AN ALGEBRAIC EXTENSION OF THE LAX-MILGRAM THEOREM

GABRIEL MICHAEL MILLER OBI
AN ALGEBRAIC EXTENSION OF THE LAX-MILGRAM THEOREM

GABRIEL M. M. OBI

In this work a Lax-Milgram type theorem is proved for quadratic spaces over a division ring K with involution \ast, say, whose center contains an ordered domain P such that for every element a in K, $aa^\ast = |a|^2$, (where $|a|$, the absolute value of a, is in P^+ which is the set of positive elements of P), and for every element b in P^+ there exists an element c in P^+, denoted by $b^{1/2}$, such that $c^2 = b$. Specifically, with the above assumptions on K, the following is proved:

Let (H_i, Φ_i) $i = 1, 2$ be quadratic spaces over K such that for each u in H_2 $\sup \Phi(u, v)(\Phi(v, v))^{-1}$ exists and equals $|\Phi(u, u)|^{1/2}$. Let $B: H_1 \times H_2 \rightarrow K$ be an orthocontinuous bilinear form satisfying:

(i) $\inf_{x \in P^+} \sup_{y \in P^+} |B(x, y)| (|\Phi_1(x, x)|^{1/2} |\Phi_2(y, y)|^{1/2})^{-1} = \gamma$ exists and $\gamma - \delta$ is in P^+ for some δ in P^+.

(ii) $\sup |B(x, y)|$ exists and is in P^+ for all $y \neq 0 x \in H$.

Then given any orthocontinuous linear functional ϕ on H_2 whose kernel is splitting there exists a unique element x_0 in H_1 such that $\phi(y) = B(x_0, y)$ for all y in H_2.

Moreover

$$\delta^{-1} \sup_{y \in P^+} |\phi(y)| (|\Phi_1(y, y)|^{1/2})^{-1} - |\Phi_1(x_0, x_0)|^{1/2} \in P^+ \cup \{0\}.$$

1. Introduction. Motivated by what he referred to as “happy accidents in the Hilbert space theory that correlate algebraic and topological considerations” Piziak [3] proposed an algebraic approach to the study of sesquilinear forms in infinite dimensions. In this approach he introduced the notion of quadratic spaces by the means of which he obtained an algebraic generalization of some Hilbert space results. He proved an algebraic version of the Riesz-Frechet Representation Theorem and discussed continuity all in the algebraic context of a vector space over a division ring in which no natural topology is present.

We here consider an algebraic extension of the Lax-Milgram Theorem, a variant of the Riesz Representation Theorem.

Our results are of pure algebra. We have not assumed a topology either on the division ring or on the vector space which we considered. It is thus interesting to note that these results imply their analogous standard topological results in the context of Hilbert space.
2. Preliminaries.

Definition 2.1. [2], [3]. A quadratic space is a triple \((K, H, \Phi)\) where \(K\) is a division ring with involution, \(^*,\) \(H\) is a left vector space over \(K\), and \(\Phi\) is a nondegenerate orthosymmetric \(^*-\)sesquilinear form on \(H\) with respect to the involutive anti-automorphism \(^*\) of \(K\).

Where there is no confusion we shall denote a quadratic space simply by \(H\) or \((H, \Phi)\).

Definition 2.2. Let \(H\) be a quadratic space. For \(x, y\) in \(H\) we say \(x\) is orthogonal to \(y\) and write \(x \perp y\) if \(\Phi(x, y) = 0\).

We note that since \(\Phi\) is orthosymmetric \(x \perp y\) implies \(y \perp x\) and vice-versa.

Notation 2.3. For any subset \(M\) of \(H\), put

\[M^1 = \{ y \in H: \Phi(x, y) = 0 \text{ for all } x \in M \} . \]

It is easy to see that \(M^1\) is a subspace of \(H\) for every subset \(M\) of \(H\). A vector \(x\) in \(H\) is said to be isotropic if \(x \perp x\) and anisotropic otherwise. If every nonzero vector in \(H\) is anisotropic then \(H\) is called an anisotropic quadratic space.

Definition 2.4. We call a subspace \(M\) of \(H\) \(1\)-closed iff \(M = M^1\). We say \(M\) splits \(H\) if \(H = M \oplus M^1\) and we say \(M\) is semi-simple if \(M \cap M^1 = \{0\}\).

3. Lax-Milgram theorem. The Lax-Milgram states, [4]:

Let \(H\) be a Hilbert space (real or complex) and \(B\) a bilinear form on \(H\) such that

(i) \(|B(x, y)| \leq \rho \|x\| \|y\|\) for all \(x, y \in H\) and some positive real constant \(\rho\).

(ii) There exists a positive real number \(\delta\) such that \(B(x, x) > \delta \|x\|^2\) for every \(x \in H\).

Then there exists a unique bounded linear operator \(T\) on \(H\) such that

(a) \(\langle x, y \rangle = B(x, Ty)\) for all \(x, y \in H\).
(b) \(\|T\| \leq \delta^{-1}\).

(Here \(\langle \cdot, \cdot \rangle\) denotes the inner product on \(H\).)

An observation of this theorem shows that condition (i) implies that \(B\) is continuous and (ii) implies that

(ii) (a) \(B\) is positive definite.

(ii) (b) The maps \(B_s(\cdot), B^s(\cdot): H \to C\) defined by \(B_s(y) = B(x, y)\);
$B^*(x) = B(x, y)$ are nontrivial for each x (resp. each y) in H i.e., $B^*(x) = 0$ for all x in H implies $y = 0$ and $B_x(y) = 0$ for all y in H implies $x = 0$.

Also the conclusion of the theorem can be reframed thus:

Then given any bounded linear functional f on H there exists a unique vector u_0 in H such that $f(u) = B(u_0, u)$ for all u in H and $\|u_0\| \leq \delta^{-1}\|f\|$.

We shall now generalize this result to quadratic spaces.

Definition 3.1. Let $(H_i, \Phi_i), i = 1, 2$ be quadratic spaces. Let $L: H_1 \to H_2$ be a linear transformation such that $L(M^{1\perp}) \subseteq L(M)^{1\perp}$ for every subspace M of H_1. Then L is said to be orthocontinuous.

Proposition 3.2. [2], [3]. Let $(H_i, \Phi_i), i = 1, 2$ be quadratic spaces and $L: H_1 \to H_2$ be a linear transformation. Then the following are equivalent:

(i) $M = M^{1\perp}$ implies $L^{-1}(M) = L^{-1}(M)^{1\perp}$ for all subspaces M of H_2.

(ii) If M is a \perp-closed subspace of H_2 then $L^{-1}(M)$ is a \perp-closed subspace of H_1.

(iii) $L(M^{1\perp}) \subseteq L(M)^{1\perp}$ for all subspaces M of H_1.

(iv) $L^{-1}(M)^{1\perp} \subseteq L^{-1}(M^{1\perp})$ for all subspaces M of H_2.

(v) L is orthocontinuous.

Definition 3.3. [2], [3]. Let (K, H, Φ) be a quadratic space. A linear map $\phi: H \to K$ is called an orthocontinuous linear functional if $(\text{Ker } \phi)^{1\perp} = \text{Ker } \phi$.

Now, in Hilbert space a bilinear form $B(x, y)$ is continuous iff there exists a continuous linear transformation L on H such that $B(x, y) = \langle Lx, y \rangle$ for all x, y in H. Motivated by this fact we make the following definition:

Definition 3.4. Let $(H_i, \Phi_i), i = 1, 2$ be quadratic spaces. A bilinear form $B: H_1 \times H_2 \to K$ is said to be orthocontinuous if there exists an orthocontinuous linear operator $L: H_1 \to H_2$ such that $B(x, y) = \Phi_2(Lx, y)$ for every (x, y) in $H_1 \times H_2$.

Proposition 3.5. Let $(H_i, \Phi_i), i = 1, 2$ be quadratic space and $B: H_1 \times H_2 \to K$ be an orthocontinuous bilinear form. Then the mappings $B_\cdot(y): H_2 \to K, B^*(\cdot): H_1 \to K$ are orthocontinuous.

Proof. Let L be as in 3.4.

$\text{Ker } B_\cdot(y) = \{y: B(x, y) = 0\}$
Also

\[\text{Ker } B^\nu(\cdot) = \{ x : B(x, y) = 0 \} = \{ x : \Phi_2(Lx, y) = 0 \} = \{ x : Lx \in y^\perp \} = L^{-1}(y^\perp) \] a \perp-closed subspace

since L is orthocontinuous.

We note that the orthocontinuity of B implies that of B_x and B^ν. The converse is not true in general, however. This is a consequence of [3, Theorem 3].

Proposition 3.6. Let $(H_i, \Phi_i), i = 1, 2$ be quadratic spaces. Let $M = \{ 0 \} \times H_2 \cong H_2$ and $\pi : H_1 \times H_2 \to H_2$ be the projection $\pi((x, y)) = y$ for all (x, y) in $H_1 \times H_2$. Then π maps \perp-closed subspaces of $H_1 \times H_2$ onto \perp-closed subspaces of H_2.

Proof. We first note that any subspace of $H_1 \times H_2$ of the form $A \times B$ where A is a subspace of H_1 and B a subspace of H_2 is \perp-closed in $H_1 \times H_2$ iff A is \perp-closed in H_1 and B is \perp-closed in H_2. Hence a subspace B of H_2 is \perp-closed iff $\pi^{-1}(B)$ is \perp-closed. We also note that $(H_1 \times H_2, \Phi_1 \oplus \Phi_2)$ is a quadratic space [2] and that M is a semi-simple splitting subspace. Let Φ_M be the restriction of $\Phi_1 \oplus \Phi_2$ to M. Then (M, Φ_M) is a quadratic space. Since π is a homomorphism there exists an isomorphism $\phi : H_1 \times H_2/\Phi_1 \times \{ 0 \} \to M$. For u, v in $H_1 \times H_2/\Phi_1 \times \{ 0 \}$ define

\[\Psi(u, v) = \Phi_M(\phi(u), \phi(v)) \].

Then since ϕ is 1-1 onto we have that Ψ is a nondegenerate orthosymmetric and $*$-sesquilinear form on $H_1 \times H_2/\Phi_1 \times \{ 0 \}$. Let $A \subseteq H_1 \times H_2/\Phi_1 \times \{ 0 \}$. If u is in A^\perp then

\[\Phi_M(\phi(u), \phi(v)) = 0 \] for all v in A

\[\iff \phi(u) \in \phi(A)^\perp \].

Thus $\phi(A^\perp) = \phi(A)^\perp$. Also if $B \subseteq M$ then there exists $A \subseteq H_1 \times H_2/\Phi_1 \times \{ 0 \}$ such that $\phi(A) = B$. Suppose $B = B^{1\perp}$ then

\[A = \phi^{-1}(B) = \phi^{-1}(B^{1\perp}) = \phi^{-1}(\phi(A)^{1\perp}) \]
Hence \(\phi, \phi^{-1} \) map \(\perp \)-closed subspaces onto \(\perp \)-closed subspaces. Now consider the following diagram where \(p \) is the canonical projection.

\[
\begin{array}{ccc}
H_1 \times H_2 & \xrightarrow{p} & H_1 \times H_2 / H_1 \times \{0\} \\
\downarrow & & \downarrow \\
& \phi \downarrow & \\
& & M
\end{array}
\]

A subspace \(B \) of \(H_1 \times H_2 / H_1 \times \{0\} \) is \(\perp \)-closed iff \(p^{-1}(B) \) is \(\perp \)-closed. Indeed let \(B \) be \(\perp \)-closed then \(\phi(B) \) is \(\perp \)-closed and \(\pi^{-1}(\phi(B)) = p^{-1}(B) \) is \(\perp \)-closed since \(\pi \) being a projection is orthocontinuous. Also if \(p^{-1}(B) \) is \(\perp \)-closed then since \(p^{-1}(B) = \pi^{-1}(\phi(B)) \) we must have that \(\phi(B) \) is \(\perp \)-closed by the observation at the beginning of the proof. Hence \(B = \phi^{-1}(\phi(B)) \) is \(\perp \)-closed. Finally if \(A \) is \(\perp \)-closed in \(H_1 \times H_2 \), let \(B \) be such that \(p^{-1}(B) = A \). Then

\[
\pi(A) = \phi(p(A)) = \phi(p(p^{-1}(B))) = \phi(B)
\]

which is \(\perp \)-closed.

Lemma 3.7. Let \(B \) be an orthocontinuous bilinear form on \(H_1 \times H_2 \). Let \(L \) be such that \(B(x, y) = \Phi_2(Lx, y) \) by Definition 3.4. If \(B_\varepsilon(\cdot), \ B'(\cdot) \) are nontrivial for each \(x \) in \(H_1 \) and \(y \) in \(H_2 \), then \(L \) is 1-1 and onto.

Proof. Suppose \(Lx_1 = Lx_2 \). Then

\[
\Phi_2(Lx_1 - Lx_2, v) = 0 \quad \text{for all } v \text{ in } H_2,
\]

therefore

\[
B(x_1 - x_2, v) = \Phi_2(L(x_1 - x_2), v) = \Phi_2(Lx_1 - Lx_2, v) = 0
\]

for all \(v \) in \(H_2 \). Since \(B_\varepsilon(\cdot) \) is nontrivial we must have that \(x_1 - x_2 = 0 \) or \(x_1 = x_2 \). Thus \(L \) is 1-1. To show that \(L \) is onto we note that since \(L \) is orthocontinuous its graph, \(G(L) \), is a \(\perp \)-closed
subspace of \((H_1 \times H_2, \Phi_1 \oplus \Phi_2)\). Hence \(\pi(G(L))\) is \(\perp\) closed in \(H_2\). Suppose \(L(H_1) = \pi(G(L)) \neq H_2\). Then there exists a nonzero vector \(x\) in \(H_2\) such that for all \(x\) in \(H_1\), \(\Phi_2(Lx, z) = 0\) \([4]\). Thus

\[
0 = \Phi_2(Lx, z) = B(x, z) B^*(x)
\]

for every \(x\) in \(H_1\). Since \(B^*(\cdot)\) is nontrivial we must have \(z = 0\). This contradiction establishes the result.

Lemma 3.8. Let \(S: H_1 \to H_2\) be an orthocontinuous linear transformation from a quadratic space \(H_1\) to a quadratic space \(H_2\). If \(S^{-1}\) exists then \((S^*)^{-1}\) exists and \((S^*)^{-1} = (S^{-1})^*\).

Proof. Since \(\text{Im} (S^*) = \text{Ker} (S)^\perp\) and \(\text{Im} (S) = \text{Ker} (S^*)^\perp\) \([3]\), and since \(S\) is 1-1 onto because of the existence of \(S^{-1}\), we must have that \(S^*\) is 1-1 and onto and hence that \((S^*)^{-1}\) exists. Also since \(S\) is orthocontinuous the graph of \(S^{-1}\) is \(\perp\) closed in \((H_2 \times H_1, \Phi_2 \oplus \Phi_1)\). So \(S^{-1}\) is a CDD transformation \([2]\). Let \(x\) be in the domain of \(S^{-1}\) and \(y\) in the domain of \((S^*)^{-1}\). Then since \(S\) is CDD we have that

\[
\begin{align*}
\Phi_2(x, (S^*)^{-1}y) &= \Phi_2(Su, (S^*)^{-1}y) \\
&= \Phi_1(u, S^*(S^*)^{-1}y) \\
&= \Phi_1(u, y) \\
&= \Phi_1(S^{-1}Su, y) \\
&= \Phi_1(S^{-1}x, y).
\end{align*}
\]

Therefore \((S^{-1})^* \subseteq (S^*)^{-1}\) \([2], [3]\). Now let \(R\) and \(U\) be the mappings defined on \(H_1 \times H_2 \to H_2 \times H_1\) by

\[
\begin{align*}
R((x, y)) &= (y, x) \\
U((x, y)) &= (-y, x).
\end{align*}
\]

Then, as can be easily checked, we have that \(R, U\) are 1-1, onto; \(R^{-1}(A^\perp) = R^{-1}(A)^\perp\) and \(U(A^\perp) = U(A)^\perp\). Now

\[
G((S^*)^{-1}) = \{(x, (S^*)^{-1}x): x \in H_1\}
= \{(S^*u, u): u \in H_2\}
= R^{-1}(G(S^*))
= R^{-1}(U(G(S)^\perp))
= R^{-1}(U(G(S)))^\perp
\]

and
G((S^{-1})^*) = \{(S^{-1}y, y) : y \in H_2\}^\perp
= \{(-x, Sx) : x \in H_1\}^\perp
= \{-R^{-1}(-Sx, x) : x \in H_1\}^\perp
= \{-R^{-1}U(x, Sx) : x \in H_1\}^\perp
= R^{-1}(U(G(S)))^\perp.

Therefore the domain of (S^*)^{-1} and that of (S^{-1})^* coincide. Hence [2], [3], we have that (S^{-1})^* = (S^*)^{-1}.

Lemma 3.9. Let \((H_i, \Phi_i), i = 1, 2\) be quadratic spaces. If \(S \) is a 1-1, onto orthocontinuous transformation on \(H_1 \) to \(H_2\) then \(S^{-1}\) is orthocontinuous.

Proof. By 3.8 \((S^*)^{-1}\) exists and equals \((S^{-1})^*\). This shows that \(S^{-1}\) is an everywhere defined linear transformation which is such that \((S^{-1})^*\) everywhere defined. Therefore \(S^{-1}\) is orthocontinuous [2], [3].

Theorem 3.10. Let \((H_i, \Phi_i), i = 1, 2\) be quadratic spaces and \(B\) an orthocontinuous bilinear form on \(H_1 \times H_2\). If \(B_x(\cdot, \cdot)\), \(B^y(\cdot, \cdot)\) are nontrivial then there exists an orthocontinuous linear transformation, \(T\), on \(H_2\) to \(H_1\) such that

\[\Phi_2(u, v) = B(Tu, v)\]

for all \(u, v\) in \(H_2\). Further if \(H_2\) is such that every \(\perp\)-closed subspace is splitting then \(T\) is unique.

Proof. Let \(L\) be the linear map on \(H_1\) to \(H_2\) associated with \(B\) as in Definition 3.4. Then by 3.7, 3.8, and 3.9 \(T = L^{-1}\) is orthocontinuous and

\[B(Tu, v) = \Phi_2(u, v)\]

for all \(u, v\) in \(H_2\).

Now suppose every \(\perp\)-closed subspace of \(H_2\) splits \(H_2\). Then the mapping \(B_x : H_2 \rightarrow K\) being orthocontinuous we have by [3, Theorem 3.1], that there exists a unique vector \(u_0\) in \(H_2\) such that \(B_x(y) = \Phi_2(u_0, y)\) for all \(y\) in \(H_2\). For each \(x\) define \(\tilde{L}x = u_0\). Then \(\tilde{L}\) is linear and the uniqueness of \(u_0\) implies that \(\tilde{L} = L\). Hence \(L^{-1} = T\) is unique.

Theorem 3.11. Let \((H_i, \Phi_i)\) be quadratic spaces and \(B : H_1 \times H_2 \rightarrow K\) an orthocontinuous bilinear form such that \(B_x(\cdot, \cdot), B^y(\cdot, \cdot)\) are nontrivial. Then given any orthocontinuous linear functional \(\phi\) on \(H_2\) such that \(\text{Ker} \phi\) splits \(H_2\) there exists a unique vector \(u_0\) in \(H_1\)
such that
\[\phi(y) = B(u_0, y) \text{ for all } y \text{ in } H_2. \]

Proof. Since \(\text{Ker}\phi \) splits \(H_2 \) we have by [3, Theorem 3.1] that there exists a unique vector \(y_0 \) in \(H_2 \) such that \(\phi(y) = \Phi_2(y_0, y) \) for all \(y \) in \(H_2 \). Let \(L \) be the orthocontinuous linear transformation associated with \(B \) as in 3.4. Then by 3.7, 3.8, and 3.9 \(L^{-1} \) exists and is orthocontinuous. Put \(u_0 = L^{-1}y_0 \). Then the uniqueness of \(y_0 \) and the fact that \(L \) is a bijection implies that \(y_0 \) is unique. Also
\[
\phi(y) = \Phi_2(y_0, y) \\
= \Phi_2(LL^{-1}y_0, y) \\
= \Phi_2(Lu_0, y) \\
= B(u_0, y)
\]
for all \(y \) in \(H_2 \).

In what follows we shall assume that the center of \(K \) contains an ordered domain \(P \) [1] and that
(i) for every \(a \) in \(K \) \(a^{*} = |a|^2 \),
(ii) for any \(b \) in \(P^+ \) there exists an element \(c \) in \(P^+ \) such that \(c^2 = b \). Put \(c = b^{1/2} \).

Here \(P^+ \) denotes the set of positive elements of \(P \). \(|a| \) is a defined in [2]. We also assume that \(\sup_{u \neq 0} |\Phi_2(u, v)|(|\Phi_2(v, v)|^{1/2})^{-1} \) exists for each \(u \) in \(H_2 \) and that it is equal to \(|\Phi_2(u, u)|^{1/2} \).

THEOREM 3.12. Let \((H_i, \Phi_i), i = 1, 2 \) be quadratic spaces. With the above assumption on \(K, \Phi_1, \Phi_2 \) let \(B \) be an orthocontinuous bilinear form satisfying:

3.12.1 \(\sup_{x \in H_1} |B(x, y)| \) exists and is in \(P^+ \) for all \(y \neq 0 \).

3.12.2 \(\inf_{x \neq 0} \sup_{y \neq 0} |B(x, y)|(|\Phi_1(x, y)|^{1/2} |\Phi_2(y, y)|^{1/2})^{-1} = \gamma \) exists and \(\gamma - \delta \) is in \(P^+ \) for some \(\delta \) in \(P^+ \).

Then given any orthocontinuous linear functional \(\phi \) on \(H_2 \) such that \(\text{Ker}\phi \) splits \(H_2 \) there exists a unique element \(x_0 \) in \(H_1 \) such that
\[\phi(y) = B(x_0, y) \text{ for all } y \text{ in } H_2. \]

Moreover
\[\delta^{-1} \sup_{y \neq 0} |\phi(y)|(|\Phi_2(y, y)|^{1/2})^{-1} - |\Phi_1(x_0, x_0)|^{1/2} \in P^+ \cup \{0\}. \]

Proof. By 3.12.1, 3.12.2 we have that \(B_*(\cdot), B^*(\cdot) \) are non-
trivial for each x in H_1 and y in H_2. Hence by 3.11 there exists a unique vector x_0 in H_1 such that $\phi(y) = B(x_0, y)$ for all y in H_2. By condition 3.12.2 we have

$$\left| \Phi(x_0, x_0) \right|^{1/2} < \delta^{-1} \sup_{y \neq 0} \left| B(x_0, y) \right| \left(|\Phi(y, y)|^{1/2} \right)^{-1}$$

$$= \delta^{-1} \sup_{y \neq 0} \left| \phi(y) \right| \left(|\Phi(y, y)|^{1/2} \right)^{-1}.$$

Remark 3. We note that a continuous linear functional on a pre-Hilbert space H, say, is orthocontinuous and if H is a Hilbert space then the kernel of a continuous functional, which is a closed subspace, is splitting. Also if H_1, H_2 are pre-Hilbert spaces with H_2 complete then a continuous bilinear form on $H_1 \times H_2$ is orthocontinuous. Hence the corollary that follows is an immediate consequence of the theorem.

Corollary 3.13. Let H_1 be a pre-Hilbert space and H_2 be a Hilbert space (both real, complex or quaternion) and $B(\cdot, \cdot)$ a bilinear form on $H_1 \times H_2$ such that

$$3.13.1 \quad \left| B(x, y) \right| \leq \delta' \|x\|_{H_1} \|y\|_{H_2}$$

for all x in H_1 and y in H_2 and for some positive real $\delta' < \infty$,

$$3.13.2 \quad \inf_{\|x\|_{H_1} = 1} \sup_{\|y\|_{H_2} = 1} \left| B(x, y) \right| \geq \delta > 0,$$

$$3.13.3 \quad \sup_{x \in H_1} \left| B(x, y) \right| > 0 \quad \text{for all } y \neq 0.$$

Let ϕ be a bounded linear functional on H_2. Then there exists a unique vector x_0 in H_1 such that

$$\phi(y) = B(x_0, y) \quad \text{for all } y \text{ in } H_2.$$

Moreover

$$\delta \|x_0\|_{H_1} = \|\phi\|.$$

Remark 4. We note from the foregoing that the completeness of H_1 is not necessary for these results to hold unless $H_1 = H_2$; in which case we obtain the Lax-Milgram Theorem.

References

Received September 8, 1978 and in revised form May 1, 1979.

University of Benin

Benin-City, Nigeria
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor)
University of California
Los Angeles, CA 90024

HUGO ROSSI
University of Utah
Salt Lake City, UT 84112

C. C. MOORE and ANDREW OGG
University of California
Berkeley, CA 94720

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90007

R. FINN and J. MILGRAM
Stanford University
Stanford, CA 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $84.00 a year (6 Vols., 12 issues). Special rate: $42.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A.

Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.),
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1980 by Pacific Journal of Mathematics

Manufactured and first issued in Japan
Graham Donald Allen, David Alan Legg and Joseph Dinneen Ward, *Hermitian liftings in Orlicz sequence spaces* ... 379
George Bachman and Alan Sultan, *On regular extensions of measures* 389
Bruce Alan Barnes, *Representations Naimark-related to *-representations; a correction: “When is a representation of a Banach *-algebra Naimark-related to a *-representation?”* ... 397
Earl Robert Berkson, *One-parameter semigroups of isometries into H^p* 403
M. Brodmann, *Piecewise catenarian and going between rings* 415
Joe Peter Buhler, *A note on tamely ramified polynomials* 421
William Lee Bynum, *Normal structure coefficients for Banach spaces* 427
Lung O. Chung, *Biharmonic and polyharmonic principal functions* 437
Vladimir Drobot and S. McDonald, *Approximation properties of polynomials with bounded integer coefficients* .. 447
Giora Dula and Elyahu Katz, *Recursion formulas for the homology of $\Omega(X \vee Y)$* ... 451
John A. Ernest, *The computation of the generalized spectrum of certain Toeplitz operators* ... 463
Kenneth R. Goodearl and Thomas Benny Rushing, *Direct limit groups and the Keesling-Mardešić shape fibration* .. 471
Raymond Heitmann and Stephen Joseph McAdam, *Good chains with bad contractions* ... 477
Patricia Jones and Steve Chong Hong Ligh, *Finite hereditary near-ring-semigroups* ... 491
Yoshikazu Katayama, *Isomorphisms of the Fourier algebras in crossed products* 505
Meir Katchalski and Andrew Chiang-Fung Liu, *Symmetric twins and common transversals* ... 513
Mohammad Ahmad Khan, *Chain conditions on subgroups of LCA groups* 517
Helmut Kröger, *Padé approximants on Banach space operator equations* 535
Gabriel Michael Miller Obi, *An algebraic extension of the Lax-Milgram theorem* 543
S. G. Pandit, *Differential systems with impulsive perturbations* 553
Richard Pell, *Support point functions and the Loewner variation* 561
J. Hyam Rubinstein, *Dehn’s lemma and handle decompositions of some 4-manifolds* ... 565
James Eugene Shirey, *On the theorem of Helley concerning finite-dimensional subspaces of a dual space* ... 571
Oved Shisha, *Tchebycheff systems and best partial bases* 579
Michel Smith, *Large indecomposable continua with only one composant* 593
Stephen Tefteller, *Existence of eigenvalues for second-order differential systems* 601