SUPPORT POINT FUNCTIONS AND THE LOEWNER VARIATION

Richard Pell
1. Introduction. Let $U = \{z: |z| < 1\}$ and \mathcal{S} the set of functions $f, f(z) = z + a_2z^2 + \cdots$, that are analytic and 1:1 in U. Denote by σ the collection of support point functions of \mathcal{S}, i.e., functions $f \in \mathcal{S}$ that satisfy

$$\text{Re } L(f) = \max_{g \in \sigma} \text{Re } L(g)$$

for some nonconstant continuous (in the topology of local uniform convergence) linear functional on \mathcal{S}. Finally, denote by $E(\mathcal{S})$ the set of extreme point functions of \mathcal{S}.

It is well known that if $f \in \sigma \cup E(\mathcal{S})$, then $f(U)$ is the complement of a single Jordan arc extending from some finite point to ∞ and along which $|w|$ is strictly increasing. Indeed, this has been demonstrated for the class $E(\mathcal{S})$ by L. Brickman [1] and for the class σ by A. Pfluger [5] (see also L. Brickman and D. Wilken [2]). Consequently, if $f \in \sigma \cup E(\mathcal{S})$, there is a Loewner chain

$$f(z, t) = e^{-t}[z + \sum_{n=2}^{\infty} a_n(t)z^n] \quad (0 \leq t < \infty)$$

with $f(z, 0) = f(z)$ and $f(z, t_1)$ subordinate to $f(z, t_2)$ if $0 \leq t_1 < t_2 < \infty$ (see [6, p. 157]). Note that $e^{-t}f(z, t) \in \mathcal{S}$. Let $w(z, t) = e^{-t}[z + \hat{b}_2(t)z^2 + \hat{b}_3(t)z^3 + \cdots]$ be analytic for $t \in \{t: 0 \leq t < \infty\}$ and $z \in U$, 1:1 in U with $|w(z, t)| < 1$, and such that $f(z) = f(w(z, t), t)$ for each $t \in \{t: 0 \leq t < \infty\}$ and all $z \in U$. Observe that we define $\hat{w}(z, t) = e^t w(z, t) = z + \hat{b}_2(t)z^2 + \cdots \in \mathcal{S}$ and that $|\hat{w}(z, t)| < e^t$ for $z \in U$.

In §2 it is shown that if $f \in E(\mathcal{S})$, then $e^{-t}f(z, t) \in E(\mathcal{S})$ and also that if $f \in \sigma$, then $e^{-t}f(z, t) \in \sigma$. This latter result is a generalization of a theorem due to S. Friedland and M. Schiffer [3, p. 143]. Also, in the process of generalizing this theorem a fairly easy method is established for finding for each $t, 0 \leq t < \infty$, a continuous linear functional which $e^{-t}f(z, t)$ maximizes.

2. Preservation of the sets σ and $E(\mathcal{S})$ under the Loewner variation. It is easy to show that if $f \in E(\mathcal{S})$, then $e^{-t}f(z, t) \in E(\mathcal{S})$ also. Indeed, if this were not the case, then there would exist distinct functions $f_1, f_2 \in \mathcal{S}$ and $\lambda_1, \lambda_2 > 0$ with $\lambda_1 + \lambda_2 = 1$ for which $\lambda_1 f_1(z) + \lambda_2 f_2(z) = e^{-t}f(z, t)$. This would imply that $e^{\lambda_1}f_1(w(z, t)) + e^{\lambda_2}f_2(w(z, t)) = f(w(z, t), t) = f(z)$. Since $e^t f_1(w(z, t))$ and $e^t f_2(w(z, t))$ are in \mathcal{S}, the fact that $f(z) \in E(\mathcal{S})$ is contradicted and therefore
Theorem. Let \(f \in \sigma \subset \mathcal{H} \). Then \(e^{-t}f(z, t) \in \sigma \) for all \(t \) such that \(0 \leq t < \infty \).

Proof. Since \(f \in \sigma \), there exists a nonconstant continuous linear functional, \(L \), for which
\[
\text{Re } L(f) = \max_{g \in \mathcal{H}} \text{Re } L(g) .
\]

At this point we need a representation theorem due to O. Toeplitz [7].

Theorem (Toeplitz). Let \(f(z) = z + a_2 z^2 + \cdots \in \mathcal{H} \). Then \(L(f) \)
is a continuous linear functional on \(\mathcal{H} \) if and only if there exists
a sequence \(\{b_n\} \) with \(\limsup_{n \to \infty} |b_n|^{1/n} < 1 \) such that
\[
L(f) = \sum_{n=1}^{\infty} a_n b_n.
\]

Now, \(f(z) = f(w(z, t), t) \) where \(e^t w(z, t) = \hat{w}(z, t) = z + \hat{b}_2(t) z^2 + \cdots \in \mathcal{H} \) and \(|\hat{w}(z, t)| < e^t \) for \(z \in U \). Since
\[
f(w(z, t), t) = e^t [w(z, t) + a_2(t) w^2(z, t) + \cdots + a_n(t) w^n(z, t) + \cdots]
= \hat{w}(z, t) + a_2(t) e^{-t} \hat{w}^2(z, t) + \cdots
+ a_n(t) e^{-(n-1)t} \hat{w}^n(z, t) + \cdots,
\]
and if \(L(f) = \sum_{n=1}^{\infty} a_n b_n \), then it follows that
\[
\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} [\hat{b}_n^{(1)} + a_2(t) e^{-t} \hat{b}_n^{(2)} + a_3(t) e^{-2t} \hat{b}_n^{(3)} + \cdots]
+ a_n(t) e^{-(n-1)t} \hat{b}_n^{(n)}] b_n
= \sum_{n=1}^{\infty} \left[\sum_{k=1}^{n} a_k(t) e^{-(k-1)t} \hat{b}_n^{(k)} b_n \right]
\]
where \(\hat{b}_n^{(k)} \) is the \(n \)th coefficient of \(\hat{w}^k(z, t) = [z + \hat{b}_2(t) z^2 + \cdots]^k \).
However, since \(\hat{w}^k(z, t) \) is analytic in \(U \) and bounded by \(e^{kt} \), it follows from Cauchy's formula that
\[
|\hat{b}_n^{(k)}| = \left| \frac{1}{2\pi i} \int_{|z|=1} \frac{\hat{w}^k(z, t) dz}{z^{n+1}} \right| = \left| \frac{1}{2\pi} \int_0^{2\pi} \hat{w}^k(e^{i\theta}, t) d\theta \right|
\leq \frac{1}{2\pi} \int_0^{2\pi} |\hat{w}^k(e^{i\theta}, t)| d\theta \leq e^{kt}
\]
for all \(n = 1, 2, \cdots \). Also, since \(e^{-t}f(z, t) = z + a_2(t) z^2 + \cdots \in \mathcal{H} \),
it follows from Littlewood's theorem [4] that \(|a_k(t)| \leq ke \). Therefore,
\begin{align*}
\sum_{k=1}^{n} |a_k(t)e^{-(k-1)t} \hat{b}_n^{(k)} b_n| & \leq \sum_{k=1}^{n} |ke \cdot e^{-(k-1)t} \cdot e^{kt} \cdot b_n| \\
& = e^{(t+1)} |b_n| \left(\frac{n(n+1)}{2} \right).
\end{align*}

Notice also that \(\limsup_{n \to \infty} |e^{(t+1)} \cdot b_n \cdot n(n+1)/2|^{1/n} = \limsup_{n \to \infty} |b_n|^{1/n} < 1 \). Consequently, the double summation, \(\sum_{n=1}^{\infty} [\sum_{k=1}^{n} a_k(t)e^{-(k-1)t} \hat{b}_n^{(k)} b_n] \), converges absolutely and therefore the order of summation can be reversed and one obtains

\begin{align*}
\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} \left[\sum_{k=1}^{n} a_k(t)e^{-(k-1)t} \hat{b}_n^{(k)} b_n \right] \\
= \sum_{k=1}^{\infty} \left[\sum_{n=1}^{\infty} a_k(t)e^{-(k-1)t} \hat{b}_n^{(k)} b_n \right] \\
= \sum_{k=1}^{\infty} \left[\sum_{n=1}^{\infty} \hat{b}_n^{(k)} b_n e^{-(k-1)t} \right] a_k(t).
\end{align*}

Now, for \(f \in \mathcal{S} \) define \(L_t(f) = \sum_{n=1}^{\infty} (\sum_{n=1}^{\infty} \hat{b}_n^{(k)} b_n e^{-(k-1)t}) a_k \). From the theorem of Toeplitz it follows that \(L_t \) will be a continuous linear functional on \(\mathcal{S} \) provided that

\[\limsup_{k \to \infty} \left| \sum_{n=1}^{\infty} \hat{b}_n^{(k)} b_n e^{-(k-1)t} \right|^{1/k} < 1. \]

Since \(\limsup_{k \to \infty} |b_k|^{1/k} = \rho < 1 \), there exists an \(N \) and an \(r \) such that \(\rho < r < 1 \) and \(|b_k| \leq r^k \) for all \(k \geq N \). Therefore, \(|\sum_{n=k}^{\infty} \hat{b}_n^{(k)} b_n e^{-(k-1)t}|^{1/k} \leq e^{kt} e^{-(k-1)t} \sum_{n=k}^{\infty} \tau^n 1/k = e^{t/k} \tau/(1 - \tau)^{1/k} \) for all \(k \geq N \). Since

\[\limsup_{k \to \infty} \left[e^{t/k} \frac{\tau}{(1 - \tau)^{1/k}} \right] = \tau < 1, \]

it follows that \(\limsup_{k \to \infty} |\sum_{n=k}^{\infty} \hat{b}_n^{(k)} b_n e^{-(k-1)t}|^{1/k} \leq \tau < 1. \)

Since \(\text{Re } L(f) = \text{Re } (\sum_{n=1}^{\infty} a_n b_n) \) is a maximum for the class \(\mathcal{S} \), it follows easily that \(\text{Re } L_t(e^{-t}f(z, t)) \) is also a maximum for the class \(\mathcal{S} \). In order to see this one needs only to observe that if \(f \) and \(\hat{f} \) are any two functions in \(\mathcal{S} \) related by a relation of the form \(f(z) = e^t \hat{f}(w(z, t)) \), then \(L(f) = L_t(\hat{f}) \). This completes the proof of the theorem.

REMARKS. Since \(f(z) = f(w(z, t), t) \) for some \(w(z, t) \), one can express \(L_t(e^{-t}f(z, t)) = \sum_{n=1}^{\infty} (\sum_{n=k}^{\infty} \hat{b}_n^{(k)} b_n e^{-(k-1)t}) a_k(t) \) in terms of the coefficients of the functions \(f(z) \) and \(e^{-t}f(z, t) \). This can easily be done provided that \(L(f) \) \((L(f) = \sum_{n=1}^{\infty} a_n b_n) \) does not contain too many terms. Then for each \(t, 0 < t < \infty \), the corresponding Schiffer differential equation which \(e^{-t}f(z, t) \) must satisfy can then be computed with little difficulty. Unfortunately, extracting useful information from these new equations is not an easy task.
Suppose, however, that it is known that \(\Re L(f) \) is a maximum for the class \(\mathscr{S} \) when \(f \) is one of the Koebe functions, \(f(z) = z/(1 - e^{i\theta}z) \quad (0 \leq \theta < 2\pi) \). Then since \(e^{-t}f(z, t) = f(z) \) in this case, it follows that \(\Re L_t(f) \) is a maximum for the class \(\mathscr{S} \) for all \(t \) \((0 \leq t < \infty) \). From this one can establish a one parameter family of new coefficient inequalities for the class \(\mathscr{S} \). S. Friedland and M. Schiffer [3, p. 149] have done this for the case where \(L(f) = \alpha \).

ACKNOWLEDGMENT. The author would like to thank William Kirwan and James Hummel for their continued help and support over the past several years.

REFERENCES

Received January 16, 1979 and in revised form May 24, 1979.

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor)
University of California
Los Angeles, CA 90024

HUGO ROSSI
University of Utah
Salt Lake City, UT 84112

C. C. MOORE and ANDREW OGG
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $84.00 a year (6 Vols., 12 issues). Special rate: $42.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1980 by Pacific Journal of Mathematics

Manufactured and first issued in Japan
Graham Donald Allen, David Alan Legg and Joseph Dinneen Ward, Hermitian liftings in Orlicz sequence spaces ... 379
George Bachman and Alan Sultan, On regular extensions of measures ... 389
Bruce Alan Barnes, Representations Naimark-related to ∗-representations; a correction: “When is a representation of a Banach ∗-algebra Naimark-related to a ∗-representation?” ... 397
Earl Robert Berkson, One-parameter semigroups of isometries into H^p ... 403
M. Brodmann, Piecewise catenarian and going between rings ... 415
Joe Peter Buhler, A note on tamely ramified polynomials .. 421
William Lee Bynum, Normal structure coefficients for Banach spaces .. 427
Lung O. Chung, Biharmonic and polyharmonic principal functions ... 437
Vladimir Drobot and S. McDonald, Approximation properties of polynomials with bounded integer coefficients ... 447
Giora Dula and Elyahu Katz, Recursion formulas for the homology of $\Omega (X \vee Y)$... 451
John A. Ernest, The computation of the generalized spectrum of certain Toeplitz operators ... 463
Kenneth R. Goodearl and Thomas Benny Rushing, Direct limit groups and the Keesling-Mardešić shape fibration ... 471
Raymond Heitmann and Stephen Joseph McAdam, Good chains with bad contractions ... 477
Patricia Jones and Steve Chong Hong Ligh, Finite hereditary near-ring-semigroups ... 491
Yoshikazu Katayama, Isomorphisms of the Fourier algebras in crossed products ... 505
Meir Katchalski and Andrew Chiang-Fung Liu, Symmetric twins and common transversals ... 513
Mohammad Ahmad Khan, Chain conditions on subgroups of LCA groups ... 517
Helmut Kröger, Padé approximants on Banach space operator equations ... 535
Gabriel Michael Miller Obi, An algebraic extension of the Lax-Milgram theorem ... 543
S. G. Pandit, Differential systems with impulsive perturbations ... 553
Richard Pell, Support point functions and the Loewner variation ... 561
J. Hyam Rubinstein, Dehn’s lemma and handle decompositions of some 4-manifolds ... 565
James Eugene Shirey, On the theorem of Helley concerning finite-dimensional subspaces of a dual space ... 571
Oved Shisha, Tchebycheff systems and best partial bases ... 579
Michel Smith, Large indecomposable continua with only one composant ... 593
Stephen Tefteller, Existence of eigenvalues for second-order differential systems ... 601