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CONTINUOUS SELECTIONS AND
FINITE-DIMENSIONAL SETS

E. MICHAEL

Some known selection theorems are strengthened by
weakening the hypotheses on a finite-dimensional subset of
the domain.

1. Introduction. The following selection theorem was recently
obtained in [7] by C. Pixley and the author.

THEOREM 1.1. Let X be paracompact, Y a Banach space, Z X
with dim, Z <0, and ¢: X > F (Y) ls.c. with ¢(x) convex for all
xeX — Z. Then ¢ has a selection.

Let us quickly define our terms: We write 2" ={SC Y:S = @}
and & (Y)={Se€2":S closed in Y}. A map ¢: X — 2" is lower semi-
continuous, or Ls.c., if {xe X:¢(x) NV #= @} is open in X for every
open V in Y. A selection for a map ¢: X — 2" is a continuous
f: X —Y such that f(z)eg(x) for every xe X. Finally, if Z X,
then dim, Z <% means that dim S <« for every subset S of Z
which is closed in X.!

The purpose of this paper is first to generalize Theorem 1.1 to
the case where dim; Z < n, and then to prove two other theorems
of this type in which different assumptions are made on ¢(x) when
xe X — Z. Just like Theorem 1.1, all of these “hybrid” selection
theorems reduce to known results when Z = @ or Z = X. Theorem
1.1, along with the special cases of Theorems 1.3 and 1.4 where
dim Z = 0, will be applied in [6].

In contrast to Theorem 1.1, the theorems to be proved in this
paper all have both a local and a global version. To state these
results sueccinetly, we introduce some more terminology: A map
¢: X — 27 has the selection extension property, or SEP, if, whenever
AC X is closed, every selection g for ¢|A extends to a selection
for ¢. If g only extends to a selection for ¢|U for some neighbor-
hood U of A in X, then we say that ¢ has the selection meighbor-
hood extension property, or SNEP. As pointed out in [6], Theorem
1.1 can be strengthened to conclude that ¢ actually has the SEP.

Before stating Theorem 1.2, we recall the following concepts
from [4, p. 565], where n» = —1: A space S is C* if every continu-
ous image of an i-sphere (4 < n) in S is contractible in S. A collee-

1 QObserve that, for normal X, dimx Z<n is valid if either dim Z<# or dim X=n.
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tion &7 of subsets of a metric space Y is uniformly equi-LC" if to
every ¢ > 0 corresponds a v(¢) > 0 such that, for every Se.5 every
continuous image of an i-sphere (1 <) in S of diameter <y(g) is
contractible over a subset of S of diameter <e. Since there is no
(—1)-sphere, the above properties are always vacuously satisfied
when n = —1, and hence Theorem 1.2 really generalizes Theorem
1.1.

THEOREM 1.2. Let X be paracompact, Y a Banach space, Z C X
with dimy; Z <n + 1, and ¢:X— F(Y) ls.c. with ¢x) convex for
all xe X—Z and with {¢(x): x € Z} uniformly equi-LC". Then ¢ has
the SNEP. If, moreover, ¢(x) is C* for every x € Z, then ¢ has the
SEP.

Theorem 1.2 reduces to [3, Theorem 3.2”] when Z = @, and it
implies [4, Theorem 1.2] when Z = X (more generally, when Z is
open in X and ¢(x) is a singleton for 2¢ X — Z).

In our next theorem, a metric space Y is called an AR (resp.
ANR) if it is a retract (resp. neighborhood retract) of every metric
space E containing it as a closed subset. A collection & of sub-
sets of a topological space Y is called equi-LC" in Y if, for every
ye Y, every neighborhood V of % contains a neighborhood W of y
such that, for any Se.5 every continuous image of an i-sphere
(t=<n) in WNS is contractible in VN S. It is easy to see that
every uniformly equi-LC" collection of subsets of a metric space Y
is equi-LC" in Y; for a partial converse, see Lemma 6.1(b).

THEOREM 1.8. Let X be paracompact, Y a complete metric ANR,
ZcX with dimy Z <n + 1, and ¢: X > F(Y) Ls.c. with ¢(x) =Y
for x€ X — Z and with {¢(x): x € Z} equi-LC" in Y. Then ¢ has the
SNEP. If moreover, Y is an AR and ¢(x) is C™ for every x€ Z,
then ¢ has the SEP.

Observe that, when Z = &, Theorem 1.3 reduces to the known
result that every complete metric AR (resp. ANR) has the extension
property (resp. neighborhood extension property) with respect to
paracompact spaces (see, for instance, C. H. Dowker [1]).

Our next result reduces to [4, Theorem 1.2] when Z = Q.

THEOREM 1.4. Let X be paracompact, AC X closed with
dim;, X—A)=n+1, ZcX—-—A with dimyZ=m+ 1 (where
m=n), Y complete metric, and ¢: X— F (Y) lLs.c. such that
{p(x): xe X — Z} is equi-LC" in Y and {$(x): x € Z} is equi-LC™ in Y.
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Then ¢ has the SNEP at A2 If, moreover, ¢(x) is C" for all
xeX — Z and C™ for all xe€Z, then ¢ has the SEP at A.

The paper is arranged as follows. Two known lemmas on l.s.c.
maps are stated in §2, some general results on selections are
established in §3, and a result which is implicitly contained in [4]
is recorded in §4. After these preliminaries, Theorems 1.2, 1.3 and
1.4 are then proved in §§5, 6 and 7, respectively.

2. Two lemmas on ls.c. maps. The following two known
lemmas will be applied in the sequel.

LemmA 2.1 [3, Example 1.3]. Let ¢: X —2" be ls.c.,, AcCX
closed, and g a selection for ¢|A. Define ¢, X — 2V by ¢,(x) = ¢(x)
if xeX — A and ¢,(x) = {gx)} if x€ A. Then ¢, is also l.s.c.

Henceforth, we shall freely refer to the map ¢, defined in
Lemma 2.1.

LEMMA 2.2 [4, Lemma 11.8]. Let ¢: X — 2" be ls.c. with Y a
metric space, let KCY be compact, and let ¢ >0. Then {xecX:
K cC B.(¢x)} is open in Y.

3. Two properties of set-valued maps. In this section we
consider the following two properties of a map ¢: X — 2", where Y
is a metric space.

(3.1) To every ¢ > 0 corresponds an «a{e) > 0 with the following
property: If AcC X is closed, ¢ is a selection for ¢|A4,and n: X — Y
is continuous with d(h, ¢,) < a(e), then g extends to a selection f
for ¢ with d(f, h) <e.*

(3.2) To every & > 0 corresponds a B(¢) > 0 with the following
property: If AcC X is closed, g is a selection for ¢| A, h: X — Y is
continuous with d(h, ¢,) < B(e), and g > 0, then there exists a con-
tinuous f: X — Y with d(f, h) < & and d(f, ¢,) < .

Property (3.2) (often with A = @) is used—implicitly or ex-
plicitly—in the proofs of almost all general selection theorems
known to the author, including those in this paper. It is clear that
the slightly simpler property (3.1) (which is called the selection ap-
proximation property, or SAP, in [6, §5]) always implies (3.2); the

2 i.e., ¢ satisfies the definition of the SNEP for this particular A.
3 B(S) denotes the e-neighborhood of S.

¢ Here d is the metric on Y, and d(h, ¢,) < a denotes that d(h(x), ¢,(x)) < « for all
x€X. Similarly for d(f, k) < ¢, ete.
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following result shows that, under mild restrictions, the two pro-
perties are actually equivalent.

PROPOSITION 3.3. If Y s a complete metric space, and if ¢(x)
ts closed in Y for all x€ X, then (8.2) implies (3.1). Moreover, one
can take a(e) = B(e/2); in particular, if one can take B(co) = oo®
then one can also take a(cc) = oo,

Proof. Assume that ¢ satisfies (8.2) and let us show that it
satisfies (8.1) with a(e) = B(¢/2). Let f, = h. By induction, use (3.2)
to construct continuous maps f,: X — Y such that d(f,, ¢,) < B(2™"e)
and d(fory, fo)<27" V¢ for all n=1. Let f=lim, f,. This f satisfies
(8.1) with a(e) = B(g/2).

PROPOSITION 3.4. Suppose ¢: X — 2¥, with Y metric. Then:

(a) If ¢ satisfies (3.1) with a(e) = <o, then ¢ has the SEP.

(b) If X is collectionwise normal’, if Y ts a Banach space, and
if ¢|B satisfies (3.1) for every closed BC X with afc) independent
of B, then ¢ has the SNEP.

Proof. (a) Clear (see Footnote 5).

(b) Suppose A C X is closed and ¢ is a selection for ¢|A. By
a theorem of C. H. Dowker [1], g can be extended to a continuous
h: X—Y. Let U= {reX:d(h, ¢) <a(e)}. Then U is open in X
(since ¢ is l.s.c.) and A C U, so there is an open V in X such that
AcVcVcU. Then d|V, ¢,|V) < a(e), so by assumption g ex-
tends to a selection f for ¢|V. That completes the proof.

4. A lemma about nerves of coverings. If % is a covering
of X, then we write N(%’) for the nerve of % and Ni(%) for the
i-skeleton of N(%Z). A function u: Ni(%') — Y is called a represen-
tation if #|o is continuous for every simplex ¢ of N'(%).

LEMMA 4.1. Let Y be a Banach space and & C2¥ uniformly
equi-LC™. Then to every ¢ >0 corresponds a () >0 with the
following property: If X 1is paracompact, ¢: X — S l.s.e.,, h: X—Y
continuous with d(h, ¢) < v(€), and ¢ >0, then there exists a locally
Jinite open cover Z of X and a representation u: N (Z)— Y such
that, if o is a stmplex of N**(Z) with vertices U,, ---, U;, and if
zxelUn---NU;, then

5 That one can take a(oo)=co simply means, in effect, that there exists a selection
f for ¢, with nothing of consequence being assumed or concluded about ~. This use-

ful shorthand, which was introduced in [4], will be used throughout this paper.
® This property lies between normality and paracompactuess.
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u(0) C Bu(¢(@)) N B.(h(x)) .

If every Se.&” is C", then one can take (o) = oo.

Proof. This result is, in effect, a slight generalization of [4,
Lemma 6.1]. In that lemma, it was assumed—in addition to our
present hypotheses—that dim X <« + 1, and it was concluded—
in addition to our present conclusions—that the cover % is of order
<n + 2 (so that N(%') = N**'(%)). The proof of [4, Lemma 6.1]
remains valid for our present result.

5. Proof of Theorem 1.2. By Propositions 3.3 and 3.4, it will
suffice to show that ¢ satisfies condition (3.2),” and that one can take
B(ec) = oo in case ¢(x) is C* for every xe Z. In fact, we will show
that ¢ satisfies (38.2) with B(¢) = v(¢), where v(¢) is as in Lemma 4.1,

Let A, g and h be as in (3.2), with B(e) = v(e). Our hypotheses
imply that {g,(x): x€ X} is uniformly equi-LC", so we can pick an
open cover % of X and a representation u: N**'(Z) —Y as in
Lemma 4.1 (applied to ¢,). Now recall that, by Dugundji’s exten-
sion theorem, every convex subset of a Banach space has the ex-
tension property with respect to metric spaces. By inductively
climbing up the i-skeletons of N(%) with 7 >« + 1, we can there-
fore extend u to a representation v: N(%) —Y such that v(o) C
conv v(6) for every simplex ¢ of N(%) with dime >n + 1. It
follows that wo(g) cconvu(c N N**'(%)) for every simplex ¢ of
N(z).

From now on, the proof will closely follow the proof of Theorem
1.1 given in [7].

Let {V,: Ue %} be an open cover of X such that V, < U for all
Ue . For each ze X, let o(x) be the simplex of N(Z) spanned by
those Ue % for which x¢ V,. Let S= X — Z. For each se S, let
H, = U{(V,:s¢ V,}, and let

G, = {re X: v(0,) C[Bulgy(x)) N B.(h(x)]} — H, .

Then G, is open in X by Lemmas 2.1 and 2.2, while seG, by the
properties of % and w stated in Lemma 4.1, our construction of »,
and the fact that B.(¢,(s)) and B.(h(s)) are convex. Also, by the
last part of the definition of G,, o,C o, for every xzeG,.

Let G = U,.5G,, and let E=X—~G. Then FCZ and E is
closed in X, so dimE <n + 1. Now {V,NE:Ue %} is a locally
finite, relatively open cover of E, so it has a relatively open refine-
ment {O;: Ue %} of (indexed) order == + 2 with O, <V, for all

" It is worth recording that this will also establish following result: If ¢ is as in
Theorem 1.2, then ¢ has property (3.1).
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Uezz. Let Wy=V,N(O,UG). Then {W,: UeZ} is an open
cover of X, W, V,cCU for all Ue %, and every xc E is in W,
for at most » + 2 elements Ue Z. Let & X — N(%/) be a canonical
map obtained by using a partition of unity on X subordinated to
{Wy: Ue z}, and define f: X—Y by f =wvo& Let us show that
a(f, ¢,) < ¢t and d(f, h) < ¢, as required by (3.2).

If xe E, then &(x) e N** (%), so

f(@) = v(E@)) = uE(x)) € u(a,) < Bu(4,(2)) N B.(h(x)) ,

where the last inclusion holds by our hypotheses on . Now suppose
x€G. Then xe@G, for some s€S. Hence ¢,Ca,, S0

f(®) = v(&(®)) € v(0,) Cv(0,) C Bu(g,()) N B.(h(x)) ,

where the last inclusion holds by the definition of G,. That com-
pletes the proof.

6. Proof of Theorem 1.3. We begin by recalling a definition
from [5]. A metric space Y is a uniform ANR if to every ¢ >0
corresponds a d6(g) > 0 with the following property: If Y is em-
bedded isometrically as a closed subset in a metric space (¥, d), then
there exists a retraction 7: B;,(Y)—Y such that d(z, »(2)) <e
whenever ze E and d(z, Y) < (). If one can take d(c) = o (so
that the domain of » is always E), then Y is called a uniform AR.

Before proving Theorem 1.3, we need the following lemma.

LEMMA 6.1. Let (Y, d,) be a metric ANR (resp. AR), and let
S C2Y be equi-LC* in Y. Then there exists a compatible metric
d=d, on Y such that:

(a) (Y, d) is a uniform ANR (resp. uniform AR).

(b) < 1s uniformly equi-LC™ with respect to d.

Proof. The existence of a metric d satisfying (a) was proved
in [5, Theorem 1.1]°, and the existence of a metric d satisfying (b)
was proved in [4, Proposition 2.1]. Both results were proved with
the aid of [2, Theorem 1], and that theorem can similarly be applied
to obtain a metric d satisfying (a) and (b) simultaneously. We omit
the details.

Having established Lemma 6.1, we now proceed to the proof of
Theorem 1.83. We begin by remetrizing Y with a metric d as in
Lemma 6.1, with & = {¢(x): x € Z}; since the original metric d, on
Y complete, so is the metric d >=d,. Next, we embed (Y, d) isometri-
cally in a Banach space (K, d). Let 8(¢) and 7: B;.,(Y) — Y be as in

8 For AR’s, it had previously been proved by H. Toruhczyk in [8, Proposition 2.2].
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the above definition of a uniform ANR. We shall regard ¢ as a
map from X to & (H).

By Propositions 3.3 and 3.4, it will suffice to show that ¢ satisfies
condition (3.2),° and that one can take B(c) = o in case Y is an
AR and ¢(x) is C* for every xz€Z. In fact, we will show that ¢
satisfies (3.2) with B(e) = v(30(¢/2)), where v is as in Lemma 4.1
and ¢ is as in the above definition of a uniform ANR.

We proceed as in the proof of Theorem 1.2, with a few modifi-
cations. Let A, g and k be as in (3.2), with B(e) = v(30(¢/2)). Our
hypotheses imply that {¢,(x): x€ X} is uniformly equi-LC", so we
can choose an open cover % of X and a representation w: N"*(%)—E
as in Lemma 4.1 (applied to ¢,), but with e replaced by & = 3d(¢/2)
and with g replaced by f/ = é(¢/2). In terms of this &', the above
definition of B3(¢) becomes B(e) =7(¢’), so that d(h, ¢,)<v(¢'). Moreover,
our choice of ¢ and g yields the following two assertions, whose
easy verification is left to the reader. (Recall that »: B, (Y)—>Y
is our retraction.)

(1) If zeX, ecFE, and ec B.(h(x)), then ee€ B;.,(Y) and
r(e) € B.(h(x)).

(2) If xe A, ec F and e < B,..(g(x)), then r(e) € B.(g(x)).

Now extend the representation u: N"*(Z’) — E to a representa-
tion v: N(%’) — E precisely as in the proof of Theorem 1.2. The
properties of Z7, w and v imply that, if o is a simplex of N(%’) and
if x is in the intersection of its vertices, then w(c) < B..(h(x)), so
v(0) C B;)(Y) by (1). It follows that v(N(%)) is contained in the
domain of 7, and we can define w = rov. Our proof now continues
just like the proof of Theorem 1.2, except that » is replaced by w
in the definitions of G, and f. Everything goes through as before,
except that it requires a bit more care to check that se G, and that
J(@) € B.(h(%)) N Bu(g,(x)) When x e K.

(a) seG,: We must check that w(o,) C B.(h(s)) and that w(s,) C
B.(¢,(s)). For the first inclusion, observe that v(s,) C B..(h(s)) by the
previous paragraph, so w(o,) C B.(h(s)) by (1). For the second in-
clusion, we distinguish two cases: If s¢ A, then ¢,(s) = Y, so our
inclusion is clear because w(o,)CY. If s€ A, then ¢,(s) = {g(s)};
since u(o,) C Bu($,(s)) by Lemma 4.1, we have u(o,) C B,.(g(s)), hence
v(o,) C B..(g(s)) by the construction of v, so (2) implies that w(o,) C
B.(9(s)) = Bu(g,(s))-

(b) f(x) e B.(h(x)) N Bu(¢,(x)) when xze E: Just as in the proof
of Theorem 1.2, we have v(&(x)) € B.(h(x)) N Bu($,(x)) whenever x € E;
since f(x) = r(v(&(x))), our assertion follows from (1) and (2).

That completes the proof.

® It is worth recording that this will also establish the following result: If ¢:
X — #(Y) is as in Theorem 1.3, then Y can be remetrized so that ¢ has property (3.1).
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REMARK. Since the above proof of Theorem 1.3 is fairly com-
plicated, it may be worthwhile to outline an alternative proof for
the important special case where n = —1: First of all, we now
only need part (a) of Lemma 6.1. Next, let us show that (3.2) is
satisfied with B(¢) = 30(¢/2), where ¢ is as in the definition of a
uniform ANR: With A and ¢, as in (3.2), define

0(x) = $,(2) N Bpoy(h(%)) ,
Y(@) = [eonv (6(2)) O 7 (Bun(@@))]™ -

Standard facts about l.s.c. maps imply that  is L.s.c. Now +v(x) =
[econv (6(x))}~ for all xe€ Z, so « has a selection f’ by Theorem 1.1.*
It is easy to check that f'(x) is in B;.(Y)—and thus in the
domain of » —for all xe€ X, so we can define f = rof’. It is not
hard to check that this f is an extension of g which satisfies all
the requirements of (3.2).

7. Proof of Theorem 1.4, As observed in the introduction,
this theorem reduces to [4, Theorem 1.2] when Z = . The proof
of Theorem 1.4 is very similar to that of the older result given in
[4], so it will suffice to indicate the necessary modifications.

(1) Analogously to [4, Proposition 2.1], one proves that there
exists a compatible complete metric d on Y which simultaneously
makes {#(x): x€ X — Z} uniformly LC" and {¢(x): x€ Z} uniformly
equi-LC™. (Observe that {¢(x): xe X} is therefore also uniformly
equi-LC™.)

(2) After the modification in (1) above, we can follow the
proof of [4, Theorem 1.2] essentially without change until we get
to the proof of [4, Lemma 7.3]. In that proof, the hypothesis that
{¢(®): ® € X} is uniformly equi-LC" was needed to construct the maps
Uy, (for dimo = ¢ + 1) in the middle of p. 572 of [4]. Since {¢(x):
xe X} is uniformly equi-LC™ in our present situation, we can con-
struet u,, as before when ¢ < m. For ¢ > m, however, u,, can be
defined as before only if x€ X — Z, but not, in general, when x € Z.
To overcome this obstacle, it suffices to modify the proof of [4,
Lemma 7.3] when 7 > m by first of all shrinking the given open
cover 7z of X to an open cover %’ = {U’: Ue %'} with the follow-
ing two properties:

(a) U’'cU for all Ue%.

(b) For the cover %, the construction of suitable maps wu.,
is possible for all xe X. More precisely: If ¢ is a simplex of

10 This is where we need the assumption that » = —1. For # > —1, there is no
reason to suppose that ¢ satisfies the hypotheses of Theorem 1.2. That explains why,
in our proof of the general case of Theorem 1.8, we were unable to apply Theorem 1.2
and therefore had to imitate its proof instead.
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N+(Z/) with dimo = ¢ + 1 and with vertices U, ---, U,s, and if
zeU;N---NU;i., then w|é can be extended to a continuous u,,:
0 — Y such that u, ,(0) C B.¢(x)) and diam u, (o) < /2.

We construct %’ as follows. Let S=X —Z. If ¢ is a simplex
of N'**'(z/) with dimo = ¢ + 1, and if e S is in the intersection of
the vertices of o, then (since xz¢ Z) we can define u,,, W,, and W,
precisely as in the middle of p. 572 of [4]. Now pick an open cover
{U*: Ue %} of X such that U* U for all Ue %, and for se S let

G, =W, —UlUUe%,seU*}.

Clearly G, is open in X and seG,. Let G = U,.sG,, and let E =
X —G. Then FC Z and Fisclosedin X, sodim F < m + 1. Hence
the relatively open cover {U*NE: Ue %} of E has a relatively
open refinement {O,: U e %} of (indexed) order <m + 2 with O, CcU*
for all Ue . Now let U =U* N (0O, UG) for all Ue Z, and let
Zz' ={U":Ue%}. Clearly %’ is an open cover of X, so let us
verify that it satisfies conditions (a) and (b).

That (a) is satisfied is clear, so it remains to check (b). Now
if x e E, then (b) is trivially satisfied, since then z ¢ U’ for at most
m+2=<1+1sets UeZ. So suppose xc€G. Then we can choose
se S such that xeG,. Now if ¢ and U, ---, U,;, are as in (b), then
xeUfN---NUL, so the definition of G, implies that

se(Urn - N0 U N - NU) .

Thus s is in the intersection of the vertices of o, so u,, and W,,
are defined and W,CcW,,. Hence xcGCW,CcW,,. We now let
Uy, = s, This choice of wu,, satisfies (b) because xe W,,. That
completes the proof.
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