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This paper studies necessary and sufficient conditions
for differential operators to be Fredholm on the Sobolev
spaces of a complete (not necessarily compact) Riemannian
manifold 2. The conditions are formulated algebraically
in terms of the nonvanishing of the operator’s principal
symbol on £ (ellipticity) and its “total symbol” at infinity
of 2. The operators considered arise by taking sums of
products of vector fields, all of whose covariant derivatives
vanish at infinity; and the study involves C*-algebra tech-
niques. The required technical restrictions on the curvature
and topology of 2 near infinity are much weaker than those
in earlier joint work with H. O. Cordes.

0. Introduction. Let 2 be an n-dimensional paracompact C°-
manifold with complete Riemannian metric ds* = g,;dx’de’ and sur-
face measure dy =1 gdx where g = det(g,;). Let 4 =gV y;, the
Beltrami-Laplace operator on 2, where (¢%) = (9;;)™* and 7 denotes
covariant differentiation with respect to the Riemannian connection.
Then 4 = (1 — 4)™* is a positive-definite operator in Z(9), the
bounded operators over the Hilbert space $ = LX2, dyt). Define the
Nth-Sobolev space 9, for N=1,2 ... by requiring 4":  — 9y
to be an isometric isomorphism. It was shown in [3] that C?(2) is
dense in each 9,.

Now suppose we are given a differential operator L on £, of
order N, such that we obtain a bounded map L: $y — . We may
ask the question when is L Fredholm (i.e., when are ker L and coker
L finite-dimensional subspaces of ©,y and $ respectively)? If Q is
compact, Seeley [13] showed that L is Fredholm if and only if L is
elliptic (i.e., the principal symbol of L never vanishes on the cosphere
bundle S*2). For the case 2 = R", on the other hand, ellipticity
is not sufficient to imply L is Fredholm; Cordes and Herman [4]
derived necessary and sufficient Fredholm criteria in terms of the
“total symbol” of L.

In [4] the techniques involved considering operators LAY as
generators of a C*-algebra A C < (9) which is commutative modulo
the compact ideal, .%. The symbol of LAY is then defined as the
continuous function o, on the maximal ideal space M of A/ 2%
provided by the Gel’fand theory. Thus LAY is Fredholm if and only
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if o, is never zero on M, and algebraic criteria are obtained by
giving a precise description of M and o, .

In this paper we shall attempt to generalize the results of [4]
and [13] to noncompact Riemannian manifolds 2. We shall use
techniques similar to those in [4], generating a C*-algebra 9 which
is commutative modulo .°¢; and then attempting to describe the
maximal ideal space M and functions o,,+. Of course a precise
description of M can only be made for specified 2; but our main
result, Theorem 4.1, yields a sufficient condition for L: 9, — 9 to
be Fredholm, namely that the “formal algebra symbol” ¢,,N never
vanish on the space dP*2 (see §4 for definitions). Thus operators
such as (A — 4)" are Fredholm on the Sobolev spaces of 2 for » > 0,
whereas for A = 0 we need to use weighted Sobolev spaces (see [2]
and [11]). On the other hand, ellipticity is certainly a necessary
condition for L to be Fredholm (c.f. §2).

This paper summarizes the principal results of the author’s
Ph.D. thesis, and generalizes earlier joint work with his advisor,
H. O. Cordes, whose contributions to this research are also gratefully
acknowledged.

1. The C*-algebra for singular elliptic theory. We begin by
describing the (global) differential operators that we will be con-
sidering. Suppose [, is a C~-contravariant tensor field of degree
=0 on £. Then in local coordinates I, has components [i %, and
we may define a differential operator 1,/* by

1.1 L7 = 12l eV,

for ue Cy(2). (Note here and throughout this paper we employ the
usual summation convention for tensor indices.) The differential
operators we consider are just sums L = > [/

For any tensor field T, we shall denote its length (a function
over 2) by |T|. In order to analyze the behavior of our operators
“at infinity” let us make the following definition: if f is a (complex-
valued) function on 2, we shall write lim,_.. f = M provided for any
¢ > 0 there is a compact set K< 2 such that | f(x) — M| < e for all
x € 2\K. We shall consider the following conditions on the curvature
tensor R.

Condition H. |F*R| is bounded over 2 for all k = 0.

Condition H, In addition to Condition H, lim,..|/*R| =0 for
all k= 1.

Throughout this paper we shall be assuming Condition H with-
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out further mentioning it.
We may now prove the following

THEOREM 1.1. If L=>Y,1.F* has bounded coefficients (i.e., each
|| is bounded over 2), then LAY € &Z(9). If in addition L has coef-
ficients vanishing af infinity (i.e., lim,_..[l,| = 0 for each ), then
ALAY € 227(D).

Proof. 1t suffices to consider top-order terms only: L = I,/”.
Let 4 eCy(2). Condition H implies the following estimate for the
L*norms:

e R L D N P

<

7 gy )

0Lk (N-1

where C is a constant. (Note: if T is a tensor with length |T'|, then
T = Sg |T*dp. C. f. Aubin [1] for this notation, and Proposition
3 in [1] for the estimate (1.2).) So

1L | = (sup | LelF) 177 I

(1.3) = Cl( 2, 145l + |[VA"¢|]2>

0sks (N ]2) 0sks(N-—1/2)

= 3 I0-ir+ S Ira - 2

0=k=(NV/2) sks (V-1

= Gl A — )"y |®

where the C, are constants and for the last inequality we have used
the estimates (for ¢ e C(2))

gl = 1A — (" = [|(X — Dg|f*

14
T psie = 11— 2l — gl = 1L — e

Since A77Cy(R2) is dense in & (c.f. Cordes [3]), estimate (1.3) proves
LAY e £(9). Now suppose lim,..|[ly|] =0 and for &> 0 choose
Kc 2, compact, such that |I,| <e for xe Q\K. Let ¢eC5(2) with
supp 6 K and define L, = ¢L. Then ALAY = A¢- LAY € 27°(9), since
LAY e 2(9) and Ape 227 (9) by Theorem 3.1 in [5]. Since AL A" —
ALAY in norm as ¢ — 0, we also have ALAY ¢ 2£7(9).

In order to do Fredholm theory, we must restrict our attention
to the following classes of operators
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TV = {L = ﬁ 1.V*: each |l,| is bounded over 2 and satisfies

lim |F¥l,| = 0 for all k = 1} .

Let Ty < T” be those operators for which lim,..|l.| = 0 for each a.
We shall denote the function algebra T° by A, and the collection of
vector fields L = [/*e T* by D. Let L” be the subcollection of 77
generated by taking sums of products of functions in 4 and vector
fields in D. Finally, let A, =T}, D,=DN T and LY = L*NTY.
Note that the 7% and L* form graded algebras with respect to
ordinary operator product, and that D is a Lie algebra under com-
mutator product with D, as an ideal. Also note that all classes
defined are A-modules.

For L =32, 1./*eT", we define the formal adjoint by L'=
S (=1)%*l, where the operator 7/<l, is defined analogously to
(1.1):

1.5) Velaw =, - 7, (T ew)

for u e C7(2). Using the Leibniz rule for covariant derivatives, note
that L' = (—=1)"L + lower order termse7?. Also note that Le
L¥(resp. TY) implies L' € L¥(resp. TY). The formal adjoint has the
property that for u, veCy(2) we have {Lu, v> = {u, L'v) (where
{, > denotes the L* inner product). Thus, using self-adjointness of
4, we have {LAYu, v) = {u, A"L'v) for ve CP(2) and u e A™7Cy(2).
Since both C(Q) and 4™ 7CP(2) are dense in § we obtain the follow-
ing from Theorem 1.1.

COROLLARY 1.2. IfLeT¥, then LAY, AL e (D) and (LAY)* =
AYL' (where * denotes the Hilbert space adjoint).

We next begin investigating commutators. Let LY 4+ T¥ denote
the algebraic sum of those two classes of operators.

LEMMA 1.3. If LeL + T3 and Mec LY 4+ T7: then [L, M]e
TV+¥t gqnd [L, 4] € TV,

Proof. If LeTy or MeT7?, then [L, M]e Ty may easily
be seen by collecting top-order terms. Hence we may assume
Le L™ and Me L”., The proof of the first statement then follows
using [D,, D, e D, and [L, DM) = [L, DIM + D[L, M] for D, D,, D, e D.
To prove the second statement we may assume Le L™, and has
top terms only: L =D, --- Dy, where D;eD. Then [L,4]=
[D, -+ Dy, 4l = D, -+ Dy _\[Dy,, 41 +[D; - -+ Dy,_,, 41Dy, so the second
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statement follows provided we can show [D, 4]€ T': for every De D.
But letting D = b/,, a computation in local coordinates shows

[D, 4] = [67, 977 7]
= big" YV, — bg*r VW, (mod T?)
= bigij;cjiV 1
= biglpRl;kal
= —g* (7, F bk — 7 757,
= O(mod T?) .

(1.6)

This lemma and Theorem 1.1 enable us to investigate commuta-
tors of certain bounded operators.

LEMMA 14. If LeL” + TY, then [LAY, A] = KA = AK, where
K; e 27 (D).

Proof. If we let RA\) =W —4)™" and I'={zeC:|z— 1| =1}
(with positive orientation), then

(1-7) (LAY, A] = 2—715 Srl/“i [LA¥, RO)]dM

and

[LAY, R(\M)] = ROV[LAY, AIR(WA
(1.8) = ROVAYL, 4]A¥*R(\)4
= AR\ KR(\)A

where K = A[L, A]4"+* € 2¢ by Theorem 1.1 and Lemma 1.8. Let
K.(\) = AR(\)KR(N) and K,(\) = R(\)KR(\)A4, so K;(\) defines a norm
continuous map from I'\{0} to 2. Using (4.1) of [5] with s=1
shows that K;(\) = O(n|™*%). So K;= (27:7})"‘8 VA K;(\dh e 52
for j =1, 2 and the lemma is proved. "

The above lemma enables us to prove the following useful result.

PrROPOSITION 1.5. If LeL” + TY and P and Q are nonnegative
integers such that P+ Q = N, then

(i) APLA%e 2 (D) and (ii) ATLA® — LAY e 22°(9). In addition,
iof LeTY then (ili) ATHLA° e 977(9).

Proof. We perform an induction on P. The case P = 0 is just
Theorem 1.1: for N=0 and Le L" + TY we have (i) LAY € <~2(9),
(i) LAY — LAY e 2%, and (in case LeT?) (ili) ALA"e 2. Now
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assume by induction that the proposition is true for P. For N = P,
let LeL” + TY and @ = N — P. Then

(L.9) [APLA°, A] = (27i)~ er/f [A7LA°, ROVIdN

and

[4PLA%, R(\)] = ROWAP[LA, A2R(N)

(1.10) = AR AP+ [L, 414 R(\)
= AR(\)KR(\)A

where I" and R()\) are as in the preceding proof and K = A"+'[L, 4]4%+.
But by Lemma 1.8, [L, 4]€ T¥*, so K = A(A”[L, 4]14°*) € 22" by the
induetion hypothesis (for P and N+ 1). So if we let K(\) =
ARMKR() and K, = RO\)KR(\)A, then K;(\) = O(x|™%) and
[APLA%, 4] = KA = AK, where K; = (2mi)™ SFKj(mdx e % for j=
1, 2. Since 9, = A9 is dense in O, this implies

(1.11) APLA® — APHL A € 2%

Using the induction hypothesis, we get (i) for P+ 1. In fact the
induction hypothesis also yields

(1.12) APLA® — LAY € 5%

which together with (1.11) yields (ii) for P + 1. Finally, if Le T7,
multiplying (1.11) on the left by 4 and invoking the case P once
more yields (iii) for P + 1.

COROLLARY 1.6. If LeL” 4+ T¥, then LAY — AL e 2%

Let 91° denote the algebra of bounded operators on § which is
finitely generated by LAY and AL for L e L¥ + Ty. Note that %°
contains 4 and multiplications by funetions in A. Let % be the
norm eclosure of the collection A° 4 .2#7 We may now prove the
following.

THEOREM 1.7. 9 is a C*-subalgebra of () with compact com-
mutators.

Proof. U is closed under adjoints by Corollary 1.2. Concerning
commutators, let L,e L™ + TV and L,e L + T9: and suppose
N, = N,. Then L,e L™ + T+ and

L AL AV = L LAY AY: = AN AN L L, = AM A" L, L,
= AV L A" L, = L, A" L, A" (mod .5¢")
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using Lemma 1.3 and Corollary 1.6. By Corollary 1.6 this takes care
of all commutators.

We shall call % the C*-algebra for singular elliptic theory on
2. The reason for this is as follows. By Theorem 1.7, A/2 is a
commutative C*-algebra; hence by the Gel’fand theory it is isometri-
cally *-isomorphic to C(M), the algebra of continuous functions on
the space M of maximal ideals in /277 For Ac?, denote the
image of its coset A + .2 in C(M) by o,. Since A/ % is a C*-
algebra, invertibility of 4 + 27 in £°(9)/.2 is equivalent to its
invertibility in /.2¢, and hence to the nonvanishing of ¢, on M.
Thus a further analysis of ¢, and M is desired to provide an
algebraic criterion for 4 to be Fredholm. We turn to this question
in the remaining sections.

2. Maximal ideals over finite points. Let o, C 2 denote the
algebra of multiplication operators obtained by closing A4 under the
uniform norm. Since ¥,, is a closed *-subalgebra of all bounded con-
tinuous functions on 2, A, is isometrically *-isomorphic to C(2)
where 2 is some compactification of 2. Although 2 has no simple
geometrical structure, there is a continuous surjection p: M — 2
defined as the associated dual map (c.f. [12]) for the continuous
injection A, — A/ %7 Thus S = p~(2) is the set of maximal ideals
over finite points of 2. We can completely describe this part of M
and o,. If I, is a contravariant tensor field of degree «, we shall
denote by 1,&* the function defined on cotangent vectors (x, ) by

(@), -

THEOREM 2.1. S is homeomorphic to S=Q, the bundle of wunit
cospheres, under the map m — (x, &) such that

2.1) o n(m) = ly(x)e"

where L = Y3 (—0)* 1y LY + TY. Thus wuniform ellipticity 1s a
necessary condition for L:Hy — O to be Fredholm. (Note that as
special cases of (2.1) we have o (m) =0, and o,(m) = alx) for all
acA)

Proof. For meS with p(m)=xecf, let 2, ---, 2" be local
coordinates in a chart U which diagonalizes the metric at . Let
N be a compact neighborhood of x such that NC U, and let ¢ € Cy(U)
satisfying 0 <¢=<1 on U and ¢ =1 on N. Note that for each 4,
S, = —ig(3/0x)4 €U and SF = S,(mod .227). Hence &, = g5 (m) is real
for each v and (z, & where & = >\». &dx” defines an element of the
cotangent space at x. Furthermore
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> SFgeSy = 3. A(0/ox")pg*¢(0/ox") 4
v p v

(2.2) = — A¢*4A(mod ")
= —¢*AdA(mod .2%7)
= ¢¥(mod .%") .

So

6] = X & = 2 05,(m)g"(2)0s,(m)
(2.3) = O(z,,, 8,4, (M)

=g =1.

Property (i) is immediate from the definition of the surjection
p: M— Q while (ii) follows from o,m) = ¢,/(m) = 0 since ¢(x) =1
and ¢A4¢. %. The formula (2.1) holds for N=1 and L =D=
—ib*(9/6x”) € D since
Opm) = O4op4(m)
= O(gr_, oy —isasonn 4, (M)

= 3\ b,

and this may be extended to higher-order tensors: for example
L=—-0"wr.eL?+ T: implies

$LA = 2, (=gl V)l = 2 (=gl 7. (g7 pA)(mod 77)

80
O (M) = gy o(m)
(2.5) = Zﬂ (—al*(x)&,)(i&,)

= lw(x)gus.“ -

The map m — (z, &) is clearly 1-1. To show it is surjective onto
S*2, we use the following lemma (whose proof is immediate) to
achieve local rotations of M.

LemMMA 2.2. Let ¢ €, be real-valued satisfying 06 =<1 on 2
and ¢ =1 on a closed set UC 2, and consider the C*-algebra A, C A
generated by 27, ac A, ¢4, and ¢"LAY: Le L¥+Ty. Let M, be the
mazimal ideal space of Uy/ 5, 0?2 U;—C(M;) the symbol homomorphism,
Dy M, — 2 the associated dual map to the imclusion A, C U,/ 57"
Let N, = p; X U)c M, whereas N = p™(U)cC M. Defining pla+ 527) =
a + 2 and o(LAY + 227) = ¢"LA" + 2% yields a surjective algebra
*-homomorphism 0: A/ 2% — W,/ %" whose associated dual map
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provides an injection j: M, — M such that

M¢ —‘—j——_) M

AN /
PN\ P
Q
commutes and
2.7 0,(j(n)) = a5(n)

Jorallme M,, Ac¥, and Be p(A + 2¢7). Furthermore, the restric-
tion of j to N, provides a homeomorphism onto N, so we may
consider N, C M and NC M,.

Applying the lemma in our case, since ¢ has compact support in
a coordinate chart, the algebra U, is generated by ac A4, S:v=
1, ---,n, and 227 Choose any & eS}2 and let R = (+¥) be an
orthogonal matrix such that & = R¢. Defining z(a + .227) = a + 5%~
and (S, +.2) =T, + .22 where T,= —ip >, r*0/ox)4, We
obtain a surjective *-isomorphism z: %,/ % — U,/ %% whose associated
dual map must be a (surjective) homeomorphism h: M, — M, satisfy-
ing o%(h(n)) = o4(n) for all Ac,, neM,, and Be7r(4A + .2%7). In
particular, i preserves fibers over U. Thus m’ = j(h(m)) € M has
the desired property that m' — (x, &) under the correspondence of
the theorem since & = 3., &, = of (h(m)) = o5 (j(h(m))). So we
need only check continuity. But the topology of M is defined so
that each o, is continuous, and since the functions (2.1) are continu-
ous on S*2 (with respect to the usual cosphere bundle topology)
and these functions separate points of S*Q2, we must have the map
m — (¢, £) continuous. In a similar manner we have the inverse
mapping continuous.

Theorem 2.1 is analogous to the result for compact 2 proved
by Seeley [13]. The proof is similar to that in [13], except regarding
the surjectivity of the correspondence: we have used associated dual
maps, ideas generalized to manifolds from Herman [8], instead of
the Gohberg type estimates invoked by Seeley. In fact, it should
be pointed out that the validity of Theorem 2.1 depends only on the
generators of the algebra at finite points of 2 (an idea expressed
more precisely in Lemma 2.2). Hence Theorem 2.1 would remain
true if we were to allow generators of 9 which do not behave
asymptotically like products of vector fields in D. However, to
complete the analysis at hand, we must analyze the asymptotic
behavior of D which we take up in the next section.
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3. The asymptotic behavior of D, We are interested in finding
a set of generators of D at “infinite points of 2.” Let 62 = 2\2,
but recall that this set only has meaning as a collection of maximal
ideals for the algebra %,. However, if D, D,c D then their point-
wise inner product under the metric g,; defines a function ¢(D,, D,)
which, by the Leibniz rule for covariant derivatives, is in A. Thus
9(D,, D,)(x) for xcoR is defined.

DEFINITION. We shall call D, ---, D,e D an orthonormal basis
for D at xcof if
. 1 if i=7y
(ii) for every De D thre exists constants ¢, -+, ¢, such that

the function | D — Ze¢,D;|* € A vanishes at x.

Using a Gram-Schmidt type of procedure, it is not hard to
verify that there exists an orthonormal basis for D at each x¢d®,
and that each basis contains the same number of vector fields,
£ = d(x), the “dimension” of D at . Note that £ < n.

We would like to be able to extend the notion of orthonormal
bases to open sets in 2. In order to do so we need the following
condition.

Condition C. The function d: 92 — Z, is continuous. I.e., the
dimension of D is constant on connected components of 42.

We may now prove the following.
THEOREM 3.1. Under Condition C, for every x,€02 we can find

an open set U, 2 and real vector fields D, ---, D,e D (k = d(z,))
such that

(1) x, € U,
1 if i=4
(i) 9(D;, D;)(x) = {O 1 ¢ z ~ j} Jor every xe U,

(iil) for every De D we may find functions a, ---, a,€ A such
that D= a,D, + a,D, + --- + a.D, + D, everywhere on U, where
D, e D satisfies g(D,, Dy)(x) = 0 for all €32 N U,.

Proof. Pick an orthonormal basis at z: D, -+, D.eD. With-
out loss of generality we may assume D,, ---, D, are all real vector
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fields (since otherwise we may orthogonalize the real and imaginary
parts at ). Since g(D,, D;)e A for all 4, j, there exists an open
set U, 2 containing x, such that 82 N U, is connected and

>8/4 if i=j

3.1 D.. D. —
3.1) oD,y Dy)(@) {<1/2E .

for all x € U,. Let XeC=(R) with all derivatives bounded, |X(#)| <1
for all ¢, and

1 if t>1/3

3-2) 1) = {0 if t<1/4

Let ¢, = XN(g(l:)l, IN)I))N. It is easy to see that ¢,(g(D, D)) *e 4 so
D, = ¢,(¢(D,, D))" *D, € D and satisfies g(D,, D) = 1 on U,. Inductive-
ly, define D; = ¢;(¢9(B;, B;))™* B; where ¢; = X(¢(B;, B;)) and B; =

ﬁj — g(D,, f)j)D1 — oo — g(D;_y, ﬁj)DH. A computation shows
a3 B B)= 9(D;, D;) — 9(Dy, D) — - -+ — g(D;., D)’
’ > 3/4 —1/3k — 13k — -+ — 1/8c > 1/8
for x e U, so D;e D. Hence D, ---, D, is orthogonal at every x ¢ U,

i.e., we have (ii). Now let a, = ¢g(D, D;)e A, and let D,= D —
S=a;D;. Then

(3.4) 9(Dy, D;) = g(D — Za. D, D) =a; —a; =0

implies D, is never a linear combination of D, ---, D, on U,. Hence
by Condition C and the connectedness of 62 N U, we must have
g(D,, D)(x) = 0 for all zeo2 N U,.

4. The formal algebra symbol and maximal ideals at infinity.
For L = 3% 1.7*e T, let us define the formal symbol

WD Gl O = (5 L@ )L+ 16D = Faa, 9

which is a continuous function on the cotangent bundle 77*Q2. (Recall
from §2 that the notation [,£&* means the function li«(x)¢, --- & .)
Note that the boundedness of the coefficient tensors of L implies
&, v is bounded on T*Q. The formal symbols for operators LA~
and AL in U° generate a C*-subalgebra .# of the algebra of
bounded continuous functions on T*Q. Hence .# is isometrically
*_isomorphic to C(P*R2), where P*Q denotes some compactification
of T*Q. The injection ¥, —.& yields a continuous surjection =:
P*Q — 2. Unfortunately the map : A°— C(P*2) is not an algebra
homomorphism: for example &,5, .. = (b'¢’&:5; + be?, ) + [£]H7"
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but 6,60, = (b'¢¢E)A + |£)™* where D, =bdV, D,=cV;eD.
However, if we restric our functions to the subset dP*Q = P*Q\T*Q,
we obtain an algebra homomorphism g: %’ — C(GP*2) and we call
04 = 64lspe the formal algebra symbol of AU

It is evident that the cosphere bundle S*2 is homeomorphic to
77Y2) by the map (x, & — lim, , (z, r6) e 0P*2. Theorem 2.1 may
be interpreted as providing a continuous injection 6: S — dP*Q2 such
that

(4.2) G4(6(m)) = 04(m)

for m € S and operators Ac°. The main result of this paper extends
this results as follows.

THEOREM 4.1. Under Condition C, there exists continuous in-
jection 0: M — oP*Q such that

0

M—" . op*0
(4.3) \p\ /ﬂ/
0

18 commutative, and (4.2) holds for all me M and AcA. Thus a
sufficient condition that L: 9y — © be Fredholm is that o, # 0 on
oP*Q.

Before extending 6 to M, = M\S, we first must analyze C(M)
a little more closely. Let M, denote the closure in M of S and
M, = M\M,. We may now prove the following.

LemmA 4.2. M, = {me M:o0,(m) = 0}.

Proof. By Theorem 2.1 it is clear that M, C {m e M: o,(m) = 0}.
Let # ={AeW.0,=0on M}. Then_ #/5 isa C*-algebra (with-
out unit) which is isomorphic to the algebra of continuous functions
on M, which vanish at infinity. Since 4 is the only generator of
A in_Z _Z must be generated by operators of the form A4 and
AA where Aec¥U’. So if om) =0 for me M, then oz(m) = 0 for
all Be _# which is impossible.

LemmA 4.3. If LeTy, then o5 =0 on M,

Proof. If meM,_ N M, let m; be a net in S converging to m.
Then using Theorem 2.1 we conclude that o,,(m;) — 0 = o, w(m).
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If me M, then o,(m) =0 by Lemma 4.2. But o, w(m)o,(m) = 0,5+
(m) = 0 since LAY e 2 so o,.m(m) = 0.

Now let m,e M, with z, = p(m,) €02. By the methods used in
the proof of Theorem 3.1, it is possible to construct (in addition to
U,) a closed neighborhood Uc U, of x, and ¢c¥, satisfying ¢ =1
on U, 0=¢=<1on 2, and suppg U, Let ¥, p,, M,, N;,, and N
all be as described in Lemma 2.2. Furthermore, let U, = 62 N U and
N, =p%(U,). By Lemma 2.2 we will also consider N,cC M,. Let
D, .-+, D.e Dk = d(x,)) be real vector fields as in Theorem 3.1, with

expressions in local coordinates D, = bi(3/dx’) for v =1, ---, k. Let
S, = —ipD,aeU, forv=1, ---, k. We define a contravariant tensor
hi* by

(4.4) g% = 3 bibk + hi* .

If (x, &) is a complex covector with z< U, and |£|* = 1, then
> bigbiE, < 1

since the D, form an orthonormal set on U,. Hence hi*s;&, = 0, i.e.,
h* is positive semidefinite. We shall assume henceforth that A’ is
not identically zero, i.e., that £ < n. (See Remark 4.6 below for the
case £ = n.) From (4.4) we obtain

(4.5) Vg = 3,7 GWUT + Vg h,
y=1

Since
AV ;¢*g™V A = Ag*44 (mod 2%7)

(4.6) = ¢*Ad4 (mod .9%")

— ¢2A2 . ¢2
and

AW ;"6 (V) A = — AP 7igbi) (1Ll ;) A

4.7 = —S*S,

= —Smod .2%")
we get after multiplying (4.5) on the left and right by 4 and rear-
ranging:

(4.8) ¢ = g4 — AHA + 3} S(mod .5)

where H denotes the operator /,6°h"*/,. The positive semi-definite-
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ness of the tensor h* implies
(4.9) {AHAu, w)y = —SQ hW AV ;Au)dp < 0

for e C2(2), so the operator 4AHA is nonpositive. Hence ¢*A*—AHA
is nonnegative and we may define S, = (4*4* — AHA)™*. From (4.8)
we conclude 4HA, S €A, and

(4.10) ¢ = 3, Smod %) .

If welet S5 ={{=(, -, )eR*: 3, =1and {,=0}, then
we are now able to prove the following.

PROPOSITION 4.4. There exists a continuous injection
(4.11) w:N,—> U, x[0,1] x S%

such that w,(n) = (z,r,{) satisfies (1) 0.(n) = a(x), (i) o4n) =7,
(iii) o5,(n) =L (v=10,1, ---, k), and (iv) § = 7.

Proof. Since N, is a closed subset of M;, £, ={AcWU:c, =0
on N,} is a closed ideal of %%, and ¥,/ _# =~ C(N.). Furthermore,
using N, C M, and Lemma 4.3, %,/ % is generated by a + _Z(ac A),
¢d + _5%, and 8, + _% (v=1, .-+, k). Thus if we let <&, be the
C*-algebra generated by %, and %, then <7,/ % is a commutative
C*-algebra isometrically *-isomorphic to C(U.). Also if we let %
be the C*-algebra generated by ¢4, S, » =0, 1, ---, £), and_J%; then
A/ % is a commutative C*-algebra (with unit using (4.8) and the fact
that ¢ = 1(mod_J%;)). In fact, since A/ % is finitely generated, it has
maximal ideal space N% homeomorphic to the joint spectrum of its
generators (c.f. [12]). If we let o*: A{ — C(IV:) denote the symbol
homomorphism, then (4.9) implies ¢%;, <0, and so by (4.8),
0 < 0fe < 1. By (4.10) we also have 35, (0% )" = 1. Thus there is
an injection

(4.12) Nt —1[0,1] x S

where n — (7, {) satisfies o%,(n) = » and 0§ (n) = {,. Since A,/ 54 is
generated by 7,/ % and ¥}/ %, we can use Herman’s Lemma (c.f.
[8], Theorem 1) to conclude the existence of a continuous injection
N,— U, x N% and composition with (4.12) yields a continuous in-
jection w4 N, — U, X [0, 1] x S satisfying oi(n) = a(x), oi(n) = r,
and o(n)! = {,. When we view N,C M (i.e.,, compose w, with the
homeomorphism »p™(U) = p;%(U)), we obtain the map w, of (4.11)
satisfying (i)-(iii). Condition (iv) is simply a consequence of A* <
A — AHA.
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In a similar manner we can let P*U =xz"%(U) and P*U_, =
P*UNP*2., = 7Y (U,). Applying the above argument to the funec-
tion algebra &; generated by the formal symbolsof the generators

of 2, yields

PROPOSITION 4.5. There exists a continuous injection
(4.13) w,. P*U,— U, x [0, 1] x S

such that for wy(p) = (x, r, L) we have (i) 6,(p) = a(x), (1) d.p) = 7,
(i) dg @) =¢ w=0,1,---,%), and (iv) {=». In fact, every
(x, ,0) in U, X [0, 1] x S5 satisfying (iv) is in the range of ,.

Proof. To prove the last statement, let ;€2 denote a net con-
verging to x. Let & en'(x;) satisfy

(4.14) big)r=¢4 @@=1,---,k).
But this implies by (4.4) that

(18 — REED I = 3¢
or

ce_ 1
(4.15) HEE

_ LC_(;)_Z_ + h(Ep)i(Es); -
7 T

The last term in (4.15) is nonnegative, so by adding something to
g; from the kernel of the system (4.14), which is nontrivial since we
are assuming £ < %, we can also require

(4.16) &=L 1
Ve

£, solves bi(sh); = £..) Observe that for each B, &,(x; &) = » and
05, (@ &) = L (v =1, - -+, £); hence also [5x4, &) =1~ 3-8 =
for every B. Thus (x; &) must converge to a point pe P*Q,
satisfying w,(p) = (x, r, ).

provided (, = r. (Note: if » = 0, take & = lim, ., 7&; € 7% (x;) where

These propositions easily imply our main result.

Proof of Theorem 4.1. Note that w;'ow, provides a continuous
injection 6: N, — P*Q_. It is clear that the value 0(n) € oP*Q does
not depend on the choice of neighborhood U, so we obtain a con-
tinuous injection ¢: M, — oP*2. Letting me M, N M, and mzeS
denote a net converging to m, it is easy to check that ¢,6(m)) =
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lim; 6,(6(m;)) for every Ac U’ so we obtain a continuous injection
0: M — oP*Q2 satisfying (4.2).

REMARK 4.6. It was assumed above that £ < n. Actually, the
case k£ = n is easier, for then we obtain from

(4.4) g = 3 bibk

y=1

that

o

# = 4 + Xn, Si(mod .5¢")
(4.10) . =
=3, S#(mod .5¢7)

after defining S, = ¢4. In place of Proposition 4.4, the same proof
establishes a continuous injection

(4.11") @;:N,— U, x St

satisfying w,(n) = (x, {) with o,(n) = a(x) and o5 (n) ={, » =0, -, n).
Similarly we get a continuous injection

(4.13") w,: P*U,— U, x S%

satisfying w,(n) = (, {) with 6,(») = a(x) and 65(n) ={, (v =0, -, n).
In fact, imitating the proof of Proposition 4.5 establishes that (4.13")
is surjective, and the proof of Theorem 4.1 follows as above.
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