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UNIQUE BEST APPROXIMATION FROM A
C:-MANIFOLD IN HILBERT SPACE

THEAGENIS ABATZOGLOU

Given a C’manifold in a Hilbert space we examine
whether a critical point of the distance function to the
manifold is actually a global best approximation. We
establish a criterium for the above in terms of the curva-

ture of the manifold.

1. Introduction. In the last 10 years there have been papers,
see [3], [4], [9], [10], [12], where the authors determine how close
yvou have to be from a manifold to make sure that a critical point
of the distance function to the manifold is a global best approxi-
mation. In their discussion the authors above use explicitly or
implicitly the notions of curvature and radius of curvature and as
long as the manifold does not bend back into itself too much, they
use a global lower bound on the radius of curvature to conclude
that if a point is within one third of the radius of curvature then
it has a unique global approximation. In this paper we use different
methods, mainly from differential geometry, to arrive at a sharp
bound of one radius of curvature guaranteeing unique global best

approximation.

2. Global best approximation to C*curves. We would like to
establish some facts about C2-curves which we will use later to
obtain our results about global best approximation to C?*manifolds.
A version of Theorem 2.1b is known in #x-dimensional Euclidean
space and is due to Schwarz, see [7] page 88. Our proof holds for
any Hilbert space and is different from the classical one.

We will need the following lemma to prove Theorem 2.1:

LeMMA 2.1. Let x,y, 2 be in H, a Hilbert space, and assume
that llyl| =1, y L 2. Then: |(2,2)| < [[2]| V2] — (x, ).

Proof. Write z as: z =t(x — (%, ¥)y) + v where v 1z, y. Then
2] = &(l=]]* — (&, v)) + [|v]]® so that: [¢] < ||2|[V[[=]F — (=, ¥)-
We now estimate (x, 2) and get

[, 2)| = [¢ll=]]® — t@, )*| = [Elelf — @, )7
= llzIVTT=lF = (=, v)° -

THEOREM 2.1. If v is a C*curve embedded in H such that

233



234 THEAGENIS ABATZOGLOU

7(0)]] = R, v(0) LY (0), ||Y®)]] = 1 and ||7'®)|| < 1/R for all t. Then
@) [Iv®ll = R for all t, |t] < 7R
() d/dt||v®t) —v(0)]] =20 for 0 <t < xR and ||v(£7R) — 7(0)]|
> 2R.

Proof. (a) We shall assume first that [|v(0)|| < R. Let F(t) =
Hv@)|® and compute F'(t) and F"(t). We obtain

F'@t) = 2(v'(®), v(t))
F"@) =2 + 2(v"(8), @) .

Since ¥'(0) Lv(0) and ||v"(t)]] = 1/R we can assume there exists an
interval [0, ¢,] where F’(t) = 0 and F'(t;) = 0 otherwise the proof is
immediate. We now apply Lemma 2.1 with z =v(#), vy = Y'(¢), z =
~"(t) and obtain

| U2 < )V FD — AR

or
2— F"<1RVAF — F"

deleting the ¢’s. Multiply the last inequality by F” in [0, ¢,] and
get (1)

(1) F/(z_Fn)éF'Vllf’Z;'—F'z

which we rewrite as

Fe_rm) .
VAF—F® - R

Integrate from ¢ to ¢, and get (2)

(2) VIFE) — VIFD — 70 < ﬂ’iﬁ_;e—ﬂt—) .

Set F(t,) = a* and 2a — ¢*/R = b, then (2) becomes (3)
(8) (b+ F/IR) < VAF — F™.

We would like to show that ¢ = 7wR/2. If we assume on the con-
trary that ¢, < wR/2 then it easily follows that b + F/R = 0 for all
t,t in [0, ¢]. We then square (3) and obtain

(4) F? < AF — (b + F/R)} or F' <VAF — (b + F/R)?,

Integrate the last inequality from 0 to ¢, and get
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5““ aFr é Stldt
rea-02)/4F — (b + F/R)2 0

so that

Rsin“‘L 2F(t) — (4R* — 2bR) ] Fit)=a

VAR — 2Ry — R | |F0) = (1 — efR =

We evaluate the integral substituting 2a¢ — a?/R = b, observing that
when ¢ = 0 equation (3) implies F'(¢,) = a* = (1 + ¢)?R%  So the above
integral computes to:
R[?t/Z — sin“l[ 21 — o' R’ — 4K + 4aR — 20° :H <t
4R(a — R)

from which we obtain Rz/2 <¢,. This contradiction shows that
[|7®)|] is an increasing function on [0, 7R/2]. In the case that
[]7(0)]] = R we consider the curve d(¢) = v(t) — ev(0) and let ¢ —0
to obtain once more that ||v(f)|| is an increasing function of ¢ on
[0, zR/2]. Now let [0, t,] be the largest interval where ||v(¢)|| =R
with ||v(¢,)|| = R. Suppose F'(t) <0 on [t;, t,] and F'(t,) = 0, then
an entirely analogous argument shows that ¢, — ¢, = 7R/2. This
concludes the proof of Theorem 2.1a.

(b) Now we shall prove Theorem 2.1b.
Define G by G(t) = ||7(#) — v(0)|]>. Then

G'(t) = 2(7'(®), v(t) — v(0)) and G"(t) = 2 + 2(v"(¢), ¥(t) — ¥(0)).
We apply Lemma 2.1 with « = () — v(0), y = ¥'(t), 2 = v"(t) and
obtain,

12 — G"1)| < 1/RVAG(E) — G*({) .

Let us assume that G'(¢) =0 on [0, ¢,]; then we multiply the in-
equality by G'(¢) and get

2 — G"t)G' ) < 1/RG' ¢V 4AG(t) — G™(t) .

This last relation we rewrite as (2 — G"(t)G'#)V4G({t) — G7(t) <
G'(t)/R and integrate from 0 to ¢, ¢ in [0, ,] to obtain

V4G(t) — G*(t) < G(t)/R
which we express as (5)
(5) 4G(t) — G*(t) < Gt)/R? .

Suppose there is ¢, 0 < ¢, such that 0 < G'(t) for ¢t in (0,¢,) and
G'(t,) = 0. Then using (5) we get 4R* < G(t,). Set ¢*= G({,) and
consider the curve 6 defined by
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o) = 7t) — (“= vty + Ev0)) .

¢ ¢
Observe that d(t,) 1 d'(¢,) because G'(t,)=0; also [|d(,)||=R, ||6'®)|| =1
and |[0”(#)]] = 1/R for all t. Then by Theorem 2.1a § will stay
outside the sphere of radius R centered at ((¢ — R)/c)v(t,) + (R/e)7(0),
on the interval [t, — nR, t,|. We project o radially into the above
sphere; call the projected curve 6. Then the arc length of § from
0 to ¢, must be less or equal than ¢. However 6(¢,) and 6(0) are
antipodal points of the sphere and by [11]: Theorem 5I, ¢, = zR.
We rewrite (5) as V4G(t) — G*(t)/R® < G'(t); this last inequality is
equivalent to 2RV'1 — (G(t)/2R* — 1)’ < G'(t) which we integrate from
0 to t with G(t) < 4R* we obtain:

t < R[sin™(G(t)/2R* — 1) — sin™(—1)] i.e.,
t < R[r/2 + sin™(G()/2R* — 1)] .

So then G(t) = 4R% t in [0, ¢,], ¢ must be less or equal to wR. This
implies now that G(zR) = 4R"

We are almost ready now to apply the above theorem to best
global approximation from curves. We need a definition: that of
folding.

DEFINITION. Let v be a curve in H. The folding of v at ~(¢):
#(v(t)) is defined by

#(v(t)) = sup {r | B(v(t), s) N v is connected for all s < 7}

where B(x, r) is the ball of radius 7 centered at x. ¢(v(¢)) measures
how much does v twist back to v(¢). We can now prove:

THEOREM 2.2. Let v be a C* curve embedded in a Hilbert space
H; suppose ||V =1 and ||¥"®))| = 1/R for all t. Let x© be in H
and assume that © — v(0) Lv'(0). Then if ||x—7(0)]] < min {¢(v(0))/2,
R} = n, v(0) is the best global approximation of x from .

Proof. Suppose there is a ¢ #= 0 such that || — v(e)]| < ||z —
v(0)|l. Then it follows that ||z — v(c)]| < ¢¢ and (1)

(1) v(e) — 7O = [z — @Il + [lz —2(0)]] < 2.

It follows from Theorem 2.1a that ||a — v(0)]] < |2 — v(@®)]] for 0 <
|t| < wR; also by Theorem 2.1b, ||v(x7R) — v(0)|| = 2R.

This forces 7R < |¢| but since B(¥(0), [|v(¢) — v(0)||) N v is con-
nected by hypothesis, we must have |[[v(¢c) —v(0)|| = 2R which
contradicts (1).
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ExamMPLE. Let v(t) = 1/(1 — tx) in L,[—1, 1], |£] < 1.
Let us find the folding of v at v(s) = 1/(1 — sx). Compute:

%www~wgm=mﬂw-waw@>

- 2Y~1<1 —1tx 1 —1 sx> a -—mta:)2 ae
= 2(t — S)S

x2
-1 (1 — sx)(1 — tw)3

This shows that any point of v has infinite folding. Now we need
to compute the curvature. Define the arc length s(¢) by:

w0 = [ Ir@lde = [ o3 T3 ar,

and use the chain rule to obtain

d2 <dt> d*y d2t dy
dst ds/ d©z = ds* dt

We also get the following formulas by straight forward computa-
tions:

dt \/ 3/2 -

1+ 38
d27 _ 2x°
di’ 1 — tx)
dt? _ —9¢(1 + (1 — »)*
as’ (1 + 3%
and
oo
dt (1 —tx)?

Next we compute ||d*y/ds®||* and after some work we find that

b d*y

|18 L —8) g g g1
ds’

5 (1+ 3t)°

which has a maximum, for |¢| < 1, equal to 18/5 when ¢ = 0.

By Theorem 2.2 all functions f in LJ—1,1] whose distance
from v is less than 1/5/18 = 1/31/5/2 have a unique best approxima-
tion from 1.

In conjunction to this example it is interesting to observe that
if f(x) =1+ ax® then v(0) =1 is the best global approximation to
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f, for |a] £5/6 in which case ||f —1}] =|a|1/2/5. Note that
(1 + 5/6a% — 1|| = V/5/18. It is easy to see that if a¢ > 5/6 then
1 + ax® has at least 2 best approximations from ~. This suggests
the sharpness of Theorem 2.2.

3. Metric curvature. Let M be a C*® manifold embedded in a
Hilbert space H and suppose X(z,, ---, «,) is the inclusion map. Con-
sider a point m in M and a vector v orthogonal to M at m, ||v||=1.

DEFINITION. We define the directional curvature of M at m in
the direction v to be:

1 — max (Aw, w)
o(m, v)  wis (Bw, w)

where

4= o 2= (G )

1/o(m, v) is also equal to the largest eigenvalue of BA and is
called by Milnor in [8]: the maximum principal curvature of M at
m in the direction v, o(m, v) is called the radius of curvature at m
in the direction v.

It was proved in [1] that if P is the metric projection of H into
M and if P is continuous at x then ||P'(x)|| = p/(0 — r) where p =
p(m, v) and ||7]| = ||l — P(x)]|.

We define the curvature, “metric curvature”, of M at m Dby,
1/o(m)=sup, 1/o(m, ») where v is orthogonal to M at m and ||v||=1.

LemMmA 3.1. If v is a geodesic on M then the curvature of v
at v(t) is less or equal to the metric curvature of M at (), i.e,.
Y"1 = o(m).

Proof. Let v be a geodesic on M, this means that |[|v'(¢)|| =1
and ¥'(t) L M at v(t) for each t. Now the definition of directional
curvature applied to v would give us 1/p(v(¥), v) = (v"'(@), v)/||Y' @)%
It is easy to see now that the curvature (metric curvature) of v at
v(t) is equal to [[¥"(¢)|]|. On the other hand since v lies on M
® 0X dx,

,t:
O = A

and

" = 0*X  dx, dx; 20X d,
t = k4 3 il i,
LACRRD YD Y by e TERID b P
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From the last 2 equalities we obtain

L Aw, w) dx dx
1 vy ‘[; , = _.______( L h — i , e, k(2 .
Jo(y(t), v) Bw w where w ( 7 7 >
This means that,
1/‘0(7(@’ V) = M < max L_Aﬂ’._w_)_ = 1/p(m, 1;)

(Bw, w) ~ twii=t (Bw, w)
where
m = v(t) .

We therefore conclude that if v is a geodesic on M. Then the
curvature of v at v(¢) = m is less or equal to the metric curvature
of M at m.

4. The sectional curvature of M. In order to prove a sharper
and generalized version of Theorem 2.2 we need to estimate the
sectional curvature of M in terms of the metric curvature 1/o(m).
Unfortunately we cannot use formulas for the sectional curvature
which hold when M is embedded in RB™; so we have to rederive
these formulas for %-dimensional manifolds embedded in a Hilbert
space. The derivation follows [5], page 10.

We consider the set {0X/ox,}7-, consisting of linearly independent
vectors spanning the tangent space of M at each point. Using this
set as a basis we let,

Y:ﬁfi 0X and Z:ﬁgi 0X
i=1 ox; j=1 ox

g

where f; and g¢; are smooth real valued functions.
We now compute FyZ where V' stands for the usual gradient.

' - & 0X L p o < dg; 0X ’X )
[7;'4 — Y axXiox; { i
2o 1(;‘}] ox; > 2 Z‘ ox; o, o 0,00
_ & (09 0X . @X
132-1 < e box; o, 105 0x,0%; > '

Define VyZ by, VyZ = P(VyZ) where P is the orthogonal projec-
tion onto the tangent subspace spanned by {0X/ox,]}.,. Then we
may write, VyZ =VyZ + a(Y, Z) where a(Y, Z) 1 6X/ox,, 1=1, ---, n.
Through a straightforward calculation it can be verified that 7.7 is
covariant differentiation for the Riemannian connection of M; so
that now we have the means of computing the sectional curvature
of M.
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Take any 2 orthonormal vectors on the tangent space of M at
m; by an appropriate choice of normal coordinates we may express
these vectors as 0X/ox,, 0X/ox, with 0°X/ox; and 0°X/ox; 1 M at m.
We want to find out the sectional curvature of the section spanned
by 0X/ox, and 0X/ox,. That is we have to compute (R(0X/ox, 0X/
o0x,)0X/ox,, 0X/ox,) where R(0X/ox, 0X/0x,)0X/ox, is the curvature
tensor of M. By definition:

HEE ZEYE = (25

0X
)) + V[aXliml,DXlazﬂ'Ev:_

0X
o,

- VaX/ax1<Aa_¥(azz<

where [Y, Z] is the usual Lie bracket. Let us remind the reader
that when M is a surface in R® its sectional curvature at a point is
usually called Gaussian curvature and it is equal to the product of
the principal curvatures of M at the same point. Therefore the
sectional curvature of a surface is less or equal to (1/p(m)).

LEMMA 4.1. The sectional curvature of M at m 1is less or
equal to (1/o(m)).

Proof. First we perform a few calculations to obtain the
curvature tensor.

By the definition of p,Z we have

= Phn () = o) o 2, 2).

*X
3,;

Next we use this equality to get

Faie(Posin{ Z2)) + a(2X, o X))

3:)31 axg axl :
2
Pl 25)) = 2 (2K (2, 2K

By an analogous computation we also obtain

Vax;a;,(ﬂxraxg(ﬁg‘)) + a<ﬂ’ V”‘“"(i&))

o, ox, oz,
2
=3 G~ %)

Furthermore we have [0X/ox,, 6X/ox,] = 0.
The last 3 equalities imply now that
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<R<3X 0X \ X 3X):<a 0X 6X>, 6X>

ox, ' omw, /ox, ox, ox, ox, 0w, o,
_ ( 0 ( 0X o0X ) 0X >
o, ox, ' ox, /) om /)

To simplify the last expression we observe that a(0X/ox,, 0X/ox,) L
0X/ox, which we use to obtain o/dx,(a(0X/ox,, 0X/ox,), 0X/ox,) = 0.
In turn this last equality yields

G elir ) )= (G 2 )

= el 2

Similar calculations lead to

__< 0 a(&X 8X>, 8X>=<a<aX 3X)’ 82X>

o, ox, ow, o, ox, = ox, o
_ (X, #X)
ox: ' ox?

because both °X/ox? and 0°X/ox? are orthogonal to M at m.
By Lemma 3.1 we have

Il o* X
{ ox?

So finally we obtain the estimate,

(B (o o) §if>=<%f§’ =

= l/o(m) , \ g

L) "< ooy

|
’ <3x1 T o,
5. Folding. We extend the concept of folding to n-dimensional
manifolds in Hilbert space. Define the folding ¢(m) of M at m by
#(m) = sup {r | B(m, s) N M is connected for every s < r}.

We proceed with a couple of properties of folding and an
example.

LemMMA 5.1. Suppose for every » in B(m,r) N M,r >0, there
exists a continuous curve v, in M such that v,(0) =m, v,(1)=0p
and ||v,({t) — m|| is increasing for 0 <t < 1, then ¢(m) = r.

Proof. Clearly any such curve v, lies in B(m, ||p — m]|]). For
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any s < » consider p, ¢ in B(m, s). Join both p, ¢ to m by curves
v, and v, which have the above properties. Then it is clear you
can join » to ¢ by a continuous curve within B(m, s).

ExampLE. Let M be the manifold of fractional linear trans-
formations: (ax + b)/(cx + 1), |¢| <1, in L,J[—1,1]. Fix a point
(@x + b)/(Ex + 1) = m and take any (axz + b)/(cx + 1) in M. Assume
that ¢ = ¢.

Consider the curve v(t) = ([@ + (¢ — @)t]e + b + (b — dbr)/(|¢ +
(¢ —&)tlx +1) in L,J—1,1]. Clearly ~(0) = (ax + b)/@x + 1) and
v(1) = (ax + b)/(cx + 1). Now we compute the following,

—0—%— 178 — 7(O)[F = 2(v(t) — ¥(0), v(£)

L [(@a — @c)at + [(@ — @) + €b — belx + b — bJrdx

- - . >0.
~1 ¢z + DJlc + (¢ — e)t]x + 1P

— 2|

By Lemma 5.1 we have now ¢(m) = o for any m in M.
The next theorem gives a geometric illustration of ¢(m).

THEOREM 5.1. Suppose B(m, ¢(m) + &) N M is compact for some
e>0. Let X = X(x) be the embedding of M into H where x =
(@, -+, %,). Then ¢(m) = inf;||m — X(@)|| where % is a critical
point of F(x) = ||m — X(x)||.

Proof. Assume F' has no critical points in B(m, ¢(m)). Apply-
ing the contrapositive of the definition of ¢(m) and using pathwise
connectedness we obtain a sequence {p,} with p, in M, ||p, — m||=
é(m), and lim,., ||p. — m|| = é(m) such that p, cannot be connected
to m by a continuous curve within B(m, |[p, — m|) N M. Using the
compactness hypothesis we seleet a subsequence of {p,} which we
call again {p,}, with the property that p, converges to pe€ M and
lp — ml|l = ¢(m). Set p = X(x). By assumption there is a y =
(Y, +--, ¥, such that F'(x)(y)<0; also since X is locally a diffeomor-
phism there is a sequence {x,} in R with the property that X(z,)=
p, and lim, 2, =x. By the continuity of F’' we now have,
F'(x, + ty)(y) < —e for some fixed ¢ >0, forall k=N and 0<¢ <
6, with appropriately chosen N, 4.

To complete the proof we need to estimate F(x, + ty) = |[|m —
X(x,+ty)|l, we have F(x,+ty)=F(x,+ty)— F(x,)+ F(x,)— F(x)+ F(x)=
tF' (x, + t)(y) + F(x,) — F(x) + Flo) with 0<t<46,05¢, ¢ If
we now take k sufficiently large we see that F(x, + ty) < F(x) for
a fixed 0 <¢<d. Also F(x, + sy) — F(x,) = sF'(x, + sy)(y) < 0 for
0<s <t <o.
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This means that », = X(x,) can be joined to X(z, + ty), which
lies in B(m, ¢(m)) N M, by a curve v(s) = X(x, + sy), 0 <s<t¢, which
lies in B(m, ||, — m|]) N M. Then we can connect X(x, + ty) to m
within B(m, ¢(m)) N M which shows that X(x,) = p, is pathwise
connected to m inside B(m, ||p, — m|]) N M, which is a contradiction.

6. Unique global best approximations to C®manifolds. In
this section we prove our main theorem. We will use the exponen-
tial map, exp,, which is defined in the following way:

For m in M and v in the tangent space of M at m define
exp,, (w) = v(1) where v is a geodesic on M such that v(0) = m and
v'(0) = v. Here ||v|| is the arc length between v(0) and ~(1).

We say M is geodesicially complete if every geodesic can be
infinitely extended. This property of M implies that any 2 points
of M can be joined by a geodesic.

While proving Theorem 6.1 we will make use of the following:

The Morse-Schoenberg Comparison Theorem. Let M be a
Riemannan manifold of dimension %, and +:{0, L] - M a geodesic
parametrized by arc length. Let B > 0 be a constant. Then if all
sectional curvatures of M along v are less or equal to 1/R? and v
has length L < zR, then v has no conjugate points.

THEOREM 6.1. Let M be a C?, complete, connected, n-dimensional
manifold embedded in o Hilbert space H. Suppose x is im H, m
m M and x —m LM at m. Assume 1/E = sup, .y {1/o(m")|||m" —
m| < 2R}. Then if ||z — m|| < min {R, ¢(m)/2} = t, m is the unique
best approximation from M to x.

Proof. On the contrary suppose there is » in M, » %= m such
that |lz —p|| = [lo —m||<g, then ||p —m|| = ||z —p|/+]z—m| <2z

If we can now join m to » by a geodesic within B(m, 2R) then
an application of Theorem 2.1, together with Lemma 3.1, will con-
tradict the assumption ||z — p|| = |lx — m|l. By the definition of
folding there exists a continuous curve ¢ in B(m, 2¢) such that
¢(0) = m and ¢(1) = p.

Let s =sup{t|c(¥) can be joined by a geodesic to m within
B(m, 211)}. s >0 because the exponential map is a local diffeomor-
phism at m. We will show that s = 1. Let {v,} be a sequence of
geodesics lying inside B(m, 2£t) and joining m to ¢(t,) where ¢, "s.
Express v, in terms of exp,, i.e.: v.(t) = exp, (v;t), with ¢(t;) =
exp,, (v,). By Theorem 2.1b the arc lengths [|v,|| are bounded in
norm, therefore there is a converging subsequence which we call
again {v,} such that v, —v. Then by continuity of the exp,, see
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[6] page 69, we have lim, ., exp, (v;t) = exp,, (vf) for all ¢ in [0, 1],
and v(t) = exp,, (vt) is a geodesic within B(m, 2¢) such that v(0)=m
and v(1) = exp,, (v) = ¢(s).

Recall that by Lemma 4.1 and by hypothesis, the sectional
curvature of M in B(m, 2R) M is less or equal to 1/R:. We also
know from Theorem 2.1b that the arc length of v from v(0)=m to
v(1) = ¢(s) is less than wR. Now we apply the Morse-Schoenberg
Comparison Theorem, see [12], page 344, to conclude that exp,(v) is
not a conjugate point of m along the geodesic exp, (tv), 0 <t < 1.
Therefore by [8]: Theorem 18.1, exp, is not critical at », in other
words exp,, is a diffeomorphism in a neighborhood of #». This now
forces s = 1 and completes the proof of the theorem.

It is easy to verify the sharpness of this last theorem by con-
sidering a cirele or a parabola in R2.
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