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David P. Bellamy has shown that there exist indecom-
posable Hausdorff continua with only one or only two com-
posants. The continua that he constructs are small in the
sense that they do not have more than 2° points. In this
paper his results are generalized; in particular it will be
shown that if X is a Hausdorff continuum then X is a retract
of an indecomposable continuum with exactly one composant
and of an indecomposable continuum with exactly two com-
posants.

Definitions and Notations. A continuum is a compact connected
wasdorff space. Suppose A is an ordinal, I, is a topological space
for each a < A, and if ¢ < b then 7% is a mapping from I, onto I,
so that if a <b<c¢<n then 2ior;=17:. Then the space I =
lim {I,, 7},<; denotes the space which is the inverse limit of the

inverse system {I,, 7!}.<s<z- BEach point P of I is a function from X\
into U.<: I, such that P,e,. T]. denotes the function from I into
I, such that [[.(P)=P,. If RcI, then R= {wle, e R}. If S =T[,c. S,
is a product space then x = {x,},., denotes a point of S so that
z, €8, and 7, denotes the function from S into S, so that z,(z) = «,.
The composant of the continuum M containing the point P of M is
the set of points Q of M such that there is a proper subcontinuum
of M containing P and Q, it is denoted by Cmps (M, P).

Construction. The following construction employs techniques
used in [1] and [4]. The continuum will be constructed as an inverse
limit lim{I,, 7},<., such that for each a < w, I, is a subset of the

-

cartesian product of I, and ®, copies of [0,1] so that if b is an
ordinal with ¢ < b < w, then I, will be homeomorphic to a subset
of I,; in fact it will be convenient to identify I, with this subset
so that {I.}.,c,, will be a monotonic collection of continua, I, may be
considered to be a subset of I, X Il:<. [0, 1] X Il.<j<0, {0}, and if
xel,., then w4, (x) €0, 1], 7w;(x) = 0 if 7 > a + 1, and [];co+, {m (%)} ¥
IL;se+: {0} is a point of I,. In general the space [];..[0, 1] may be
considered to be the space I, [0, 1] X [l.<i<s,{0}.

Construction of I,; If X is a continuum then there exists a con-
tinuum I, containing X as a retract which is irreducible from some
point 1, to X so that: there exists a sequence of points {a}z, and
a monotonic sequence of proper subcontinua of I, {43}, such that
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(1) {a%};, converges to a point a in X, (2) A} is irreducible from 1,
to o’ and A2cC A, for each positive integer 4, and (3) Cmps (I, 1,) =
Uz, A% (The existence of I, follows from [4] or from [2] and the

construction for I, used below.)

Construction of I;: Let I, be the subcontinuum of 1,X[0, 1] defined
as follows: for each positive integer = let al = (a3, 1/2n — 1)),

Al = A x {1},
Ay = A1 U (e} x [1/2,1]) U (47 x {1/2})

o(w x[ 3 2])u(ax {3},

N ({Ag‘ﬂ} % {21@1_ 2}>U<{1"} 8 [zﬂ,l— 1 2nl—- 2])
1

U<A2‘X{2n—1}>’

and let I, = ([, X {0}) U Up-1 4%. Let 1, = (1,, 1) and identify I, with
I, X {0} using the natural mapping. Thus {a}., converges to (a, 0)
which has been identified with a, A% is irreducible from a} to 1,
and A, C A,,,. Let 7 be the projection z, of I, onto I,, thus »;(4.) =
A, ri(ay) = a, and Cmps(Z,, 1)) = U= 4.

Construction of I, for each positive integer k> 1: Let I, be a
subcontinuum of I,_;, x [0, 1] defined as follows: for each positive
integer n let

at = (b, 1) if n=<k

= <a]f,_1, 2—11'> if n > k y
n —

At = A x (1} if n<k,

and if » > k A% is defined by recursion,

Ak, = AU ({aﬁ“l} x [_2_1]; 1]) U <A’,§‘1 x {2_]#»
NONMACEEY W)
A= AU ({“’:”:11} ~ [27@1— 2’ 2n£ 3])
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Then let I, = (I,_, x {0}) U U;- 4%, 1, = (1,_,, 1) and identify I,_,
with I,_, X {0} using the natural mapping; let #}_, be the projection
of I, onto I,_,. Thus {at};., converges to a = (a, 0), A% C A4%,,, and
Cmps([;, 1,) = Ui 4%,



596 MICHEL SMITH

The following properties of the construection will be used in the
proofs:

(P1) I, is irreducible from 1, to I,_;;

(P2) no point of I, — I,_, is mapped by 7i_, into I,_, and each
point of I, — I, , is mapped into Cmps(Z,_,, 1,-,);

(P3) for each n and B < a 7j(as) = af and r3(A4;) = Af;

(P4) if k= n then 7,(A}) = {1}, if k>n then 7, (A})=[1/(2k—1), 1],
and 7;'(1) = A}
and

(P5) every point of {aj;i} x[1/(2k—1), 1] separates I,. Let I, =
lim {I,, 7},<.,, and let 1, be the point x such that x, =1,. Then
f<o_r each integer m, I, can be identified with lim {I,, ri*'},<k<s, Since

7E+ is the identity on I, for k> n. Let I, be so identified using
the natural mapping. So I, C I, X [[i. [0, 1] and I, is identified with
the subset Uz I, of I, X TI, [0, 1]. Further define A¢ for each
positive integer ¢ by A = lim {47}, r};_,, property P8 insures that
A9 is well defined. Note th& it follows from the construction that
if xel, and a < b then 7, (x,) = 7, (x,) for all 7 < a.

Claim 1. 1I,, is indecomposable.

Proof. Suppose not and that H and K are two proper subcon-
tinua of I, whose union is I,. Then there exist open sets R and S
such that R c H\K and Sc K\H and hence are mutually exclusive.
There exists an integer j and two open sets RB; and S; in I; such
that R:-cR and S;cS. Since I, = Ui, A% there is an integer 7 so
that both R; and S; intersect Ai. Therefore R; x [0, 1] and S; x
[0, 1] both intersect AIx{1/(2i —1)}. So each of T[[;+,(R) and IT;+.(S)
intersect both I, and Ai*!, hence each of [[(H) and [[(K) intersect
both I; and Ai*'. By the irreducibility of I;;, from 1, to I; it
follows that I; is a subset of both I];.,(H) and I1;:+,(K) (recall that
I, = I;x{0}) and hence I; = [[;(H) = [I;(K) which contradicts the
fact that I_é,- and §,~ must be mutually exclusive. Thus I, is in-
decomposable.

Claim 2. If xel, and there is a positive integer j such that
w;(x;) = 0, then 7, (x,) = 0 for all 7> j.

Proof. Suppose x€I,, x, €I, and m,(x,) # 0. Then there exists
an integer m such that x,e A% But 7%_,(A2) = A% and either
Tui(AZ7Y) = [1/2n — 1), 1] or 7w, ,(A%™) = 1, and in either case
Taei(Xa_y) # 0 80 w,_y(x,) # 0. So if 7w;(x;) = 0 then 7;4,(x;+,) = 0 and
the claim follows by induction.
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Claim 3. If K is a proper subcontinuum of I, containing 1,
then there exists an integer B so that if v > 8 then = (J[[(K)) =1
for all & so that < a =1.

Proof. Suppose that there is a proper subcontinuum K of I,
for which the claim is not true. Then if B is an integer there
exists an integer v > B so that 7, (I],(K)) is nondegenerate. Suppose
in addition that for each @G there is a v > 8 so that =, (II,(K)) = 0.
Then by Claim 2 since 1€z (I[;(K)) for all @ <« it follows that I,_,C
I1/(K). But then K =1I, which is a contradiction. So the supposition
is false and there exists an integer b so that if v > b then 0¢
7[1.(K)) for all a such that b < a <»~.

Suppose 3 > b, where b is defined above. Then from the negation
of the claim, for each positive integer » there is an integer v, with
B + n < v, so that z; (IT,(K)) is nondegenerate. But then (a]», 1)¢
II(K). So af ell,(K) (by P8), thus if v, = 8 + k, for some positive
integer k,>n then af;, € I1,,(K) and thus afs,, € II,(K) (by P3). So
there is unbounded sequence in {k,}s., so that af.;, € [1;(K), but a is
the sequential limit of {af};~, and hence is a limit point of the set
{ab+s, |m is a positive integer}, so a € [[,(K). Now m.(a) =0 for all
a>1 80 0em (I1;(K)) for all 0 < a < B which contradicts the choice
of B> b. So the claim has been established.

Claim 4. Cmps(l,, 1,) = U, 4.

Proof. Suppose < Cmps(/,, 1,). By Claim 3 there exists an
integer B8 so that if v > 8 and «a is an integer so that < a <«
then z,(x;) = 1. Let v > B, then xz,€ 4] (by P4). Thus xz,e7r}(4])
and 7L(A]) = 7 (A¥»). So xe A%?. So Claim 4 has been established.

The construction of I, for ¢ an ordinal greater than w, follows.
Suppose & is a limit ordinal and that {4.,}2,, {a.}i,, C;, 73, and I have
feen defined for all A < 6 so that:

(1) For each positive integer i the continuum A} is irreducible
from a? to 1,.

(2) Ci= U AL

(8) If B <\ then ri(A) = A%, ri(ad) = af, and {al}, converges
to a.

(4) If B8 <\ then ri(I;, — I;) = C,.

(5) C,=Cmps(I;, 1;) = {P] there exists a 8 < 6 such that 7,(P) =
1 for all v > g}.

Then construct I,,, for all positive integers n by substituting I, for
I, A for AS a’ for a?, and 1, for 1, in the construction of I, above.
Compare condition 4 with a similar condition in Bellamy [1].
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Suppose that g is a limit ordinal and I, has been defined for all
y<p Let I.= hm {I;, r}ren, Af = hm {47, rhren, af = hm {a:;, T}ier
and for each g < p let 75 be the prOJectlon of I, onto Iﬁ As above
identify I, with lim {[, 7};<.<, and a with @. The argument of Claim

1 can be used t(o_ prove that I. is indecomposable. Claim 2 also
generalizes for I, as follows:

Claim 5. If xel, and there is an ordinal j < ¢# which is not a
limit ordinal such that =x;(x;) =0 then =, (x) =0 for all ordinals
i, 3 < 1 < p, which are not limit ordinals; and hence x € [;.

Proof. Suppose xz€l, and j =\ + ¢ for some limit ordinal »
and positive integer q. If o =\ + » for some limit ordinal ' = X
with A + 7 > ) and » > 0 and it is true that =,(x,) % 0, then there
exists an integer » so that z,e A% But %42 = A and either
w;(Ad) = [1/2n — 1), 1] or zw;(A%) =1 (by P4). In either case 7;(x,) #*
0. But z;(x;) = 7;(%.), so that z;(x;) = 0, which is a contradiction.

Claims 6, 7, and 8 are concerned with the continuum I,.

Claim 6. If K is a subcontinuum of I, and a € [[,(K) then a € K.

Proof. If ae]].(K) then (a, 0) e [[,(K) so a € [[,(K). From Claim
5 it follows that ae[[,(K) for all ve g since a is identified with
a X {0}. Thus a must belong to K.

Claim 1.

Cmps(I, 1) = U 4¢ .

Proof. Suppose that K is a proper subcontinuum of I, containing
1.. If it'is true that there is an integer % so that if v < g then
a e [I(X), then it would follow that [[.(K)c A% for all v < g, and
so Kc A% So suppose that this is not true. Thus for each integer
n there exists an ordinal v, < ¢ such that a)»¢]], (K). But then
at e [I.(K) for all n, since ri»(ai») = a.. So ac[l(K) and a€ K by
Claim 6. But then K = I, since I, is irreducible from a to 1.. So
the claim is true.

Claim 8. I, satisfies the following for each ordinal B, 8 < 4,
and each positive integer i:

(1) A} is irreducible from af to 1.

(2) C=Cmps(I, 1) = Uz, Af.

(3) »5(AY) = AL ri(a}) = af, and {af};>, converges to a.
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(4) 75— Ip) = G

Proof. Part (1) follows from the irreducibility of [I,(A4f) for
each v<g, and part (2) follows from Claim 7. Since for each ordinal
v < ¢t the sequence {II:(af)}=, converges to a, it follows that {af}x,
converges to @ which is identified with «. The rest of (3) follows
from the definitions of 74, Af, and af. To prove (4) suppose that
x€l.,— I,. Then by Claim 5, msy,(2s+,) = 0 80 @54, € A5 for some
integer n, but »5*'(A5") C C,, thus r§+(x;.,) € C; s0 75(x) € Cp; equality
follows from parts (2) and (3).

Claim 9. The continuum I, = lim {I;, r},.,, has exactly two com-
pu
posants.

Proof. From the construction, {[};.,, is a monototic collection
of continua. (a) If @ > v then I, does not intersect C, because I,
does not intersect C;;;, and if 8> v, Ciy, = #£,,(Cs). (b) From (4)
of Claim 8 it follows that »$(I, — I;) = C; for a > 8. Let W = {x|
there is a v so that if @ > v then n.(x,) = 0}. If xe W and v is the
ordinal specified in the definition of W then xel,. So x lies in the
same composant as a.

Now I, is irreducible from a to 1,, it will now be shown that
if y is a point of I, not in W then y lies in Cmps(Z,,, 1,)). Suppose
y¢é W. The following two conditions need to be established: (@{) if
a > B then y,¢ I;, and (ii) y.€C,. If a > B there exists an ordinal
6 > « such that y, # y, or else y€ W (in particular y € I,). Suppose
that y,€I,, then y,¢C, by (a) above. But ¥, — I,)cC, so ¥, ¢
I, — I, so y;€l,. But 7|, is the identity which contradicts the
fact that %, # y,. Thus (i) has been shown, also it has been shown
that if a@ > B then there exists a 6 > « such that y;¢I,. So y,¢
I, — L, r}(I, — I,) ©C,, and so (ii) has been shown.

Suppose that y¢ W. By (i) if @« > 1 then y.¢ I, and by (i)
Y. €C,. Thus by (2) of Claim 8 there exists an integer =, so that
Y. € A;,. There exists an uncountable subset J of w, and an integer
n so that n, = n for all a€J. But since 75(4%) = AZ it follows that
y €lim {4}, r};.,, which is a proper subcontinuum of I containing 1,.

Thu(s—it has been shown that if y¢ W then yeCmps(Z,,1,) = C,,.
So I, has exactly two composants W and C,,.

One can see that X is a retract of each I, and hence of I,. In
order to construct a continuum with only one composant which has
X as a retract it is only necessary to construct I, and a retraction
r from I, onto X that maps 1, onto @, then by identifying a and
the point 1, the continuum I, satisfies the desired condition.
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