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Let RC T be commutative rings with 7 integral over
R. In the study of chains of prime ideals, it is often of
interest to know about primes ¢qC ¢’ of T such that height
(¢//g)<height (¢’NR/gNR). In this paper we will consider
a chain of primes ¢,Cq,C---Cq, in T which is well behav-
ed in that height (¢./¢,)=2T. height (q./q:...), but which
suffers the pathology that height (¢.NR/q;-;NR)> height
(q:/q:-,) for each 7=2,:---,m. Our goal is to find a bound
on how large m can be.

Our main result is that if 7 is generated as an

R-module by 7 elements, then there is a bound b, such

that m < b,; moreover b,—2 and in general b,<b?-2+4b2%

ee+o+b,,+2. Let us quickly add that we do not claim that
this formula gives the best bound possible. (We rather
suspect not.) If c¢=b,_,+2, we also have, as part of our
main result, that m=height (¢./¢))+b,_,. If m>b,_;, so
that ¢, exists.) Finally, if we have the added assumption
that height (¢./q;_)<7r for 7=2, .-+, m, then m=<2(r41)*2,

The bulk of our effort is needed to discuss the case that T=
R[u] is a simple integral extension of B. This is done in §3. That
section also introduces a new “going down” technique of some in-
terest. Section 2 treats a highly special situation in which we
obtain a much sharper bound. This case has some interest in its
own right and also starts an induction needed in §3. The fourth
section gives the main result mentioned above. Lastly, in §5, we
present some examples. These illustrate the point that there is no
bound in general, even in the case of Noetherian domains, on m
which is independent of the size of the integral extension Rc 7.
Specifically, we show that b, —  as #->c. Thus our bounds,
while presumably not sharp, have the proper form.

DEFINITION. The chain of primes P, c P,c---CP, is taut if
height (P,/P) = >, height (P,/P,_).

NoTATION. The following notation will be standard throughout
except when specifically indicated otherwise. R cC T will be an in-
tegral extension of domains, ¢, C---Cq, will be a taut chain of
primes in T lying over p,C---Cp, in R. Height(p,./») will be
finite and height(p,/p._,) > height(q,/q;_), i =2, ---, m. Finally, =
will be an indeterminate.
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2. Split simple extensions. In this section, as well as the
next, we will assume, in addition to the standard assumptions men-
tioned in the introduection, that 7' is a simple integral extension of
R. In order to be more specific, we make a definition.

DEFINITION. Let the domain T = Ru] be a simple integral ex-
tension of B with # a root of a monic polynomial f(x) € R[x]. We
will say that T is a simple integral extension of R wvia f(x).
Throughout §§2 and 3, without further mention, we will assume
that T = R[u] is a simple integral extension of R via f(x) with f(x)
having degree n and f(u) = 0. Furthermore, in the present section
we add one more assumption, namely that f(z) is split.

DEFINITION. The polynomial f(x)< R[x] is said to be split if
Rju] = R[«'] for any two roots u and ' of f(x).

Notice that if f() =2+ ax + b= (2 — u)(x — u’) € R[z], then
—u — % = a€R so that R[u] = R[u']. Thus if n =2, f(x) is split.
We will show in this section that when f(x) is split, m is bounded
by deg f(x). Our first lemma is well known. We state it explicitely
because it is frequently used in what follows.

LeMMA 2.1. (@) Let p be prime in a ring A. Let g(x) be a
monic polynomial in A[x] with deg g(x) =d. Then there are at
most d primes of A[x] which lie over p and contain g(x).

(b) Let T = R[u] be a simple integral extension of R via f(x)
with deg f(x) = n. Let p be prime in R. Then at most n primes
sn T lie over p.

Proof. (a) follows from standard facts such as [3, §§1-5] and
the fact that taken modulo p, g(x) has at most d irreducible factors.

(b) follows from (a) by considering preimages under the map R[z] —
Rul=T.

THEOREM 2.2. Let f(x) be split. Let q be prime in T with
p=qNR. In R[x], let P be prime with PNR =p and suppose
that f(x)e P. Then for some root w of f(x),q is the image of P
under the homomorphism R[x] — Rlu] = T.

Proof. As is well known, there is a g(x) e P such that P=
{h(x) € R[x]/sh(x) € (p, g(x))R[x] for some s€ R — p}. Since R[z]C T[x]
is integral and qT[x] N R[x] = pR[x], by going up we can find a
prime @ of T[z] with QN T =q and QN R[z] = P. Thus f(x)e
Pc @ and as f(x) splits in T[x], for some root u of f(x) we have
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z—ucQ Now g@)ePc@ and as z=umodQ, gu)e@NT =q.
Thus the preimage of ¢ under the map R[x] — R[u] = T contains
g(%), and so is easily seen to be P.

COROLLARY 2.3. Let f(x) be split. Let p be prime in R.

(a) If P, and P, are prime in Rlx] with P, N R[x] = p = P,N
Rlx) and f(x) e P,N P, then R[x]/P, ~ R[x]/P,, this isomorphism fixing
R/p.

(b) Let q, and q, be primes in T both lying over ». Then
Tlq, ~ T/q,, this isomorphism fixing R/p.

Proof. (a) Let g be a prime of T lying over p. By Theorem
2.2, for roots u, and u, of f(x), q is the image of P, under R[x] —
Rlu]=T,7=1,2. Thus R[x]/P, ~ Rlu.l/g = Rlu,l/q ~ R[x]/P,.

(b) If P is prime in R[z] with PN R = p and f(x) e P, and if
q is any prime in T lying over p, then the proof of (a) shows that
T/q ~ R]x]/P. Thus T/q, ~ R[x]/P ~ T/q,.

THEOREM 2.4. Let f(x) be split. Then m < deg f(x).

Proof. We first claim that there are distinet primes @, ---, Q..
lying over p, satisfying ¢, @; and height(Q;/q,) = height(q../q,),
j=1 ---,m. To do this, we induct on m. For m = 2, by going

up there is a prime ¢q; of T with ¢, Cq;, g; N R = p, and height(qy/
,) = height(p,/p,) > height(g,/q,)). Let @, = ¢, and Q, = ¢;.

For m > 2 take ¢; as above. The isomorphism in Corollary 2.3
between T/q, and T/q; carries ¢, - -- C g, isomorphically to a chain
q; C---C qh, wWhich also lies over p,C---C p, (since R/p, is fixed).
By induction there are distinet primes Q,, ---, Q,._, of T lying over
D, With ¢ @; and height(Q,/q}) = height(gn/¢), 5 =1, ---, m — 1.
Since ¢, <---Cgq, and q;C---C q,, are “isomorphic”, height(q,/q;) =
height(q,./q,). Recall also height(q;/q,) > height(q./q,). By the taut-
ness of ¢, C---Cgq, we have for j =1, ---,m — 1, height(Q;/q,) =
height(Q;/q;) + height(qi/q,) = height(q./q}) + height(ql/g,) > height
(9n/q.) + height(g,/q,) = height(g,/q,). That is, height(Q;/q,) > height
@9./q), for j =1 ... m — 1. Letting Q, = g, proves our claim.

Finally, as the number of primes in T contracting to any given
prime in R cannot exceed deg f(x), the existence of @,, ---, @, shows
that m < deg f(%).

The final result in this section discusses the situation when the
bound given by Theorem 2.4 is obtained.

PRrOPOSITION 2.5. Let f(x) be split and let m = deg f(x). Sup-
pose that pS p, v, S0 with p, ' primes itn R and that ¢ N R=
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p,¢ NR =99 with q,q" primes in T. Then qCq'.

Proof. The proof of Theorem 2.4 shows that there are primes
Q, -, Q, =4, lying over p,, each of which contains ¢,. By going
up, find a prime ¢ of T with ¢cgq! and ¢iN R = p,. Now gq, is
contained in m primes lying over p, (namely @, ---, @,) and so by
Corollary 2.8 ¢; is also contained in m primes lying over p,. How-
ever, since deg f(x) = m, Q, ---, @, are the only primes lying over
Pmoand 50 ¢CQCQ NN Q.

Now consider R[x] — R[u] = T and let Q* QF, ---, Q% be the
preimages of ¢, @, -+, @, respectively. Obviously @* N R = p’,
BNR=p,7=1—---,m and f(x) e Q*NAFN---NQx since f(u) = 0.
By [4, Lemma 3] (applied to R/p,) we easily see that there is a
prime P of R[x] with PNR = p,, and f(x)e PCQ*. However since
deg f(x) = m, at most m primes in R[x] can contain f(x) and also
contract to P,. As each of @, ---,Qf do just that, obviously
P = Qf for some j =1, -, m. Thus QFf = PCQ* from which we
see that Q;,C¢’. Thus ¢C @, N---NQ,CQ;Cq and we are done.

3. Arbitrary simple extensions. We now drop the “split” as-
sumption and just assume that T is a simple integral extension of
R via f(x) with deg f(®) = n. We will show that there is a number
b, such that m <b,. We do not identify the best such bound al-
though we do give an inequality limiting the size of the best such
bound. To be explicit, let us use b, to denote the smallest number
such that m < b, for all such m.

We have already seen at the start of §2 that if » = 2 then
f(x) is split, and so by Theorem 2.4 we have b, = 2. (This is best
possible, [5, Example 2, pp. 203-205].) We will now assume induec-
tively that b,_, exists.

In our next lemma we start a chain at P, rather than P,, since
that will be the situation when we apply the lemma.

LEMMA 3.1. Let P,C--- C P, be a taut chain of primes in
R[x] contracting to p,C---Cp, in R. Let P/+ P, with PN R = p,.
Let f(x) be a monic polynomial of degree n with f(x)e P,NP,. Let
s> 0 be an integer with m > b, (s — 1)+ 1. Then for some i€
{1, -+, m — s} there is a taut chain P}, C---C Pi, in R[] lying
0ver Dy, C - C Dire With  height(P/+;/P/i;_) = height(Piy;/Piy;_y),
j=2, ---,8 and with P/S P}, and height(P/./P;) = height(P;.,/P,).

Proof. Obviously we may work modulo p,; so assume that
p, = 0. Since f(x) e P,N P/, R[x]/P, and R[x]/P, are simple integral
extensions of R via f(z). Let R[z]/P,~ R[u] and R[x]/P,) ~ R[u']
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with % and «' distinct roots of f(x) (distinct since P, = P;). Taken
modulo P, P,cC---C P, becomes a taut chain 0 =q,C---Cgq, in
R[u] lying over 0 = p,C---C p,.. As Rlu] < R[u, u'] is integral, we
lift 0 = ¢, --Cq,, to a taut chain 0 = ¢¥--- CqZ in Rlu, »'], with
height ¢ = height gq,,.

Since f(u') =0, f(x) = (x — w')g(x) with g(x) monic in R[u'l[z].
As % #= ', we have g(u) =0 so that R[u,u'] is a simple integral
extension of R[u'] via g(x). Since deg g(x) = n — 1, the induection
assumption concerning the existence of b,_, applies to R[u'] C R[u, u'].

Let b =b,_, and consider a subchain of ¢f —--.C ¢, namely
Q¥ CQF oo ClFae—n C -+ * C Q5 nis—, Which, being a subchain of a taut
chain, is taut. (Note ¢, , exists since m > b(s — 1) + 1.) Because
this taut (sub)-chain contains b + 1 primes, by the induction as-
sumption for some [ =1 ---,b we must have height(g,,,_nN
Rlw'la¥ a—ni-0 N Blw']) = height(g¥ is—0/¢% 1+0:—n). Thus letting 7=
14+ (@ — 1(s—1) we see that the tautness of ¢¥,C---Cqf,, implies
that ¢}, NR[w']C---Cqf.NRJu'] is taut, and that height(gt ;N
Rluw'l/q¥ ;_: N R[w']) = height(g}, ;/g¥ ;_.) Wwhich in turn equals height
(9:+i/Qi+5-) J =2, ---,s by the manner in which ¢f C---Cqs was
constructed. Also height(q¥,, N R[«']) = height g, since height ¢,,,=
height qF...

Finally, recalling that R[u'] ~ R[z]/P., the chain ¢¥ , NR[u']C---
g, N R[uw'] gives rise to a chain P/,,c---cCP/, in R[x] with
P} C P/,,. That this chain satisfies the lemma follows easily from
what we know about ¢}, N R[w']c---caq, N R[u'].

COROLLARY 3.2. Let the domain T be a simple integral exten-
ston of R via f(x) with degf(x) =n. Let q,&---Cq, be a taut
chain in T lying over p, C---C p, th R. Let q)+* q, be prime in
T with ¢:NR = p,. Let s> 0 be an integer with m > b,_(s — 1) + 1.
Then for some 1€{1, ---, m — s}, there is a taut chain ¢y, C--+C
g, in T lying over D, C---C Dy, With height(Qiv;/Qiv;-) = height
(Qis5/Qivi-n)y 3 = 2, -+, 5, and with ¢;=qi+, and height(q;+./q;) = height
(94+1/42)-

Proof. Let P,c.--C P, and P, be, respectively, the preimages
of g,c---Cq, and ¢} under R[x] — R[u] = T. Then, since f(x)e
P,N P/, the hypothesis of Lemma 3.1 is satisfied. We complete the
proof by letting ¢i, C---C qiy, be the images of P/ ,cC-.--C P/,
given by Lemma 3.1.

PROPOSITION 38.3. Let b=0b,_,. Letl =0 be an integer and let
m=b 4+ b+ 4+b+ 2. Then for somer =1, ---, m, P, has lying
over it distinet primes Q,, ---, @i, in T such that ¢.CQ:N--- NQu,
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and height(Q;/q,) > height(q,/q,) for j =1, ---, 1 + 1.

Proof. We induct on I. First, since height(p,/p,) > height(q,/q,),
by going up there is a prime ¢; of T with ¢,Cq; and height(q:/q,)=
height(p,/p,). If I=0 then » =2 and Q, = q; satisfy the proposition.

For I > 0, we apply Corollary 8.2 with s = b + b 24.--+b + 2.
Since m > b(s — 1) + 1 we have for some i€{l, ---, m — s} a taut
chain ¢j;,, C---Cqi+, in T lying over p,i, C---C p;+, With height
(9%+/9i+5-,) = height(g,+,/¢.+;_,) which is less than height(p;+/p:+;i 1)
for =2, ---,s.

We apply the case l — 1 of the induction assumption to the chain
qi.,C---Cqls, (recalling that s = b"* + b'*+---+b + 2), to produce
an re{t+1,---,47+ s} and distinet primes @, ---,Q, of T lying
over p,, with ¢i1,CQ,N---N @ and height(Q;/q;+,) > height(q./qi+,)
for j=1,---,1. If we now let Q,;, = ¢;, obviously Q,., is distinct
from Q, ---,Q, and we now have ¢i+,CQ, N---NQ,+, and height
(Q;/qi+) = height(q;/giv,) for j=1,--- 1+ 1.

We have q, S ¢, < qi, by Corollary 3.2. To complete the proof,
we must only show that height(Q;/q,) > height(q,/q,) for 7 =1, ---,
I+ 1. To do this, we collect various facts.

(i) height(q;/qi+,) = height(q,/q,+,). This follows from the fact
that height(qi+;/qi+;-) = height(q;+;/¢;+;—) 7 =2, ---, s by Corollary
3.2 and the tautness of ¢;1, C---Cq;4, and qiy, T+ -+ C Qisse

(ii) height(Q;/qi+,) = height(q,/q;+,). This follows from (i) and
the previously noted fact that height(Q;/qi+,) = height(q,/qi+,).

(iii) height(gi+./q;) = height(q;1./q,) by Corollary 3.2.

(iv) height(q:/q,) > height(g,/q,) by choice of ¢..

Finally, from the tautness of ¢,C---Cgq, and (ii), (iii), and (iv), we
have height(q,/q;) = height(q,/q;+;) + height(q.+./q,) + height(g./q,) <
height(Q;/qi+,) + height(qi+./q;) + height(q;/q,) < height(Q;/q,) for j =
1, ---,1 + 1 to complete the proof.

At this point we can prove that b, exists and show that
b, b+ 0" *+---+b+ 1 with b=05,_,. To see this, with the
notation of Proposition 3.3, if m > b + b *+-..+b + 1 we would
have primes q,, Q,, - --, @, lying over p, which are distinet (by the
inequality in that proposition). However, as deg f(x) = », at most
n primes can lie over p,, a contradiction. Thus m < b*'+---+b + 1.

We wish to introduce a “going down” technique which will let
us improve this inequality somewhat, giving b, < 0" + 0" *+4 ... +
b+2b=>b,,, and which, in certain circumstances, allows us to
give a more substantial improvement on the bound on b,.

DEFINITION. Let p be a prime in the ring R. Let I be an
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ideal in R[x]. Define k(p, I) = n if IR, [x] contains a monic poly-
nomial of degree # but no monic polynomial of lesser degree. (If
IR, [x] contains no monic polynomial let k(p, I) = <.)

LEMMA 3.4. Let p be prime in a ring R and let I be an ideal
in R[x]. Suppose that k(p, I) = n < co.

(@) If g(x)el and deg g(x) < n then g(x)<c pR[x].

(b) Let h(x) eI with deg h(x) = n and the leading coefficient of
h(x) outside of p. Let P be prime in R[x] with PNR=p. Then ICP
if and only if h(z)e P.

(¢) The number of primes P in R[x] satisfying PNR = p and
IZ P does not exceed n.

Proof. Without loss we may localize at p.

(a) Since k(p, I) = n < - and (R, p) is quasi-local, there is in I
a monic polynomial h(x) of degree =, and no monic polynomial of
lesser degree. If the result is false, then for some g(x) = a2+ .- -
+ax'+---4+a,€l with £ <n we have a,¢ p for some 7. Assume
that g(x) and 7 have been chosen so as to make ¢ as large as possi-
ble. Now a, e p since g(z) is not monic. We have a,h(x) — 2" *g(x) ¢ I.
Its degree is clearly less than » and its (1 + » — k)th coefficient is
not in p. This is a contradiction since ¢ + n — k > 1.

(b) Since h(x) (in part (a)) is monie, clearly I is generated by
h(x) together with those polynomials in I having degree less than
n. By part (a), each of these latter polynomials is in pR[xz] C P.
Thus IS P if and only if h(x)e P.

(¢) This is immediate from Lemma 2.1 and (b).

PROPOSITION 3.5. Let pC p' be primes in a ring R. Let I be
an ideal of R[x], and suppose that k(p, I) = k(p', I) < . If P’ is
prime in Rlx] with PPN R = p" and IC P’, then there is a prime
P in Rlx} with PNR =p and IS PCP'.

Proof. We may localize at »'. If k(p’, I) = n then I contains
a monic polynomial i(x) of degree n. Thus h(x)eIc P’. By [4,
Lemma 3] (applied to R/p) there is a prime P of R[x] with PNR = »p
and h(x)e PCP’. By Lemma 3.4, IC P.

We apply Proposition 3.5 to our special situation of R Rlu]=T
a simple integral extension of domains, w a root of the monic poly-
nomial f(x).

COROLLARY 3.6. Let pCp' be primes in R. Let I = ker(R[x] —
Rlu]l = T) and suppose that k(p, I) = k@', I). If ¢ is prime in T
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with @' N R = p’ then there is a prime q of T with ¢q N R = p and
qCcq'.

Proof. Since f(x)el, k(p',I) < . Let P’ be the preimage of
¢’ under R[x]— R[u]. Then PPNR =9 and ICP’. With P as in
Proposition 8.5 take ¢ to be the image of P in T.

THEOREM 3.7. b, = 0" 2+ b"°+.--+b + 2 where b = b,_,.

Proof. Let B=b""+ b"*+--.-+b + 2 and assume that m > B.
We will derive a contradiction. Applying Proposition 3.3 to the
chain q,C ---Cq; we see that for some re{l, ---, B} there are dis-
tinct primes @, ---, @,_, of T lying over p, with ¢, @, N---NQ,_,
and height(Q,/q,) > height(q,/q,) 7 =1, ---,n — 1. Obviously g, is
distinet from @, ---, @,_, and if we let @, = ¢, then, since deg
fx)=mn, @, ---,Q, are all of the primes of 7 lying over p, and
we have height(Q,/q,) = beight(q,/q) j =1, ---, n.

We claim that if p is prime in R with p,&p, then k(p, I) = n
where I = ker(R[x] — Rlu] = T). Since f(x)el, k(p,I)<n. Also

,C p implies k(p,, I) < k(p, I) and so we must only show that
k(p,, I) = n». That this is true follows from Lemma 3.4 (c) and the
existence of @, ---, Q,.

We now consider a chain of maximal length between p, and p,..
Since k(p, I) = n for each prime p in that chain, we can use Corol-
lary 3.6 iteratively to find a prime q of 7T with ¢N R = p,,9Cq,
and height(q../q) =height(p,/p,). Since ¢,C---Cgq, is taut and height
(p:/p:-) > height(q;/q;) 1 =7+ 1, ---, m, obviously height(q./q) =
height(p.,./p,) > height(¢./q,), (here we wuse m>B=7). As
Q, -+, @, are all of the primes which lie over p,, we must have
q=Q;,somej=1, .-, n Thus height(g/q,) = height(Q,/q,) = height
(q./9). Thus height(g,/¢,) = height(g./q) + height(g/q,) > height(q,./
q,) -+ height(q,/q,) contradicting the tautness of ¢, c---Cg,. This
completes the proof.

We repeat that we doubt that equality holds in Theorem 3.7.
Let us note that b, < b, <b,<---. To see this, observe that if T
is a simple integral extension of R via f(x), then it is also a simple
integral extension of R via zf(x). The examples at the end of this
paper show that b, — < as n — oo,

We now consider situations in which we can give other bounds
on the size of m.

LEMMA 3.8. Suppose that m >b,_,. Let ¢=0b,_,+ 1. If pis
any prime of R containing p,, then k(p, I) = n where I = ker(R[x] —
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Rlu] = T).

Proof. Since f(x) €I, obviously k(p,, I) < k(p, I) = n. We must
show k(p,, I) = n. For this we may localize at »,. If k(p., ) <mn
then I contains a monic polynomial g¢g(x) with degg(®) =d < n.
Clearly T is a simple integral extension of R via ¢g(x). However
the existence of the chain ¢, --- Cgq, with ¢ > b,_, = b, contradicts
the definition of b,.

LEMMA 3.9. Suppose that m > b,_, and let ¢ =b,_, +1. Let »
be any prime of R containing p, and let q be any prime in T lying
over p. Then q,Cq.

Proof. Let P, and P be the preimages of ¢, and ¢, respectively,
under the map R[z] — R[u] = T. We claim that k(p, P) = n. The
result follows, since obviously f(z)e P, N P and so by Lemma 3.4(b)
(with h(z) = f(x) and I = P,) P,C P. Thus ¢, Cq.

To show that k(p, P) = n, we may work modulo »,. That is
we go to R/p,CT/q, and so assume that p, =0 =4¢q,. Now P, =
ker(R[z] — T) and Lemma 3.8 gives k(p, P,) = n.

THEOREM 3.10. Suppose that m >b, ., and let ¢=2b,, + 1.
Then m < height(q./q,) + b,._,.

Proof. Consider a chain of maximal length between p, and p,.
By Lemma 3.8, for each prime p in that chain, k(p, I) = » with
I = ker(R[x] —T). By iteration of Corollary 3.6, we can find a
prime ¢q of T withq¢ N R = p,, ¢ £4,. and height{(q,/q) = height(p,./p.)-
By Lemma 3.9, ¢, cq. Since ¢q,C---Cq, is taut we have >,
height(q,/q;_,) + height(q./q;) = height(q./q,) = height(g,./g) + height
(¢/q,) = height (p./p.) + height (¢/q,) = 3.2, height (p,/p;_.) + height
(q/q)). Thus height (¢./gq,) = >.3 . [height (p./p;_,) — height(q,/q; )]+
height(q/q,). By our underlying assumption concerning how ¢, C---
—gq,, contracts to p, .- C p,, each term in this last summation
is at least one. Thus height(q./q,) = (m — ¢) + height(q/q) = m—
¢c+1=m—b,,. Thus m < height(q./q,) + b,._,.

COROLLARY 3.11. Suppose that m>b,_, and that height(q,/q, )<
r for 3=2,+--,b,_,+ 1. Then m < (r + 1)b,_,.

Proof. Immediate from Theorem 3.10 and the tautness of
q,C - C4q..

Suppose that we fix » > 0 and restrict our attention to chains
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q,C---Cgq, with height(q,/q;_) < r,7=2,---, m. Let b, denote
the best possible bound on m for such chains when deg f(x) = n.
Then Lemma 3.8 through Corollary 3.11 can be repeated, replacing
b._, with b,_,, thus showing that b, < (» + 1)b,_,. Since b, = 2, by
induction we get b, < 2(» + 1)

THEOREM 3.12. If height(q;/q,_,) <r for 1=2,---,m, then
m = 2(r + 1)v 2

4. Finitely generated modules. We give our main result, as-
suming only that T is a finitely generated R-module.

THEOREM 4.1. Let RC T be domains with T a finitely generat-
ed R-module, generated by m elements. Let q,C ---Cq, be a taut
chain of primes in T lying over p,C--- Cp, With height(p./p,)
finite.  Suppose that height(p,/v,_.) > height(q;/q;,_) © =2, ---, m.
Then m 1s subject to the following:

(i) m=b,,

(i) if m > b,_,, then m < height(q./q,) + b,_, withc =b,_, + 1,

(iii) m < 2(r + 1)"* with r = max{height(q;/q;_)|i = 2, - - -, m}.

Proof. Since T is a finitely generated R-module only finitely
many primes of T lie over p,, and we may choose u €q, but in no
other prime lying over p,. Obviously ¢, is the only prime of T
lying over g, N R[u] and so height(q,. N R[«]/q, N R[u]) = height(q../q,)
(by going up since height(q, N R[u]/g, N R[u]) < height(p,/p,) < o).
Clearly we have (¢, N\ R[u])C---<C(q. N R[u]), a taut chain in R[«]
with  height (¢; N R[u]/g;_, N R[u]) = height (¢./g;_,) < height (p;/p;_,)
1=2, ---,m. A standard determinant argument shows that wu
satisfies a monic polynomial of degree » over R, and our result fol-
lows from the existence of b, and Theorems 3.10 and 3.12.

COROLLARY 4.2. Let R be a domain with integral closure R'.
Suppose that R’ is a finitely generated R-module with n generators.
Let the domain T be an integral extension of R. Let 0 =q,C---C
9. be a taut chain of primes wn T lying over 0 = p,C --- C P, 10
R with height p, finite. Suppose that height(v;/v:_.) > height(q;/q;_,)
1 =2 +--,m. Then (i) m <£b,; () tf m >b,_,, then m < height
(Q./q) + ba_y; and (iii)) m < 2(» + )™ with r = max{height(q./q;_.)|
1=2, -+, mh

Proof. If T" is the integral closure of 7, we may lift 0 =
q,C---Cq, to a taut chain 0 = qiC---Cq,, in T’ with height q,, =
height ¢,. By going down in R’ < T, height ¢’ N R’ = height ¢’ and
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we see that 0 = (¢ NR)C--- C(gn N R’) is taut in R’ and height
(@NR'[q;.,NR’) = height(g:/q;_,) = height(g,/q._,) < height(p,/p;_.) i =
2, ---, m. Applying Theorem 4.1 to 0 = (@ NR)C---c(q. N R,
we are done.

5. Examples. In this section, we construct a family of examples
which demonstrate that b, — as n-— . We also show that if
R cC T is an infinite integral extension, no bound need exist at all.
This construction is a generalization of Nagata’s Example 2 [5, pp.
203-205] and is very similar to [2]. However, except for the quo-
tation of one key theorem, the presentation of the basic example
will be self-contained.

ExXAMPLE 5.1. Retaining the previous notation, we show any
m can be realized in some finite integral extension R c T (which
depends on m). Moreover, our example is Noetherian.

Fix an integer mi = 2. Let K be a countable field of charac-
teristic zero and let v, - -, ¥y, 2, -+ -, 21 be indeterminates.
We iteratively define a sequence of Noetherian domains K = T,C
T.cT,cT.cT,c---cT,=T as follows: Set T, = Tiy.] for
each i =1, --.,m — 1. Suppose Z; ¢ K|[y;]] is a formal power series,
say Z4;= o'y, + ai'yi+---. If we set 2z = (8 — 3, afyd)/yr
for each n = 0, then

(*) 2 = (&h + ey e Tl -

Thus we may define a direct union of simple transcendental exten-
sions of Ty, Tis, = lim, ., T.1,[2{], foreach i =1, ---, m — 1. More-
over, by [2, Corollary 1.6], we may choose the formal power series
Z, in such a way that T,,, will be Noetherian.

The nature of the construction makes it very easy to determine
the primes; primes in the intermediate rings extend to primes in 7.
Hence we easily see, for each ¢ =1, ---,m, ¢, = (¥, --+, ¥;_)T is
prime. Also, by (*), 29 ey, T for each i, n. By the Krull Altitude
Theorem, height ¢, <7 —-1. (0) =¢,Cq,C--- Cq, is a taut chain
and height(¢,+./g;) =1 1 =1, ---, m — 1. Before leaving this chain,
we make one additional observation, also apparent from the con-
struetion. The quotient 7T/q; is canonically isomorphic to the sub-
ring S;= K[y, -+, 2%, «+, Ypeyy -+, 25, -] foreach 1 =1, ---, m.

Next we iteratively define a second chain (0) = @, c @,cQ,C
c@Q,. First note that, using (*) again, 2z’ = ¥, + a.)(y; — 1) +
28, + al®,. Thus 28, =2 — af (mod(y, — 1)). So if we set, for
each 1 =1,---,n —1, Q'H—l =@, + W — DT and Qi = Qi-i—l + 2T,
we have (using equality to denote canonical isomorphism) T/Q,,, =
S; (28] and T/Q.+, = S;+;. So these ideals are prime as required
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and another application of the Krull Altitude Theorem guarantees
that this chain is taut.

Our next step is to construct B. Again we construct a chain
of rings T=RDOR,D---DR,=R. For each 7=1,---,m — 1,
set Ry = S;s, + (@ N Qi NR). Since S;;,,cS;CR;, R,1,CR, as
desired. We claim that R, is an integral extension of R,.,, generat-
ed by two elements as an R, ,-module. To verify the claim, con-
sider the canonical R;.,-module homomorphism =,: B, — (R;/q:+; N R)ED
(Ri/Qiv: N Ry) = S;4, D Sivy.  Note 7(1) =(1,1) and x,(y:) = (0,1)
together generate S, P S;i; = image(n;) and so R, = 1R, +
(¥,)R;+, + kernel(z,). However, kernel(z,) = ¢,+,NQ;+.NR,CR;+, and
so R, = R,;, + y;R;+,, proving our claim. Therefore T is generated
as an R-module by 2"* elements. Consequently, by Eakin’s Theorem
[1, p.281], R is a Noetherian domain.

It now only remains to show R C T exhibits the desired chain
behavior. As dim T;,, = (dim 7)) + 1 and dim T;y, = (dim T;,,) + 1
for each 1 =1,---, m—1, dimT =2(m — 1). So, by going up,
dimR =2(m —1). Thus 0) =@ NRC@NRCQNRC---CQ.NE
is taut; then @ NRcCc@QNRcC---CcQ, N R is likewise taut and
height(Q,.. "N R)/(Q; N R) =2 for each 1 =1, ---,m — 1. However,
by construction, @, N R = ¢; N R and so height(q;+, N R)/(¢; N R) = 2.
As (0) =¢q,C--- Cq, is a taut chain in 7T and height(q;.,/q;) = 1, we
have the desired chain.

In particular, this example shows b,, , =m and so b, — co as

n — oo,

ExAMPLE 5.2. There is an infinite integral extension R < T and
an infinite taut chain in T, (0) = q,Cq,C---, such that (0) = ¢,NRC
¢, NRC--- is taut and height(q;+,/q;) = 1 < 2 = height(q;+.NR/q;N R)
for each 1. Necessarily, R is not Noetherian.

Example 5.2 will be a direct union of domains constructed in
the manner of (5.1). We begin as in (5.1) with a sequence of do-
mains K= T,cT,cT,c.--cT,C---, this time choosing an infinite
sequence. For each fixed m, we perform the construction in (5.1),
superseripting our symbols with (m) when confusion is possible.
Thus T, = T™ and we have R™'c T™.

Noting T™' c T™*V g™ C g™+ and Q™ C Q™+" for each ¢ =
1,---,m, and S™ c S+ for each 7 =1, ---, m, we have direct
unions T=UT™,q,= Ug™, Q= UQ™, and S;,= US™ with
T/q, = S, = T/Q,. Next, using the fact that Si = K = Sy4" and
some obvious containments, we have R™ = R{™ = S + (¢ N
QY NR) =S + (g N QR NRIM) Sy + (gei’ N QY NREY) =
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R™tY_ Thus, we also have a direct union R = UR™. We claim
R C T is the desired extension.

If yeT,yeT™ for some m and so is integral over R and
consequently R. Thus we have an integral extension. Since R and
T are direct unions, the statement about the ¢,’s is valid because
it holds in R™ c T for each m.

ExAMPLE 5.3. There is a Noetherian domain R such that, for
each m, we may find an integral extension T of R and a taut
chain of primes (0) =¢q,C¢,C--- Cq, in T such that ¢ " RcC---C
4. N R is taut and height(q..,/q,) < height(q,+, N R/g; N R) for each
1=1 ---,m— 1.

This example will not be formally constructed. It is obtained
by combining two construction ideas. One constructs a family of
local Example (5.1)’s and combines them in the manner of Nagata’s
Example 1 [5, p. 203] (the Noetherian ring with infinite Krull dim-
ension). This is a useful and straightforward way of obtaining
this sort of infinite bad behavior.
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