LARGE INDECOMPOSABLE CONTINUA WITH ONLY ONE COMPOSANT

MICHEL SMITH
LARGE INDECOMPOSABLE CONTINUA WITH
ONLY ONE COMPOSANT

MICHEL SMITH

David P. Bellamy has shown that there exist indecomposable Hausdorff continua with only one or only two composants. The continua that he constructs are small in the sense that they do not have more than 2^c points. In this paper his results are generalized; in particular it will be shown that if X is a Hausdorff continuum then X is a retract of an indecomposable continuum with exactly one composant and of an indecomposable continuum with exactly two composants.

Definitions and Notations. A continuum is a compact connected Hausdorff space. Suppose λ is an ordinal, I_a is a topological space for each $a < \lambda$, and if $a < b$ then r^b_a is a mapping from I_b onto I_a so that if $a < b < c < \lambda$ then $r^b_a \circ r^c_b = r^c_a$. Then the space $I = \lim_{a < \lambda} \{I_a, r^b_a\}$ denotes the space which is the inverse limit of the inverse system $\{I_a, r^b_a\}_{a < b < \lambda}$. Each point P of I is a function from λ into $\bigcup_{a < \lambda} I_a$ such that $P_a \in I_a$. Π_a denotes the function from I into I_a such that $\Pi_a(P) = P_a$. If $R \subseteq I_a$ then $\tilde{R} = \{x | x_a \in R\}$. If $S = \prod_{a \in A} S_a$ is a product space then $x = \{x_a\}_{a \in A}$ denotes a point of S so that $x_a \in S_a$ and π_a denotes the function from S into S_a so that $\pi_a(x) = x_a$. The composant of the continuum M containing the point P of M is the set of points Q of M such that there is a proper subcontinuum of M containing P and Q, it is denoted by $\text{Cmps}(M, P)$.

Construction. The following construction employs techniques used in [1] and [4]. The continuum will be constructed as an inverse limit $\lim_{a < \omega_1} \{I_a, r^b_a\}$ such that for each $a < \omega_1$, I_a is a subset of the cartesian product of I_0 and ω_1 copies of $[0, 1]$ so that if b is an ordinal with $a < b < \omega_1$ then I_a will be homeomorphic to a subset of I_b; in fact it will be convenient to identify I_a with this subset so that $\{I_a\}_{a < \omega_1}$ will be a monotonic collection of continua, I_a may be considered to be a subset of $I_0 \times \prod_{a \leq a} [0, 1] \times \prod_{a < j < \omega_1} \{0\}$, and if $x \in I_{a+1}$ then $\pi_{a+1}(x) \in [0, 1]$, $\pi_j(x) = 0$ if $j > a + 1$, and $\prod_{\xi < \omega_1} \{\pi_\xi(x)\} \times \prod_{j > a + 1} \{0\}$ is a point of I_a. In general the space $\prod_{j < a} [0, 1] \times \prod_{a < i < \omega_1} \{0\}$ may be considered to be the space $\prod_{i < a} [0, 1] \times \prod_{a < i < \omega_1} \{0\}$.

Construction of I_0: If X is a continuum then there exists a continuum I_0 containing X as a retract which is irreducible from some point 1_0 to X so that: there exists a sequence of points $\{a_\xi\}_{\xi = 1}^{\infty}$ and a monotonic sequence of proper subcontinua of I_0, $\{A_\xi\}_{\xi = 1}^{\infty}$ such that
(1) \(\{a^0_i\}_{i=1}^\infty \) converges to a point \(a \) in \(X \), (2) \(A_i^0 \) is irreducible from \(I_0 \) to \(a^0_i \) and \(A_i^0 \subset A_{i+1}^i \) for each positive integer \(i \), and (3) \(\mathrm{Cmps}(I_0, I_0) = \bigcup_{i=1}^\infty A_i^0 \). (The existence of \(I_0 \) follows from \([4]\) or from \([2]\) and the construction for \(I_1 \) used below.)

Construction of \(I_i \): Let \(I_i \) be the subcontinuum of \(I_o \times [0, 1] \) defined as follows: for each positive integer \(n \) let \(a^0_i = (a^0_n, 1/(2n-1)) \),

\[
A_1^i = A_1^0 \times \{1\}, \quad A_2^i = A_1^i \cup (\{a_1^i\} \times [1/2, 1]) \cup (A_0^i \times \{1/2\}) \cup \left(\{1_0\} \times \left[\frac{1}{3}, 1/2 \right] \right) \cup \left(A_1^i \times \left\{ \frac{1}{3} \right\} \right),
\]

\[
\vdots
\]

\[
A_n^i = A_{n-1}^i \cup (\{a_{n-1}^i\} \times \left[\frac{1}{2n-2}, \frac{1}{2n-3} \right]) \cup \left(\{A_{n-1}^i\} \times \left\{ \frac{1}{2n-2} \right\} \right) \cup \left(\{1_0\} \times \left[\frac{1}{2n-1}, \frac{1}{2n-2} \right] \right) \cup \left(A_{n-1}^i \times \left\{ \frac{1}{2n-1} \right\} \right).
\]

and let \(I_1 = (I_0 \times \{0\}) \cup \bigcup_{i=1}^\infty A_i^1 \). Let \(I_1 = (I_0, 1) \) and identify \(I_0 \) with \(I_0 \times \{0\} \) using the natural mapping. Thus \(\{a_1^0\}_{n=1}^\infty \) converges to \((a, 0)\) which has been identified with \(a \), \(A_1^0 \) is irreducible from \(a_2^0 \) to \(1_1 \), and \(A_2^1 \subset A_{2+1}^1 \). Let \(r^0_i \) be the projection \(\pi_i \) of \(I_i \) onto \(I_0 \), thus \(r^0_i(A_1^i) = A_1^0, r^0_i(a_1^1) = a_2^0 \), and \(\mathrm{Cmps}(I, I_i) = \bigcup_{i=1}^\infty A_i^1 \).

Construction of \(I_k \) for each positive integer \(k > 1 \): Let \(I_k \) be a subcontinuum of \(I_{k-1} \times [0, 1] \) defined as follows: for each positive integer \(n \) let

\[
a_k^k = (a_k^{k-1}, 1) \text{ if } n \leq k
\]

\[
= \left(a_k^{k-1}, \frac{1}{2n-1} \right) \text{ if } n > k,
\]

\[
A_k^k = A_{k-1}^0 \times \{1\} \text{ if } n \leq k,
\]

and if \(n > k \) \(A_k^k \) is defined by recursion,

\[
A_{k+1}^k = A_k^k \cup \left(\{a_{k-1}^k\} \times \left[\frac{1}{2k}, 1 \right] \right) \cup \left(A_{k-1}^k \times \left\{ \frac{1}{2k} \right\} \right) \cup \left(\{1_{k-1}\} \times \left[\frac{1}{2k+1}, \frac{1}{2k} \right] \right) \cup \left(A_{k+1}^{k-1} \times \left\{ \frac{1}{2k+1} \right\} \right),
\]

\[
\vdots
\]

\[
A_n^k = A_{n-1}^k \cup \left(\{a_{n-1}^{k-1}\} \times \left[\frac{1}{2n-2}, \frac{1}{2n-3} \right] \right).
\]
Then let $I_k = (I_{k-1} \times \{0\}) \cup \bigcup_{n=1}^{\infty} A_n^k$, $1_k = (1_{k-1}, 1)$ and identify I_{k-1} with $I_{k-1} \times \{0\}$ using the natural mapping; let r_{k-1}^k be the projection of I_k onto I_{k-1}. Thus $(a_n^k)_{n=1}^\infty$ converges to $a = (a, 0)$, $A_n^k \subset A_{n+1}^k$, and $\text{Cmps}(I_k, 1_k) = \bigcup_{n=1}^{\infty} A_n^k$.
The following properties of the construction will be used in the proofs:

(P1) I_k is irreducible from 1_k to I_{k-1};

(P2) no point of $I_k - I_{k-1}$ is mapped by r_{k-1} into I_{k-2} and each point of $I_k - I_{k-1}$ is mapped into $\text{Cmp}(I_{k-1}, 1_k)$;

(P3) for each n and $\beta < \alpha r_n(a_\alpha^n) = a_\alpha^n$ and $r_\alpha^n(A_\alpha^n) = A_\alpha^n$;

(P4) if $k \leq n$ then $\pi_n(A_\alpha^n) = \{1\}$, if $k > n$ then $\pi_n(A_\alpha^n) = [1/(2k-1), 1]$, and $\pi_1^{-1}(1) = A_\alpha^n$;

(P5) every point of $\{a_\alpha^{k+1}\} \times [1/(2k-1), 1]$ separates I_k. Let $\gamma = \lim \{I_n, r\}_{n<\omega}$ and let 1_ω be the point x such that $x_n = 1_n$. Then for each integer n, I_n can be identified with $\lim \{I_n, r\}_{n<k<\omega}$ since r_{k+1} is the identity on I_k for $k > n$. Let I_n be so identified using the natural mapping. So $I_n \subset I_0 \times \prod_{n=1}^\infty [0,1]$ and I_{ω} is identified with the subset $\bigcup_{n=1}^\infty I_n$ of $I_0 \times \prod_{n=1}^\omega [0,1]$. Further define A_ω for each positive integer i by $A_\omega^i = \lim \{A_\omega^n, r\}_{n=i}$, property P3 insures that A_ω is well defined. Note that it follows from the construction that if $x \in I_\omega$ and $a < b$ then $\pi_i(x_a) = \pi_i(x_b)$ for all $i \leq a$.

Claim 1. I_ω is indecomposable.

Proof. Suppose not and that H and K are two proper subcontinua of I_ω whose union is I_ω. Then there exist open sets R and S such that $R \subset H \setminus K$ and $S \subset K \setminus H$ and hence are mutually exclusive. There exists an integer j and two open sets R_j and S_j in I_j such that $R_j \subset R$ and $S_j \subset S$. Since $I_j = \bigcup_{n=1}^\infty A_n^j$ there is an integer i so that both R_j and S_j intersect A_n^j. Therefore $R_j \times [0,1]$ and $S_j \times [0,1]$ both intersect $A_n^j \times (1/(2i-1))$. So each of $\prod_{j+1}(R)$ and $\prod_{j+1}(S)$ intersect both I_j and A_i^{j+1}, hence each of $\prod(H)$ and $\prod(K)$ intersect both I_j and A_i^{j+1}. By the irreducibility of I_{j+1} from I_j to I_{j+1} it follows that I_j is a subset of both $\prod_{j+1}(H)$ and $\prod_{j+1}(K)$ (recall that $I_j = I_j \times \{0\}$) and hence $I_j = \prod_j(H) = \prod_j(K)$ which contradicts the fact that R_j and S_j must be mutually exclusive. Thus I_ω is indecomposable.

Claim 2. If $x \in I_\omega$ and there is a positive integer j such that $\pi_j(x_i) = 0$, then $\pi_i(x_i) = 0$ for all $i > j$.

Proof. Suppose $x \in I_\omega$, $x_\alpha \in I_\alpha$ and $\pi_\alpha(x_\alpha) \neq 0$. Then there exists an integer n such that $x_\alpha \in A_\alpha^n$. But $r_{\alpha-1}(A_\alpha^n) = A_\alpha^{n-1}$ and either $\pi_{\alpha-1}(A_\alpha^{n-1}) = [1/(2n-1), 1]$ or $\pi_{\alpha-1}(A_\alpha^{n-1}) = 1$, and in either case $\pi_{\alpha-1}(x_{\alpha-1}) \neq 0$ so $\pi_{\alpha-1}(x_\alpha) \neq 0$. So if $\pi_j(x_j) = 0$ then $\pi_{j+1}(x_{j+1}) = 0$ and the claim follows by induction.
Claim 3. If K is a proper subcontinuum of I_{ω_0} containing 1_{ω_0} then there exists an integer β so that if $\gamma > \beta$ then $\pi_\alpha(\Pi_\gamma(K)) = 1$ for all α so that $\beta < \alpha \leq \gamma$.

Proof. Suppose that there is a proper subcontinuum K of I_{ω_0} for which the claim is not true. Then if β is an integer there exists an integer $\gamma > \beta$ so that $\pi_\gamma(\Pi_\gamma(K))$ is nondegenerate. Suppose in addition that for each β there is a $\gamma > \beta$ so that $\pi_\gamma(\Pi_\gamma(K)) = 0$. Then by Claim 2 since $1 \in \pi_\alpha(\Pi_\gamma(K))$ for all $\alpha < \gamma$ it follows that $I_{\gamma-1} \subset \Pi_\gamma(K)$. But then $K = I_{\omega_0}$ which is a contradiction. So the supposition is false and there exists an integer β so that if $\gamma > \beta$ then $0 \in \pi_\alpha(\Pi_\alpha(K))$ for all α such that $\beta < \alpha < \gamma$.

Suppose $\beta > b$, where b is defined above. Then from the negation of the claim, for each positive integer n there is an integer γ_n with $\beta + n < \gamma_n$ so that $\pi_{\gamma_n}(\Pi_{\gamma_n}(K))$ is nondegenerate. But then $(a_{\gamma_n-n-1}, 1) \in \Pi_\gamma(K)$. So $a_{\gamma_n} \in \Pi_{\gamma_n}(K)$ (by P3), thus if $\gamma_n = \beta + k_n$ for some positive integer $k_n > n$ then $a_{\beta + k_n} \in \Pi_\gamma(K)$ and thus $a_{\beta + k_n}^\beta \in \Pi_{\gamma_n}(K)$ (by P3). So there is an unbounded sequence in $(k_n)_{n=1}^\infty$ so that $a_{\beta + k_n}^\beta \in \Pi_{\beta}(K)$, but α is the sequential limit of $(a_n)_{n=1}^\infty$ and hence is a limit point of the set $(a_{\beta + k_n} | n$ is a positive integer), so $\alpha \in \Pi_{\beta}(K)$. Now $\pi_\alpha(\alpha) = 0$ for all $\alpha > 1$ so $0 \in \pi_\alpha(\Pi_{\beta}(K))$ for all $0 < \alpha < \beta$ which contradicts the choice of $\beta > b$. So the claim has been established.

Claim 4. $\text{Cmps}(I_{\omega_0}, 1_{\omega_0}) = \bigcup_{i=1}^{\infty} A_i^{\omega_0}$.

Proof. Suppose $x \in \text{Cmps}(I_{\omega_0}, 1_{\omega_0})$. By Claim 3 there exists an integer β so that if $\gamma > \beta$ and α is an integer so that $\beta < \alpha \leq \gamma$ then $\pi_\alpha(x) = 1$. Let $\gamma > \beta$, then $x \in A_\gamma^\beta$ (by P4). Thus $x \in r_\alpha^\gamma(A_\gamma^\beta)$ and $r_\alpha^\gamma(A_\gamma^\beta) = \pi_\alpha(A_\gamma^\beta)$. So $x \in A_\gamma^\beta$. So Claim 4 has been established.

The construction of I_μ for μ an ordinal greater than ω_0 follows. Suppose δ is a limit ordinal and that $(A_i)_{i=1}^{\infty}$, $(a_i)_{i=1}^{\infty}$, C_2, r_β^γ, and I_i have been defined for all $\lambda \leq \delta$ so that:

1. For each positive integer i the continuum A_i^λ is irreducible from a_i^λ to 1_i.
2. $C_2 = \bigcup_{i=1}^{\infty} A_i^\lambda$.
3. If $\beta < \lambda$ then $r_\beta^\gamma(A_\beta^\lambda) = A_\beta^\lambda$, $r_\beta^\gamma(a_\beta^\lambda) = a_\beta^\lambda$, and $(a_i)_{i=1}^{\infty}$ converges to α.
4. If $\beta < \lambda$ then $r_\beta^\gamma(I_\lambda - I_\beta) = C_\beta$.
5. $C_2 = \text{Cmps}(I_\delta, 1_\delta) = \{P |$ there exists a $\beta < \delta$ such that $\pi_\delta(P) = 1$ for all $\gamma > \beta\}$.

Then construct $I_{\delta+n}$ for all positive integers n by substituting I_δ for I_0, A_i^δ for A_i^0, a_i^δ for a_i^0, and 1_δ for 1_0 in the construction of I_δ above. Compare condition 4 with a similar condition in Bellamy [1].
Suppose that μ is a limit ordinal and I_γ has been defined for all $\gamma < \mu$. Let $I_\mu = \lim \{I_\gamma, \gamma\}_{\gamma < \mu}$, $A_\mu^\gamma = \lim \{a_\gamma, r\}_{\gamma < \mu}$, and for each $\beta < \mu$ let r_β^μ be the projection of I_μ onto I_β. As above identify I_γ with $\lim \{I_\gamma, r\}_{\gamma < \alpha < \mu}$ and a with \bar{a}. The argument of Claim 1 can be used to prove that I_μ is indecomposable. Claim 2 also generalizes for I_μ as follows:

Claim 5. If $x \in I_\mu$ and there is an ordinal $j < \mu$ which is not a limit ordinal such that $\pi_j(x_j) = 0$ then $\pi_i(x_i) = 0$ for all ordinals $i, j < i < \mu$, which are not limit ordinals; and hence $x \in I_j$.

Proof. Suppose $x \in I_\mu$ and $j = \lambda + q$ for some limit ordinal λ and positive integer q. If $\alpha = \lambda' + r$ for some limit ordinal $\lambda' \geq \lambda$ with $\lambda' + r > \lambda$ and $r > 0$ and it is true that $\pi_\alpha(x_\alpha) \neq 0$, then there exists an integer n so that $x_\alpha \in A_n^\alpha$. But $r_\alpha^\mu(A_n^\alpha) = A_n^\mu$ and either $\pi_j(A_n^\mu) = [1/(2n - 1), 1]$ or $\pi_j(A_n^\mu) = 1$ (by P4). In either case $\pi_j(x_\alpha) \neq 0$. But $\pi_j(x_j) = \pi_j(x_\alpha)$, so that $\pi_j(x_j) \neq 0$, which is a contradiction.

Claims 6, 7, and 8 are concerned with the continuum I_μ.

Claim 6. If K is a subcontinuum of I_μ and $a \in \Pi_1(K)$ then $a \in K$.

Proof. If $a \in \Pi_1(K)$ then $(a, 0) \in \Pi_\mu(K)$ so $a \in \Pi_\mu(K)$. From Claim 5 it follows that $a \in \Pi_\gamma(K)$ for all $\gamma < \mu$ since a is identified with $a \times \{0\}$. Thus a must belong to K.

Claim 7.

\[\text{Cmps}(I_\mu, 1_\mu) = \bigcup_{i=1}^{\infty} A_i^\mu. \]

Proof. Suppose that K is a proper subcontinuum of I_μ containing 1_μ. If it is true that there is an integer n so that if $\gamma < \mu$ then $a_n^\gamma \in \Pi_\gamma(K)$, then it would follow that $\Pi_\gamma(K) \subset A_n^\gamma$ for all $\gamma < \mu$, and so $K \subset A_n^\gamma$. So suppose that this is not true. Thus for each integer n there exists an ordinal $\gamma_n < \mu$ such that $a_n^{\gamma_n} \in \Pi_\gamma(K)$. But then $a_n^{\gamma_n} \in \Pi_1(K)$ for all n, since $r_\gamma^\mu(a_n^{\gamma_n}) = a_n^{\gamma_n}$. So $a \in \Pi_1(K)$ and $a \in K$ by Claim 6. But then $K = I_\mu$ since I_μ is irreducible from a to 1_μ. So the claim is true.

Claim 8. I_μ satisfies the following for each ordinal $\beta, \beta < \mu$, and each positive integer i:

1. A_i^μ is irreducible from a_i^μ to 1_μ.
2. $C = \text{Cmps}(I_\mu, 1_\mu) = \bigcup_{i=1}^{\infty} A_i^\mu$.
3. $r_\beta^\mu(A_i^\mu) = A_i^\mu$, $r_\beta^\mu(a_i^\gamma) = a_i^\beta$, and $\{a_i^{\gamma_n}\}_{n=1}^{\infty}$ converges to a.
\[
(4) \quad r^\omega_\beta(I_\alpha - I_\beta) = C_\beta.
\]

Proof. Part (1) follows from the irreducibility of \(\prod_I(A^\omega) \) for each \(\gamma < \mu \), and part (2) follows from Claim 7. Since for each ordinal \(\gamma < \mu \) the sequence \((\prod_I(A^\omega))^\omega_{\gamma+1} \) converges to \(a \), it follows that \(\{a^\omega_i\}_{i=1}^\omega \) converges to \(a \) which is identified with \(a \). The rest of (3) follows from the definitions of \(r^\omega_\beta, A^\omega_\beta, \) and \(A^\omega_\beta \). To prove (4) suppose that \(x \in I_\alpha - I_\beta \). Then by Claim 5, \(\pi_{\beta+1}(x_{\beta+1}) \neq 0 \) so \(x_{\beta+1} \in A^\beta_{\beta+1} \) for some integer \(n \), but \(r^\beta_{\beta+1}(A^\beta_{\beta+1}) \subseteq C_\beta \), thus \(r^\beta_{\beta+1}(x_{\beta+1}) \in C_\beta \) so \(r^\omega_\beta(x) \in C_\beta \); equality follows from parts (2) and (3).

Claim 9. The continuum \(I_{\omega_1} = \lim_{\leftarrow} \{I_\alpha, r_\beta\}_\omega \) has exactly two composants.

Proof. From the construction, \(\{I_\alpha\}_\omega \) is a monotonic collection of continua. (a) If \(\beta > \gamma \) then \(I_\beta \) does not intersect \(C_\gamma \) because \(I_\gamma \) does not intersect \(C_\gamma+1 \) and if \(\beta > \gamma \), \(C_\gamma+1 = r^{\gamma+1}_\beta(C_\beta) \). (b) From (4) of Claim 8 it follows that \(r^\omega_\beta(I_\alpha - I_\beta) = C_\beta \) for \(\alpha > \beta \). Let \(W = \{x\} \) there is a \(\gamma \) so that if \(\alpha > \gamma \) then \(\pi_{\alpha}(x) = 0 \). If \(x \in W \) and \(\gamma \) is the ordinal specified in the definition of \(W \) then \(x \in I_\gamma \). So \(x \) lies in the same composant as \(a \).

Now \(I_{\omega_1} \) is irreducible from \(a \) to \(1_{\omega_1} \), it will now be shown that if \(y \) is a point of \(I_{\omega_1} \) not in \(W \) then \(y \) lies in \(\text{Cmps}(I_{\omega_1}, 1_{\omega_1}) \). Suppose \(y \in W \). The following two conditions need to be established: (i) if \(\alpha > \beta \) then \(y_\alpha \notin I_\beta \), and (ii) \(y_\alpha \in C_\alpha \). If \(\alpha > \beta \) there exists an ordinal \(\delta > \alpha \) such that \(y_\alpha \neq y_\beta \) or else \(y \in W \) (in particular \(y \in I_\omega \)). Suppose that \(y_\alpha \in I_\beta \), then \(y_\alpha \in C_\alpha \) by (a) above. But \(r^\omega_\alpha(I_\alpha - I_\alpha) \subseteq C_\alpha \) so \(y_\alpha \notin I_\alpha - I_\alpha \), so \(y_\alpha \notin I_\alpha \). But \(r^\omega_\alpha I_\alpha \) is the identity which contradicts the fact that \(y_\alpha \neq y_\alpha \). Thus (i) has been shown, also it has been shown that if \(\alpha > \beta \) then there exists a \(\delta > \alpha \) such that \(y_\delta \notin I_\alpha \). So \(y_\delta \in I_\delta - I_\alpha \), \(r^\omega_\delta(I_\delta - I_\alpha) \subseteq C_\alpha \), and so (ii) has been shown.

Suppose that \(y \in W \). By (i) if \(\alpha > 1 \) then \(y_\alpha \notin I_1 \), and by (ii) \(y_\alpha \in C_\alpha \). Thus by (2) of Claim 8 there exists an integer \(n_\alpha \) so that \(y_\alpha \notin A^n_\omega \). There exists an uncountable subset \(J \) of \(\omega_1 \) and an integer \(n \) so that \(n_\alpha = n \) for all \(\alpha \in J \). But since \(r^\omega_\beta(A^n_\omega) = A^n_\beta \) it follows that \(y \in \lim_{\leftarrow} \{A^n_\omega, r_\beta\}_\omega \) which is a proper subcontinuum of \(I \) containing \(1_{\omega_1} \). Thus it has been shown that if \(y \in W \) then \(y \in \text{Cmps}(I_{\omega_1}, 1_{\omega_1}) \). So \(I_{\omega_1} \) has exactly two composants \(W \) and \(C_{\omega_1} \).

One can see that \(X \) is a retract of each \(I_\alpha \) and hence of \(I_{\omega_1} \). In order to construct a continuum with only one composant which has \(X \) as a retract it is only necessary to construct \(I_\alpha \) and a retraction \(r \) from \(I_0 \) onto \(X \) that maps \(1_0 \) onto \(a \), then by identifying \(a \) and the point \(1_{\omega_1} \) the continuum \(I_{\omega_1} \) satisfies the desired condition.
REFERENCES

2. G. R. Gordh, Jr., *Every continuum is a retract of some irreducible indecomposable continuum*, Colloquia Mathematica Societatis Janos Bolyai, 8 (1972), 347-350.

Received December 8, 1976 and in revised form June 12, 1979.

Auburn University
Auburn, AL 36830
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graham Donald Allen, David Alan Legg and Joseph Dinneen Ward,</td>
<td>379</td>
</tr>
<tr>
<td>Hermitian liftings in Orlicz sequence spaces</td>
<td></td>
</tr>
<tr>
<td>George Bachman and Alan Sultan,</td>
<td>389</td>
</tr>
<tr>
<td>On regular extensions of measures</td>
<td></td>
</tr>
<tr>
<td>Bruce Alan Barnes, *Representations Naimark-related to *-representations; a correction: “When is a representation of a Banach *-algebra Naimark-related to a -representation?”</td>
<td>397</td>
</tr>
<tr>
<td>Earl Robert Berkson, One-parameter semigroups of isometries into H^p</td>
<td>403</td>
</tr>
<tr>
<td>M. Brodmann, Piecewise catenary and going between rings</td>
<td>415</td>
</tr>
<tr>
<td>Joe Peter Buhler, A note on tamely ramified polynomials</td>
<td>421</td>
</tr>
<tr>
<td>William Lee Bynum, Normal structure coefficients for Banach spaces</td>
<td>427</td>
</tr>
<tr>
<td>Lung O. Chung, Biharmonic and polyharmonic principal functions</td>
<td>437</td>
</tr>
<tr>
<td>Vladimir Drobot and S. McDonald, Approximation properties of polynomials with bounded integer coefficients</td>
<td>447</td>
</tr>
<tr>
<td>Giora Dula and Elyahu Katz, Recursion formulas for the homology of $\Omega(X \vee Y)$</td>
<td>451</td>
</tr>
<tr>
<td>John A. Ernest, The computation of the generalized spectrum of certain Toeplitz operators</td>
<td>463</td>
</tr>
<tr>
<td>Kenneth R. Goodearl and Thomas Benny Rushing, Direct limit groups and the Keesling-Mardešić shape fibration</td>
<td>471</td>
</tr>
<tr>
<td>Raymond Heitmann and Stephen Joseph McAdam, Good chains with bad contractions</td>
<td>477</td>
</tr>
<tr>
<td>Patricia Jones and Steve Chong Hong Ligh, Finite hereditary near-ring-semigroups</td>
<td>491</td>
</tr>
<tr>
<td>Yoshikazu Katayama, Isomorphisms of the Fourier algebras in crossed products</td>
<td>505</td>
</tr>
<tr>
<td>Meir Katchalski and Andrew Chiang-Fung Liu, Symmetric twins and common transversals</td>
<td>513</td>
</tr>
<tr>
<td>Mohammad Ahmad Khan, Chain conditions on subgroups of LCA groups</td>
<td>517</td>
</tr>
<tr>
<td>Helmut Kröger, Padé approximants on Banach space operator equations</td>
<td>535</td>
</tr>
<tr>
<td>Gabriel Michael Miller Obi, An algebraic extension of the Lax-Milgram theorem</td>
<td>543</td>
</tr>
<tr>
<td>S. G. Pandit, Differential systems with impulsive perturbations</td>
<td>553</td>
</tr>
<tr>
<td>Richard Pell, Support point functions and the Loewner variation</td>
<td>561</td>
</tr>
<tr>
<td>J. Hyam Rubinstein, Dehn’s lemma and handle decompositions of some 4-manifolds</td>
<td>565</td>
</tr>
<tr>
<td>James Eugene Shirey, On the theorem of Helley concerning finite-dimensional subspaces of a dual space</td>
<td>571</td>
</tr>
<tr>
<td>Oved Shisha, Tchebycheff systems and best partial bases</td>
<td>579</td>
</tr>
<tr>
<td>Michel Smith, Large indecomposable continua with only one composant</td>
<td>593</td>
</tr>
<tr>
<td>Stephen Tefteller, Existence of eigenvalues for second-order differential systems</td>
<td>601</td>
</tr>
</tbody>
</table>