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We introduce the neighborly bush property (NBP). A
dual Banach space has the NBP if and only if it contains
a bush, but there is a Banach space with the NBP that
does not contain a bush and therefore has the Radon-
Nikodym property. Any Banach space with the NBP has
a nonseparable second dual. Other related results are
obtained.

A Banach space X has the Radon-Nikodym property (RNP) if
and only if, for every finite measure space (2, Y, 1), and each u-
continuous, X-valued measure m on X of bounded variation, there
exists a Bochner-integrable function f: 2 — X such that

m(E) = SEfdp. it Bisin 5.

For convenience in defining “tree,” we introduce the set S =
{(k, 7):keN,jeN,1< j< 2", where N denotes the set of positive
integers. Also, for each positive integer =, let S, = {k, j)eS:
k< n).

DEFINITION 1. Let X be a Banach space and & a positive
number. A tree with separation constant ¢ is a funetion 7: S — X
such that, for every (k, 7) in S,

(1) T, j)=1/2[Tk+1,275) + Tk + 1,25 — 1)]

(Averaging Property),

(i) [Tk, Dl =1,

(i) )Tk +1,29) — Tk + 1,25 — L)]| > ¢

(Separation Property).

We denote T'(k, 7) by «*¢, and call 2**** and «*+:* the branch
points of T corresponding to the mode x*9. The connection between
the RNP and trees seems to have been noted first (implicitly) in [9]
and explicitly in [11, page 222]. It follows easily from dentability
that if a Banach space contains a tree, it does not have the RNP
[3, page 127]. A dual space X has the RNP if and only if X does
not contain a tree ([3, page 127], [11, page 222]). A Banach space
has the RNP if and only if it does not contain a bush [3, page 216].
The reader who is interested in further historical information should
see [1], [2], [3], and [5]. There are many other characterizations
of the RNP discussed in [1], [2], and [3].
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In this paper, we will consider a variation of the definition of
“tree” (and “bush”). Originally, this was begun in the hope of
shedding light on open questions related to the question of whether
every Banach space without the RNP contains a tree i.e., whether
every Banach space which contains a bush contains a tree. However,
the concepts which resulted from these variations have proved to
be very interesting in their own right.

A natural and severe weakening of a tree is a “finite tree,”
which we define next.

DEFINITION 2. Let X be a Banach space, ¢ a positive number,
and n a positive integer. A finite tree with separation comstant &
is a function T: S, — X which satisfies conditions (i)-(iii) of Defini-
tion 1. In that case, we say that T is a finite tree with » columns.
We say X has the finite-tree property if and only if there exists a
positive number ¢ such that for exery positive integer n, X contains
a finite tree with n columns and separation constant e. [7, pages
159-160].

A Banach space X is said to finitely representable in a Banach
space Y if, for every finite-dimensional subspace X, of X and every
N > 1, there is an isomorphism 7 of X, into Y for which \7'|z|| =
|T(x)]| = M|z]] if xe X,. A Banach space B is super-reflexive if no
nonreflexive Banach space is finitely representable in B. In fact,
a Banach space is super-reflexive if and only if it does not have the
finite-tree property ([7] and [8]), or if and only if it is isomorphic
to a uniformly convex space [4].

One should notice that, given a tree T and a positive integer
n, we can recover the elements T'(k, j) for which 1<k <n by
averaging back along S, from the appropriate subset of the elements
T(n, j) for which 1 <7 < 2" Suppose we are given only the set
{x™7: 172"} of elements in the nth column of a .tree. Then each
2t with 1 £ k < n is the average of the elements in the nth column
which follow z** in the tree structure. We can this process back-
ward averaging.

Let {n,} be an increasing sequence of positive integers such that
n, =1, and 2- n,_, < n, for every positive integer k. The set A =
{(ky, 7):k,7e N and 1 £ j < m,} is a bush domain. For each positive
integer k, let C, ={ieN:1 1< )}, let 0, = {(n, ) e A: n =k}, and
let 4, ={(n, j)e A:n £ k}.

DEFINITION 3. Suppose X is a Banach space, A is a bush
domain, and ¢ is a positive number. Let S,, = {1}, and, for every
k=2, let {S;;:1=<j=<m,_} be a partition of C, into pairwise
disjoint sets of consecutive integers. A bush with separation con-
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stant ¢ is an ordered pair (B, P) for which B is a function mapping
A into the closed unit ball of X, P = {S, ;: (k, j) € A}, and, for every
k= 2and every j with 1 <7 £ n,_,,

(i) 18122,

(ii) Bk — 1, 5) = @/|S,;]) es,, ; Bk, 1) (Averaging Property),

(iii) for every (k, j) in A and ¢ in S, ;,

| Bk, ) — Bk + 1, 9)|| > ¢ (Separation Property).

We denote Bk, 7) by z*/ and call {x***":7¢S,:,,;} the set of
branch points of (B, P) corresponding to the node x*7. In this case
we say that X contains the bush (B, P).

If » is a positive integer and B is defined only on A4,, we
suppress the set P, and say that B is a finite bush if (i)-(iii) hold
on A,.

DEFINITION 4. A Banach space X has the neighborly tree
property (NTP) if and only if there are positive numbers ¢ and o
for which 6 < ¢/4 and the closed unit ball of X contains a sequence
(T,) of finite trees satisfying:

(i) Each T, is defined on S,.

(ii) Each T, has separation constant e.

(ili) For every (k, 7) in S, there is a ball in X of radius ¢
which contains {z¥?: » = k}, where T,(k, j) = &/ when (k, 7)€ S,.
The condition “6 < ¢/4” is needed to insure the separation of ele-
ments when we construct trees in dual spaces which have the NTP.
Clearly, some condition of this type is needed if we want the NTP
to be stronger than the finite-tree property.

The neighborly tree property is stronger than the finite-tree
property, since there is a reflexive space with the finite-tree property
[7], but we will see that a reflexive space cannot have the neighbor-
ly tree property. As we shall see in Example 9, there is a Banach
space which has the neighborly tree property but which contains no
tree.

DEFINITION 5. A Banach space X has the wneighborly bush
property (NBP) if and only if there is a bush domain 4, a set Pas
in Definition 8, and positive numbers ¢ and 6 < ¢/4, such that the
closed unit ball of X contains a sequence {B,} of finite bushes
satisfying:

(i) Each B, is defined on A,, the partition of which is
determined by P.

(ii) Each B, has separation constant e.

(iii) For every (k, 7) in A, there is a ball in X of radius 6
which contains {x%%: n = k}, where B,(k, j) = «%’ when (%, j) € A4,.
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In Theorems 10 and 11, we will see how a space with the NBP
is related to a space containing a bush.

A Banach space with the NTP has the NBP, but it is not known
whether a Banach space with the NBP also has the NTP. That
problem seems to be related to the unsolved problem of whether a
Banach space which contains a bush also contains a tree.

The fact that the closed unit ball of a reflexive space is weak-
sequentially compact, together with a diagonalization argument, can
be used to show that if a reflexive space has the NBP, then it
contains a bush. But every reflexive space has the RNP (|3, page
218] and [10, page 134]), and therefore contains no bush [3, page
216]. Hence, no reflexive space has the NBP. Likewise, w*-se-
quential compactness of the closed unit ball of the dual of a separa-
ble space can be used to show that if X is a separable Banach space
whose dual X* has the NBP (NTP), then X* contains a bush (tree).
Since every separable dual has the RNP [2, page 5], we conclude
that no separable dual has the NBP (NTP). In fact, as we will see
in Theorem 6, any dual space X* with the NBP (NTP) contains a
bush (tree) whether or not X is separable.

Although the suggested method of proving that no reflexive
space has the NBP (NTP) is rather intuitive, this result is a corollary
of Theorem 6. For suppose X is reflexive and has NBP. Then 7,
the closed linear span of the elements of a particular neighborly
bush structure, is reflexive. But Y ** has the NBP and therefore,
by Theorem 6, Y ** contains a bush. Since Y is reflexive and no
reflexive space contains a bush, the presence of a bush in Y** is a
contradiction.

Sinee the natural image of X in X** inherits the NBP from X,
and since no separable dual has the NBP, it follows that X** is not
separable if X has the NBP.

If a Banach space X does not have the NTP, then X does not
contain a tree. Hence, if X is also a dual, then X has the RNP
[11, page 222]. Likewise, if a Banach space does not have the NBP,
then it does not contain a bush, and therefore has the RNP |3, page
216].

THEOREM 6. If X is a Banach space whose dual X* has the
NBP (NTP), then X* contains a bush (tree).

Since the proof of Theorem 6 very closely parallels the proof
that (ii) implies (iii) in Theorem 7, we will only outline the proof
of Theorem 6. Let (B, be a sequence of finite bushes in X*,
satisfying (i)-(iii) of Definition 5, with ¢ > 0, 0 < 6 < ¢/4, and bush
domain A. For each (k, j) in A,, denote B,(k, 7) by f¥i. For every
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(k, ) in A, let B®7 be a closed ball of radius 6 with the property
that, for every »n in N, f%/ is in B*/. Denote the center of B*’
by ¢%/. We give each B*’ the relative w*-topology, so that the
topological product Q = I, B*/ is compact.

For every » in N, define an element w, in @ by:

woif E<m,

k, ) = ..
@n(k, 9) ghi if k>mn.

Since @ is countably compact, the sequence (®,) has a cluster point
o in Q. It can be shown that (w, P) is a bush in X*.

THEOREM 7. If X is a Banach space, then the following state-
ments are equivalent.

(i) X* has the NBP (NTP).

(ii) X has o separable subspace Y such that Y™ contains a
bush (tree).

(iil) X* contains a bush (tree).

Proof. Let us prove first that (i) implies (ii). Let (B,) be a
sequence of finite bushes and A a bush domain exhibiting the NBP
in X*. Let W be the collection of all bush elements occurring in any
of the finite bushes B,. For every @ such that 0 < § < 1, we define
a subset C, of the closed unit ball U of X, by letting C, = {a’7:
neN and (k, 7)€ A,}, where each 2¥7 is chosen so that f&i(xkd) = 6.
|| f&i||l. For every i in S,; and n in N, choose y%® in U with the
property that

|(faf — fa )z 01 fa' — fail .

Let By={yv:meN and (k,i)eA,} and D = U=, (Ci_p; U By_p)-
Then D & U is countable and:

(i) D is norming for W,

(ii) If Y is the closed linear span of D, then Y is a separable
subspace of X such that, if g}/ is the restriction of f%7 to Y, then
llgwill = || f%7]| and, for every ¢ in S, ;, ||gn ™7 — g¥*|| = ||fa™7 — fE*|l.
Thus, {(g5%).,:n €N} forms a neighborly bush structure in Y*.
This and the fact that Y is separable imply Y* contains a bush.

We now prove that (ii) implies (iii). Let (B, P) be a bush in
Y* with bush domain A, and separation constant ¢ > 0. Denote
B(k, j) by g for each (k, 7) in A, and use the Hahn-Banach theorem
to extend g% to an element f*’ in X* with the same norm as g*/.
Next, let U° be the closed unit ball of X*, with the relative w*-
topology. Then the topological product @ = [I, U° is compact.

For every n in N, define an element w, in @ as follows. Let
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w,k, 7) =0 if n <k, w,(n,j) = f™9, and if n > & define w,(%, j) by
averaging back from the nth column. For example, for every (2, 5)
in A, 042, j) = /| S,;]) Xies, ; S, and

L 5 0.

(03(1, 1) = |S | P

Since @ is countably compact, the sequence (w,) has a cluster point
we®. We will show that (w, P) is a bush in X*,

Since for every (k, j) in A, the projection map J[,; of @ onto
U° is continuous, we have that w(, 7) is a w*-cluster point of
(w,(k, 7)),. But U° is w*-closed and therefore w(k, j) is in U°.

Fix (k, j) in A. The definition of w, implies that for every
s=k and for every y in Y, w,(k, j)(y) =g¢"(y). But if 7 is positive
and y is Y, then there is an s = k such that |w,&, 5)(¥)— ok, 7)¥)|<7.
Hence, |g%(y) — ok, j)(¥)] < 7. Since n was an arbitrary positive
number, we have g~/ (y) = w(k, 7)(y), and therefore g*? is the restric-
tion of w(k, ) to Y. Thus, for every ¢ in S,.,;, |0k, H)—wk+1, 9)||=
llg"i — g™t > e

To see that the averaging property holds, fix 2 in X, let o be
a positive number and choose (kK — 1,5) in A. For every (7, s) in
A, let V(r,s) = {ge U" |g(x) — w(r, s)(x)| < 0}. We denote that the
set

0= 11.5,;(Vk—1,3)N isg s (Vik, 1)
)
is a @-neighborhood of w. Therefore, since w is a Q-cluster point
of (w,), there is an s =k such that w, is in §. By the definition
of w,, we have

L > ok .

| Sk,5] #6585
Since w, is in Ncs, ; [I57 (V(%, 9)), we have, for every 7 in S, ;,

|w,(k, 3)(x) — ok, i)x)] < 0.

(1) o,k — 1, j)@) =

Thus, |X, o,k, 1)) — >, ok, 1)(®)| < |S,,;| -0, where both sums are
over S, ;. By equation (1),

(2) 118k,s] - @,k — 1, () — 3 ok, (@) < [S,;]-0.
But w, is in [],5; (V(k — 1, 7)), and therefore
(8)  [ISusl @,k — 1, D@ — [S,;]- 0 — 1, @) < [Sp;]-0.
Hence, by (2) and (3),
18] - @k — 1, j)(@) — 3 @k, )(@)| < 20-[8,],
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where the sum is over S,;. But ¢ > 0 and z in X were arbitrary.
Therefore,

L s ok, i),

]S,m.] 165y 4

ok —1,7) =

Since (iii) formally implies (i), the proof of Theorem 7 is
complete.

The next result also appears as a special case of the main
theorem in [11].

COROLLARY 8. If a Banach space X has a subspace Y isomor-
. phic to l,, then X™* contains a tree.

It is not true in general that if X has the NTP, then X* has
the NBP. For example, ¢, contains a tree and ¢ = l,, which does
not have the NBP. Furthermore, it is not true in general that if
X* has the NTP, then X has the NBP. For example, /., contains
a tree, and is the dual of [,.

It is also not true in general that if X** has the NTP, then X
has the NBP. In fact, I, does not have the NBP, but by Corollary
8 I¥* = [¥, the space of all finitely additive measures on the algebra
of all subsets of N, contains a tree.

In view of the discussion preceding Theorem 6, we might ask
whether a Banach space X, whose dual X* is separable and whose
second dual X** is nonseparable, must have the NBP? The answer
is no. In fact, if B is a Banach space such that B** is separable
and B*** is nonseparable, then X = B* is a separable dual, and
therefore does not have the NBP. The existence of such a space B
was established in 1960 by R. C. James [6].

ExAMPLE 9. We construct a Banach space that has the NTP,
but which contains no bush. By the remarks preceding Theorem 6,
no such space can be a dual. Our example also shows that a Banach
space with the NTP need not contain a tree, and can have the RNP.

For every je N, let e¢; be the member of ¢, for which

Let T = (t*%)y be the tree in ¢, whose elements are: t“' =e¢, t*' =
et e, t?=e¢ —¢, ' =e¢, +e+ e, " =0¢ te—e, PP =6—¢+e
t" =e — e, — e, etc. Let P=¢, X ]I, &, where the [-norm is
used in defining the produet norms, and I denotes the space of
real-valued functions on {1, 2, - -+, n} with the sup norm. Let (t}7),
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denote the finite tree in [I¥ obtained from 7T by truncating each t*¢
to get an element of ™.

Fix a with 38/4 <a <1. For every n in N, let T, = (xi),,
be the finite tree of »n columns in P whose elements are defined as
follows. For every (k, 7)€S,, xf/c P has only two nonzero com-
ponents; its ¢, component is «-t"/, and its [’ component is
(1 — a)tt?. Thus, ||eti]|=a+ (1 —a)=1. If j is odd, then

ks — @it = - |[¢d — i | 4 (L= @) |83 — tho
=20+ (1—a)-2=2.

Further, if 7 is odd and % = 2, then
l k,q k,j4+1 k~1,(541)/2
—-((L’.,,"’ -+ OG%H') = gk (G072
2

To see that the sequence {T,} exhibits the NTP in P, we need only
notice that ¢ = 2 and, if (&, 7) is in S and m > n =k, then

loki —abi)| =0+ L)+ 1 —a) =2—2a <

DO | =

£
T

Let V be the set of all elements of P that appear in any of the
T.s. Let Y be the closed linear span of V. Then Y has the NTP,
but contains no tree.

That Y has the NTP has been shown. To see that Y does not
contain a tree, it suffices to show that if Y did contain a tree, then
the separable dual IT, 1% = (II.,1%")* would contain a tree.

Let zesp (V) and represent z as >, ¢, - 527, For every b/
in V, let #*7 be the element of P whose I component is (1 — a)t¥7,
and all of whose other components are zero vectors. We will express
explicitly only the ¢, and any nonzero I!” components of the elements
of P, and write £ as [athd, A — a)th],, and ZEHD ag
[0, A — a)tk?],, where the subscript 7 denotes that t¥9 should be
geaid TLet K=max{n;:1=<1i=< M} and map each ¥’ naturally
into 1, denoting its image by %¥7. Note that since the I, norm
was used as the produet norm for P,

Izl = Sy e laths, (L = i),

M

Ci* [atk'% 6]1
1

+ H;Z: ¢:-[0, (1 — a)t’;’j]iﬁ

1=

ﬁl‘ ct™d, 6]1}

=

-+

36010, (A — @tk f]i! .

= -

But
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z [$6l0, @ — )

IS0, (- wth],
= 1 - @)-|3el0, #4)

Hence, ||z|| £ (@/1 — a) + 1)- |, [0, A — a)t¥];]|, and therefore

=1~ a)- S et O)

o o

k(0,50 AE (D), 5(0)
2 Ci* Lai) = |De - BEl
i=1 im1

(1) t—a)|

If Y did contain a tree, then by making the ¢, component of
each tree element O, we would obtain a tree in I, 1&"; for the
averaging property would clearly hold, the induced tree is composed
of elements of norm =<1, and inequality (1) implies that the separa-
tion property is transferred to the induced tree.

Since I, I&’ has the RNP, it contains no bush. Thus, Y con-
tains no bush; for if Y did contain a bush, then inequality (1) to-
gether with the observations that the averaging property is
maintained, and that the new elements stay within the unit ball,
would yield a bush in [T, 1.

Since Y contains no bush, it has the RNP. Thus we have shown
that a Banach space can have the NBP and not contain a bush.

The next two theorems describe a sense of nearness for which
every Banach space having the NBP is near a bush in some Banach
space.

THEOREM 10. Suppose M and W are subspaces of a Banach
space X, and that M contains o bush (tree) (B, P) with separation
constant 0. If 0 <06 < d/6 and every element of B is within 0 of
W, then W has the NBP (NTP).

Proof. For every (k, 7) in A, let 2%/ = B(k, j), and for every =
in N and (%, j) in A, choose ¥y’ in W such that ||yrp? — a™7|| <
and ||yri]] < 1. For every (k, j) in A,, define y&¢ by backward
averaging from the y@?’s, that is, for every (%, j) in A,,

B—1,5 1 kg
n
<5k, |S,4

It then follows that, for every (k, j) in A,, ||a*7 — yE7|] <.
To see that the separation property holds, we notice that, if
(k—1,7) is in A and ¢ is in S, ;, then
g < ka,t — xk—l,j”
= Jla — ] g — g [l — ot
<20 + ||yt — ],
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for every » = k. Hence, 0 — 20 < [|y%* — y5 /|| whenever n = k.
Let e =0 —25. Then 0 < ¢ < ¢/4, since § < 6/6. Thus W has the
NBP.

For the next theorem, we assume that the Banach space X has
a norming sequence of linear functionals. This assumption is valid
when X is separable, or if X is any subspace of I..

THEOREM 11. Suppose X is a Banach space with the NBP (NTP),
and ¢ and 6 are as in Definition 5. If X has a norming sequence
of limear functionals, then X can be embedded im a Banach space
containing a bush (tree), in such a way that every bush (tree) ele-
ment 1s within 0 of X.

Proof. Let {(x%7),,: n €N} exhibit the NBP in X, and for every
(k, 7) in A, let «*7 in X be such that, for every n = k&, ||a*7 — ab7]| < 6.
Let P = [Ix X and define ' in P by letting ¥4} = «* for every =
in N. For every (2,7) in A, let o = xp* and y%] = o329, if n = 2.
In general, if (&, s) is in 4 and se S, ;, we let

yhti it i<k,

ks __.
(1) Yi = b if i>k.

It follows easily that
1

Y =
t€5%,5 | S, 4

Let (f,) be a norming sequence of linear functionals for X, each
of which has norm one. For every positive integer n and every
(k, 7) in A, the sequence {f,(¥%)}; is bounded, and therefore since N x A
is countable, we can diagonalize to get a strictly increasing sequence
of positive integers {p,}, such that for every « in IV and every (k, j)
in A4, lim, .. f,(¥5}) exists.

We can identify X with the collection W of constant elements
of P. Let Y =span[WU {y*":(k, j)€ A}]. For every = in N and
every ¥ in Y, lim, . f.(¥(p,) exists. Therefore it makes sense to
define

llylll = sup lim [ f.(y(P)] 5

for every v in Y. In fact, |||-||| is a semi-norm on Y.

If (k,7) is in A, and » and ¢ are positive integers, then
[faii) | S 1Fall- 1lwhi) || < 1. Hence, sup, {lim, .. |f.(¥5G})[} = 1. That
is, [lly™|Il = 1.

To see that sup,;..dist (W, y*) <9, fix (k,7) in 4, and let
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w*? in W have z*7 in all its components. Then it follows from (1)
that

llwhs — 3| = sup lim | £, (@5 — )] ,
= sup lim | f,(2"7 — 27| <9,
since for every pair of positive integers » and 1,
[fula®? — apd)| < (| full - &% — 237]] <6 .

The separation property will be established next. Fix (k — 1, 7)
in A and 7 in S,;. If » =k, then

e < llak — ok
< llokt — @]+ [lab — b
< ot — a7 + 22,

[+ [l — akov|

and therefore ¢ — 20 < ||a** — «*™%7||. Since {f,} is norming for X,
we can choose an f,, such that |f,(&*® — a* )| > ¢ — 2. Then, for
every n = k, it follows from the definition of the x”%’s and ||f.|| =1
that

e — 25 < | fuleht — 2+ )|
S [ ful@™t — Y|+ |fal@ht — B0+ [ Fa@h S — )]
< | falaht — okt — k) b

Hence, ¢ — 46 < |f.(2k® — 2k~"9)| for every » =k, and so [||y*® —
y* " il|| =z e — 40. Therefore, if N ={ye Y:|||y]|| =0}, then Y/N is
the required space.
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