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THE RADON-NIKODYM-PROPERTY, o-DENTABILITY AND
MARTINGALES IN LOCALLY CONVEX SPACES

L. EGGHE

In this paper we give relations between the Radon-
Nikodym-Property (RNP), in sequentially complete locally
convex spaces, mean convergence of martingales, and
o-dentability. (RNP) is equivalent with the property that
a certain class of martingales is mean convergent, while
o-dentability is equivalent with the property that the
same class of martingales is mean Cauchy. We give an
example of a s-dentable space not having the (RNP). It is
also an example of a sequentially incomplete space of in-
tegrable functions, the range space being sequentially
complete.

1. Introduction, terminology and notation. A nonempty subset
B of a locally convex space (l.c.s.) (over the reals) is called dentable,
if for every neighborhood (nbhd) V' of o, there exists a point z in
B such that

@ ¢ con (B\(x + V)

(con denotes the closed convex hull). X is called dentable if every
bounded subset of X is dentable. When we replace con by ¢, where

o(A)= {;}Z‘,ﬁ N, z, € A, Ve N, glxnzl, gl M2, convergent, xn_z_o} ,

we get the corresponding definitions for o-dentability.

We use the following integral:

Let X be a sequentially complete l.c.s., and (2, %, ¢) a finite
complete positive measure space.

A function f:02-—> X is said to be p-integrable, if there exists
a sequence (f,)o-; of simple functions such that:

(i) lim,fu(0) = f(@), ¢ — a.e..
(i1) For every continuous seminorm p on X:

lim | p(£.() - F@)dp@) = 0.

Puts fdu = limng f.dp, vAe Y. This limit exists and is in X.
Denotia Ly (y, 2) asAthe space of classes [f] of p-integrable functions,
where [f]=1[g] iff f =g, 1t — a.e..

Put q(f) = Dp( f)dy, where p is any continuous seminorm on X.
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314 L. EGGHE
The topology on L% considered is these, generated by all the q.

Note. It is easily seen by Lebesgue’s convergence theorem and
(i), that we can replace (i) by:

(i)’ 1imm,,,s 2(fo(@) — fn(@))dr(w) = 0 for every continuous
seminorm 9 on X.

Let B be a closed bounded subset of X. We say that B has
the Radon-Nikodym-Property, (RNP), if, for every positive finite
separable measure space (2, 3, £, and every vector measure m: >, — X,
with

m(A)

4z o = ()~ [4e s, ) > of

contained in B, there is a p-integrable function f: 2 — X, such that

m(A):SAfd;L, VAES, .

We say that X has the (RNP) if each closed bounded convex subset
of X has the (RNP).
A sequence (x,, >..)o-; is called an X-valued martingale, if every
x, is in Li(g, >5.), where (2, >, f) is a measure space and the >,
are o-algebras such that 3,.c>... >, Yne N, and if, for every 4
in >,:
SA:c,,dy = Six,,ﬂdy, YyrneN .

We call a l.c.s. in which every bounded set is metrizable, a (BM)-
space. In this case our definition of (RNP) corresponds to this given
in {10]. (This is a consequence of Theorems 1 and 2 below.)

2. The results. The following theorem is well-known in Banach
spaces (see [1] and [8]):

THEOREM. The following assertions are equivalent im o Banach
space X:

(i) X has (RNP).

(il) Ewery wuniformly bounded martingale (x,, >,.)5- 18 Lk~
convergent.

(iii) X 1is dentable.

(iv) X s o-dentable.

In our case the space Li(y, >.) is in general not complete, so
that we might get some Cauchy-results, when (ii) is relied to (iii) or
(iv). On the other hand: (RNP) implies a certain completeness
condition, since, in proving (RNP) we have to prove the existence



THE RADON-NIKODYM-PROPERTY, ¢-DENTABILITY AND MARTINGALES 315

of a p-integrable function, being the Radon-Nikodym-derivative of a
certain vector measure, w.r.t. a scalar measure. We first state some
lemmas. Some of them have independent interest.

LEMMA 1. Let 3, be a separable o-algebra. Suppose 3, = o(A)
(the g-algebra generated by A) where A is an algebra. Then there
18 a countable BC A such that >, = d(B).

LEMMA 2. Let X be a sequentially complete l.c.s., and (x;, D.)ie;
a uniformly bounded martingale. Put >, = o(U;>.). Let (X, )5
be a sequence such that 3, = o(Us-. X.,). Let F: 3, — X be the
limit measure of (v, >.,)e-i. Then F is also the limitmeasure of

(%) Ddies-

The proofs of Lemma 1 and 2 are easily made. From them we
have:

LEMMA 8. Let X be a sequentially complete l.c.s., and (X, D.)ies
a uniformly bounded martingale. Suppose 3, = o(J; ;) separable.
Then the limit measure of (x,, >,;) exists on >..

Let (2, 3, ) be a separable positive finite measure space. Let
F be a vectormeasure on >, into X, such that A,(F) is bounded.
Put:

F(A)

X, = X

)

where 7 runs through /7 (the set of all finite partitions of £ into
elements of Y, directed in the usual way). Since (2, 3}, f) is coun-
tably generated, we have: >, is the o-algebra generated by an
increasing sequence of finite partitions =, of Q.

LEMMA 4. (®.).c; %8 Ly-Cauchy iff every sequence (x. );_, s
Ly-Cauchy, with (z,)s-, increasing such that 3, = o(U.7,). In this
case we have that for any two such sequences (T,)m-1, (Th)w=1:

Ly — lim (x., — a.;) = 0.
In case only ome such sequence (x. )7, s Li-convergent, then they all
are convergent (to the same limit). This limit is also Ly — lim, . px..

Proof. Denote 3, = d(x,): the g-algebra generated by 7, ().
is L'-Cauchy. Hence for every continuous seminorm ¢ on LY, there
is a m,e I, such that for every = = =,
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(1) q(xr - xrro) —g

|

Let n, = {4, ---, A4,}. By a well-known theorem ([3], p. 76), we can
construet

{A;, AL Q\LJ A;}

in Us..m,, such that p(A,44)) < 1/24.n.M,, for every i1 =1, ---, n,
where M, is a p-bound of (z. )r. <and where q(f):Spp(f)dy). Mak-
ing the usual arrangements: )

U= AL A= ANUA, (nz=i>1)
i1
A7 = Q\U AY
i=1

we get &) = {4, ---, A4, A, }.
Let #’ be any refinement of =); ' eI

r__ . . .
T = {Bl,ly ] Bl,pla ) B%,ly ) Bn,pn’ Bn-}—l,l, ] Bn-fl,ﬁn.;.l} .

Choose n”’ = n’ \/ @, in II. Then we consider three parts in z'’:
(I) Those sets B;; of #' which can also be taken in zn'": i.e.:
which are already part of one A,. This part cancels in x., — ...
(II) Those sets B, ; of #’ which are in more than one A4,. As
sets in ©” we have of course to choose B,; N 4,(k=1, ---, n).
(III) For those B,.,;, which are in more than one A4,, we take
also B, ;N Ak=1, -+, n) in 7".
We have:

q(xﬁ’ - x:”)
- FB)y s FB.iN0A)
; <(1” H(B;,;) XBi'j an kz:‘; WB;; N A XBi'iﬂAk)
+q<(% (the same)>
= A — . o o
= (121)‘ q(g‘l( #(Bi'j) 2(B;.; N Ak)> Bl,gwAk)
+ fV_‘, (the same)
(I1I)

(F(Bi,:i) _FB,;NA)
MB:;) BN A

FB.) _ F(B;0 A\ 5
* R EP(ap  HBe A B 4

=3P

(In)

)i(Bos 1 4)
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< F(Brn‘-l,j) . F(B,,,,-H,j).ﬂ Ak) B ) A
(IIT) k=1 <Au(Bn+1,j) #(Bﬂ+1,j ﬂ Ak) )[’!( n+1,5 ﬂ k)

=: (1) + (@) + (3.

We remark that, when E, G are arbitrary in 3, ¢(&) > 0, ¢(G) > o,
we have:

FE) _ F(@G) | GF(E) — F(G)uE)
uwE) G (G ()
- F&) | FEG) FG\E) FGMEG) , FGMG\E)
H(G) L(E) HE) H(E)HG) HEYG)

Now, here, we put £ = B, ;, G = B, ;N A;,. We can suppose p(B; ;) >
0, (B;,;NA;) >0, since we consider only partitions, z—a.e.. Hence:

p( F(B,;) _ FB,;N AD)
t(B:;) (BN A)
< | F'[(B;,;4(B;,; N A,)) + p<F(Bm' N Ai)> Cn(B;4(B;,; N AY))
t(B;,;) t(B;; N A) (B, ;)

where | F'|, denotes the p-variation on F.
So

’

(1) = X [M,(B:,;A(By.s N AD) + My(Bi,;A(B,; N A))]

A

< 3 BM,u(AVA(AY 1) A)
1
12

Now:
(2) = 2M, 35 5, 11(By,; N A

< 2M, 3, 5 (AL () Ay

1 : 144 ”

_ 1
12 °
(3) = 2M (A7,

= 2M,p <.Q\L=J A;)
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Thus q(x. — x...) < 1/4.
We have also by (1): q(@.. — =) < 1/4.
Now =;'c U, >.,. Hence there exists a »,€ N such that =, = z/’.
So q(x-,, — x.) < 1/2.
When 7, = z,, we have also 7, = ny. Hence also q(z., — ;) <1/2.
Hence q(x., — #-,) < 1,Vn = n, So (x. )., is L)-Cauchy.

=Let 3 = o(Us.. 7w, where (7,) is an increasing sequence of
finite partitions of 2. Supposing (2.)..;, not Li-Cauchy, we have:
there is a continuous seminorm ¢ on L%(z) such that for every we
/1, 3n’, 7" ell, ', 7" = &, with q(z.. — z..) > 2. Let 7’ be n’ or "
according to q(x. — x....) > 1.

We start the induction with = = n,; we call ' now: #]. Then
for 7 =z 7,; we call #”/ now: w;,, and so on. Hence we have

’

(x:;c,)}iﬂ With TES:L = 1y
né',n.r—l = ﬂ:ﬂ \/ ﬂ:'r’r»l

for every m =1,2,3, ---; It is trivial that (x.;);., is not L-Cauchy,
although o(UJ7.. ©i) = >, since =), = 7, =, for every n in N.

So, the two assertions are equivalent. In this case, since (x.)..
is L'.Cauchy, we have, for every continuous seminorm » on X,
iz, e /[ such that for any 7= = 7,

(1) qx. — ) = Eyp(xz —x,) < % .

Let (w,)z., and (7,);., be two increasing sequences, consisting of
finite partitions of 2 into elements of >}, such that 3 = o(U, 7, =
o(U,x,). From the first part of the proof of this lemma, and (1),
we deduce: There is a w, such that

(2) for every n = n,q@., — x.) < —;—
and a 7, such that for every n = m:q(x, — x;) < 1/2.
Choose m = max (n,, n,). So, there is a m in N such that for

every n = m: q(x., — x,) <1, for every p. Hence:

Ly — lim (x., — @) = 0.

Now suppose that there is at least one sequence (x. )., with
o(U.m,) =, such that there is a « in L\(#) for which
Ly —lim, 2. =2 Let (x.)7., be another sequence with 3] =

oU,x,). It is immediate that F(4) = S« xdp, for every A in
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U.7.. Hence F(A) = lim, Lx,,n dy, for every A in U,x,. Since
Ag(F) is bounded we have that F(A) = lim, Lx”ndpz, for every A
in >,. Thus F(A)=SAxdy, for every A in 3. So: Li—lim,x. =,
and LY — lim,.; 2. = «.

THEOREM 1. Let X be a sequentially complete l.c.s.. The follow-
ing assertions are equivalent:

(1) X has (RNP).

(2a) Ewvery uniformly bounded martingale (x,, >..)n-1 with >, =
o(U, >..) separable, is Liy-convergent.

(2b) Ewvery uniformly bounded and finitely generated martingale
(®,, S50, is Li-convergent.

(2¢) Ewvery uniformly bounded martingale (x; D.i)ie;, With >, =
o(U; > separable, is Li-convergent.

(2d) Ewvery uniformly bounded and finitely generated martingale
(s D)ier with >, = o(U,; >,:) separable, is L' -convergent.

Proof. This proof is now done in the same way as in Banach
spaces; We use now Lemmas 3 and 4.

REMARKS. (1) When the property “separable” is deleted in the
definition of (RNP) we can prove in Theorem 1 only (1) = (2¢) = (2d)
(without the assumption >, separable). This we can do if X is
supposed to be quasi-complete (to be sure of the existence of the
limitmeasure). However Theorem 1 is much more useful as will be
seen later on.

(2) When the property “A,(F') bounded” in the definition (RNP)
is changed into “F bounded variation and g-continuous”, we can
prove Theorem 1 in the same way, but now using L%-bounded and
uniformly integrable martingales instead of uniformly bounded mart-
ingales: However Theorem 1 is more interesting in connection with
o-dentability. (See Theorem 2.)

We are now going to characterize o-dentability in terms of
martingale-Cauchy-properties.

THEOREM 2. Let X be a sequentially completel.c.s.. The following
assertions are equivalent:

(8) X is o-dentable.

(4a) Ewvery uniformly bounded and finitely generated martingale
(2, D)wey 8 Ly-Cauchy.

(4b) Ewery wumiformly bounded martingale (x,, D..)ees 18 L-
Cauchy.
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REMARKS. (1) As will follow from the proof of this theorem,
we may also use in (4a) and (4b) martingales on a separable measure
space only. We may even restrict the martingales to be defined on
([0, 1], B[O, 1], N)(B[0, 1] = the Borelsets in |0, 1] and » denoting Lebes-
gue measure).

(2) In (4a) and (4b) we may also use martingales with an
arbitrary index-set I. This is trivial, since we are looking at Cauchy-
properties.

Proof of Theorem 2.

(4) = (3). This a adaptation of the proof of Huff [7] to our case:
Now supposing X not being o-dentable, we can construct a seminorm-
independent uniformly bounded and finitely generated martingale,
which is not L%-Cauchy.

(3) == (4a). An application of Rieffel’s theorem to our case shows
that (..., is L4-Cauchy, with

lim S x,. a0
Z P SR
dex #(A)

where (z,, >..)o-, is the given uniformly bounded and finitely gen-
erated martingale, and where /T = {x||x is a finite partition of Q into
elements of X}.

Then Lemma 4 gives the result.

The proof of (4a) < (4b) is easily made.

COROLLARY. Let X be a quasi-complete (BM)-space. Then all
the assertions in Theorem 1 are equivalent with all the assertions
in Theorem 2 (and equivalent with dentability).

Proof. This is easily seen by the result of Saab [10].

We also see that in a quasi-complete (BM)-space, we get an equi-
valent formulation of (RNP), by deleting the word “separable” in
our definition.

The proof of the following lemma is immediate:

LEMMA 5. Let (x,);-, be a sequence of step-functions which 1is
Li(p)-Cauchy. Then there is a martingale (Y,, D)=, SUch that

Ly(y) — lim (y, — x,) = 0.

From this lemma and Theorems 1 and 2 we have now:
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THEOREM 3. o-dentability is equivalent with (RNP)(in sequentially
complete l.c.s.) iff every uniformly bounded L%-Cauchy sequence of
(step-) functions in L%x(2, >, ) 18 Li-convergent. (2,3, 1): any
separable positive finite measure space.)

Hence the Radon-Nikodym-property’s equivalence with o-den-
tability depends critically on the sequential completeness of Li(ge).

For the remainder of this article, we intend to prove that there
is a sequentially complete l.c.s. X for which L% is not sequentially
complete: We shall even show that there is a Schur space X for
which L% .1z, is not sequentially complete. This is done by proving
that these X are o-dentable and have not (RNP). We first recall
the definition of a weak-Radon-Nikodym-Banach space.

DEFINITION. Let X be a Banach space. X is said to have the
weak-Radon-Nikodym property (WRNP), w.r.t. the measure space
@, 35, o), if for every X-valued measure F on >,, which is g-con-
tinuous and of finite variation, there is a Pettis-integrable function
f: 2 — X such that

F(A) = P — SAfd;z

for every A in >,. (Here P — S fdpe denotes the Pettis-integral of
A

f over A.)
The following lemma is immediately seen:

- LEMMA 6. Let the Banach space X be weakly sequentially com-
plete. If X, o(X, X') has (RNP) then X has (WRNP) w.r.t. separable
measure spaces.

We denote by JH the space constructed by Hagler [6].
Lemma 7 ([1], [2], [6]). JH' is a Schur space without (RNP). L'

18 @ weakly sequentially complete Banach space without (RNP). Every
Schur space 1s trivially weakly sequentially complete.

In Theorems 4 and 5, X denotes a weakly sequentially complete
Banach space without (RNP).

THEOREM 4. There is a closed separable subspace Y of X such
that Y, o(Y, Y') is o-dentable and has mot (RNP).

Proof. Since X does not have (RNP), there exists a closed
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separable subspace Y of X without (RNP), hence without (RNP)w.r.t.
({0, 11, B[O, 1], »). (Here B[0, 1] denotes the class of the Borel subset
of |0, 1] and » denotes Lebesgue measure on [0, 1]). Since Y is separ-
able, Y has not (WRNP)w.r.t. ({0, 1], B[O, 1], »). By Lemma 6:
Y, (Y, Y') has not (RNP)w.r.t. ([0, 1], B0, 1], A). Furthermore
Y, o(Y, Y') is sequentially complete, and by [5] (Cor. 3 of Theorem
1) is o-dentable.

From Theorems 1, 2 and 4, we have now:

THEOREM 5. There is a sequentially complete l.c.s. X such that
L' 1s mot sequentially complete.
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