) and min (KL)"(w — Kw) < min (KL)"*'(w — Kw). Therefore,
there is a number ke, range (KL)*(w — Kw). Form a new
sequence

(KLY (w — Kw) — bk = (KL)"(w — k — Kw), n=20,12 ..

Bach one of this sequence changes signs. Similarly L(KL)“(w—Fk—
Kw) changes signs for each n also. As a consequence, (KL)"(w —
k — Kw) changes signs on the closed set 64 for each n. By the
g-lemma, there is a ¢e (0, 1) such that

qinfy, (KL)"(w — k — Kw) £ (KL)"(w — k — Kw) | 0A
= gsupy (KL)"(w — k — Kw) .

Since inf,, (KL)Y"(w —k — Kw) < (KL)y"**w—k— Kw) < sup,, (KL)"(w —
k— Kw), we have ¢*inf, (KL)"(w—k— Kw)< (KL)""*(w—k — Kw)|0A <
¢t sup, (KL)*(w — k — Kw). Continuing, we have
g inf, (KL)(w — k — Kw) < (KL)"(w — k — Kw) |04
< q"sup, (KLY (w — k — Kw) .

Thus, the series

My

(KL)"(w — k& — Kw)

1

s
]

converges to a harmonic function on £. Similarly, the series
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Swoy LIKL)"(w — k —~ Kw) also converges to a harmonic function on
A,

Let v=k+ Kw— Y5, (KL)"(w—k— Kw) and u=3,7_, L(KL)"(w—
k — Kw). Consider the harmonic function w — (Kv + Lu)=w —k —
Kw + S (KL)"(w — k — Kw) — 3o, L(KLY"(w — k — Kw). To see
that it is —kw, we have to check that it has the desired boundary
values. Operating with K, we see K(w — (Kv + Lu)) = Kw — (Kv +
KLw) = —Fk; while operating with L, we have L(w — (Kv + Lu)) =
Lw — (LKv + Lu) = 0. Thus it has the boundary values —Fk at o0
and 0 at 0A, as desired.

Finally, we will check the flux condition. Clearly,

——Sﬂ xdkw = Sﬁ*d(w — (Lu + Kw)) = Sﬁ*dw .

Since S *dw # 0, we conclude that S xdw = 0 if and only if k = 0.
B

In inany applications of the above alternating lemma, R will
be an open Riemannian manifold, 4 will be a boundary neighbor-
hood, 2 will be a regular submanifold of R, K will be the Dirichlet
operator on 2. Indeed, that is what our notations will be if not
specified otherwise. We also use 5 to denote a chain homologous
to @. As an application of this lemma, we give a new proof of the
Main Existence and Uniqueness Theorem of the harmonic theory
due to Sario et al, [1] and [3].

THEOREM. Let s be harmonic im A. Then the mecessary and
sufficient condition for the existence of a harmonic function p on
the entire R such that

»—s=L(p—s)

1s that s satisfies the flux condition:
S xds = 0.
8
The functions p s unique up to an additive constant.

Proof. Let s be given. Let 2 be any regular subregion such
that the alternating lemma applies. Then there are w and v such
that s — (Luw + Kv) = 0 by the lemma. Thus let p =s — Lu on A
and p = Kv on 2. Clearly, p is the required harmonic function.
This proves the sufficiency part. The necessity part is obvious.

The function s that satisfies the above flux condition is called
a singularity function, and the function p is called a principal funec-
tion of s for the operator L. Intuitively, p can be said to “imitate”
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the behavior of s with respeect to L. Our main objective is to
extend the above theorem to the larger family of biharmonic func-
tions.

2. To achieve our goal, we first define the concept biharmonic
operator. A linear transformation L:C(0A) x C(0A)— H*A4) is
called a biharmonic operator if it satisfies the following five condi-
tions:

(1) w=Lf=L(f, f,) is a bounded biharmonic function, i.e.,
—oco < infu < supu < oo}

(2) ul|dA=f, du|dA = fy

(3) L{-,0) is a harmonic operator of the first variable;

(4) A4L(0, -) is a harmonic operator of the second variable;

(5) LO,f)z0if f=0.

We give some simple properties and examples of biharmonic
operators.

For any «, A, f = (f, f,) and any L:C(0A) X C(0A)— H*(A),
we have the decomposition L(f, f.) = L{f,, 0) + L(0, f;). The first
term of the above decomposition may be called the harmonic part
and the second term the potential part of L(f, f.). To define L,
we only need to define its harmonic part and potential part.

The following lemma on quasiharmonic functions is needed later.

LeMMA. Let A, 2 be submanifolds of R as in the alternating
lemma. Let L:C(0A) X C(0A) — H*(A) and K: C(6R)xC(0R2)— H*(A)
be two biharmonic operators. Let K(0,1) > 0 outside of 02, and
let w= L0,1) — K(©,1). Then there are u,v and constant k + 0
such that

w — (L(uw, 0) + K(v, 0)) = —kw

where w 18 0 on 04 and 1 on 9R.

Proof. Since w is harmonic and L(-, 0) and K(-, 0) are harmonic
operators, we thus can apply the alternating lemma to obtain
u, v, k satisfying all the above properties except possibly & #= 0. To
see that k #+ 0, we need to show ﬁ*dw # 0. Clearly, w < 0 on 02,
but w = 0 on 9A by the hypothesis on K(0, 1) as well as the property
(5) of biharmonic operators.

Let M = sup;,w. Then M < 0. Choose any dec(M,0). Let B
be the points in AN L2 such that w = § there. Clearly Sp*dw = 0.

Hence k = 0 as claimed.
The following are three simple examples of biharmonic operators.
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ExaMpPLE 1. Let A be a compact Riemannian manifold with
boundary 0A. Then the Dirichlet operator is a biharmonic operator.

EXAMPLE 2. Let R be a compact Riemannian manifold with
boundary 6R. Let A’ be a boundary neighborhood of R with
disjoint boundary components a and dR. Let B be a punctured
ball, disjoint from A’, with deleted center £&. Let R be the interior
of R{g}, A be A’ UB, and 0A be a UdB. Define L: C(6A) x C(0A)—
H*(A) by the following conditions:

(1) wul|0d = L(f)|0A = f = (fi-f2);

(2) wu| B solves the Dirichlet problem of B\{(};

(8) 4u is a constant in 0R, chosen such that the flux condi-
tion on 4w is satisfied;

(4) L(f,0) is a constant in 0R chosen so that L(-,0) is a
harmonic operator.

(5) L0, -) is a constant in R so chosen that the linearity
condition and condition (5) of the definition of biharmonic operators
are satisfied.

Then L is a biharmonic operator.

EXAMPLE 3. L(f, f,) = L,(f) + GLy(f.) is a biharmonic operator
if L, L, are harmonic operator and G is the Green’s operator, if
well defined. See [2].

3. We are now ready to prove the existence and uniqueness
theorem of biharmonic principal functions which is the main result
of our paper.

THEOREM. Let A be a boundary mneighborhood of an open
Riemannian manifold R with relative boundary 0A. Let L be a
biharmonic operator on C(0A) X C(0A) and let s be a biharmonic
function on A. Then the mecessary and sufficient condition for
the existence of a bitharmonic function » in R such that

p—s=L{p—s, 4p — s))
is that the following flux condition be satisfied:

g xdds =0
8

where B 18 a chain homologous to dA. The funcltion s is unique
wp to an additive constant. Moreover, if s is harmonic, them q s
quastharmonic; and if s is both harmonic and satisfies the flux

condition ﬁ*ds =0, then p s harmonic.
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Proof. The necessity is rather routine. We will prove the
sufficiency. Suppose Sﬁ*dds = 0. By the existence theorem of the
harmonic theory, there is a harmonic function 7 in R such that

r — ds = AL(0, r — 4s) .

Let 2 be a regular subregion in R whose interior contains 64
and K be the Dirichlet operator on C(0R2) x C(02) to H?*Q). By
Example 1, K is a biharmonic operator, also K(0,1) >0 in the
interior of Q.

We will show that w = L(0, » — 4s) + s — K(0, ) is harmonic in
A N Q2 continuous to the boundary. Indeed, 4w = AL(0, »r — 4s) +
A4s — AKQO, r) =r — 4s + 4s — r = 0.

Thus, by the alternating lemma, there are functions u, v and
constant % such that w — (L(u, 0) + K(v, 0)) = —k®w where o is
harmonic on A N 2 with boundary data 0 on 04 and 1 on 02.

There are two cases to be considered: the case that # =0 and
otherwise.

Suppose &k =0. We have w — (L(u, 0) + K(v,0)) = 0. Hence
L(—u,r—4s)+s=Kw,r) in AN L. We define p=L(—u, r— 4s)+s
in A and let p = K(v, r) in 2. It is routine to verify that p satisfies
our requirement.

Suppose k = 0. Consider the function w, = L(0,1) — K(0, 1) in
AN Q. Clearly, w, is harmonic and hence, by the lemma on quasi-
harmonic functions in §2, there are functions wu,, v, and nonzero
constant %k, = 0 such that w, — (L(u, 0) + K(v,, 0)) = —kw. Now
we have w — (L(u, 0) + K(v, 0)) — kki[w, — (L(u,, 0) + K(v,, 0))] = 0.
We can apply the previous argument to separate L and K and obtain
the desired p.

To show the uniqueness, let us suppose that there are two such
functions p, and p,. Since 4p, and 4p, are principal functions of
As for the harmonic operator 4L(0, -), they differ by a constant k,
by the uniqueness theorem of the harmonic theory.

We claim that k¥ = 0. Suppose not. Let us assume that k =
Ap, — 4p, > 0. We have a nonconstant function p, — p, = p, — s —
(0, — 8) = L(p, — Dy, 4(p, — D,) = L(p, — p;, k). Let M = max;, |p,—
p.|. We consider p, — p, + M = L(p, — p. + M, 0) + L(0, k) which
is nonnegative superharmonic in the entire R and which has a
minimum in 04 when restricted to 4. Thus it has a minimum in
the interior of R. This is impossible.

Therefore 4(p, — »,) = 0. Again, consider p, — », = L(p, — p.,
A(p, — p,) = L(p, — p,, 0) which when restricted to A has minimum
in dA. As a consequence p, — p, has a minimum in the interior of
R. This implies that p, — p, is constant as required.
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Finally, suppose s is harmonic, 4s = 0. We may choose » = 0.
If we also have Sp*ds = 0, then our proof is reduced to the proof
of the harmonic theory and p is harmonic. If we haves xds # 0;

then by adjusting a constant multiple of L(0, k,) — K(0, kl)p, we see
that » is quasiharmonic.

As usual, we call s a singularity function and p a principal
funection of s with respect to L.

4. In the following, we give two applications of the existence
theorem. First is the construction of the singularity biharmonic
functions in a closed space. The other is the construction of the
biharmonic Green’s function v for a space with boundary.

To construct the singularity biharmonic potential, let B be a
closed Riemannian manifold. Choose distinet ¢, ¢, € R and 4,, 4, two
disjoint disks with centers &, {,. Let R = R{(, &}, A = 4,U 4\(&, &},
0A = 04,U d4,. Define the singularity funetion s so that s has a
positive biharmonic singularity {, and a negative singularity near
g, i.e., s(@) = rtlogr for dim R = 2, s(x) =~ —r for dim R =3, s(x)=
—log » for dim R = 4, and s(z) ~ r™*** for dim R = 5 where n=dim
R and » = dist ({,, x), the distance between {, and x for x near ,.
Similar remarks apply to s(x) near {, with different signs. Also, we
take the flux of 4s across 04, normalized to be 1 and across a4,
normalized to be —1. Hence the flux condition is satisfied. Let L
be the biharmonic operator corresponding to the Dirichlet operator
on A. By the existence theorem, there is a principal function p.
Since p — s = L(p — s, 4(p — s)) is regular in A, p has the same
singularities as s. We thus have a function defined in the entire
space R with positive biharmonic singularity at ¢, and negative
biharmonic singularity at ..

Next we construct the Green’s function v which is characterized
by the boundary data v = 4v = 0.

Let R be a Riemannian manifold with boundary dR. Let ¢ be
an interior point in B. We want to construct a biharmonic Green’s
function v(, ¥) on R which is characterized by a biharmonic singu-
larity at { and boundary data v = 4y = 0 at dR. Choose a disk D
centered at { with boundary 6D. Choose a boundary neighborhood
A’ of R, disjoint from D. Let R = R\[{}\0R and A = A’U D\{¢}.
0A = 0D U 0A’ where 0A’ is the relative boundary of A’ in R, i.e.,
without 6R. Define the operator L as in Example 2. The singu-
larity function s is characterized in the following way: s(y) has a
biharmonic singularity at {, and s, 4s are constant, say ¢, and ¢, at

0R with ¢, so chosen such that S *dds = 0. Since s satisfies the flux
s
condition, there is a principal function » of s. Hence p has the
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same singularity as s at {, because p—s=L{(p—s, 4(p—s)) is regular in
the entire D. By the definition of L, p and 4p are constant on oR,
say equal to ¢’ and ¢” respectively. Then the required v = p — ¢'—

¢"GL where GL = Sg(x, y)dy is the harmonic Green’s operator on 1,
which exists because R is compact bordered.

5. QOur theory can be extended, by induction, to polyharmonic
functions, i.e., 4"u = 0 for some n. Both the definitions and proofs
will become more complicated. However, the basic idea is the same.
For example, without going into details, the nth harmonic operator
will be a linear operator L: (C(0A))" — H"(A) with conditions similar
to those of the biharmonic operator.

We conclude with some open problems. The existence and
uniqueness theorem is one of the three main theorems of Sario’s
harmonic theory. The other two theorems are the convergence
theorem and the extremum theorem. A natural question for us is:
what are the generalizations of these two other theorems in our
theory? With these two more theorems, we will naturally consider
the many applications proposed for the harmonie theory as in [3],
hence a rather wide vista is in the horizon.
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