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The real connective K-theory spectrum, bo, has been
shown to be a useful spectrum in homotopy theory. In
particular, the bo-homology Adams Spectral Sequence, based
on the cofiber sequence

S0«—ho «—— boAbo «— boAboAbo

(A) NSNS N SN

bo boAbo boAboAboO

has been used extensively by Mahowald in his work on
the image of the J-homomorphism. One of the problems
encountered with the bo-spectrum is that, unlike the mod
2 Eilenberg-Maclane spectrum, bo/\bo does not split as a
wedge of suspensions of bo itself. However, Mahowald
and Milgram have obtained a splitting

(B) boAbo~XV G

where X is a wedge of spaces intimately related with bo
itself, and G is a wedge of mod 2 Eilenberg-MacLane
spectra. In this paper, we determine the structure of G, i.e.,
we calculate the number of Eilenberg-Maclane summands
occuring in each dimension.

This should moreover permit the complete analysis of the
iterated smash products bo A bo A--- A bo, which occur in (A).

A second consequence is obtained using the results of [3],
namely that the mod 2 cohomology Adams Spectral Sequence con-
verging to [bo, bo], collapses. This means, in view of the change
of rings arguments in [3] and [4], that we have in fact obtained a
basis for the vector space [bo, bo]./I, where [ denotes the ideal of
self-maps of bo which lie in Adams filtration higher than 0. Since
I is well understood, this is a significant improvement in the under-
standing of the ring of operations in bo-theory. It should be
pointed out, though, that we only give a basis, without discussion
of the multiplicative structure, which seems more difficult.

The method of calculation can be summarized as follows:
Mahowald has obtained a splitting of H*(bo, Z/2) as an .57-module
(o4 = Z|2(Sq¢', S¢%))

H*(bo, Z|2) = @ M; ® F

where M is a direct sum of indecomposable .%-modules, and F is a
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free .97-module. Since H*(bo, Z/2) = .57 (2)/.57(2){Sq", Sq*, this gives
a splitting

H*(bo A bo, Z/2) = H*(bo, Z/2) ® H*(bo; Z/2)
=~ v (2) Q H*(bo, Z/2)

=.vQQ@M B ¥RQF

of .97(2)-modules, which Mahowald and Milgram showed, using
Adams operations in bo-theory, corresponds to the splitting of
spectra bo A bo = XV G. The first step in our calculation of the
structure of G is the calculation of

Z12 @ H*(bo A bo, Z/2) = Z/2 @ H*(bo, Z/2) .
L (2) Lvl
It turns out that it is more convenient to study the dual situa-
tion, and the main steps (Theorems III. 8 and III. 10) describe

Y = {w e H,(bo, Z/2) | Sq'x = Sq°z = 0}
= (Z/2@ H*(bo, Z/2))*

as a graded Z/2-vector space, where Sq* and S¢* are dual Steenrod
operations. To solve for Z/2@., F, it will be sufficient to identify
the image of @, M, in Z/2@., H*(bo, Z/2), since Z/2 @, F can then
be identified with the quotient of Z/2 @ ., H*(bo, Z/2) by that image.
Finally Z/2@.., F' determines F, since F is free.

The paper is organized as follows: §I consists of preliminary
material on the Steenrod algebra .57 (2) and its dual. §II contains
a deseription of .7 (2)/.7(2)Sq¢*=H*(K(Z,, 0), Z/2) as a Sg'-module,
which will be needed in S§III. (K(Z,, 0)) denotes the Eilenberg-
Maeclane spectrum for Z,, the integers localized at 2). §III cal-
culates the graded Z/2-vector space Y deseribed above. The main
theorems are III. 8 and III. 10. §IV is a brief section which states
the result describing the image of @, M; in Z/2Q@. K H*(bo, Z/2),
which by the above discussion gives F. IV. 2 states the algebraic
result, and IV. 3 and IV. 4 are the obvious interpretations in terms
of the geometric splitting of bo A bo and cohomology operations in
bo-theory.

1. Preliminaries. Let .7 (2) denote the mod 2 Steenrod algebra.
It is a Hopf algebra with comultiplication given by the Cartan
formula

A(Sq) = 3, 8¢+ ® Sq .
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Milnor [5] proves that as an algebra, the dual Hopf algebra to
7(2), (2)*, is given by
M(z)* = P(Ely 52, "') ’

the Z/2-polynomial algebra on 2°— 1 dimensional generators &,.
(Henceforth, the symbol P will denote the Z/2-polynomial algebra
on stated generators.) The Steenrod algebra admits a canonical
anti-automorphism X, which identifies it with its opposite algebra.
According to Milnor, the comultiplication in .97 (2)* is given by

i

A(Sz) = Z E?’i—j ® Eij -

=0

Since .97 (2) is isomorphic to its opposite algebra, we may instead
use the “reversed” diagonal

A8) = Z. f T

Since .7 (2) is acted on both on the right and on the left by
the operations S¢' and S¢?, increasing degree, .97(2)* is also acted
on by Sq¢' and S¢*, lowering degree. The action is determined by

(1) 8¢'&) = &.Vi

(£)Sq' = 0 unless 7 =1,£S¢' = 1.
(ii) Sq'(zy) = (Sg'zv)y + »Sq'y

(zy)Sq* = (2S¢")y + =(yS¢") .
(iil) Sg*(&) = 0Vi, Sg*(&) = &i.,Vi.

(E)Sq* = &, &Sq* = 1, £,8¢* = OV% = 2,
(&)Sq* = 0vi = 1 .

(iv) S¢*zy) = (Sg*x)y + (Sq'=)(Sq'y) + 2(Sq’y)
(@y)Sq* = (xSg*)y + (©Sq*)(ySq") + x(ySq®) .
Define a mapa; P&, &, ---) — P&, &, ---) by

O(E - &) = &1+ &l
o) =1.

This is a mnongraded vector space endomorphism. Let A =
7 (2)/. 7 (2)Sq, B = .7 (2)].%7 (2){Sq*, Sq*}. A and B are left .o7(2)-
modules, hence their duals are left sub-comodules of P(¢, &, ---).
Let A* =V, B*= W, and .&7(2)* = U. We quote from [2].
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PRrOPOSITION 1.

(@) V=PE,é&, )

(b) W= P, & &, )

Note that V and W are closed under the action of Sq' and Sg*,
and are therefore left .S7-modules, where .7 is the subalgebra of
87 (2) generated by Sq* and Sq*. The following lemma is immediate.

LEMMA 2.

(a) 07V 1s closed under the action of Sq'.

(b) W s closed under Sq' and Sg*.

() Sq'o’U < 07U

Sq*c’U < 07'U.

Throughout this paper, we will be discussing graded vector
spaces. All bases will be required to be graded, i.e., they should
respect the grading. Consequently, the bases will be “graded sets”,
i.e., sets X together with a function d from X to the nonnegative
integers. Of course, the isomorphism type of a basis as a graded
set determines the isomorphism type of the graded vector space.
Also, define the suspension of a graded vector space V, XV, to be
V as a vector space, with the grading of all elements increased by
one.

We recall from [6] that H*(bo, Z/2) = .57 (2)/.57(2).57 and

HY(K(Z(2), 0), 2]2) = .o (). 2S¢,
SO

H.,(bo, Z[2) = W, H.(K(Z, 0), Z[2) = V.

II. Sg'-calculations. By the results of §I, V is isomorphic as
a left .97-module to P(&, &, ---).

PROPOSITION 1. Let X = {xe€ V|Sq¢'x = 0}. Then a basis for X
is given by the elements of the form

0;(P) = &P + §7°;,S¢'P ,

where P is a monomial in 07V = P(&,, &y Ejagy + ).

Proof. 1t is clear that o;,(P)<c X, since Sq'(g;,(P)) = Sq'(&¥*P+
£¥7°¢;.,.8¢'P) = £%Sq'P = 0. Also, the 0;,’s form an independent set,
since each involves only one monomial in ¢V, and all these mono-
mials are distinet. It remains to show that every element of X
may be written as a linear combination of the o;,’s.

Claim. If peo’™U = P(;, &4y, +++), and Sg'@ =0, then @e
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o'V Z ¢'U. For, ¢ = 3, &P, . €0'U, and Sg'p= 3, s&5_,& 9, +
&8q'p, = &35, s&7'p,) + 3, £8¢'p,, and Sg'p, € 0i7'U, hence @, = 0
for s odd.

The proof of the proposition will now be by induction. We
will show that for p e o'V, with Sg'¢ = 0, there are polynomials
P, e 0’U for which ¢+ 3, 0, .(P,) € 6’U. By the claim, o+ 3>, 0; ., (P) €
o'V, so we may iterate the procedure, eventually obtaining an
expression for @ in terms of elements o;,(P,). We now prove the
inductive step. @ may be written uniquely as

N .
P = kZ‘.ZOE%"%, pred’lU,

SO
.
Sq'p = % &*Sa'p, .

We claim @y €0’V. For note that the power of &; occurring in
all the terms £¥Sq'®,, k < N, is less than or equal to 2N. Let

q)N = g E;-H"lfs; 'Bb‘s € 0j+1U ’

S0

S¢'py = 5§(§L s&5ivp,) + Z &:5q"y, .

Sq¢'+r, € 67U, so the term in Sg¢’¢ involving monomials in which the
power of £; occurring is 2N + 2 is precisely &7 (3, s&irry)-

Since we assume Sg'® = 0, this term must be zero, so «, =0
for s odd, showing that ¢, cc’U. Now consider & = @ + 6; y(®Py)=
P + E¥p, + 277, S¢'py. S¢'® =0, and $ may be expressed as
P = W e%p,. After iterating this step N — 1 times, we may
write @ as a + B, where a€o’U and B = 3, 0;,.(P,).

We finally observe that if @ involved only {& |7 <1}, then «
and @ could be chosen so that they also only involve only {&;|j<I1}.
Therefore, this procedure terminates, and we have proven the
result (*).

We interpret this proposition as a description of the structure
of X as a graded Z/2-vector space. Note that {¢7X}:, provides a
filtration of X, and that each 07X is graded compatibly with the
grading of X. The inductive step in the proof of 1 showed that

im(X —> X/oX)

is isomorphic to @7, &70V. Since it is clear that the associated
graded version of X is isomorphic to X as a graded Z/2-vector
space, we obtain
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X=oXP V.
Since

No'X = Z/2(1)

=0

X;é

)
k=1 j=1

EofVeD Z/2(1), or

COROLLARY 2. As a graded Z[2-vector space, X is isomorphic
to the subalgebra of V consisting of all monomials [[i-,&et:, such
that a, and «a, are multiples of 2, where «a, is the first nonzero
exponent, and 1.

1. .7(2)/.7(2).%. In this section we will extend the tech-
niques of §II to obtain the structure of

Y = {zx e W| S¢'x = Sg°z = 0}

as a graded Z/2-vector space.
We first note that there is a splitting of Z/2-vector spaces W=
@. W, where

W,=¢&"-0oV.
Let I'; = @i, W,, so {I';} provides a filtration of W, with
r;r,,=e&-cv.
Define an operator
6.0V — 0V
on monomials by ¢(&¥Q) = k-£+*Q, Q€ o*U, and extend by linearity.

LeMMA 1.

@) S¢W,& W,

(b) S¢*I'; S I'iyy, and if x€l;, say ¢ = 3. &P, P,eaV, then
the projection of Sq*x in I';w /T is & He(P;).

Proof.

(a) 1is clear since V is closed under the action of S¢' by Lemma
1.2.a, and Sqg'&f = 0.

(b) We first calculate the action of Sg* on V. Let yeoV,

Y= Zs‘, &, P e0°U .
Sq*y = Z SEIEY T, + Z E°Sqy, .
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By Lemma 1.2.c, Sg*y, €0V, so we find that S¢*y = &lé(y) + a, where
acoV. Now, if x = 3 &P, P,eoV, S¢*x = &+¢(P;) + B, where
Berl;, and &+¢(P;) e I';+,, which proves the result, (*).

COROLLARY 2. Let xc W be written wuniquely as x = 3, &P,
P,ecV, and suppose S¢'x = Sq*x = 0. Then

(a) Sq¢'P, = 0.

(b) P;eoW.

Proof.

(a) is again clear since the splitting W =@, W, is preserved
under Sg'.

(b) 2 has been assumed to lie in I";. Since Sg*x = 0, we must
in particular have that the projection of S¢*x in I';.,/I"; is zero, so
¢(P;) =0. But ¢(P;) = 0= P;eP(&,&,8&, +-+). We must show that
P,eoW = P&, &,&, --+). So, expand P; as

P; = ,f_l £'Q;, Qe 0’U .
Part (a) gives that Sg¢'P; = 0, which implies S¢'Q, = Ovk. By the

claim in the proof of Proposition II. 1, Q,ec*V = P(&, &, ---), prov-
ing (b)-(*).

PROPOSITION 3. For any xcoW, with Sq¢'x = 0, and any 7=2,
there is anm element ¥ e I'; with S¢'% = Sq¢°% = 0, and the projection
of & im I';/T";_, equal to &’x.

Proof. Since Sq¢'Sq* = 0, we may compute the homology of W
under this differential. In [2], it is shown that
H,(W; Sq¢") = P(&) .

By Lemma 1.2.b, oW and W are isomorphic as .%/-modules (although
the isomorphism does not preserve grading). Thus

H.(oW; Sq') = P(&) .

For any Sg'-homology generator, say x = &°, & = &€y satisfies
Sq¢'% = S¢*% = 0, so we may suppose that x is a Sg¢'-boundary, x =
Sq'y. Now let

x = &'Sq'y + & TESE Sy + £ ESa'Se*Sq'y
+ §77°66S0'Se* S¢S’y + £77°65¢°Se'Sq’y .

It is easy to check that S¢'Z = S¢*% = 0, and the projection of # in
/T, is &7Sq'y = &Pz, (%).
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We must now examine the case j = 1.

PrOPOSITION 4. Let xecoW, with Sq¢'x =0. Then there 1is
Tel, with S¢*% = S¢*T = 0, and the projection of & in I' /[, equal
to &z if and only if Sq¢*Sq'Sq*x = 0.

Proof. Notice that if S¢*Sq'Sq¢*xz = 0, then the expression

T = & + &Sq*x + 5S¢ Sq*x

satisfies the conditions on Z.

Conversely, suppose % exists. Thus = = &z + @, w,c1I’,, with
®, = Y, + &y, + &Y, + &, Where y;eoW, and Sq¢'w, = 0, S¢’w, =
&Se*x. But,

S¢*w, = S¢*y, + &y, + &Sg’y, + £Sq'y,
+ EaSq2V2 + &&w, + &Sq'y, + 86,507, ,

so v, = Sg°x. Secondly,

0 = S¢'w, = S¢'y, + &8¢y, + &Y,
+ &Sq'v, + &y, + &£.Sq'y, so v, = Sq'y, ,

and we have
@, = Y, + Sgsqzw + EsSqlsqzx + &EY, .

Using this reduction, we again calculate

Se*w, = Sq*y, + &Sqx + £S¢°Sq'Sq*w + &gy, + &Sq'y, + £6,S¢y; .
(Sqg'xz = 0, so S¢*Sq¢*x = Sq¢*S¢*Sq'x = 0.)

Thus, v, = 0, S¢'v, = S¢*», = 0, and we must have
£S¢°Sq'Sq*xr = 0 — S¢*Sq'Sq*x = 0. (*).
We will now construct various subspaces of W. Let

W, = {we W|Sq¢'w = S¢*Sq"Sq*w = 0}
W, = {we W| S¢'Sg*w = 0}
W, ={we W|S¢*w = 0} .

Let n;: I'; —» I';/T";_, denote the projection.

PropPOSITION 5. Let j =1, and let xe€aV, so ©x has a unique
exrpression as

=y + Egvl + &, + 5253))3
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with v,eocW. Then
(a) e W, NI; with ;%) = &z =y, = 0 and Sgz = 0.
(b) TeW,NI; with ;&%) = &¥x <= v, = 0 and Sg'v, = 0.
(¢) e W, NTI; with 7;(%) = &z = v, v, =0 and Sq'v, = 0.

Proof.

(a) First, observe that S¢°S¢'S¢*l’; & I';4,, since Sq¢'I'; & 1,
S¢*l';& T4, Secondly, expanding Sq¢®Sq'Sq?(cx) gives Sg*Sq'Sq?(&ix) =
&%, + o, w e I';,,, implying that v, = 0. For the converse, suppose
that z = vy, + &, + &, S¢'x = 0. Since Sq¢'x = 0, we obtain S¢'y, =
0,v, =8¢, If v, is a Sq¢-homology generator, &, then &¥y, =
&g e W,. Thus, we may assume v, = S¢y. On the other hand,
&w, + &8¢y, = S¢'(&w), so © = Sq¢'2, 2 = Y + &V,

Now let % = &fix + &4762Sq'Sqz.

It is easily verified that T e W..

(b) Observe that S¢'S¢’I"; & I';+,. We obtain

Sq¢'Sq*elix = &P (Sq'v, + &y, + &Sq'yy) + @,

where we ', so S¢'v, = 0 = v,. Conversely, suppose Sg'v, = 0 = v,.
If », is a S¢*-homology generator, &, then &Mgis¥c W, so we may
assume that v, is a Sq¢*-boundary, say v,=Sq'y, hence x=y,+£Sq¢'y+
&v,. Then if 7 = &*(&8e°, + &£,5¢'Se*Sq'y + &S¢'Se*y + £6:S¢°.+
2Sq'y,), &x + ne W, and 7;(&¥x + n) = &,

() 8¢I'; S I'yy,, and Sg*(&w) = &7 (v, + &) + @, wel’;, so
v, =v,=0. If 3el;N W, with 7,%) = &Yz, then there is an
element

Y = o+ &pe + Eapte + Sty
with ¢, e oW, so that 7,(Sq*y) = 7;(&!Sq*x). Now,
Sq*x = Sq*y, + &S¢*v, + &Sq'y,
and
S¢*y = S’ + &gty + &S
+ &8¢, + &S, + Si&itts + SSC Y + §ESCYs -

Sq¢*y thus contains no coefficient of £{&Z, hence Sg'v, = 0. As usual,
if v, is a Sq¢'-homology generator, &°, then &£/£,£° € W, so we may
assume v, = S¢'y, and 2z =1y, + &S¢'y. Now if N = &S¢*Sq'y, +
1Sq*y + &Sq¢%, + ££,S¢°Sq'y, one may check that &z + &'\ e W,
proving the proposition. (*).

PROPOSITION 6. Let xeoV = I',, with the v;’s as in Proposi-
tion 5.
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@) ze W, =y, =0, S¢'Sq», = 0, v, = Sq'v,, v,€e o W..
b) zeW,=v,v,=0,Sqy, =S¢, =0, and v,ecoW,.

Proof.
(a) The proof of Proposition 5.a shows that y, = 0, so

=y, + &y, + &v,,
and
Sq'z = Sq'v, + £:Sq'y, + &, + £,S¢"y, .
Thus, S¢'y, = 0, Sg'v, = v,. Now,
Sq°Sq'Sq*x = Sq*Sq'Sq*y, + £1Sq'Se’y, + £:S¢'Se*Sq'Sq*y,
so S¢*Sq¢'Sq’v, = 0, S¢’Sq¢?v, = 0. That these conditions imply xze W,
is clear.

(b) Expanding Sg¢%t, the coefficients of & and &i¢, are v, and v,
respectively, so v, = v, = 0, and

=Y, + &Y,
Sq*r = Sg*v, + £5S¢'v, + &Sq%, ,

SO
Sq’y, = 0, Sq'v, = 0, Sg*», = 0 .

Again, the converse is clear. (*).

LEMMA 7. Define a subspace B of oV =1I,=cW4 &oW +
EoW + E0W by B=CE0W + E£,0W, so oVIB=ocW + &ocW. Let
w: 0V — 0 V/B be the projection. Then v, + &y, en(cV N W, <=y, €
oW, Sq¢'v, = 0. Secondly, &y, + E€p,€ W, = v, = 0, Sg*», = 0.

Proof. Let xeoV,x =y, + &, + &Y, + ££y,. Then

Sq¢'Sq*x = S¢*Sq*y, + £iSq'y,
+ &8¢'Sq’y, + &8¢y, + &S¢'Sq’y, + &i&y,
+ &16:Sq'y; + &S%y, + £6,8¢' Sy, .

Thus, S¢'v, =0, vy, = 0, S¢"S¢*, = 0. Suppose S¢'Sg*», = 0, Sqg'v, = 0.
If v, is a Sq¢'-homology generator, &, then &£ e W,, so we assume
y, to be a Sg'-boundary, v, = Sg'z. Now ) = y,+ &, +£,Sq*z satisfies
e WonN Iy, a(\) =y, + £w,. For the second part, we have already
observed that v, is necessarily zero.

Sq'Sq*(&v,) = £8q%, + £S¢'Sq™y, ,
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so Sg*v, = 0. The converse is clear. (*)

293

We now interpret Propositions 3,4,5, and 6 as statements
about the structure of the various graded vector spaces we have

defined. Let T = {we W| Sq¢'w = 0}, so
T = ééf"ﬂX ,

where X is defined in §II.
As in §1II, Propositions 3 and 4 give

(a) Y= @&l + SoW, + oY

and Propositions 5, 6 and Lemma 7 give

(b) W, = @:(0T + &oW) + &oW, + oW, .

(For Sg'(x) = 0 == v, = S¢'v,.)
©  W.=@HW I+ 50T + coW) + &0T + 2o W, + oW,
@ W, = é (oW + e0T) + &06Y + oW, .

Solving these equations induectively, noting that

oY =),

we obtain
(2) v=@ é HOMT + @S0t W. + 22 (1)
b) W= @@ T + Gao" W) + @& 0 W, + Z[2 ()
© W= @ @ S W+ &.0'T + 3o W)
+ @t 0T + Snd™ W, + 22 (1)
@ W= é W + 851.0'T) + @ End* Y + Z/2 (1) -

By now substituting (d) in (c¢), (¢) in (b), and (b) in (a),

obtain

0T + O @ @ 0T + &y o W)

k=1 1=1 j=1

IR
b:
@8

Y

b
U
-
w
il
o

we
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In{§II, we showed that as graded Z/2-vector spaces,

X; &V +oX,

k=1

SO

X=@ @ o'V + 22 .
This shows that the graded set
B= {1} U (.0 (0),

/¢ a monomial in U, is isomorphic to a basis for X. Since !T =
@, o X, we obtain a basic C for T, namely

C={a O'B}gen .
Let
7 = Z/21) + 1§z<Z/2(1>> + @ @ &istn(Z/21)

-+

+
®: 1®: 1D

A
~u

e ri&m rirpa(Z12(1)) + é éq EHghT

. 3

oDt D¢ e
Iy
ENLS

I
bkl

SO T + G0 W)

<
1
=

O D D

_..}_
®D:
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ik 1>m¢l -1 k(o-m H—LkW

kol
Il
I
X
[
Foos
I
I
o
i
o

F +kT + 5:7'1 +1+ Ic+"0 it ‘-kW)

o

§ o~

bt

i

a

T

o

Q
3

+ o
‘es

Using the basis C obtained for 7 above, and the monomial
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basis for W, we obtain

THEOREM 8. A basis for Z s, as o graded set, isomorphic to
the collection of all monomials of the following types:
(i) 1, &, Ei8lvaty, Exbflvinmtitnte &6 TER
G615l ke, CxbivitiEmerralmatekts »
Gl ririlmtitirolnimirnlnemtireriEatmittete -

(i) G e S0 T ()

()  SELE et mt St bt mt S O TR (2E)

(v)  G&LENLER Lo T ()

(v) Sl riEmr im0 TR (pe)

(vi) EillrurimritibmitiitiCnemtititiSnemtitis0 TR ()

C (Vi) ESflerrtitptlsimriia nemtitatEnmt 20 TR (1)
(vill) -Gttt mtitilnemitinnlnim a0 R ()
where t is any momomial in U,a,b =1, and u, v = 0.
(1) above asserts that
( ii ) Y EZ@el}”=1$l”=1e:=1e:=152:5%+k~F15m+l+k+2§n+m+l+k+2om+m+l+k+k Y

DEFINITION 9. A \-sequence will be a collection a = {i,, j,, k.,
Lir, of integers satisfying 2 < i, < j, <k, <l, < t4,. Given a
sequence «, we define q(a) = I, &, &5, &5, and let r(a) =1, ..

(ii) now gives

THEOREM 10. As a graded set, a basis for Y is given by

U (g(@(@)s ()},

as @ ranges over all A-sequences and o ranges over all monomials
in Theorem 8.

IV. Relations with the Mahowald-Milgram splitting. We
recall from [4] that as an .9/ -module, W= @, M; D F, where F is
free and M, is a certain .%4-module. In order to obtain F, we must
know the image of Y N M, in terms of the basis we have constructed
for Y. This calculation is entirely straightforward, and we only
state the result.

PROPOSITION 1. Let Z be as. in SIII. Then ZN(D. M) may
be identified with the subspace spanned by all monomials of type
(i) in Theorem III. 8. Moreover, Y N (@D, M, may be identified
with the subspace spanned by

yﬁ {g(@)a™ ' (9)} ,
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as o ranges over all A-sequences, and 6 ranges over all monomials
of type (i).

This immediately gives

THEOREM 2. A basis for F as a free, graded .S-module is
given by the set

U {a(@)o™(0)}

where a ranges over all \-sequences, and 6 ranges over all mono-
mials of types (ii)-(viii) in Theorem III. 8.

From §I, H*(bo, Z,) = W*, so H*(bo A bo, Z,) = o7 (2)/.5 (2).7
R Z2W*=.o7(2)Q., W*. Thus the splitting of W* as .94-modules
tensors to a splitting of H*(bo A bo, Z/2) as .57 (2)-modules. In [4],
it is shown that this algebraic splitting is actually a geometric
splitting, and we obtain

COROLLARY 3. bo A bo = XV, Z*"K(Z/2,0) where I' is the set
of all monomials in Theorem 2, and d(y) denotes the degree of 7,
and X s the spectrum mentioned in (B) of the introduction.

In [3], it was shown that the Adams Spectral Sequence with
E.-term

Ext¥%,(H*(bo), H*(bo)) ,

and converging to [bo, bo],, collapses. Thus, if <& denotes the ring
of self-maps bo — bo, and I denotes the ideal of all maps which
vanish in mod 2 cohomology,

A1 = Hom . ,,(H*(bo), H*(bo)) .

A standard change of rings result gives that as a graded Z/2-vector
space.

/I = Hom,,, (Z|2, H*(bo))

which in turn is isomorphic to {xe .o (2)/.o7(2)a,|Sq¢'x = Sq¢*x = 0}.
Since we have a splitting of .97(2)/.7(2).%, the calculation in
Theorem 2 gives

COROLLARY 4. As a graded Z/2-vector space,

21 = @ Hom, (Z/2, M;) D> F .
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