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Suppose a locally compact group G (always second
countable) has a Borel action on an analytic Borel space
S so that each element of G transforms a given measure
/¢ into an equivalent measure. If S; is the coset space for
a closed subgroup H, then there is a natural action of G
on S, which comes from translations of G on itself and
there is such a quasi-invariant measure. Thus it is reason-
able to think of such a space (S, y), for some purposes, as
a generalized sort of subgroup, or a virtual subgroup of G.
In fact, the set SXG can be given algebraic and measure-
theoretic structure so that many of the procedures used
with subgroups can be carried over to this general setting.
There is a general notion of virtual group, not necessarily
‘““contained in’’> a group, which can be derived from this,
and it turns out to include equivalence relations with suit-
able measures as a special case. These virtual groups
appear in studying group representations, operator algebras,
foliations, etc. Since there is a general setting for virtual
groups, it seems desirable to see whether the intuitive idea
of an action of a group as representing a subobject fits
into this framework in a compatible way. The purpose
of this paper is to show that ‘‘images’” wunder homo-
morphisms, ‘“kernels’’, ete. do fit together properly.

In this introduction we seek to summarize some of the motiva-
tion for the theory and give further explanation of the reasons for
developing the results presented in the paper. Let G be a locally
compact group, and let N be a closed normal subgroup. Let N
(the dual of N) denote the space of equivalence classes of irreducible
representations of N, with the Mackey Borel structure [3]. Suppose
N is analytic, i.e., that N is a type I group [3]. This is the
context of the paper of G.W. Mackey [12], in which he studied
the problem of finding G in such a case. There is a natural action
of G on representations of N: If L is a representation and z €@,
let L*(y) = (xyx™') for ye N. This gives a (right) Borel action of
G on N. If U is an irreducible representation of G, U|N is a
direct integral relative to an ergodic quasi-invariant measure on N.
Mackey confined his attention to the case in which for every ergodic
quasi-invariant measure A there is a conull orbit (one whose comple-
ment has measure 0). In this case we say the action is essentially
transitive relative to n. Mackey takes an arbitrary point in that
orbit and his constructions are done with the closed subgroup of G
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which stabilizes that point. Another point in the orbit will lead to
a conjugate subgroup, and the results turn out to depend only on
the orbit. There are many examples of pairs G, N for which there
are ergodic quasi-invariant measures A on N for which every G-
orbit has measure zero [14, 20]. Then the class [\] of measures
equivalent to N is said to be a nontransitive quasi-orbit. This
generalizes the notion of orbit in the same way that measure classes
in general generalize the notion of subset of a set. For a non-
transitive quasi-orbit, there is no subgroup which can be used to
make the desired constructions. However, by introducing an
algebraic structure in N x G, Mackey reformulated the essentially
transitive case in a way which is meaningful in the general case.

Suppose S is any (right) G-space. Then for (s, x,) and (s, x»)
in S X G, the product is defined exactly when sz, =s,, and then
the result is (s, #,). Thus, only some pairs have a product, and
the action determines which ones, while the group product from G
shows itself in the formula for the product. With this product,
S X G is a groupoid, i.e., a small category with inverses. There
are several ways to formulate the definition of “groupoid”, and we
have chosen the following one for its intuitive content, preferring
to think of the elements of a groupoid as abstractions of isomor-
phisms, i.e., mappings between objects of some type.

DEFINITION. A groupoid is a set F with a subset F'© (of units),
a pair of funections d, »: F — F (domain and range) and a product
zy defined for pairs (z, ¥) in FF*={(a, b) ¢ F' X F: d(a)=7(b)}. These
must satisfy the following:

(a) (associativity) d(zy) = d(y) and »(xy) = r(x), and if d{x) =
r(y) and d(y) = 7(z), then (xy)z = x(yz).

(b) (units) If weF” then u =d(u) = r(w). If u = d(x) then
xu = ©, while if v = (x) then vx = «.

(¢) (inverses) For each x € F' there is a y with zy = »(), yx =
da(x).

Notice that a groupoid for which there is only one unit is a
group. The y of part (¢) is unique and denoted z™*. In a concrete
small category with inverses, i.e., a groupoid of isomorphisms, the
units are the identity mappings of the various objects. For F =
S X G, »(s, x) = (s, e), d(s, x) = (sx, e), and (s, )™ = (sx, ™).

If we identity S with S X {¢}, we can regard » and d as maps
of S X G into S. Then points s, s, in S are in the same orbit under
G iff there is an « in G with sx = s, iff there is an element 2z in
F with r(z) = s, and d(z) = s,(z = (s, #)). In general, we call units
u, v equivalent if there is an x with »(x) = u, d(x) =v. A set of
units is called saturated if it is a union of equivalence classes. For
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a set A of units, its saturation [4] is r(d7*(4)) = d(»7*(4)).
Besides S x G there are many ways to construct groupoids (we
give a few):

Example 1. Let S be a set of groups and let F' be the set of
isomorphisms with domain and range elements of S. If we want
the multiplication to be function composition, the other parts of
the structure follow naturally, and the equivalence classes are
isomorphism classes.

ExamMpPLE 2. Let S be a partition of a set A4, i.e., a collection
of nonempty disjoint sets, and let F' be the set of bijections between
elements of S.

ExampPLE 3. Let F be an equivalence relation on a set S (say
a foliation on a manifold S). Define F'” = diagonal, »(x, ¥) = (z, x),
d(z, ) = (4, ¥), (&, ¥)(¥, 2) = (x,2). Then (z, ¥)™ = (y, 2).

Return now to the case of S X G and suppose S is the space
of right cosets of a closed subgroup H, with s, the identity coset.
There is a Borel v: S—G so that v(s) €S for each seS, and v(s;)=e.
Define (s, ) = v(s)xv(sx)™ for (s,2)eS X G and @(h) = (s, k) for
heH. Then :S X G-—-H and ¢: H— S X G are groupoid homo-
morphisms. Hence, if L is a representation of H then Loy is a
representation of S x G, and if R is a representation of S x G,
then Rop is a representation of H. The pair (@, +) establishes a
kind of equivalence between H and S X G of which one consequence
is the passing back and forth of representations. This equivalence
is called similarity [15], which is defined as follows. Let F), F, be
groupoids. A function @: F,— F, is a homdmorphism if when zy
is defined so is @(x)p(y) and it equals o(xy). If @, @,: F, — F, are
homomorphisms, a similarity of @, and @, is a function 4: F\® — F,
such that for each x2e¢F, 6(r()plr) and @,(x)0(d(x)) are defined
and equal. We write @, ~ @,, and [@,] is the similarity class of ¢,.
(If we think of F, and F, as categories, a homomorphism is a
functor and a similarity of homomorphisms is a natural equivalence
of functors.) If F, and F), are groups, homomorphisms are the same,
and since F, has only one unit, for similarity we simply have an
element a = 6(e) in F, such that @,x) = ap,(®)a™*. F, and F, are
similar if there are homomorphisms ¢,: F, — F, and ¢,: F, — F such
that @,op, ~ 1:Fl and @,o, ~ 'in-

In the example above, (@, ) is a similarity of H with S X G.
In fact 0@ = 1, = identity on H, but @oy(s, x) = (s,, 7(s)xv(s2)™").
If we define 6(s)=(s,, 7(s)), then @oq(s, x)0(sx) =6(s)(s, ). (Thus g is a
natural equivalence of @oy with the identity “functor” on S x G.)
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A consequence of this similarity is that the function taking L to
Loy induces a one-one map of equivalence classes of representa-
tions of H onto the same for S X G. (Two representations R, R,
of S X G are equivalent if there is a unitary operator valued fune-
tion V on S such that V(s)R,(s, x) = R,(s, ) V(sx) always.) This is
important for the theory of virtual groups, because it is part of
the basic pattern of using “virtual subgroup” (next paragraph) to
extend the subgroup concept. We want the results to be consistent
with the subgroup results in case the G-space is transitive.

Mackey used this connection between H and S X G even to
derive a definition of homomorphism. If H, is a subgroup of G,
with coset space S,, and H,, G,, S, are another such triple, then we
have v, @, ¥, and v, Py, 4. If @: H — H, is a homomorphism then
@,o@oqr, should be a homomorphism and if ¢: S, X G,— S, X G, is
a homomorphism then +ro@’o®, should be a homomorphism. The
result is the one we used above. Now we want to use this to get
the “virtual subgroup” idea. If (k) = h for he H, then ioyr = .
Thus « is related to the inclusion of H into G. If we define
Js(s, ) = x, then for (s, 2) €S X G we have (s, x)v(sx) = v(8)js(s, ).
Thus « and j¢ are similar. Now j; makes sense in general, although
o does not, and the notion of similarity of homomorphism allows
us to think of 'j5, or rather [js], as an inclusion in general, and
S X G as a virtual subgroup of G. To carry this one more step,
suppose subgroups H, and H, have coset spaces S, and S,. If H,C
H,, p(H,a) = H,a defines a G-equivariant map of S, onto S,, and
j(s, ) = (p(s), ) corresponds to the inclusion of H, into H,. Thus
we define S, x G to be “contained”™ in S, x G if there is an equi-
variant map p of S, onto S,. In section 5 of this paper we consider
another way to define “subobject”, also derived from group theory,
and one purpose of the paper is to show the two ways agree. So
far, we have arrived at a category of groupoids in which the maps
are similarity classes of homomorphisms, so that [js] is an “inclu-
sion”.

For a coset space S, S X G also has topological and measure
theoretic structures. In this paper we are mainly concerned with
the latter, and recall here some of the facts. It is known that on
a coset space S there is exactly one quasi-invariant (o-finite) measure,
up to equivalence. If v is a probability measure in the class of
Haar measure on G, and s, is the identity coset, then we can define
HA) = v({{xeG: s e A}) to get a quasi-invariant g. Then g X v is
quasi-invariant under (s, ) — (s, )™ = (sx, ') (Fubini). Now g X
y = Sss X vdp(s), where ¢, denotes a unit point mass at s, and g =

r (¢t X v). Thus we have p Xy decomposed relative to » over
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r (¢t X v). Since v is quasi-invariant under left translation, for any
(s, x), the map taking (sz, ¥) to (s, 2y) = (s, z)(sz, y) carries ¢, X v
to a measure equivalent to ¢, x v. These properties suggest the
measure theoretic structure we will use in the general case. If
we take F=S X G and n=pu xy, then (F,\) is a measured
groupoid in the sense of the definition below.

It is convenient to denote the equivalence class of a measure
2 by [¢]. Then a measure g is quasi-invariant iff [¢] is invariant
as a set. Suppose F is an analytic Borel groupoid, i.e., it is analytic
as a Borel space and »,d, ( )™ and multiplication are Borel funec-
tions. Let )\ be a probability measure on F, and denote by (\)™
the measure whose value at a Borel set 4 is M{z™: x € A}). We say
that )\ is quasi-symmetric if (\)™' ~ A; this is true iff [A] is sym-
metric, and iff there is a symmetric », ~ 1 (take N, = 17200+ (\)™)).
Now let X = r,(\) be the image of » in F' via 7, and decompose
A\ over X relative to » [15, 18], ngvd%(u). For xz e F' define A%

to be the measure whose value at a set A is V¥ ({y: »(¥) =d(z) and
zy € A)) = \*(x74). We say the decomposition is left quasi-in-
variant if there is a X-conull set U C F such that xa%® ~ \7@
when z is in the set »(U)Nd ' (U), which is denoted F|U and
called the contraction or reduction of F to U. When U is conull
this is an inessential contraction (i.c.). An i.c. is a conull set in
F, but also a subgroupoid, and it is important to use an i.c. in the
definition of quasi-invariant decomposition. If the set U can be
taken to be F''” we say the decomposition is strictly quasi-invariant.
If A has a (strictly) quasi-invariant decomposition and », ~ A let g
be a strictly positive and finite Radon-Nikodym derivative dx,/dx.
If X; = r.(\), then X, ~ X, so there is a strictly positive and finite
Radon-Nikodym derivative f = dx/dX,. Then

n = |ovaiw) = {feenat) ,

so we can get a (strictly) left quasi-invariant decomposition of X,
by taking A = f(u)gn*. Thus the existence of a (strictly) left
quasi-invariant decomposition depends only on the measure class.
The same holds for right quasi-invariance, defined using d. In
particular, for F'= S X G, since ¢ X v has a strictly left quasi-
invariant decomposition and is quasi-symmetrie, it also has a strictly
right quasi-invariant decomposition, although a direct ‘construction
of it is less obvious.

With this background, we define a measured groupoid to be a
pair (F, ) or (F,[\]) where F is an analytic Borel groupoid and
is a probability measure on F which is quasi-symmetric and has a
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left (or equivalently, right) quasi-invariant decomposition. When
convenient, we may take M to be symmetric.

Now we want to define homomorphisms for measured groupoids.
There are at least two possibilities. We have given an example in
{18, p. 282] showing why we choose the null set condition we use.
There the definition was given for virtual groups (defined below),
and here we extend it to measured groupoids in general. Suppose
@: F,— F, is a Borel function. For @ to be a homomorphism of
measured groupoids (F,, \,), (F,, \,) we require two conditions:

(a) There is an i.c. of F, on which @ is algebraically a homo-
morphism.

(b) For saturated analytic sets 4 & F\,

P.(A)(4) = 0 iff Xy (4) = 0.

A measured groupoid is called ergodic, or a virtual group iff every
saturated Borel set is null or conull. Then the same is true of
saturated analytic sets, and one can show that (b) follows from a
weaker condition:

() X, (4) = 0 and A saturated implies @,.(X)(4) = 0.

If the i.c. in condition (a) can be taken to be F,, we say @ is strict
homomorphism.

We have given a brief explanation of how to derive the measure
theoretic definition of measured groupoid. For homomorphisms, the
allowance for an i.c. and condition (b) are more complicated to
motivate. One reason for (b) is given in [18]. The use of the i.c.
arises because there are necessary constructions which only produce
that amount of good algebraic bebavior. The author has been able
to sharpen this under additional hypotheses (unpublished), but only
to improve the type of i.c. By further study of the connection
between S X G and H for coset spaces S, Mackey has extended
several other group theoretic notions to groupoids. A primary
example is that of induced representation. Suppose p is a quasi-
invariant measure on S, and let o(s, ) = (du(sx)/dp(s))*. If R is a
unitary representation of S X G on a Hilbert space K and 277 =
LA/ K), we can induce R to get a representation U of G on .2:
(U.f)(s) = p(s, )R(s, x) f(sx). If R=Loqr, this is one of the standard
forms for inducing from H to G, but it is meaningful in general.

Another example of a notion extended from groups is that of
the closure of the range of a homomorphism into a group [15, 16,
18]. Suppose H, is a closed subgroup of G, with coset space S..
Take 7,: S, — G, and +: S, X G, — H, as before. If . H, —G, is a
homomorphism, so is @, = @er,. Now S, X G, acts on G, X S, as
follows: (., s)(s,, x,) = (x,2.(s, x.), 5:2,), and G, acts via (@, s)y. =
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(yz'x,, ;). Then orbits under S, X G, partition G, x S, and are
permuted by G,. The quotient space of G, X S, is analytic iff (H,)
is closed, but in general there is a G, equivariant map f of G, X S,
onto the coset space S, of @(H,)~ such that for any Borel equivariant
g:G, x S;— S there is a Borel 2~ with g = hof. By our earlier
definition of “containment” this makes S, X G, “the smallest subobject
containing @(S, X G,)”. This construction can be carried out for
groupoids in general. It generalizes the construction of a “flow
built under a function” [16]. Details of one approach to this can
be found in [18], and another approach is spelled out in the Ap-
pendix.

These definitions are obtained by use of the similarity between
H and (G/H) X G, and we arrive at a category whose objects are
groupoids and whose maps are similarity classes of homomorphisms.
In this category we define relationships and constructions (e.g.,
subobject and range closure) by extension from the groups.
Another approach would be to apply the standard definitions of
category theory. An earlier version of this paper nearly ignored
the category theory approach, but in this one we explain some of
the relationships between the two approaches. Our primary purpose
for the theory is to have a workable extension of group and sub-
group methods to the context of ergodic group actions. If the
definitions are workable, we are not committed to agreement with
category theory. However it may be of interest to compare the
two approaches.

As one example, we point out that already the category of
groups with similarity classes of homomorphisms is noticeably
different. A group is a groupoid with only one unit, so homomor-
phisms @,, @, from a group G to a group H are similar iff there is
an element a € H such that for all x in G we have @,(x) = a@,(x)a™.
Thus an inner automorphism is identified with the identity function.
This reflects the fact that stabilizers of different points in a transi-
tive G-space are conjugate subgroups. Now suppose N is a normal
subgroup of G for which there is an inner automorphism a of G
such that a|N is outer (these are easy to find). Let @ be the
identity homomorphism of N and let 4+ = «|N. If 7 is the inclusion
of N into G, ic® and 4oy are similar homomorphisms of N into G,
but @ and 4 are not similar homomorphisms of N into N. Thus
in our category the map which is the similarity class of 4 is not
left-cancellable, even though we surely want to regard it as an
imbedding.

The outline of the rest of the paper is as follows. In the first
four sections we give definitions and statements of results which
are needed later. Some of these are generalizations to groupoids of
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published results on groups. The methods are not always the same,
but we have relegated most of the proofs to an appendix, in order
to get the reader more quickly to §5. In §1 we define measured
groupoids and actions and state a few results about them. Section
2 is about ergodic decompositions. The existence proof, in §2 of
the Appendix, depends on a simple characterization of ergodicity
for groupoids and hence for group actions. Peter Hahn has given
an independent proof, using other methods [7, Theorem 6.1]. The
basic technical result in Section 3 is that if two groupoids have
commuting actions on a given space, then each will have an action
on the space of ergodic parts for the other. This provides a way
to construct “range closures” of homomorphism into groupoids in
the manner suggested by Mackey in [15] and close to that of K.
Lange in [10]. It is also similar to the reasoning used by C. C.
Moore in pages 112-117 of [1]. The Boolean G-space approach used
in [18] seems harder to implement when G is no longer a group.
The present method applies, for example to construct the “range
closure” of a homomorphism into a virtual subgroup (S X G,
[¢t X v]) of a group G, without referring directly to G itself. The
result in section four is that the assignment of G-spaces to homo-
morphisms of groupoids into G is functorial.

We have mentioned above one group theoretic motivation for
thinking of S X G as a subobject of G when a group G acts on a
space S. In section five we develop another approach to this and
related questions. The general problem is to find measure theoretic
equivalences to topological and algebraic notions. For example, let
H be a subgroup of a locally compact group G. Then H is closed
iff the coset space is countably separated, and hence analytie, in the
quotient Borel structure [11]. If F and G are groups and @: F—G
is a continuous homomorphism, then F acts on G:g-f = go(f), and
@(F') is closed iff the orbit space in G for the action of F is
analytic. Such equivalences allow us to define “closed range”,
“imbedding”, ete., and we show that these properties are invariant
under similarity of homomorphisms. In §6 we show that the
relation of being a subobject is transitive and is consistent with
Mackey’s definition of virtual subgroup of a group. We also show
that a composition of two homomorphisms with dense range has
dense range, and that the composition of an irreducible representa-
tion with a homomorphism having dense range is an irreducible
representation. What is different here is that these notions are
defined measure theoretically rather than topologically. In §7, we
discuss trivial homomorphisms, imbeddings, surjections, ete., in
connection with “containment of subobjects” and various notions of
category theory. For instance, we show that a homomorphism
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which has dense range is an epimorphism in the category sense.

For most terminology and notation we refer the reader to [18,
19, 20]. We point out that measures are assumed to be finite unless
described otherwise. If 57 is a Hilbert space then &°(5#) is the
space of bounded operators on £Z and Z/(5#) is the (Polish) group
of unitary operators on 27 and (:) is the usual notation for the
inner produect. ( )™* is used for the function taking z to =™, and
if ¢ is a measure ()™ may be used for ( );'(%). In decomposing
a measure # relative to f the measures may be p(f, ), ¢, or p'.
We will use =» instead of X for relative products of sets or
measures.

The author is indebted to Caroline Series for the opportunity
to see her Harvard thesis [21] and for results and ideas in it, and
to Raymond Fabec for pointing out an error in an earlier proof of
Lemma A.1.7. I also thank Alain Connes, Peter Hahn and Calvin
Moore for suggesting ways to improve the paper.

1. Actions of groupoids and equivariant maps. In this
section we discuss an algebraic aspect of groupoid actions and revise
the terminology of [18] to agree with that of [5]. We also discuss
various notations of action and equivariant map when measures are
involved. We give some results relating these notions among them-
selves, and finally consider a ‘universal G-space’ construction for
groupoids [13]. These are technicalities, intended to make things
run more smoothly later.

Thinking only algebraically for the moment, let G be a groupoid
with a right action on a set S, and set FF=S*G ={(s,2)eS x G:
sz is defined}. We want to make a groupoid of F, in precisely the
same way as when G is a group. Thus we want (s, 2)(t, ¥) to be
defined iff sx = ¢, and then the product is (s, xy). For this to define
a product in F, xy and s(xy) must be defined whenever sz and (sz)y
are defined. In other words, to make SxG a groupoid by the defini-
tion used when G is a group, the action must be true [18, p. 258].
Therefore we will adopt the following definition of action, in agree-
ment with [5].

DerFINITION 1.1. If G is a groupoid and S is a set, an action
of G on S (on the right) is a pair (p, a) where p is a function
from S onto G and a is a function from S*G = {(s,x)e S X G:
p(s) = r(x)} to S such that whenever (s, z)eS*G and (z, y)eG?,
then p(a(s, x)) = d(x) and a(s, 2y) = ala(s, z), y). If G and S are
Borel, we say the action is Borel iff » and ¢ are Borel functions.
We also will refer to (S, p, @) as a (Borel) G-space if (p, a) is an
action (a Borel action) of G on S. If G, is a contraction of G and
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B< S, we say B is G-invariant iff seB, x€G and (s, ) € SxG
imply a(s, )€ B. To give a weak action of G on S, we give for
each xeG sets D(z) and R(x) = S and a bijection (x): D(z) — R(x).
If (x)(s) is denoted sx, we require

(i) S=U{Dx):2eqG}

(ii) weG® and se€ D(u) imply su = s

(iii) (x, ¥) € G*® and s € D(x) imply sz € D(y), s € D(zy) and (sa)y =
s(xy).
This is Borel if F and (s, x) — (sx, ™) are Borel.

REMARKS. (1) (a(s, x), ¥) € S*G because p(a(s, x)) = d(x).

(2) We will ordinarily write sx for a(s, ) and refer to the
G-space (S, p). We may even let the function p be implicit and
refer to the G-space S.

(8) The associative law holds under this definition, i.e., if
either of s(xy) and (sx)y is defined, then the other is also defined
and they are equal. We leave it for the reader to verify that S*G
is in fact a groupoid.

(4) 38, x) = ¢ defines a homomorphism of SxG into G called
the inclusion.

(5) B is G-invariant iff {(s, p(s)): s€ B} is saturated in S*G,
and B is G,-invariant iff BN p Y(G") is G-invariant.

(6) Define s, ~ s, iff there is an x with s =s,. Then ~ is
an equivalence relation on S.

DEFINITION 1.1 is suitable when no measures are involved, but
when we deal with measured groupoids, there may be null sets
which we want to discard. This needs to be considered in making
the definitions. For homomorphisms of measured groupoids, we
found it convenient to have the most used term include the possi-
bility of some null sets on which there is imprecise behavior. This
avoids repetitions of such phrases as “there is an i.c. G, on which
® is a homomorphism.” We simply say, “@ is a homomorphism.”
For the same kind of reason, we want to allow for a carefully
controlled amount of algebraic imprecision in the definitions for
(G, [¢])-spaces and (G, [¢])-equivariant functions. This is one way
to simplify the statements of theorems.

Suppose (S, », @) is a G-space and G, is a contraction of G, and
set S; = »7Y(G®). Then S, is G,-invariant. If p(S,) = G® and S, is
G,-invariant, let p», = p|S, and a, = a|S;*G,; then (S, », a,) is a
G,-space. Also notice that S;*G, is the contraction of SxG to
{(s, p(s)):s€8}. For S, < S, the contraction to {(s, p(s)):s€8,} is
S*@, iff S, is invariant under G, = G|»(S)).
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DEFINITION 1.2. Let (G, [¢]) be a measured groupoid, let S be
an analytic Borel space, let » be Borel from S onto G and let
a:S X G—S.

(a) (S, p, a) is a (G, [¢])-space if there is an i.c. G, of G such
that S, = p™(G{") is a G -space under p|S, and a|S;*xG. A measure
A on S is then called quasi-invariant iff p,(\) ~ Z and )\ has a
decomposition » = S)»udﬂ(u) such that (\,.,))x ~ Ay for almost all «
in G. In this case we call (S, N, p,a) or (S,») or even (S,[r]) a
(G, [¢])-space.

(b) If we can take G, = G we call S a strict G-space, and if
Nopia)® ~ Mgy fOr every x, we say A, or its decomposition, is strictly
quasi-invariant.

Let (S, p) be a strict (G, [¢])-space and let N be a finite Borel

measure on S with p,(\) ~ ff. Decompose )\ as qudﬂ(u) relative to
p. By Theorem 2.9 of [16], N\ is quasi-invariant iff axg¢ is quasi-
invariant under 7(s, ) = (sz, £7'), the inverse map in S*G. Suppose
N\ 1s quasi-invariant and let

Y = Nkt = S)\,u X prdii(u) = Skm) X gdp(x) = Sss X P OdN(s)

[16, pages 63, 64]. We have 7(s, ) = (s, 7(x)) and d(s, x)= (sz, d(z)),
and (S*@) is just the graph of p, which is isomorphic to S via

the coordinate projection onto S. Hence »,(») = qu X e dff(u), by

Lemma 1.2 of [19]. This is just the image of A in (S*@)®, so the
last formula for v above is its decomposition relative to », i.e.,
o(r, (s, p(s))) = ¢, X #*'. Let G, be an i.c. of G such that xeG,
implies zp*™ ~ p® for x €@, [19, Lemma 6.2], and let S,=p"*(G{).
Then S;*G, is an i.c. and for (s, x) € S;*G, we have (s, x)[e,, X p!®]=
g X (xp?®) ~ e, X @, Hence (Sx@,[v]) is a measured groupoid.
Thus the process of forming S+«G does not give a new kind of
object when applied the second time.
Here are some examples of G-spaces.

ExAMPLE 1. Any G-space for a group G is a strict G-space.
Any quasi-invariant measure on it is strictly quasi-invariant.

ExAMPLE 2. Let G be a groupoid, S =G, p = the identity
function. Then S*G = {(»(x), x): x € G}. Define a(r(x), x) = d(x). If
(G, [¢]) is a measured groupoid, fZ is strictly quasi-invariant. The
orbit of weG© is its equivalence class. Thus every equivalence
relation is induced by an action.

ExAMPLE 3. Suppose U & G meets each equivalence class in
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G and let S=7r%U). Let »=d|S. Then SxG =8 x GNG®.
If (s, ) € S*@, let a(s, ) = sx. The orbit of s&S is then »7*((s)).
In the proof of Theorem 3.5, we show how to get some quasi-
invariant measures.

EXAMPLE 4. Let @ be a homomorphism from G to a groupoid
H. Let T(@) ={(& w)eH X G:d(§) = p(u)}. Define p( u) = u.
Then T(®)*G = {((&, r(x)), x): e H,xecG and d(&) = re@(x)}. Define
a((&, r(x)), x) = (ép(x), d(x)). This generalizes correctly the action of
one group on another via a homomorphism. We use this space to
construct the “closure of the range” of @, in section three.

The term for a function between spaces on which a group acts,
which preserves the group action, is equivariant. Next we want
to define this word in the context of groupoid actions.

DEFINITION 1.8. Let (G[y]) be a measured groupoid.

(8) If (S, n) and (S, \,) are (G, [¢])-spaces and f:8S,— S, is
Borel, we say f is (G, [¢])-equivariant if

(i) there are an i.c. G, of G and conull Gyinvariant analytic
sets S; £ S, and S, £ S, such that when (s, x) € S;*G, then (f(s), x) &
SxG, and f(sx) = f(s)x, and

(ii) for saturated analytic sets A S,, M(f 7 (4))=0 iff A,(4)=0.

(b) If we can take G,, S, and S, so that (a) holds and f takes
S, one-one onto S,, we call f an isomorphism.

(¢) If we can take G, =G, S;=S, and S,=S,, we say f is
strictly equivariant or a strict isomorphism.

(d) If S, has no measure, we delete the requirement that S, be
conull, as well as condition (ii) in (a).

(e) We say f is almost equivariant if {(s, x) € S;*G: f(s)x is
defined and equal to f(sx)} is conull [21].

It may be of interest to note that for an equivariant map
f, f«(Ou) ~ A;.  This means they are what C. Series called normalized
[21]. This is Lemma Al.4 in the Appendix. Another useful fact
is the following regularization result for almost equivariant maps.
It is a little stronger than we can get by applying the homo-
morphism regularization lemma to f*i, and its proof is also in the
Appendix, as Lemma Al.l.

LeMMA 1.4. Let (G, [¢]) be a measured groupoid, let (S, N, p)
be an analytic Borel (G, [p))-space and let T be a strict analytic
Borel (G, [¢])-space. If fi: S— T 1s almost (G, [¢])-equivariant, then
there is an equivariant function f. S — T which agrees with f, a.e.
Furthermore, f..(\) = f.(\) and is quasi-invariant. The function
f exists even if T is a weak G-space.
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We also need a notion of similarity of equivariant functions.
Suppose f, g: (S, M) — (S, N,) are strictly (G, [¢])-equivariant and let
0: S, — S;*G give a strict similarity of f«i and g¢g=i, i.e., suppose
0(s)(f(8), ) = (g(s), w)0(sx) for (s, x)eS;*G. Let 0O(s) = (a(s), B(s)
where a: S, — S,, 8:S,— G. Then the similarity equation is equiv-
alent to these: a = g, g(s)B(s) = f(s) for se S, and B(s)x = xB(sx) for
(s, ) € S;xG. This motivates our definition.

DeriNiTION 1.5. (a) Let f, ¢:(S, M) — (S, N,) be strictly
(G, [¢])-equivariant. They are strictly similar iff there is a Borel
function @: S, — G such that g(s)B(s) = f(s) for se S, and B(s)x =
2B(sx) for (s, x) e S;*G.

(b) Let f, g: (S, M) — (S, M) be (G, [¢)-equivariant. They are
similar if there are an i.c. G, and conull strict (G, [¢])-spaces S,S.S,
and S, £ S, such that f|S, and ¢|S, are strict and strictly similar,
from S, to S,.

Let T = {teG: r(t) = d(t)}, which is the “union of the stabilizers”
if G comes from a group action. Let p = d|T and define a(t, x) =
x7tx for (¢, x)e T+G. Then the equation B(s)x = xB(sx) just says
that B is strictly equivariant from S, to 7. The next lemma is
proved as Lemma A1.10.

LemMmA 1.6. Let (G, [p]) be o measurable groupoid and let
(S, MDD and (S, [x.]) be analytic (G, [¢])-spaces. Suppose f: S;—S,
and g: S, — S, are equivariant maps with fog similar to the identity
on S, and gof similar to the identity on S,. Then (S, [N]) and
(S, [\.]) are isomorphic.

Now let us turn to the construction of a ‘universal G-space’.
For groups the locally square-integrable functions make a good
space, but we have no topology and hence no compact sets. How-
ever, we work with finite measures, so any bounded function is in
L. For each unit ¢ G® and each Borel f: G — [0, 1] we can define
[f]. = {9: g is Borel from G to C and g = f a.e. du(r, w)}. Then let
F () = {[fl.: f is Borel from G to [0,1]}. Now .# (u) may be
regarded as a subset of L*(u(r, w)) and as such it is a weakly closed
norm-bounded set and hence is weakly compact. We now form a
bundle over G as one does with Hilbert bundles. Let GUx % =
U{{u} X F (uw):ueG®}, and give G+ the Borel structure it
inherits as a subset of G257 = U {{u} X L*p(r, w)): w e G}, which
is a Hilbert bundle [18, 20]. This is the smallest Borel structure
for which the projection onto G is Borel along with all the funec-
tions +r,, for bounded Borel functions g where
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v, 110 = {Fodtuor, v

If .o~ is a countable algebra generating the Borel sets then G+ 5 =
{(w, [fL)eGOx7": Ae.o” implies 0 < 4 (u, [f].) < 1}. Hence G+
is a Borel subset of G*.2%” and must be analytic. Now G acts on
GO+ as follows: (r(2), [fl,w)o = (d(2), [¢lin) where g(y) = f(xy)
for yer(d(x)) and ¢g(y) = 0 otherwise. This is well defined if g
has a left quasi-invariant decomposition. The next lemma is proved
as Lemma Al.11.

LEMMA 1.7. GO« 4s an analytic G-space, provided the given
decomposition of (¢t relative to r is quasi-invariant.

2. Ergodic decompositions of measurable groupoids. John
von Neumann proved that a measure preserving flow can be decom-
posed into ergodic flows [17]. This decomposition into ergodic parts
has also been done for other groups of transformations [2, 9]. We
shall need to decompose groupoids of transformations into ergodic
parts. This follows from a decomposition of measurable groupoids,
since we can simply form the new groupoid S*G. It will be con-
venient to begin with a Hilbert bundle characterization of ergodic
groupoids. It is possible to work with measure algebra bundles,
but Hilbert bundles are more familiar, so we shall use them instead.

Let (G, C) be a measurable groupoid and suppose neC is a
symmetric probability measure and has a quasi-invariant decomposi-
tion \ = Skudi(u) relative to d. Define o7; = {for: f e L*(\)}, o=
{feod: f e L*(X)}. Since almost every fiber measure is a probability
measure, f— for and f -— fod are isometric imbeddings of L*X)
into L*(\). If (Jf)(x) = f(x™"), J is a unitary operator on L*(\) with
J* =1, and J(577) = 2. Notice that 2. N.727, contains the con-
stant functions.

LEMMA 2.1. The measurable groupoid (G, C) is ergodic iff 272N
575 18 one-dimensional.

DerFINITION 2.2. Let (@, [M]) be a measurable groupoid. A strict
ergodic decomposition of (G, [\]) is a mapping ¢ of G into an

analytic Borel space T such that if » = ¢,(X) and X = SX(p, tdy(t) is
a decomposition of X relative to ¢, then for v-almost all ¢, ¢7i(¢) is
saturated and (G|g7'(¢), [M]) is an ergodic groupoid, where

v = [ndGir, ) .
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An ergodic decomposition of (G, [A]) is a Borel mapping ¢ of G
into an analytic space T such that for some conull Borel set UC G,
q| U is a strict ergodic decomposition of (G| U, [A]).

If U is conull in G, then it is conull for almost every X(qg,t).
Thus Gi(g|U)™*(¢) is jalmost always an i.c. of G|g7'(f), so the basic
difference between strict and nonstrict decompositions is that in the
strict case the sets ¢7'(t) are almost all saturated, whereas in the
nonstriet case there is a conull set U such that the sets ¢7'(¢) N U
are almost all saturated relative to G|U.

There is a property which characterizes ergodic decompositions
and which is more useful than the definition in most cases. This
property is stated in terms of factoring of functions. This is a
measure theoretic version of a familiar procedure in elementary
algebra: If f maps X onto Y and ¢ maps X to Z and is constant
on level sets of f then there is an h: Y — Z with g = hof. After
this lemma we state first the unigueness and then the existence of
ergodic decompositions.

LemMMA 2.3. Let (G, [¢]) be a measured groupoid, and let a
Borel function q from G to an analytic space T be an ergodic
decomposition. If a Borel function g from G to an analytic
space Z is comstant on equivalence classes, then there is a Borel
h: T — A such that hoq = g a.e. Such an h is determind a.e. relative

to = q*(i)

THEOREM 2.4. (Uniqueness of Ergodic Decompositions). Let
g,;: G — T, and ¢,: G — T, be ergodic decompositions of the measured
groupoid (G, [N]). Then there are a conull Borel set U< G and
a Borel isomorphism f:q(U)— q,(U) such that ¢, = foq, on U.
Also, q, and g, have the same level sets im U. If q, and ¢, are
strict decompositions, U may be taken to be saturated.

THEOREM 2.5. If (G, [A]) is @ measured groupoid, then (G, [N\])
has an ergodic decomposition. If N has a (right or left) quasi-
invariant decomposition, then (G, [\]) has a strict ergodic decomposi-
tion.

DEFINITION 2.6. Let (G, [¢]) be a measurable groupoid and let
(S, M) be an analytic Borel G-space with q.i. measure. The measure
A is ergodic iff (S*G, [Mxy]) is an ergodic groupoid. An ergodic
decomposition of (S, \) relative to G is a Borel mapping ¢ of S into
an analytic Borel space T such that if » = Shtdq*(h)(t) is a decom-

position of N\ relative to ¢ then for g,(\)-almost all ¢ in T the set
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¢~ %(t) is invariant and the measure )\, is concentrated on ¢~ '(¢) and
is q.i. and ergodic.

COROLLARY 2.7. If (S, \) is an analytic G-space with a quasi-
imvariant measure for a measurable groupoid (G, C) and C has an
element with a left quasi-invariant decomposition them S has a
decomposition into ergodic parts, which 1is essentially unique.

LeMMA 2.8. The converse of Lemma 2.3 is true.

3. Commuting groupoid actions and closing of ranges of
homomorphisms. In constructing the closure of the range of a
homomorphism @: F'— @, the idea is to make a G-space out of the
space of ergodic parts for the action of F on G+F“[16,18]. The
reason this should work is that F and G have actions on GxF©
which commute in the sense of Definition 3.1 below. Theorem
3.2 is a precise formulation of a theorem needed for working with
such pairs of actions, and we apply it in Theorem 3.5 to construct
range closures. Parts of the proof seem easier than when done as
in [18].

DerinNiTION 8.1. If S is an F-space and a G-space, we say the
actions commute iff for seS, ¢e¢F and 2e¢@G, if sx and s& are
defined then so are (sx)¢ and (s&)x and they are equal.

THEOREM 3.2. Let (F,[p]) and (G, [v]) be measured groupoids
and let (S, N, p) and (S, N, q) be strict (F,[¢])- and (G, [v])-spaces
respectively. Suppose these actions commute. Then there is «
strictly G-equivariant function f:S— GO+ which is an ergodic
decomposition of SxF. If S’ is an analytic (G, [V])-space and
S':8— 8" is a (G, [v])-equivariant ergodic decomposition of S=F,
then (GO, f,(\) and (S, fix(N) are isomorphic (G, [v])-spaces.

In the process of constructing the closure of the range of a
homomorphism, it will be necessary to construct some quasi-invariant
measures. The next lemma gives one of the basic ingredients.
First some preparation is needed.

Let (G, [v]) be a measured groupoid and let K be the equivalence
relation on G induced by G: E = (r, d}{G) S G x G®. We take
V' = (r, d),(v) and are interested in a special kind of decomposition
of v relative to »'. The important thing about v is that one of
these decompositions exist.

DEFINITION 8.8. We shall say that v is (7, d)-quasi-invariant if
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it has decompositions v = Svudﬁ(u) and v = va_udv’(v, u) such that

(a) for (v, w)e E, v,, is concentrated on »7*(v) N d™'(u),

(b) for (v, u)e E, (,.)7" ~ Y,

(¢) if »(x) ~ u, then v, & ~ Y, 44 and LYy ~ Yra,. and

@ for ueG, v, = |..d0r, @),

If we assume v is (7, d)-quasi-invariant, we mean that such
decompositions should be used. By Lemma 6.8 of [19] there is a
measure »* ~ v and an i.c. G, of G such that »*|G, is (r, d)-quasi-
invariant. Now take p to be an everywhere positive and finite
version of dv/dv*, o’ the same for dv*'/dy’ and define v, ,=0'(v, w)ov¥,.
If G,=G|U, and E, = E|U, then (a) (b) and (c¢) hold for E, and
G,. Hence v, = Svﬂ,ud(fr*(vu))(v) for almost all 4, by uniqueness of

decompositions. By removing another null set, we see that we have
an i.c. G, on which v is (», d)-quasi-invariant. Thus in matters where
we can safely pass to an i.c., we may assume that v is (», d)-quasi-
invariant for technical convenience. Of course in concrete situations
one would expect this to hold globally anyway.

LemmaA 3.4. Let (G, [v]) be a measured groupoid and suppose v
18 {(r, d)-quasi-invariant. Let N be a finite measure on G such
that MA) =0 iff D(A) = 0 for saturated analytic sets A S G. Let

Yy, = Suudx(u), and let yeG act on x€G by xzxy = y 'z provided
r(x) = v(y). Then v, 15 quast-tnvariant.

THEOREM 8.5. Let (F,[p]) be a measured grupoid, let (G, [v])
be a measured groupoid for which v is (r, d)-quasi-invariant and
let @: F— G be a homomorphism. Then there are i.c.’s F, and G,
of F and G, a strict (G, [v])-space (S,, \) and a strict homomorphism
@' Fy— SyxG, such that @|F, = jo@', where j:S;+G,— G, is the
inclusion (coordinate projection).

DEFINITION 3.6. We call (S;x@, [Axv]) the closure of the range
of @, and will denote 5 by j, when necessary to identify its con-
nection with o.

Notice here that S;*G = S;*G,, and that the proof is by a
construction. The very statement of the theorem allows some
ambiguity in the choice of S,, because F, and G, are not unique.
The construction, given in the Appendix, produces S; as an ergodic
decomposition space of T(@) = {(z, )G X F:d(x) = ¢(u)} for a
certain action of F on T(p) and a natural measure on T(®) (see
Lemma 3.7). As such, it is determined up to isomorphism modulo
null sets, which is sufficient. This also depends on v being (7, d)-
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quasi-invariant, but we know that (G, [v]) always has an i.c. G, on
which v is (r, d) quasi-invariant, and @ is similar to a homomorphism
®, taking values in G,. We need to see that S, does not really
depend on the choice of @, as the following lemma shows.

Lemma 3.7. Let (G, [v]) be a measured groupoid in which v s
(r, d)-quasi~invariant and let @, P, be similar homomorphisms of
a measurable groupoid (F, [¢]) into (G, [¥]). Let T,=T(p,)={(x, w)e
G X F: d(x) = p(u)} and take the measure y, = &vud (p*(f2))(u) on
AN P (F) and yixfi on T,. Similarly form T,=T(®,), v, and v,*[I.
Then there are i.c.’s Fyand G, of F and G and F, and Grinvariant
conull analytic sets T = T, and Ty = T, which are strictly isomor-
phic as F, and Gyspaces under a measure-class-preserving function
J. Hence (S,, ) and (S, \,) have strictly isomorphic amalytic
conull Gyoinvariant subspaces.

Starting with an arbitrary ¢, if we choose a G, on which v is
(r, d)-quasi-invariant and a ¢, similar to @ taking values in G, we
have i.c.’s F, and G, and @ F,—S, *G such that je@,=¢,|F,. Then
Jep, ~ @| F,, but we do not have equality. In fact, there probably
would not be a ¢": F, — S, *G, with jo¢' =@|F,, because » may not
carry F, into G,. Thus we speak of S, +G as “the” range closure of
@ in the following sense: it is constructed from ¢ by way of a
choice of G, and @, ~ @, but if we choose instead an i.c. G, on
which v is (7, d)-quasi-invariant and a @, ~ ¢ taking values in G,
then there is a @, ~ ¢ taking values in G, = G,N G,, and Lemma
3.7 says we have isomorphisms S, ~ S,, and S,, ~ S,,, so S, ~ S,,.
Since we could never have an S, determined more than within
isomorphism, it is agreeable to take S, = S,. Also, we actually
can choose S, = S,, whenever @, ~ @,.

It seems natural to ask about the uniqueness of S, in the fol-
lowing way. Suppose @: F — G and there exists a G-space S and a
homomorphism ¢’: F — S*G such that jop' ~@. Is S determined
up to isomorphism? According to Lemma 4.1, there is a map
M(#'): S;..o — S;. We have S;.,, =~ S,. By Lemma 6.3, S; ~ S and
by Theorems 6.7 and 6.11, M(¢') is an isomorphism, so the answer
is, yes.

4. Functorial properties of the range closure construction.
It seems worthwhile to extend some of the results of [10] to our
situation. We restrict our attention to a few facts, but presumably
the other results extend also.

Recall from [18] that if (F,[\]) and (G, [¢]) are measurable
groupoids and «: (F, [#]) — (G, [#]) is a homomorphism then [y, F'] or
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[v] denotes the set of homomorphisms similar to . If : (F, [\N])—
(@G, [¢]) and @: (@G, [¢]) — (H, [v]) then there are +, ~+ and an i.c.
G, so that @ is strict on G, and 4 (F') < G, i.e., (®, vr,) is composable
[18, Definition 6.7]. Then [®oqr] depends only on [] and [#] and
is denoted [@]o[+]. This operation is associative [18, Lemma 6.13].

If (G, [¢]) is a measured groupoid, let _#Z(G) denote the class
of pairs ((F,[7]), ) where (F,[\]) is a measurable groupoid and
@: (F, M) — (G, [¢]) is a homomorphism. If we insist that F &
[0, 1] as a Borel space, then _#(G) becomes a set. For &, = ((F},
D), @) and F=((F,, [\)), @2) in .#Z(G), a homomorphism : .7, — . F,
is a homomorphism +: (F,, [\]) — (F,, [A.]) such that [@.]o[v] = [@.]
We denote by M((F, 7)), #) the G-space (S, v) for which the
groupoid (S,*@G, [v+4]) is the closure of the range of @, and we
want to define M[y] so as to make a functor out of M. We have
a series of lemmas generalizing those of [10, §2]. The proofs are
clearly related to those of [10], but are not identical, because we
have a groupoid for G and because we have a different construction
for S,. Since we start with homomorphisms which need not be
striet, we will expect to product G-space maps which are not strictly
equivariant. In fact, we may need to restrict to a conull analytic
set which is invariant for some i.c. G, in order to get strictness.
Thus if we take some i.c.’s in the process nothing will be lost, and
we can work with strict homomorphisms when necessary.

LemMMA 4.1. Suppose .7, = (F, M), @) and 73 = ((Fy, [\]), #2)
are in #(G), P, is strict, 4 18 a homomorphism of F, to &, and
6: F” — G 1s a Borel function for which Gor(8)P,onr(&) = @,(E)F-d(E)
for almost all &. Then there s a G-equivariant mormalized h =
My, 0): Sy, — S,, obtained as the essential quotient of the fumnction
f? from T, =G+F" to T,=G+F,” defined by f*(x, u) = (x6(w), r(u)).

LEMMA 4.2. Under the hypotheses of Lemma 4.1, if 6 is another
similarity of @,oqp with @, and @, is strict, then M(y, 0) is similar
to M(+, 6).

DEFINITION 4.3. Call this class of maps [M(y)].

LeMMA 4.4. If p is (r, d)-quasi-invariant on G and : F, —
F,; 18 @ homomorphism, where 7, = ((Fy\,]), ®,) with @, strict, and
ot (Fyy M) — (Fy [N]) 48 @ homomorphism  with [v,] = [y,] then
Wyt Fr— F; 18 a homomorphism and [M(y,)] = [M(y,)].

Now we can define M[y] for any +: &, — F#, by M[y]=[M(,)]
where (@, ) is composable and +, ~ 4. Indeed, in such circum-
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stances we may pass to an i.c. F, of F, on which ¢, is striet and
an i.c. Fy of F, such that . (F,) & F,, and the construction of M(y)
is valid. If also 4 ~ + and (@, 4») is composable, there are i.c.’s
F, of F, and F, of F, such that (F,) < F; and @,|F, is strict.
Hence F,N F; is an i.c. on which @, is strict, and there is a +: F,—
F, such that (F) S F,N Fy; and +, ~q<r. Then oy ~ o, and by
Lemma 4.4 we have [M(y,)] = [M{(vr)], similarly [M(y,)] = [M(y)].
Thus M[+] is well defined.

Finally, we can remove the restriction that g be (», d)-quasi-
invariant on G, as follows. If & = ((F, [\]), ) and &, = (F,,
D, #.) are in _Z(G), there is an i.c. G, on which g is (», d)-quasi-
invariant and then there are ¢, ~ @, and ¢, ~ @, taking values in
G,. To construct a space called S, in §3, we used S,, and also
S$"2 = Sﬂ' If o (F, D — (Fy, [v])  then [Pe]o[¥] = [Pdelvy] and
{2;,] = [®,], s0 4 is an _#Z(G)-homomorphism of &, to &, iff it is
such from ((F, M), @) to ((Fy, M), @). To get a class of maps
Mly] from S, to S.,, we may use the ones we constructed from
v using @, and @,. Suppose now that we choose instead @, ~ @,
and @; ~ @,. We want to see that Mly] is invariant. We may
assume we have 0 F\" — G and 6,: F” — G so that 60,0r(&)@,(&) =
@3(5)010(1(5) for ¢e k', and 0207'(7])976(77) = @4(77)(920(“77) for 77er- We
start with a 6: F\? — G so that 0or(&)p.o(8) = @,(£)00d(g) for £e F,,
and define 0'(u) = 0,(w)'0(u)f04(u) for we F\". Then 6 or(&)p,oqp(&) =
Pp(E)F od(¢) for € F,. There are isomorphisms fi: T(®,) — T(p,) and
for T(@,) — T(®) given by fi(x, u) = (xf,(w), u) and fi(x, u) =(@b0,(u), w)
(proof of Lemma A3.7). These satisfy f%of, = fiof? and induce
isomorphisms S,, ~S,, and S,, —S,. Hence M(y, 0) is equivalent
to M(sp, 0') under these isomorphisms, so the class M[4y] transfers
from maps of S,, to S,, to maps of S, to S, in a consistent way.

LemMmA 4.5, If 4 F,— F, and o F,— F, are homomor-
phisms, for 7, 7, F; in A (G), then M([yr.]olyr]) = M[ary]o M)

5. Special properties of groupoid homomorphisms. Here we
give definitions of several properties a homomorphism of measured
groupoids may have. In keeping with the viewpoint expressed in
the introduction, we begin with an interpretation of certain proper-
ties of continuous group homomorphisms in ways which apply to
groupoids. Suppose F and G are locally compact groups and
@: F— G is a continuous homomorphism. Then F' acts on G via @
by z-& = 29(¢), and we have the following equivalences, by which
we learn how to define the terms for groupoids:

(1) @ is one-one iff F' acts freely on G iff the groupoid G X F
(thinking of G as an F'-space) is principal.
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(2) @(F) is dense in G iff the natural homomorphism of @(F)~
into G is an isomorphism onto.

(8) @(F) is closed in G iff the space of orbits in G under the
action of F, G/F, is analytic [11, Theorem 7.2].

(4) @(F)= G iff @ has dense, closed range iff G/F consists of
one point up to a null set.

(5) @ is a topological embedding iff @ is an isomorphism of
F onto ¢(F)” iff G X F is principal and G/F is analytic.

DEFINITION 5.1. Let (F, [#]) and (G, [v]) be measurable groupoids
and let @: (F, [¢]) — (G, [v]) be a strict homomorphism, and suppose
@* ~ @ and @* takes values in an i.c. on which v is (7, d)-quasi-
invariant. Set T = T(@*) = {(x, ) € G X F: d(x) = o*(w)},

v, = @

and A, =y *fi. Form the measured groupoid (T*F, [n*g]). Let
(Se, M) = (Sy*, N) as in Theorem 3.5.

(a) @ is called strictly immersive iff T+F' is principal.

(a") @ is called immersive iff @|F, is strictly immersive for
some i.c. F, of F.

(b) We say @(F) is dense or @ has dense range iff there is an
i.c. G, of G and a conull strict G,-space S, S, such that 7|S,*G,
is an isomorphism onto G,.

(¢) We say @(F') is closed or @ has a strictly closed range
iff the orbit space T/F' is analytic.

(¢)) We say @ has closed range iff ®@|F, has strictly closed
range for some i.c. F| of F.

(d) We say @ is surjective iff @ has a dense closed range.

(e) We say @ is a striet imbedding iff T+F is principal and
T/F is analytic.

() We say @ is an imbedding iff @ |F, is a strict imbedding
for some i.c. F, of F.

REMARKS. (1) There can always be sets of measure zero which
are basically irrelevant, as when a null set of units is adjoined to
a group, and the nonstrict forms of the definitions are to take
account of such cases, even though they should be exceptional. The
nonstrict definitions may also be much easier to verify in concrete
cases, even when the strict definitions are satisfied. The extra
freedom makes the machinery a little more tractable.

(2) We will see in Theorem 6.7 that for any homomorphism
@ the @' associated with it by Theorem 3.5 has dense range. (8)
The definition of “dense range” is phrased so that it says the range
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closure is isomorphic to G (up to null sets) under its natural imbed-
ding. This sounds natural. However another formulation is more
convenient for applications of the concept. The function p taking
(x, ) to r(x) is the projection of T(®) onto G relative to which
the action of G on T(®) is defined and it is constant on F-orbits.
Thus it factors through the ergodic decomposition f: T(@)— S, via
the projection ¢: S, — G in the definition of the action of G on S,.
The units of S,xG are just the graph of ¢, and if j|(S,*G)® is one-
one a.e., that means ¢ is one-one a.e. Thus whenever @ has dense
range the projection p is an ergodic decomposition. We use this
in Theorems 7.16, 7.17 and 7.18.

(4) Let (S, pt) be an ergodic Z-space and let : S x Z — R be
a homomorphism for which the funection f defined by f(s) = @(s, 1)
has constant sign, say f>0 everywhere. Then the set T,={(s, 2) €
S x R: —f(s) < x <0} meets each Z-orbit exactly once. Hence @
has closed range. Furthermore, Z acts freely on almost all of S
and hence on S X R, so @ is in fact an imbedding. (The set T, is
the space for the flow built under f; see [16].)

Before proceeding to our main objective, we prove the follow-
ing theorem, which asserts that a properly ergodic groupoid cannot
be mapped onto a group. A consequence is that in Corollaries 2.1
and 3.3 of [22], “dense range” cannot be strengthened to “onto”.

THEOREM 5.2. If (F,[y¢]) 7s a measurable groupoid which has
a homomorphism @ onto a locally compact group G, then (F, [/;]) s
similar to a group, i.e., 1s essentially transitive.

Proof. The groupoid (G X F®)«F has a homomorphism into F
and the assumption that @ is onto implies that (Gx F)«F is essen-
tially transitive. It follows that F is essentially transitive.

Now we want to show that these definitions are similarity
invariant in _#Z(G). The first lemma is immediate from Lemma 3.7.

LEMMA 5.3. Suppose ((F, [t]), P) and (Fy, [t]), @.) are similar
elements of . #(G). Then @, has dense range iff P, has dense range.

LEMMA 5.4. Suppose (F,, (1)), 20 and (F,, [t]), P.) are similar
elements of . #(G). Then @, has closed range iff @, has closed
range.

Proof. Because of the symmetry, we need only prove one
implication. Let +: F;, — F, and +: F, — F, be a similarity. These
may be replaced by similar homomorphisms, if needed, so we may
begin with (@, «r,) composable. Then we may choose an i.c. F, of
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F, such that if @, = @,| F, and «, = 4| F, then @, and +, are strict,
@ 04, is strictly similar to @, and T(®,)/F, is analytic. Next, choose
4, and an i.c. F, of F, so that vy = | F, is strict, «(F,) & F,,
A = apoqry is strictly similar to the identity on F),, and @04 is
strictly similar to @, = @,| Fi.

There exist strict similarities 0, 0, and 6:

01°"’(E)¢4°“}"3(5) = @y(£)0,d(&) for ¢eF,,
0207"(5)@30"/’1‘4(5) = P,(&)0,0d(&) for feF,,

and
Oor(E)y(8) = &0-d(§) for (e F, .

Define f«(», u)=(x0,(%), v.(u)), for (x, w) e T(Ps), f(x, w)=(x0(%),
vo(u)) for (z, w)e T(®,) and f(z, u) = (wpseb(w), w) for (z, u)e T(py).
Then (x, u)~(y, v) in T(P)= f(», w)~ f"(y, v) in T(@,). If for(x, u)~
™y, ») in T(®,), then f%of%(x, u) is in T(p,) because +(u)e F,”,
and so is f%of%(y, v), and these are equivalent under F, because
they are equivalent under F, and both units are in F,(y(u) and
(v)). Thus (26,(w)f09,(u), y(w)) ~ (Y0,(v)0204,(), ¥(v)).

Now we F” = dof(w) = (w) and r-6(w) = w, so we can operate
on the points with 0(x)™ and 4(»)™!, getting two points which are
equivalent in T(®,):

(@0,(w), o4 (W)P(O() ), ) ~ (Y0,(V)0z00p,(V)P:(O(0) ), ©) .

Now @,00 is a similarity (strict) of @,o+ with @, so the function f
defined above is an isomorphism of T(®,) onto T(®,o+r). Hence there
is a £e F, with (&) = u, d(¢) = v and

xﬁl(u)ﬁzmlﬁ(u)%oﬂlf(é) = y01(v)02°¢1(v) .
Since A+ = ar,0q, | F}, the similarity equations give
0L(u)62°W1(u)¢3°"//‘2°%"’1(5) = 01(“)@204//‘1(5)620“;”1(17)
= @3(&)01(7))625’901(’”) .

Thus (x, w)¢ = (y, v) in T(p,), i.e., (x, u) ~ (y, v). Hence f” induces
an imbedding of T(g,)/F, into T(@,)/F,, as a G-space.

The next proof includes the fact that immersiveness is equivalent
to a sort of one-one-ness.

LEMMA 5.5. Suppose ((F, [t]), o and (Fy, [t]), #.) are stmilar
elements of .#Z(G). Then @, is immersive iff @, is.

Proof. Again the symmetry means we need to prove only one
implication. By passing to similar homomorphisms, as permitted
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by Definition 5.1 and Lemma 3.7, we may arrange that ¢, and @,
take values in an i.c. on which v is (7, d)-quasi-invariant and then
that (@, 4) is composable. Next choose an i.c. F, of F, on which
@, and +r, are strict, @0y, is strictly similar to @, and @, is strictly
immersive. Then there is a choice of +, and an i.c. F;, of F, such
that @,|F, is strict, o, |F; is strict, .(F;) S F,, oy, is strictly
similar to the identity on F,, and @,oq, is strictly similar to @, on
F,.

Now we will show that ¢, is one-one on sets of the form
') N dY(u) for u, ve F®. Suppose »(&) = r(n) = v, d&)=d®H)=u
and d(x) = @y(v), and let @ (&)=p,(). Then (x, v)é=(x, v)7, s0 £=7.

From this we see that the same holds for @, on F,. Suppose
& ek, dE) = d), r(&) = r®n) and (&) = ?.(). Then @ oqn(8) =
P,040 () because of the similarity. Hence (&) = 4 (%), SO apoqn(8) =
Yoy (). By use of the strict similarity of oy, with the identity
on F;, we see that £ = 7. By reversing the argument for ¢, above,
we see that o@,|F, is strictly immersive.

COROLLARY 5.6. If ((F}, [t)), ) and ((F., [te]), P.) are similar
elements of . #Z (@), then @, is an imbedding iff @, is an imbedding.

6. Some results about immersions, imbeddings, etc. A variety
of questions arise naturally about the definitions of §5. We prove
that a composition of imbeddings is an imbedding and a composition
of homomorphisms with dense range has dense range. We prove
that the homomorphism ¢’ of Theorem 3.6 has dense range, i.e.,
that “the range of ¢ is dense in the closure of the range of ¢.”
There are other results here, and some obvious questions are not
answered. Our purpose is to develop some useful facts and answer
enough of these questions to justify the definitions.

The first lemma is a rather obvious fact, and we tend to use
it without explicit reference, but it may help to state it once. It
says that a homomorphism which is an isomorphism of i.c.’s is
actually a monomorphism in the sense of category theory.

LEMMA 6.1. Let (F,[M]), (G, [p]) and (H,[v]) be measured
groupoids and let +: (G, [¢]) — (H, [v]) be a homomorphism such that
there are i.c.’s G, of G and H, of H with |G, a strict isomorphism
of G, onto H,. If @, @, are homomorphisms of (F, [\]) into (G, [¢])
with [ylelo] = [yle[@.], then [2] = [2,].

Proof. We may assume that @ (F) U @,(F) S Gy, 50 ro@(F) U
Po@(F) & Hy. In that case, a similarity ¢ of ro®, to rop, must
take values in H, and (#|G,)"*of is a similarity of @, to @,
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Next we give the characterization of imbeddings in terms of
groupoids given by actions. The first step is a lemma related to
the notion of the kernel of a homomorphism. For homomorphisms
of virtual groups F' into compact groups G, the ergodic groupoids
into which (G X F')«F decomposes correspond to the kernel [13].
This relates to condition (b) of Lemma 6.2.

LEMMA 6.2. Let (F, [1]) be a measured groupoid and let (T, \)
be an analytic strict (F, [p])-space. These conditions are equivalent:

(a) There are an i.c. F, of F and a conull analytic Fi-invariant
set T\ & T such that T,xF, is principal and T./F, is analytic.

(b) Almost every groupoid in an ergodic decomposition of
(T=F, [x+p]) 15 similar to the trivial group.

Proof. To prove (a)=(b) we may suppose T, =1, F,=F.
Then S = T/F is analytic. Let ¢q: T— S be the quotient map and
let S, be standard and ¢.(\)-conull. By the von Neumann selection
lemma there are a Borel function ¢: S— T and a conull Borel set
S, & S, such that goc is the identity on S,. Denote the saturation
of A by [A] as usual and define G, = (T=F)|[c(s)] for seS. Now
q([e(Sy)]) = S, and the level sets of ¢ on [¢(S,)] are exactly the F-
orbits. Thus the decomposition of T+F given by ¢ produces transi-
tive groupoids which are therefore ergodic, so ¢ is an ergodic
decomposition. Since F acts freely, TxF is principal. Then the
decomposition of [¢(S,)]*F must produce principal groupoids. Since
a principal transitive groupoid is similar to the trivial group, condi-
tion (a) implies condition (b).

For the converse, suppose ¢: T— S is an ergodic decomposition
of T«xF. Let S, be a conull set in S such that G, = (T*F)|q7(s)
is similar to {1} for se€S,. Then G, is essentially transitive and
essentially principal, so there is an equivalence class in G = ¢7(s)
which is conull and to which the contraction of G, is prinecipal. Let
N = Sksdq*(x)(s) be the decomposition of \ relative to ¢ which we
are using. Let B = {(t,tx)e T x T:(t, x) € T=F}. Then secS, implies
that », is concentrated on some orbit, and that orbit is [¢] iff ¢, x
N, (E) > 0, and then q(t) =s. Choose Borel sets E,, E, with B,CEC
E, so that M\ (B, — E,) =0. Define K= {teT:Nu([t]) >0} = {te
T: &, X Ngoy(E) > 0}, and define K;={te T: ¢, X Nw(E;) > 0} (=1, 2).
We have K, < K < K, and xm:SEtqumdx(t), s0 that & X g (By) =
&, X Ngy(Ey) for almost all ¢, so MK, — K;) =0 and M(K, — K,) =0
for almost all s.  Thus K is measurable for » and for almost all X,
and te K implies [t] € K, so s€ S, implies »(X/K) = 0. Hence K,
is conull. Thus ¢(K) is conull and the von Neumann selection lemma
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gives rise to a Borel function ¢: S — T such that the Borel set S, =
{s€S,: qoc(s) € K,} is conull. Then T, = [¢(S,)] is contained in K, and
T, is analytic, conull and invariant. The set F, = {£€ F: & and &7!
act on T} is an i.c. of F, TxF, is principal and 7\/F, is Borel
isomorphic to ¢(7,), which is analytic.

LEMMA 6.3. Let (S, \, p) be a (G, |v]) space and form F = SxG
and = ©=v and let j: SxG — G be the coordinate projection. Then
7 18 an imbedding, and the space S; is isomorphic to S.

Proof. TFirst, F'® is the “graph” of p, which is naturally
identified with S. Hence G+F® =T(j) is isomorphic to {(x, s) €G X S:
szt is defined}, and the action of (s,y)eF on (z s)eT(j) is
(x, 8)(s, ¥) = (xi(s, ), sy) = (wy, sy). Hence (x, s)(s, ") = (r(x), sx™),
so X = {(p(s), s): s € S} meets each orbit. Now if (x,, s,)(s, ¥)=(x., 8)
then s =s, and y = x;'x,, so the action of F on T(j) is free. It
follows that X meets each orbit only once. Hence the quotient
space T(7)/F is isomorphic to X, and hence to S, so it is analytic.

THEOREM 6.4. Let (G, [v]) be a measured groupoid and suppose
F = ((F, [¢]), ) € A#(G). Set (Se, N)=M(F") as in §4 and F,=
((So*Gy, [Mxv]), ) where j projects SyxG, onto G,. Then @ is an
imbedding iff there is a homomorphism o F.— F such that
(@, ) s a similarity.

Proof. If such a homomorphism exists, then Corollary 5.5 and
Lemma 6.3 combine to show that @ is an imbedding. The rest of
the proof is somewhat tedious, so to help keep the parts straight
we shall announce the major divisions in the proof. We only need
to find . 7, —.F so that (¢, ) is a similarity of (F,[y]) with
(SoxG, [Mxv]). By restricting to i.c.’s, we may assume @ is a strict
imbedding.

The existence of +: Let T = G+F®, let p be the quotient map
of T onto T/F, and form v, and N\, = v;xZ as before. By the proof
of Lemma 5.3, p is an ergodic decomposition of (T, [),]). Since the
actions commute, T/F is already a G-space, and we can use it for
S, Set F, = 8,xG. Recall that ¢'(¢) = (p(@-r(8), (&), P(&)) for
e F. The von Neumann selection lemma gives us a Borel function
c: S, — T such that the Borel set S, = {s€S,: poc(s) = s} is conull
relative to »,.((@ X ©).(&) + \,). This latter measure is used because
it gives weight to the image under » of the “graph of &’ in
GxF®. Let T, = p*(S,). Then T, is F-invariant, Borel and conull
and [¢(S)] = T, because cop(t) ~ t if p(t) € S,.
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Now let E = {(¢, t,) € T*: t, ~ t,}, which is the one-one image of
T+F in T*® under the map (¢, &) — (¢, t&). By composing the projec-
tion of T+F onto F with the inverse of this function, we get a
Borel function f: & — F such that (¢, t,) € F implies ¢ f(t, t,) = t,.
Define ¢ on T, by 6() = f(con(t),t). Then for te T, we have
cop(t)d(t) =t, and @ is Borel. If (s, z)e F,|S,, then s and sxeS,
and s = p(t) for some te T, with ¢x defined. Then ¢(s) is in the
F-orbit of ¢ since p(t) =poc(s)=s, s0 c(s)x is defined. Then p(c(s)x)=
p{e(s))x = sx, so c¢(s)x ~ c(sx). Since the action of F' is free, there
is exactly one element of F which carries ¢(s)x to ¢(sx) and we shall
call it (s, ). This defines 4 on F,|S,. Let + be constant on the
rest of F,. For teT, cop(t)d(t) =t so if (p(), x)e F,|S, we have
(cop(t)x)0(t) = tx. Hence (p(t), x) = 0(¢)0(tx)™", so + is Borel on
F,|S, and hence Borel.

Ar 18 @ homomorphism of measurable groupoids: Suppose (s, x)
and (sz, y) € F,|S,, and that ¢ ne F are such that ¢(s)zé = ¢(sx) and
c(sx)yn = c¢(sxy). Then c(s)xyén = c(sxy), and by the uniqueness
defining + we see that (s, xy) = (s, )y (sx, ¥). Thus + is algebra-
ically a homomorphism of F,|S,. For the measure theoretic part
let A S F© be analytic, saturated and null for /i. The set Gx4 =
{(x, ) eG X A: d(x) = @(u) and we A} is null in T and is invariant
under both F and G. Thus p(Gx4) is null for A = p, (v;xy). Now
c(8)xyr(s, x) is defined for (s, x)e F,|S,, so c(s)y(s, ) is defined and
hence (s, p(s)) = roqp(s, ) is the second component of c¢(s), so
(s, p(s)) e A iff ¢(s) e G+A iff sep(G+A). Hence 4 *(A4) is null.

[@1o[¥] = [j, Fu] and [@1[y] = [, FI: First notice that (g, )
and (@', 4) are composable since @ and ¢ are strict homomorphisms.
Write ¢ = (a, ), so a: S, — G, b: S, — F and for each s, pob(s) =
doa(s). Also (pob(s), b(s)a(s)™ = (a(s), b(s)) = ¢(s), and p(peb(s),
b(s))a(s)™ is defined and equal fo poc(s), which is s if se€S,. Let
0.(3) = (p(@-b(s), b(s)), a(s)™). Then 8, is Borel from S, to F, and
dof.(s) = s if seS,, so 6,(s)(s, x)8,(sx)™* makes sense if (s, x)e F,|S,.
We must show this product is in fact @'oy(s, 2). If (y,uw)=teT,
s = p(t) and (s, x) € F,|S,, then with ¢ as used in constructing - we
have (a(s), b(s))8(t) = ¢(s)d(t) = t = (y, u) so a(s)P-0(t) = y. Similarly
a(sx)Pol(tx) = 27y, 80 Poar(s, &) = Pof(t)p-0(tx)™ = a(s) 'wa(sx). This
shows @oqr ~ j. Now 7roqr(s, ) = ro0(t) = b(s) since ¢(s)4(t) is defined,
S0

0.(8)(s, 2)0,(s2)™* = (p(Pob(s), b(s)), als) ‘xa(sx))
= (P(Porod(s, x), roy(s, 1)), Po(s, ))
= @ oq(s, ) ,
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as desired.

[v]o[¢] = [i, F]: Since S, is ,.($ X 9),(f) + \)-conull, the set
U={uecF: peu),u)eS;} ={ueF: ¢'(u)c F,|S} is conull in F©,
Hence (v, @') is composable. The function ¢ from above is Borel on
T, so u — 6,(u) = 6(p(u), u) is Borel on U. Also c(p(@(u), u))d,(u) =
(@(w), w) by the definition of 4. Now if £e F|U, then @(&) e G and
P'(¢)e F,|S,, and since the actions commute the following makes
sense:

c(P(Por(8), 1(E)P(E)(0:0m(£)E02d(8)™)
= (Por(§), T(€)P(E)(E0,0d(€)™)
= (P(&)7, 1(€))s0,°d(€)™
= (Pod(8), d(£))0,d(§)™
= ¢(p(P-d(§), d(£)))
= o(p(P(&)™, ()
= ¢(p(P=7(8), 7(E)P(&)) .

By the defining property of af, 4ro@’(§) = Oy01(£)E6,0d(E)72.

It is desirable for a subobject of a subobject to be a subobject,
in a natural way. The characterization of imbeddings given by
Theorem 6.4 makes one form of this property relatively easy to
establish, as we see below. Notice that having S,;*G a subobject
of S,*G involves a map of S, onto S, as G-spaces, as expected [16].

THEOREM 6.5. Let (G, [t]) be a measured groupoid and let
(So, X)) be a strict (G, [pt])-space. Let F = SyxG so that (F, [M*p])
18 a measurable groupoid, and let (S, [M]) be a strict (F, [vxp])-
space. Then (S, [M]) is also a strict (G, [p])-space in such a way
that (Sy+F, [M+(h*)]) is isomorphic to (S;*G, [Mxp]), by mean of an
isomorphism @ such that j,op = j,of, where j;: S;*G — G, Jo: SxG —
G, and j: SxF — F are the natural projections.

Proof. Let p,:S,— G® be such that sz is defined iff p,(s)=7(z),
i.e., SpxG = {(s, ) € S, X G: p(s) = »(x)}. Let p;: S, — S, be such that
s,(s, ) is defined iff p,(s,) = s, for s,€S, and (s,x)e F. Set p = pyo
p,. Now if p(s,) = r(x), then (.(s,), 2) € F and s,(»,(s,), x) is defined,
so we can define s,z = 5,(9,(s), ©). Now in that case,

(8(2(s1), ©)(P:(s), )

is defined, so p,(six) = p,(s)x. If p(s) = r(x) and d(x) = r(y) then
s, (xy) = 8.(p.(3), zY) = 8,((Di(8), B)(D(8), ¥)) = (8:(V:(s1), X))(P:(8)%, ¥) =
(8.2)(pi(8,:®), ¥)=(5.2)y, and if p(s)=r(x), p.(s,x)=r(y) then d(x) = r(y)
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and the calculation is reversible. Thus we do have a strict action
of G on S; (P(S)) = G because (S, = G and p(S,) = S,). The
action is clearly Borel.

From p,*(\;) ~ A, and pex(N,) ~ f£ it follows that p,(\) ~ . By
changing ), and then )\, we may arrange that »,*(\) =X, and
DPox(N) = . Then p,(\) = f. Let (s, (p:(8)), )) = (5, ¥); then @
is a Borel groupoid isomorphism of S,*F onto S;xG. If the measures
agree then (S;xG, [\xy]) is a measured groupoid and the isomorphism

statement is proved. Let g = \p*dfi(u) be a decomposition of
relative to . Then Ngxpt = SE" X pr'dn(s) and this is the decompo-
sition of n,xpt relative to ». Thus Mx*(Axpt) = Ses X (Epyiar X HP)dAN(8)
which maps to Ay = §6s X pPdn(s) under o.
To complete the proof, we observe that jc@ = 7,07 is obvious.
For measured groupoids, similarities are like isomorphisms for
many other categories. The next result shows that this idea is

compatible with the idea that a surjective imbedding should be like
an isomorphism, namely a similarity.

THEOREM 6.6. Let (F,[\]) and (G, [¢]) be measured groupoids
and let . F— G be a homomorphism. There is a homomorphism
W G — F such that (@, ) is ¢ similarity, iff ® is both surjective
and an imbedding.

Proof. If @ is an imbedding, Theorem 6.3 says there is a
homomorphism «: S(®)*xG — F such that (¢, 4,) is a similarity. If
@ is also surjective, then ¢ has dense range (by definition), so the
inclusion j: S(@)*G — G (i.e., coordinate projection) is a strict isomor-
phism of some S*G, onto G, where G, is an i.c. of G and S, is a
conull striect G-space in S(p). Let j, = 7|(Si*G,) and take @, to be
similar to @ with @,(F) S G,. Then (@, ¥r04:;") is a similarity, so
the desired - exists.

Now suppose (@, ) is a similarity. We prove first that for
u, vEF®, @ takes r'(v) Nd *(u) one-one onto r Y@(v)) N d™(p(w)).
If »(x) =v and d(x) = u, then yo@p(x) = 6W)xb(u)™. If v, = Yo@(v)
and w, = yro@(u), this shows that 0@ takes »7*(v) N d™*(u) one-one
onto r'(v)) N d"(u,). In particular @ is one-one on +7'(v) N d~*(u).
By symmetry, o is one-one on 7 (@(v)) N d”¥®(u)), but it also must
take this set onto »7'(v,) N d™Y(u,). Thus @(r *(v) N d~'(u))=r"Yp) N
dp(u)).

Now let (x, w) and (x, u,) € T(®) = {(y, v) € G X F: d(y) = (v)},
and suppose r(x) = r(x,). Then z 'z, € r Yp(u)) N dHp(u,)), so there
is a fer{u) Nd(u,) with @(¢)=x"*z,. Then (x, w)é=(x,, u,). Thus
the level sets of »*(»*(x, u) = r(x)) are exactly the F-orbits. Hence
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® has a dense range and a closed range.

Thus S(@)+G is essentially isomorphic to G via the projection j.
Under this isomorphism, @ corresponds to ¢’ and the fact that (@, )
is a similarity means that (¢, 4r0j) is a similarity. Thus @ is an
imbedding, by Theorem 6.3.

The following theorem is another result which is not surprising
in its basic content. We have defined separately the terms range
closure and dense range. For ¢: F— G, S,xG is the range closure
and @ = jo@' (Theorem 3.5) is the formula that says ¢ factors
through this subobject. We will discuss this further in §7, but
now we prove the fact that the range is dense in the range closure.

THEOREM 6.7. Let (F,[N]) and (G, [¢]) be measured groupoids
and let @ be a homomorphism from (F,[\]) to (G, [p]). Take S(®)
and @ as in Theorem 3.5. Then ¢ has dense range.

Proof. Let T(®) = {(z, w) e G X F:d(x) = o(w)}. The method
used in Theorem 8.6 was that of Theorem 3.2, which produces a
map f: T(p) > GV« . In fact we may take S = S(@) = f(T(®)).
If p:S-—- G is the function such that sz is defined iff p(s) = »(z),
then pof(x, u) = r(x) for (z, u)€ T(p). Define q(u) = f(e(w), u) for
we F, Then £¢ F implies @'(&) = (q(r(£)), ®(&)), and

T(®) = {(s, 2, w) = ((s, ®), u) € (S*xG) x F: (s, d(x)) = ¢'(u)}
= {(g(w)z™, x, w): d(®) = P(u)} .

If we define g(s, z, u) = (x, w), 9 is a Borel space isomorphism of
T(¢') onto T(®). A simple calculation shows that ¢ is a striet F-
space isomorphism.

Now let us verify that g preserves the relevant measure classes.
Let v be the image on S of pxx under f. Then v*/zzs €, X P du(s)

S
is the measure on SxG, so (V)P = ¢ X p*® is the integrand in
the decomposition of v« relative to » over v = r,(vxp). Thus
(e, X #**)™* is the integrand if we decompose (v+p)™* relative to d
over y=d, ((v+¢)™"). Since (v*p)™* ~ vxp, the measure class on T(¢')
is that of S (G X 7)1 x &,d5(u). For almost all u we have
(0

@ ~ (Uor) " Define b on T(®) by h(z, u) = (g(w), ™)™, u): note
that (q(w), ™) € SxG. Then A(-, u),(thow) ~ (€ X £#*)7* X &, for
almost all w e F. Now (q(w), ™) =(q(w)x™", ®), 80 ¢,(h(-, U)sx(howw)) =
low X €, Thus g is a measure class isomorphism, giving an isomor-
phism of T(@)+xF onto T(@)+F.

Define f'(q(w)x™?, z, u) = f(x, w). Then f: T(¢') — S is an ergodic
decomposition of T(¢)«F. Now S is a strict SxG space by the
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formula s(s, ¥) = sy, and T(¢) is a striet S=G-space by the formula
(s, @, u)(s, ¥) = sy, y ', u). Now if s= f(z,u),sy=f(y 'z, u).
Thus f' is a strict SxG-space map. Hence we may use S as S(¢).
Let »" be the map of S to (S*G)® = § involved in the S*G-space
structure. As above for SxG, we have p'of'(s, x, ) =s. Also s =
gz = f(pu), wa™ = f((P(u), wa™) = f(x, w). Hence p’ is the
identity on S. Thus ¢’ has dense range.

The next theorem is of minor interest, and will not be used, so
the proof is omitted. After that we have a useful technical lemma.

THEOREM 6.8. Let (F, [p]), (F., [t]) be measured groupoids
with assoctated equivalence relations (E, [v.]) and (B, [v.]), respec-
tively. If +: F,— F, has dense range, then v, = (¥ X )| E, has
range dense in H,.

LEMMA 6.9. Let (F, [p]), (Fy, []) be measured groupoids and
let @: F,— F, be a homomorphism with dense range. If p: F® — S
18 an ergodic decomposition of F,, then poP is an ergodic decomposi-
tion of F.

Proof. Define q: T(@) — F\” by qx, w) = u, r+: T(®)— F* by
rH(x, ) = r(x). We will use Lemma 2.8. Suppose g: F® —» Z is
Borel and constant on equivalence classes, where Z is countably
separated. If zeF, &eF, and (z, r(¢)) < T(®), then q((x, r(€)é) =
d(&) ~ r(&) = q(x, r(§)). Hence goq is constant on equivalence classes,
and there is a Borel function ¢.: F,” — Z such that g,ort = goq a.e.,
because r+ is an ergodic decomposition. If (z, u) € T(®) and »(x) =
r(y), where ycF, then q((z, wy)=qly 'z, u)=1u=q(, u), so
goq((x, w)y)=goq(x, u). Now g,or*=goq on some conull set K< T(p).
Then K is f,4n X €,-conull for fi-almost all w, and for any such
u, g, is constant on {r(x): d(z) = ¢(u) and (x, u)e K}. Thus g, is
essentially constant on almost every orbit in F)”. There is a g,
which agrees a.e. with g, and is constant on almost every orbit:
regard Z < [0, 1] and define g,(u) = Sgldr*(pu) for almost all u. Now
there is an h: S — Z with hop = ¢, a.e. Then hopor™ = g,ort = gogq
a.e. Let T, = {te T(®): hoport(t) = goq(¥)}. Then T, is conull and
invariant under both F, and F,. If v(u) = (p(u), w) for u ¢ F”, this
implies that v(w)e T, for almost all 4. Thus hoportey = gogqoy =g
a.e. Now 7rtoy = @, so we have g = hopo® a.e. Thus pop has the
factorization property and is, therefore, an ergodic decomposition,
by Lemma 2.8.

LeMMA 6.10. Let (F, [¢]) and (Fy, [t.]) be measured groupoids
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and let : F,— F, have dense range. Let (S, [v]) be an (F,, [t))-
space with p: S — F)” determining when sx is defined. Then o
can be used to make an Fi-space of S+F® = {(s, u): p(s)=+(u)}, and
S=F, = {(s, x): (8) = ror(x)} is a groupoid. The function *: SxF,—
S+F, defined by (s, x) = (s, (x)) 78 a homomorphism with dense
range.

Proof. First, we suppose +r is strict. We define (s, z,)(s;, ;) =
(81, wyx;) for (s, ) and (s, x,) € S+F}, when sq(x,) = s, and d(x,) =
r{x,). It is easy to verify that this makes a groupoid, and (SxF)"® =
S*F~© while ++* is algebraically a homomorphism.

Now let v = gvudﬁz(u) be a decomposition of v relative to »,

and observe that {x: v, ~ vi.} is closed under multiplication. It
is conull because we assumed [v] is invariant [19, Theorem 2.9].
Thus the set contains an i.c. Since we may replace 4 by a similar
homomorphism, we may assume  takes values in this i.c. Then
Theorem 2.9 of [19] shows that [v] is Fi-invariant, and (SxF, [v*p,])
is a measured groupoid.

Now T(4*) = {((s, ®), (52, w)) € (S*xF,) X (SxF)\”: d(x) = r(u)}, and
if (s, x) e SxF,, €€ F, and +ror(f) = d(x), then

(s, @), (s, r(E))(s, §) = (5, X)p (s, &), (s2)y(8), A(E)))
= ((s, (), ((sw)y(8), d(8))) -

Thus T(y*) is naturally isomorphic to S*(F,«F\”), carrying the
action to the one in which F, operates only on the factor FxF\”,
as in the construction of S(¢). Thus every invariant set is of the
form A+B where AC S and B is invariant in F,«F. Hence
(s, x, u) — (s, r(x)) is an ergodic decomposition relative to F,. Trans-
ferred to T(y*), this says 4" has dense range.

THEOREM 6.11. Let (F, [t]), (Fy, [t]) and (G, [N]) be measured
groupoids, and suppose that : F,—F, ¢ F,—G and @, F,— G
are homomorphisms such that [@,]c[v]=[®,]). If 4 has dense range,
then M[+] is an isomorphism.

Proof. By taking i.c.’s and replacing homomorphisms by similar
ones, we may arrange that o, and + are strict and that @,oq = @,.
Then ¢, is also strict. Now T(®,) is an F,space so T{(@,)+«F* =
{((x, v), ) € T(@,) X F:p(u) = v} is an F)-space, and carries an
invariant measure class. This space is naturally isomorphic to
T(@) = {(x,u)eG@ x F”:d(x) = ¢(uw)} as an Fj,-space, via g, where
g(x, u)=((z, y(u)), u). The measure on T(®,) is Mxff,= Sxm) X g,df,(w),
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which g carries to S(Mm X &pw) X 6,4, (w). Now the measure we
use on T(p,) is SM X &,df,(v), so the measure we want on T(@,)=F\®,

as in Lemma 6.10, is just ¢,(vxff). Also, under this isomorphism
with T(@)+F, the function (x, u)— (¥, y(u)), which has M(y):
S(p,) — S(®,) as a quotient, just corresponds to (y*)~. If f:T(®,) —
S(p,) is a G-equivariant ergodic decomposition of T(p,)*F,, then
fo(y*)~ is a G-equivariant ergodic decomposition of T(@)+F,. Hence
(x, w) — f(x, y(u)) is a G-equivariant ergodic decomposition of T(@,)*
F, and may be used to establish S(,) as S(®,), and M(y) becomes
the identity. Thus M(y) is an isomorphism.

Consider now homomorphisms @: (F, [\])—(G, [#]) and +: (G, [¢#])—
(H, [v]). The following theorem makes precise the intuitive content
of the statement that the closure of the range of +r-restricted-to-
the-closure-of-the-range-of-@ is the closure of the range of o, i.e.,

Y(PF)T)" = (fop(F))".

THEOREM 6.12. If (F,\]D, (G, [¢]) and (H,[v]) are measured
groupoids and @: F — G, 4. G — H are homomorphisms, then S(op)
and S(roj) are isomorphic as H-spaces, where j: S(@)*G — G is the
inclusion homomorphism of the closure of the range of @ into G.

Proof. We have o = +rojop’, and @’ has dense range, so
M(¢') is an isomorphism of S(yro®@) with S(yroj) (mod null sets).

Now we can show that similar groupoids have the same actions,
as isomorphic groups have the same actions.

THEOREM 6.13. Let (F), [tn]) and (F,, [t]) be similar measured
groupoids. Then there is a natural one-one correspondence between

(Fy, [pu])-spaces and (F, [t4])-spaces.

Proof. Let @:F,— F, and @,: F,— F, be the similarity. If
(S, M) is an (F, [¢.])-space, let j,: S;xF, —> F, be the natural homo-
morphism. We define z(S) = S, to be S(@,05,). We define 7z, the
same way for (FS,, [t])-spaces. If S, = 7,(S)), then Theorem 6.12
shows that 7,(S,) = S(@,07,) = S(Pyo@i07,) = SUN=S,, ie., 7,00,(S)=S8S,.
Similarly 7z,07.(S;) is always isomorphic to S..

Now if S, and S/ are F,-spaces, and f:S,— S/ is equivariant,
then ¢ = f X 4 is a homomorphism of SxF, to S/*F, with @,0jjcp=
@,25,. Then @ induces an F,-space map of 7,(S,) to 7,(S)).

The next lemma and Theorem 6.16 are additional ways of saying
that containment is transitive for measured groupoids.

LEMMA 6.14. Let o:(F, M) — (@G, [¢]) be an extensive homo-
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morphism of measured groupoids and let (S, v) be an (F, [N])-space.
If ¢ is an imbedding, so is ®oj, where j is the inclusion of SxF
into F'.

Proof. We identify the units of S*xF with S. Then T(@-j) =
G=+S = {(&, 8): d(&) = @oj(s, p(s)) = P(p(s))} and S+F acts on GxS as
follows: (¢, s)(s, x) = (ép(x), sx). We also have F' acting on G*S by
&, 8)x = (Ep(x), sx) when p(s) = r(x), so the orbits in G*S are the
same for the action of S+F as they are for the action of F. Also,
the function f taking (& s) to (& p(s)) is algebraically strictly F-
equivariant from T7(@oj5) onto T(®). The measure on T(@oj) is

Syp(,,(,)) X g,dv(s) and on T(p) we have S‘a@(u, X €, dN(u). Since p,(v)~

X, f is strictly F-equivariant and normalized.

Suppose now that F, is an i.c. of F and T, is a conull F}-
invariant set in T(®) such that F, acts freely on T, and T,/F, is
analytic. Let S, = p™(F) and T, = f%(T,). Then T, is conull and
S,#F-invariant.

If (¢,8)eT, (s, x)eSxF, and (¢, s)(s, x) = (&, s), then sx = s so
r(x) = p(s) = d(x), and Ep(x) = & s0 P(x) is a unit. Because @ is an
imbedding, x is a unit, namely p(s). Hence S,«F, acts freely on T,.

Since T,/F, is analytic, there is a cross-section 7v: T,/F,— T,
which will give rise to a Borel set BZ T, whose saturation is
conull and which meets each orbit at most once. Suppose (& s) and
(&, s)(s, x) = (& s)x are both in f™(B). Then f(& s) and f((§ s)x) =
f(&, s)x are both in B. Hence z is a unit, so f(B) meets each
orbit only once. Now the saturation of f™(B) is fY[B]), which is
conull. Another contraction of F), to the image in F\© of [B] will
complete the argument.

LEMMA 6.15. Let @: (F, [\]) = (G, [¢]) and +: (G, [¢]) — (H, [v])
be composable homomorphisms. Then (YoP) = (yroj,) op .

Proof. We may assume that + and @ are strict homomorphisms.
Let q,: T(yoj,) — S(yoj,) be a suitable ergodic decomposition. As in
Lemma 4.1 and Theorem 6.11, (x, w)— (z, ®'(u)) takes T(yo®@) to
T(yroj,) and the function g,: T(yo@) — S(yrej,) defined by g,(z, u) =
¢.(x, @'(u)) is a G-equivariant ergodic decomposition. Using ¢, we
may take S(yroj,) as S(yo®). Then according to the way we define
(), Theorem 3.6, for £ F we have

(oP) (&) = (QlyroP(7(8)), 7(8)), yoP(£))

= (q,(YoJ (P (1(8))), P'(1(8))), poJeoP'(8))
= (yo3.)(#'(8)) -
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THEOREM 6.16. Let @: (F, [\]) — (G, [¢]) and : (G, [¢])— (H, [»])
be composable homomorphisms. If both of them are imbeddings, so
18 +po@. If both of them have dense range, so does ro@.

Proof. (fro@) = (4roj,) o9@’, and in the first case each of ¢ and
(4oj,) is half a similarity, so (yo@) is half a similarity.

In the second case, j; is an isomorphism, so S(yroj,) = S(v) as
H-spaces, and S(y) = H® as an H-space because +» has dense range.
Also we have S(yo@) = S(yrej,) by Theorem 6.12, so S(yrop) = H®
as an H-space.

7. Order among subobjects and some category theory.

For virtual subgroups S X G and T X G of a group G, Mackey
defined S x G to be smaller than T x G if there is a G-equivariant
map of S onto T. This is a definition by extension: if S =G/H
and T = G/K, H is conjugate to a subgroup of K iff such a map
exists. This does not behave as well as ordinary containment for
subgroups, but there are a number of facts which can be formulated
in terms of this ordering in a congenial way.

In this section we want to develop some of these facts and to
relate some of the properties of Section 5 to notions from category
theory. Some of the results we state are due to Caroline Series
[21]. She studied homomorphisms in terms of the size of kernel or
range closure, and gave several of the definitions we use here [21,
Chapter II, Section 3 and Section 4}.

We begin with three definitions. The first and third are as
formulated by Series and the second is equivalent to one of hers.
Following the definitions we will discuss them and their relation-
ships.

DEFINITION 7.1. Let o: (F,[:N]) — (G, [¢t]) be a homomorphism
of measured groupoids.

a) @ is trivial if it is similar to a homomorphism ¢’ such that
P'(F) S G©.

b) If (S,v) is a (G, [¢])-space, we say @ takes walues in S+G
provided there is a homomorphism «: (F, [A]) — (S*G, [v*4]) such
that @ = jgour.

¢) The kernel of @ is (T(@)+F, [(#+\)*\]), denoted Ker (p).
This property of triviality for ¢ depends only on the similarity
class, and generalizes the one for group homomorphisms. However,
at first it seems to have a difficulty, as follows. If o(F) < G,
then & is constant on each equivalence class. If F' were ergodic,
@ would be essentially constant, so G would be essentially transitive.
We might want the kernel of ¢ to be ergodic, and then it appears
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that in general @ could not be trivial on its kernel. Mackey
pointed out in section 7 of [16] that for a homomorphism ¢ into a
compact group G, T(@)+xF decomposes into isomorphic ergodic
groupoids, any one of which is a good candidate to be called the
kernel of @. If this worked in general we would face a choice
between ergodic kernels and having @ trivial on its kernel. However
an unpublished example of Series shows that what we have called
Ker ¢ can have distinet integrands. Therefore it is easier to decide
to allow Ker @ to remain as given here.

This definition of taking values in the subobject S+G is motivated
by the fact that for groups, ¢ takes ordinary function values in
the subgroup H iff it factors through the inclusion homomorphism
of H. Next we want to show that this definition agrees with that
of Series, and that the property is invariant under similarity.

LEMMA 7.2. @ takes values in S+G 1ff there is a Borel function
B: F® > 8 such that

(1) for some i.c. F, of F,xeF, implies B(d(x)) = Brx)®(x)
makes sense and 1s true.

(i) BYE) is null if E < S 1is negligible.
If @ takes values in S=G and @' is similar to @, then @' takes
values in S=@G.

Proof. 1If such a B exists, define (x) = (B(»(x)), P(x)) for x € F.
Let p be the mapping of S to G such that sz is defined iff p(s) =
»(xz). Then condition (i) on B implies that + carries F, into S=G.
+| Fy is a homomorphism because @ is and G acts on S, and because
E C S is negligible iff {(s, p(s)): s€ E} is negligible in (S=G)®, while
BTHE) = ¥7({(s, p(s)): s € E}).

For the converse, suppose @ = jgoor. Then there is a function
Bi: F -+ S such that (x) = (B(x), px)) for zeF. If d(x) = r(y),
then (x)y(y) is defined, so B(x)p(x) = Bi(y). Thus B(y) depends
only on #(y), and there is a B3: F''” —»> § such that g, = Bor. If
is strict on F,, condition (i) follows easily, and so does (ii).

For the last statement, suppose @ is given and that 6 is a
similarity of @ to ¢@’. Define g'(u) = gw)d(uw)™ for ue F'. It is
not hard to show that this makes sense, and that g’ satisfies (i)
and (ii) for ¢'.

Next we want to show that these notions are properly related.
In Theorem 7.8, we give another result of the same kind. Part
of the idea involved here is that GG “is” the trivial subobject of
G (see Theorem 7.9). Also, one can show GG ~ G'”.

LEMMA 7.3. (a) @: (F, [A]) — (G, [¢]) takes values in G+G iff @
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1s trivial.
(b) @|Ker o, ie., Pojpe, is trivial.

Proof. (a) Notice that if (v, 4,) is a composable pair of homo-
morphisms and either is trivial, so is +noqrn. If @ = jgoqr, we can
therefore prove @ is trivial by proving j, is trivial. Define 6(s) =s
for seG. Then 6(s)jq(s, x)0(sx)™ = r(s) for (s, ) € GxG, which implies
Jje is trivial.

If @ is trivial define 3=% to show that ¢ takes values in G*G.

(b) Given @: F— G, define 6: T(p) -G by 6(x, w) = 2. Then
for £e F and xe G with

(x, 7(€)) € T(p), 0(x, 7(E))Podre((®, 7(8)), E)F(xP(E), d(£))™ = r(x) .

Thus @ojr is trivial.

We remark that @ is an imbedding iff Ker o is trivial in a
certain sense, according to Lemma 6.2. Thus Ker @ is sensitive to
more than just whether @ is immersive. Our next results need
definitions of order or ‘containment” among groupoids. One of
these is due to Mackey [15] and the other to Series [21].

DEFINITION 7.4. Let (S, \) and (T, p) be (G, [v])-spaces.

a) S*G < TxG iff there is a normalized (G, [v])-equivariant map
fiS—T.

b) S*G < T+@G iff there is a (G, [v])-equivariant map f: S — T.

¢) S is quasi-equivalent to T if I xS and I x T are isomorphic,
where I = [0, 1] and G acts trivially on I.

d) S+G < T+G iff (I x S)*G < (I x T)=G.

One difficulty with these order relations is that we can have
S*G < T+G < S*G without having S equivalent to 7. In fact, let
A =TI,z Z/AZ and let Z act on A by coordinate shifts, which are
automorphisms, and form G=A4 € Z. Let H={reAd:z, =0 for
n <0} and let K={xecd:x, =0 for n <0 and x, =0 or 2}. Then
H is conjugate to a subgroup of K and vice versa, but they are
not conjugate. Series has given another example [21, page 33].

Leaving that aside, we want to exhibit some more affirmative
results. We follow the notation used by Series for types of standard
measure spaces. For n = «,1,2, ---,J, is a space with n atoms.
For n =0, J, = I, the unit interval, with Lebesgue measure. For
w=—o,—1 -2 .. J =IUJ_,. We will say a space is of type
J if we do not want to specify a particular J,.

LEMMA 7.5. [21, Proposition 13.6]. Let X be an analytic Borel
space. with atom-free probability measure p. Let f be a Borel
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function into an analytic Borel space Y. Let p= Sp,,df*(y)(y) be

a decomposition of p relative to f and suppose that almost every
Y, 18 of the same type J. Let p be the coordinate projection of
JX Y onto Y. Then X is isomorphic (mod null sets) to J XY via
a Borel function g: X — J X Y such that pog = f.

The proof is omitted (see [21]), but a comment or two may
help the reader. The discrete parts of the g, can be dealt with
using the von Neumann selection lemma and an exhaustion argument.
For the continuous case one can take X & I and regard all the
measures as being on I. Then h(x, y) = ([0, x]) defines a Borel
funetion and the necessary function g can be defined by g(x) =
(h(z, f(x)), f(x)).

A lemma we will use in conjunction with Lemma 7.5 is a
structure theorem for quotient mappings, as follows. It also is
proved using cross-sections and an exhaustion argument.

LEMMA 7.6. Let X be an analytic Borel space with probability
measure (t. Let f be Borel from X to an analytic space Y and

let p— Syydf*(y)(y) be a decomposition of gt relative to f. Then

there are disjoint Borel sets Y, S Y for neZ U {+ oo, — o} whose
union is conull and such that if ye Y, then p, is of tyve J, and
18 concentrated on f(y).

LEMMA 7.7. Let X be an analytic Borel space with probability
measure p and let f be a Borel function from X imto an analytic
Borel space Y. Let m be Lebesgue measure on I, form I X Y and
let p: I x Y — Y be the projection. Then there is a Borel function
9:1 X Y — X such that fog = p a.e. and g.(m X f, (1) ~ p.

Proof. This is easy if X=J X Y, so we may apply Lemma
7.6 and Lemma 7.5.

THEOREM 7.8. A homomorphism @: (F, [N]) — (G, [p¢]) is trivial
W I X F=({IxXF"*F < T(p)~F = Ker ().

Proof. If @ is trivial, then for (x, (&) e T(®) and £ F we
have (x, 7(8)é = (x@(§), d(&)) = (x, d(£)), so the action of F on T(p)=
G+F© is essentially that of the action of F on F© with “multipli-
city” added by the fibers. By Lemma 7.7 there is a Borel function
g: I X F®—-T(p) such that »(g(a, u))=w for almost all pairs (a, w)e
Ix F and g,(m X X) ~ t,xx, where m is Lebesgue measure (see
the proof of Theorem A8.5 regarding g,*X). Then ¢ is almost
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equivariant, so we can choose it to be equivariant, and we do have
I x F < Ker .

Let j: Ker @ — F be the inclusion, j,,, and let h: I X FFO-T(p)
be equivariant and take m X X to gxX. Then @ojo(h X 1) is trivial
because @oj is. Suppose #:I X F® — G is a Borel function for
which @'(a, &) = 6(a, r(&))P(&)8(a, d(£))™* is almost always in G. Then
there is an « such that ¢@'(a, £) e G for almost all £&. If we define
Ou) = 0(ex, u), 0,(r(&))P(&)0,(d(£))* defines a homomorphism with values
in G a.e., so @ is trivial.

For a group G, the trivial subgroup corresponds to the action
of G on itself by translation. Thus, if S is a transitive G-space we
have G X G < S X G. For groupoids, one G-space is I X G and we
might not have GxG < (I X G)*G. Thus the following theorem is
a reasonable analogue of the idea that the subgroupoid corresponding
to G+G is the smallest one.

THEOREM 7.9. Let (G,[p]) be a measured groupoid and let
(S, », p) be an analytic Borel (G, [p])-space. Then (I X G)xG < S*@G.

Proof. Let A= gxudﬂ(u) be a decomposition of ) relative to p

over ff, and apply Lemma 7.8 to S, )\, p and G®, to get a Borel
funetion g: I X G — S such that pog(t, w) = u for (¢, w) in a set
K< IxXG? conull relative to m X f, and g,(m X @) ~\. Then
g.(m X &,) ~ N, for almost all u, because g*(mxﬂ)=gg*(m><su)dﬂ(u)
and g.(m X ¢,) is almost always concentrated on p~*(u). Now extend

g to I X G as follows: if (¢, r(x)e K, let gt x) = g(¢, r(x))x; if
t, rx)) ¢ K, let g(t, ) = g(t, r(x)). If (¢, r(x))e K, and d(x) = r(v),
then g(¢, xy) = g(t, (x))(xy)=g(t, x)y. Thus ¢ is algebraically almost
equivariant, so there is an equivariant f: I X G — S which agrees
with ¢ a.e.

Now let us show that g is normalized, so f is. Let G, be an
i.c. such that xe @G, implies N\, & ~ Ay, such that w e G implies
g.(m x g)~ N\, and such that for ueG® the wu-section K, is m-
conyll in I. Then g.(m X &,) ~ Npmy® ~ Mgy for 2 €G,. Hence

-
-
S

g.(m X po) g«(m X e,)dp,(x)df(u)
Nudpt(@)d ()

M ()
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DErFINITION 7.10. If (T, ) is a (G, [¢])-space, we call it trivial -
iff for every (G, [¢])-space (S, v) we have TxG < S=G.

The next theorem gives another way to construct trivial sub-
groupoids of G, because (I X T)*xG < S*G implies (T*G) < S*G.

THEOREM 7.11. Let (G, [¢]) be a measured groupoid, let G, be
an i.c. on which p has a right quasi-invariant decomposition, and
let A be a Borel set in G with [A]=G®. Then there is a measure
X oon GO concentrated on A such that MB) =0 iff fi(B) =0 for
saturated Borel sets B, and if we set v=§#“dx(u), Y 18 quasi-invariant

on r {A) and (I X r(A)*G < G*G.

Proof. The existence of M was proved in the proof of Theorem
6.17 of [18]. Then v is quasi-invariant by Lemma 3.4, and d,(») =
[dueana) ~ .

By Lemma 7.8 there is a Borel function fiI x A — d™'(4) such
that f.(m X ¢,) ~ £, a.e. and fo(m X \) ~ Syudh(u), and there is a
conull set X £ I x 4 such that dof(t, u) = ucG® for (¢, u)e X and
rof(t, u) e G® for (¢, u)e X.

Let S=7r"%A4) and let Y ={(¢t,s)el X S: (¢, 7(8))eX}. Then Y
is conull in I x S relative to m x v. Define g: I X S — G by taking
g(t, s) = f(t, v(s))s when (¢,8)€ Y and g(t, s) = f(t, r(s)) if (¢, 8)¢ Y.
Then ¢ is Borel and almost algebraically equivariant. By Lemma
1.4, we only need to prove g.(m X v) ~ .

Now g.(m X &,) ~ b ~ Uiy fOT 2 E€G,, s0 u e G} implies

gulm x 1) ~ {adpe(a)
= {pmaa. o .
Hence
g.(m x ») ~ || md@.en@anw
~ | map) .

The next lemma characterizes trivial subobjects of measured
groupoids. It is closely related to Lemma 6.1. Notice that the
proof of the “only if” part of the lemma does not require the map-
ping f to be normalized.

THEOREM 7.12. Let (F,[7\]) be a measured groupoid and let
(S, ¢, », @) be an (F, [N])-space. Then (I X S)xF < FxF iff there are
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an i.c. F, of F and a conull analytic Fi-invariant set S, & S such
that S;«F, is principal and the orbit space S,/F, is analytic.

Proof. First, suppose f: I x S— F is equivariant, and let U =
I xS and V< F© be conull sets such that p(U)=V, U is F|V-
invariant, and f|U is strictly F'| V-equivariant. There will be a
te T such that the ¢-section U, is conull in S. Then p(U,) £ V and
is conull, so there is a conull Borel set V,Co(U,). Now U, is F|V-
invariant, so if we take F,=F|V, and S, =»(V,)N U,, then S,
is conull and F'-invariant. Define g(s) = f(¢, s) for s€S,. Then g
is strictly F'-equivariant.

Now suppose (s, ) e S;xF, and sx = s. Then x = g(s)™(g(s)x) =
g(s)~*g(sx) = g(8)7'g(s), so x is a unit. Thus F, acts freely on S, i.e.,
S, F, is principal.

To show that S,/F, is analytic, we will show that ¢g7*(F) is a
Borel set meeting erch orbit exactly once. In fact, if seS,, then
9(sg(8)™) = g(s)g(s) e I, Also, if ¢(s,) = 9(s,) € F\” and there is
an ¢ with s,x = s,, then g(s;) = g(s,x) = g(s,)r = 9(s,)x, S0 x is a unit
and s, = s,.

For the converse, begin with S, F,, and let Y = S,/F, with
q: S, —» Y the quotient map. Let v: Y — S, be a measurable cross-
section and let Y, be a conull Borel set on which v is a Borel
function. Let S, =q¢\(Y,), F,= F|p(S,). Now S, is a union of
orbits so p(S,) is saturated in F, and S, is conull, so p(S,) is conull
in F®. Since F, acts freely on S, F, acts freely on S,. Thus
g: (¥, ) — v(y)x is one-one and Borel fromY =F, = {(y, ) € Y X F: po
Y(y) = r(x)} onto S,. For (y, x)e Y*F,, let p(y, x) = d(x), and let
(y, )z, = (y, zx,) if r(x,) = d(x). Then Y=xF, is an F,-space and ¢ is
algebraically strictly equivariant. Going from S, to YxF, by g*
and then projecting to F, gives an algebraically strictly F,-equiv-
ariant Borel function f: f(s) =« iff v(q(s))x = s. Hence the proof
will be complete if g preserves the measure class.

The measure on SyxF| is Se, X AMWdu(s), which “is” its decom-

position relative to » (taking (S*F,)® = S;,). We may assume the
decomposition of \ is left quasi-invariant, so the decomposition for
S,xFy is also. Then the measures a,(e, X A**) are in the same class
as long as s varies only within one Fj-orbit. Thus, if ¢(s) =y,
a, (e, X M) = a(s, - ), (W) ~ a(¥(y), -)(\7*"). Hence

i~ Jats, .0 )dputs)

- S“(%q(S), (AT d ()
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~ e, .00 w)
= o, 20w
=g.( e x VW@ )

Thus g carries gq,.(¢#)*\ to a measure equivalent to g, which is what
we wanted to know.

THEOREM 7.13. Let (F, [\]) and (G, [¢]) be measured groupoids
and let @: (F, [N]) — (G, [¢]) be a homomorphism. Then @ is trivial
1ff the range closure of @ s trivial, and this occurs iff @ takes
values in a trivial subobject of G.

Proof. Let j,: S(p)*G — G and ¢": F — S(@)*G be as in Theorem
3.5. Then @ = j,o9', so @ takes values in a trivial subobject of G
if the range closure of @ is trivial. If j:S*G — G is an inclusion
and +: F'— S*G is a homomorphism with @=jo, then M(y): S(@)—
S(j) = S is equivariant, by Lemma 4.1. Hence S(9)*G < S*G (see
also [21, Proposition 4.5 of Chapter II]). This establishes the last
equivalence. ,

Now suppose @(F) < G®. Then the action of F on T(p) is
trivial, so the function ¢: T(®) — G taking (x, w) to x* is constant
on F-orbits. Also, g is strictly G-equivariant, and g carries the
measure used on T(®), namely S/zq,(u, X &,dx(u), to a measure equiv-
alent to Sy”dgv*(i)(v), which is quasi-invariant on S = r Y@(F))
and relative to which S is a G-space with SxG < G+G. If q: T(p)—
S(p) is a strictly G-equivariant ergodic decomposition of T(@)«F,
there is a G-equivariant f:S(p)— S with foq =g. Then f is
normalized.

Now suppose Sx=G is trivial, j is its inclusion and +: F — SxG
is such that @ = joop. To show that o is trivial it will suffice to
show that j is trivial. That S=G is frivial means there is an
equivariant normalized equivariant function f: I X S — G. Since fis
strictly equivariant on a conull set, there is a ¢t with g = f(t, )
equivariant from S to G. Define 6:S— G by 6(s) = g(s)™*. Then
O(sx)™ = g(sx) = g(s)x for almost all (s, x), so j(s, ) = 6(s)f(sx)™* a.e.,
as we wanted to show.

Rephrasing a result of Series [21, Proposition 4.6 of Chapter II],
we can characterize trivial homomorphisms in terms of kernels.

THEOREM 7.14. Let (F,[\]) and (G, [¢]) be measured groupoids
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and let : F— G be a homomorphism. Then @ is trivial iff IX F=
(I x FO)«F < Ker @.

Proof. To say @ is trivial means that ¢ is trivial on FFO«F
(which is F'). Then by Proposition 4.6 of Chapter II of [21], we have
(I x FO)F < Ker @.

Now if (IX F®)xF < Ker @, Proposition 4.6 of Chapter II of [21]
says that there is a conull set US IX F® and a Borel 6: U— G such
that if (¢, r(x)) and (¢, d(2)) € U, then @(x)=0(t, r(x))6(t, d(x))"*. Choose
t such that the section U, is conull in F, and let F, = F|U,, 6, =
d(t, -). Then x € F, implies @(x) = 6,(r(x))0,(d(x))™*, so @ is trivial.

Now for the other extreme, the kernel can be used to charac-
terize imbeddings.

THEOREM 7.15. Let @: (F, [\]) — (G, [££]) be @ homomorphism of
measured groupoids. Then @ is an imbedding iff Ker @ is a trivial
subgroupoid of F'.

Proof. If we take S = T(p) in Theorem 7.12, this result is
immediate.

THEOREM 7.16. Homomorphisms with dense range are epimor-
phisms in the sense of category theory.

Proof. Let (F,[\]), (G, [¢]) and (H, [v]) be measured groupoids
and let 4: F— G be a homomorphismm with dense range. Let @, @,
G — H be homomorphisms such that [@,]c[v] = [®,]e[v]. By taking
an i.c. of G, replacing + by a similar homomorphism, and then
replacing F by an i.c., we may arrange that o, @, « are strict
(then @040 and @,oqp exist) and that ®eqr and @,oqr are strictly
similar. Let 6: F® — H be a Borel function such that for every
EEF, 0or(E)Pioy(8)0od(8)™" = Pyoyr(8).

Now if (x, w)e T(y), ie.,, xeG,uecF® and d(x) = «(u), then
dop,(x) = Ped(x) = Poq(u) = dob(u), so f(u)p,(x)™* is defined. Also
rof(u) = Pyoi(u) = Pyod(x) = dopy(x), so @ (x)f(u) is defined. Thus
we can define g(x, u) = @, (@)0(u)p(x)™* for (x, w)e T(v). Then g is
constant on F-orbits, because if (x, 7(¢)) € T(+y), then

9@y (&), d(8)) = Pya)Py0ar(§)0°d(E)P0ar() 'y ()™
= Py(x)0or(E)P (%)™
= g(=, 7(8)) -

The assumption that « has dense range just means that the
function f: (x, u)— r(x) is an ergodic decomposition of T(y:) relative
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to the action of F. Hence there is a Borel function h: G — H such
that gz, u) = h(r(x)) for almost all (x, u). We have G acting on
T(y) by a(y, w) = (zy, w) if d(z) = 7(y), and on G by zxd(z) = »().
Also G has a weak (left) action on a subset of H, given by

xx& = P (@)Ep, () !

when the product is defined. Then g and f are both equivariant,
so we can take k to be equivariant on a conull set U & G. Thus
for x e G| U, h(r(x)) = @(x)h(d(x))p,(x)*. Thus @, and @, are similar
via h.

The method used to prove this theorem also works to prove a
theorem about representation of groupoids. If L, and L, are
representations of (G, [¢]), i.e., Borel homomorphisms to the groups
of unitary operators on Hilbert spaces 54 and 57, then the space
of intertwining operators R(L, L, is defined to be the set of
bounded Borel functions 4: G — (573, 5#;) such that A(r(x))L,(x)=
Ly(x)A(d(x)) for x in some i.c. of G. We identify functions which
agree a.e., and supply the essential sup norm. We say L, and L,
are equivalent if there is a unitary valued 4 in R(L,, L,); they are
disjoint if R(L,, L,)={0}; L, is irreducible if R(L,, L,) has dimension
1. Of course A*(u) = A(w)* defines an element of R(L, L, and
pointwise composition maps R(L, L) X R(L, L,) to R(L, L;). A
special case of the following theorem was proved and used on page
47 of [20]. This strengthens a theorem of Peter Hahn [6, Theorem
5.19].

THEOREM 7.17. Let «: (F, [A]) — (G, [te]) be a homomorphism
with dense range, and let L, L, be strict representations of (G, [¢]).
For Ae R(L,, L,) define iy'(A) = Aosp. Then ' is an isomorphism
of R(L,, L,) onto R(L,oar, Lyovr). This operation preserves sums,
products and adjoints. In particular, if L 1s irreducible so 1is
Loop.

Proof. Most of this is easy, so we only discuss the fact that
' is onto. If Be€R(L,oy, Lyoy), we can define g on 7T(y) by
g(z, u) = Ly(x)B(u)L,(x)™*. As in Theorem 7.16, there is a Borel A
on G such that A(r(x)) = L(x)B(w)L,(x)™" a.e. in T(yy), and A ecan
be chosen to be equivariant. Thus A€ R(L, L,. Hence, L,x)Ao
P Ly(x)™ = A(r(x)) = Ly(x)B(u)Ly(x)™, so Aoy = B a.e.

It was suggested by Peter Hahn that the method we have
used in the last two proofs could be used to generalize a result of
Robert Zimmer on amenability [Theorem 3.3, 23]. Zimmer defined
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amenability of group actions in a way which can apply to groupoids
[8], using an analog of the fixed-point property, and he proved
that a group action which is the range closure of a homomorphism
defined on an amenable group action is also amenable.

The definition goes as follows. Let E be a separable Banach
space and let A be the group of isometric isomorphisms of E, with
the strong operator topology and Borel structure. Let E* be the
dual of E, with the weak™® topology, and let E* be the unit ball in
E*. If G is a measured groupoid, let v:G— A be a Borel homo-
morphism and define v*(z) = v(x™)* for x€G. A function assigning
a compact convex set K, & E* to each u e G is called an invariant
Borel field of compact convexr sets if {(u, f)eG® X E*. feK,} is
Borel and v*(%)K,., = K,., for almost every z. Then there is an
i.c. of 2’s for which v*(x)K;.,,=K,,,- This is the appropriate analog
of an action of a group on a compact convex set, and the analog
of a fixed point is an invariant section, i.e., a Borel function
o: G — E* such that o(u) e K, for almost all w, and v*(x)o(d(x)) =
o(r(x)) for almost all x (again an i.c. of 2’s will satisfy the condi-
tion).

We say G is amenable if every invariant Borel field of compact
convex sets has an invariant section.

Given any homomorphism @, the @ of Theorem 8.5 has dense
range by Theorem 6.7, so to deal with range closures it is sufficient
to prove a result about homomorphisms with dense range. Hence
our next theorem does generalize Theorem 3.3 of Zimmer [23].

THEOREM 7.18. Suppose (F,[\]) is amenable and there is a
homomorphism ~: (F, [N]) — (G, [¢t]) which has demse range. Then
(G, [¢]) is amenabdle.

Proof. Take E,~, K as in the definition just above. For ue
F© let C, = Ky and B = voqr. Let G, be an i.c. of G such that
x €@, implies v*(®)K;., = K,., and 7|G, is strict. By passing to
an equivalent  and an i.c. of F, we may assume - is a strict
homomorphism and carries F into G,. We may also suppose that
q: (xz, w) — r(z) is an ergodic decomposition projecting T(y)={(x, u) €
G X F©:d(x) = (u)} onto a conull subset of G{”, since that is
essentially what “dense range” means. Then it is clear that C is
an invariant Borel field of compact convex sets for 43, and since
F is amenable there must be an invariant section p. By replacing
F by an i.c.,, we may arrange that B(£)o(d(&))=p(r(&)) for all £in F.

Now define g: T(y) — E* by g(z, u) = v*(x)o(u). Then g(zy, u)=
Y@ (y)p(w) = v (@)9(y, w) if r(y)=d(x) and y(u)=d(y). It follows,
by using xz7', that g is strictly equivariant from 7T(y) to E*. We
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also have

9@ (8), d(8)) = v*(@)B(&)e(d(£))
= 7*(@)(7(£))
= g(x, 7(£))

whenever d(x) = (r(x)), so g is constant on F' orbits in T(y).
Hence g factors through ¢: G — E*, i.e., there is a Borel o such
that o(r(z)) = g(z, w) for almost all (z, u)e T(«). By Lemma Al.2,
there is an equivariant choice of o, i.e., o(r(x)) = v*(x)o(d(x)) for
almost all x. Thus G is amenable. For \-almost every we F®, we
have a(r(x)) = v*(x)o(u) for fty.,-almost every x. In particular, for
almost every u there is such an z for which o(r(x)) = v*(x)o(d(x))=
v¥(x)a(yr(uw)). Hence o = oo a.e.

Here is another result on epimorphisms, whose proof is omitted.

THEOREM 7.19. Let +: (F,[N]) — (G, [¢]) be a homomorphism
such that for we F'@, 4 takes r7'(w)Nd ™' (w) onto v (yr(w)) N d *(yp(u)).
Then ~r is an epimorphism.

Finally, we have one result on imbeddings which is in the
direction of saying that imbeddings are monomorphisms. This may
be the closest to that statement that is true. Even it fails for
immersions, as we see from examples with groups.

THEOREM 7.20. Let @:(F,[N]) — (G, [¢t]) be a homomorphism
and let i (G, [p]) -> (H, [v]) be an imbedding. If [v]o[p] is trivial,
so is [®].

Proof. S(yop) = S(yroj.) as H-spaces and S(@)xG ~ S(yroj,)xH
as groupoids. Then S(@)+G is principal and S(@)/G is analytic (up
to a null set), so @ is trivial by Theorems 7.12 and 7.13.

Appendix. The four sections of the appendix give proofs of
results in the first four sections of the body of the paper.

LEMMA Al.l (Lemma 1.4). Let (G, [¢t]) be a measured groupoid,
let (S, N, p) be an analytic Borel (G, |tt])-space and let T be a strict
analytic Borel (G, [p])-space. If fi:S— T is almost (G, [p])-equiv-
ariant, then there is a (G, [p])-equivariant function f: S — T which
agrees with f, a.e. Furthermore, fi.(\) = f.(\) and is quasi-invari-
ant. The function f exists even tf T is a weak G-space.

Proof. There is no loss in generality if we assume to begin
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with that (S, \, p) is a strict (G, [¢¢])-space and that y= Sy('r, w)d fi(u)
is a left quasi-invariant decomposition of ¢ into probability measures.
To see this, use Lemma 6.2 of [19] and Definition 1.1 together with
the remarks preceding Definition 1.2.

Let S, be a conull Borel set in S such that if se S, then fi(sx)=

fis)x for pr-almost almost all . Decompose Nszudﬂ(u) relative

to » and let U be a conull Borel set in G such that u e U implies
that A, is a nontrivial measure concentrated on p™ ()N S,. In the
groupoid S*G, the set of units is the graph of » and can be identified
with S, and the decomposition of the measure relative to » has
integrands ¢, x p(r, p(s)). Then d,(e, X p(r, p(s))) is identified with
a measure concentrated on {sx: r(x) = p(s)}, which is the equivalence
class of s in S. Since the decomposition of p relative to » is quasi-
invariant, Sal)»(s)d*(es x p(r, p(s))) is equivalent to n (i.e., the image
of A in the graph of p), so we can also assume U is chosen so that
S, is d.(g, x p(r, p(s)))-conull for \,-almost every s when ue U.
Now let G, =G| U and let S, ={seS:p(s)e U and S, is d,(e, X
w(r, p(s)))-conull}. Then S, is an invariant conull Borel set by the
proof of Lemma 6.3 of [19]. Now take T < [0, 1] and define f(s)=

S fisz)x~'dp(r, p(s))(x) for se S,. Notice that if s €S, then f(sx)=f(s)x

for p(r, p(s))-almost all x so that fi(sx)x™' is defined and equal to
fi(s) for almost all z in »(p(s)). Thus f=f, on S;NS,. If se8,
there is a y with syeS,. Then sz = (sy)y~*z and fi(sx)(y x)™ is
defined for almost all x, so fi(sx)x* is defined for almost all x. If
we define Fi(s, 2) = fi(sx)x™ when this is valid and Fi(s, ) =0
otherwise, F, is Borel and f(s) = SFl(s, xydp(r, p(s))(x), so f is well
defined and Borel from S, to [0, 1]. To see that f(S,) & T and f is
equivariant, let se S, and choose y with sy S,. Since S, is invari-
ant, we have sye S, N S,. Now if r(x) = p(s), then »(x) = »(y), and
by quasi-invariance we have f,((sy)(y 'xz)) = fi(sy)(y'xz) for p(r, d(x))-
almost all z. Thus f(sx):g Fil(sy)(ytxz))zdp(r, d(x))(2) = fi(sy)y x.
If we take z = p(s) this gives f(s) = fi(sy)y™'e T, and applying it
again we get f(sx) = f(s)x for (s, x)eS;*G,. Observe that this
proof is valid if T is even a weak G-space.

To see that f,(\) is quasi-invariant, notice that A=z is mapped
to f.(W)*u by (s, ) — (f(s), ) and (sz, ™) goes to (f(s)x, #7*) under
this function. Thus quasi-invariance of A implies the same for f,(\).

The next lemma is useful in constructing equivariant functions.

LEmMMA Al.2. Let (G,[y]) be a measured groupoid and let
(S, p), (S, p,) and (S, p;) be analytic strict (G, [¢])-spaces. Suppose
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N 18 a finite quasi-invariant measure on S,. Let f:S,— S, and
9: S, — S, be equivariant, and suppose h,;: S, — S; is a Borel function
with hyof = g a.e. Then (S, fu(\), »,) 18 a strict (G, [¢])-space and
there is an equivariant h: S,— S, which agrees with h, a.e. relative

to fi(V).

Proof. By Lemma Al.l we know that f,(\) is quasi-invariant,
and that it suffices to prove that %, is almost equivariant.

Let = gxsdf*(k)(s) be a decomposition of A\ relative to f and

let B, ={seS;: h,of(s) =g9(s)}. Then there is a conull Borel set
E, < 8§, such that for se€ E, the measure )\, is a probability measure
concentrated on E,N f7'(s). By Theorem 2.13 of [19], we also know
that {(s, ) € S;*G: N ~ \,,} is conull. Hence {(s, 2) e Sx*G:secFE,
ste B, and vax ~ \,,} is conull. If (s, x) is in this set, then E, is
conull for A, and Az, so there is an s,e B, N f%(s) with sxecE,.
Then

hy(sx) = h,(f(s))
= h,(f(8,2))
= g(s,%)
= g(s,)
= hy(8)x ,

which completes the proof.

Now we want to inquire whether the requirement that an
equivariant function be normalized is very stringent. For homo-
morphisms of groupoids it eliminates many [18, §4], but between
G-spaces it is equivalent to an apppaently weaker condition. We
begin with an easy lemma about invariant sets.

The next two lemmas show that all equivariant functions
(Definition 1.3(a)) are normalized in the sense used by C. Series [21].

LEMMA Al.3. Let (G, [¢]) be a measured groupoid, let (S, N, p)
be a strict (G, [p])-space, and let G, be an i.c. of G. If NSp ™ (GP)
is amnalytic, null and Gr-invariant, then its G-saturation, [N], is
also null.

Proof. Let se N, xeG with »(x)=p(s) and sx ¢ N. Now p(sx)=
d(x) and if d(x)eG{® we would have z€G, so sxte N. Thus sz¢
pHG®). Thus [N] - N S — »p%(G{), which is of measure 0.

LEMMA Al.4. Let (G, [p]) be a measured groupoid, let (S, N,
0., &) and (S, Ny, Do, a,) be strict analytic (G, [p])-spaces, and let
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1S, — 8, be strictly (G, [p])-equivariant. Then f(S,) is G-invariant
and f*(kﬂ) ~ Ng.

Proof. It is easy to show that f(S,) is invariant. The rest of
the proof is based on the uniqueness of the measure classes in the
equivalence classes of units.

Let p= Sp(7,u)dﬂ(u) be a decomposition of p relative to 7.

By Lemma 6.2 of [19], there is an i.c., G, of G such that ueGQ
implies g(r, ) is a probability measure concentrated on G, N r (u),
and this decomposition is quasi-invariant under G,. Let S,=p;(G®),
S, = pr(G®). Then Ay = Se,, % p(r, u(s))dr(s) and A = ges x
pr, ps))dny(s) are quasi-invariant on S;*G, and S,*G,. For seS,,
the measure v} = a,x(e, X u(r, p(s))) is concentrated on its orbit,
and the class [vi] is the same for all s in a given orbit. Also,
Fe()) = agx(er X (7, (f(8)))), which we denote by »:.

For a Borel set BC S,, B is null iff BN S, is null and this
happens iff the saturated Borel set Q = {se S,:v¥B) > 0} is null.
If A= f%B), let P={scS;:vi(4) > 0}. Then P = fQ), and P is
also saturated and Borel. Our hypothesis about the measure implies
that M(P) = 0 iff M(Q) = 0, so N (4) = 0 iff A(B) = 0, as desired.

LEMMA Al.5. Suppose f, g are weakly equivariant and B,: S,—G
is Borel, with f(s)B.(s) = g(s) for almost all s and B,(sx) = z7*B.(s)x
for A xp-almost every (s, x). Then there are a Borel function
B:8,— G, an i.c. G, and an analytic conull strict (G, [p])-space
S, € S, such that B8 = B, a.e., B(sx) = x*B(8)x for (s, x) € S;*G, and
f(s)B(s) = 9(s) for seS,.

REMARK. If the action of G on S, is free, one can prove that
B, satisfies what is required of B, but the proof fails otherwise.

Proof. Choose B via Lemma Al.l, and choose G, and S} so
that B, f, g are strictly equivariant on Sf. Now f(s)g(s) is still
defined for almost all s, and it is not hard to see that the set of
s e S¥ for which the product is defined is invariant. On that set
f(8)B(s) = g(s) a.e., and since both functions are Borel and equiv-
ariant, the set S, where they agree is invariant.

The next three results are useful in establishing the existence
of strictly quasi-invariant decompositions of measures.

LEMmA Al.6. If (G, [y]) is a measured groupoid and p has a
strictly left quasi-invariant decomposition = gy“dﬁ(u), then there
18 also a strictly right quasi-invariant decomposition.
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Proof. Set n=(u)"'(MA)=p({x: x € A})). Then d,(\)=r,(¢)=F,
and A = \(#")'dfi(u) is a strietly right quasi-invariant decomposi-
tion. Set p* =d,(#). Then p" ~ i and N ~ g, so we can choose

strictly positive and finite Radon-Nikodym derivatives f = df/dp*
and g = dg/dn. Then

i =on = o dp = (@D dew) .
Take 1, = (@)(fod)(e)""

COROLLARY Al.7. Let H be a locally compact group with m a
probability measure equivalent to Haar measure. If v is a quasi-
invariant measure on an H-space S, them (S X H,[v x m]) has
strictly quasi-invariant decompositions on both sides.

LEMMA A1.8. Let (G, [¢t]) be o measured groupoid with strictly
quast-invariant decompositions. Lf (S, N, p) is a strict (G, [p])-space,
then N has a strictly quasi-invariant decomposition.

Proof. Let p= gyudﬂ(u) be a strictly quasi-invariant decomposi-
tion, and let A = Shudﬂ(u) be any decomposition of A relative to p.
We have assumed that the Borel set G, = {xeG: (N\w)® ~ Ny} 18
conull, so the Borel set U, = {ueG": 1, (G,) = 1} is conull in G©.
Set U,=[U)}, G,=G|U,. We shall construct a N ~X with a
strictly quasi-invariant decomposition. For u¢ U, let A, = 0. For
we U, let \,— gam,)xdm(x). For we U, \. ~ A, Also, ui—X\, is
Borel, so we can form \ = gx,ﬁdﬂ(u). Then N\ ~X\, so we can choose
a Radon-Nikodym derivative g = dr/d\ which is positive and finite

everywhere.
If ve U, there is an x such that d(x) = v and u = »(x) is in U,.
Then {y: (\,,)y ~ N} is p,-conull. Since (z,)x ~ f,,

(e = S(x:m)yxdm(y) ~ \Ovezdp@ = ..

If we also have we U, and zer™'(v) Nd*(w), then (\,)xz ~ A, by
the same argument. Hence (A))z ~\.,. If v = 2(2) and w =d(z) are
not in U, A, =0, A, =0, so (A\))z = \,.

Now we can replace ), by g\, for each w € G and get a strictly
quasi-invariant decomposition of .

REMARK. This generalizes Proposition 2.6 of C.C. Moore [1,
Chapter 2]. The next two lemmas show that similar G-spaces are
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isomorphie.

LEMMA Al.9. Let (S, \, p) be an analytic strict (G, [p])-space
and suppose B:S— G 1is Borel, sB(s) is defined for se€S, and
B(sx) = x7'B(s)x holds for all (s, x)eSxG. Define B¥(s) = 8B(s8) for
all seS. Then B* 18 a G-automorphism of (S, p) preserving [\].

Proof. To show that B* preserves [A], we show first that \
is quasi-invariant under another groupoid. Let G'={x € G: r(x)=d(z)}.
This is a G-space under the action z*y = y 'xzy which is defined
when d(x) = r(y). Thus d: G’ —> G is the projection we need. We
have assumed that 8: S — G’ is strictly equivariant. By Lemma 1.4,
B«(\) is quasi-invariant, so we can make G’+G a measured groupoid
with the measure B,(\)*¢. We can define s(8(s), z) = sz if se€S
and (B(s), ) € G'+G, because in that case p(s) = doB(s) = r(x). This
makes (S, 8) a strict B(S)xG-space, and S*(B(S)*G) is a groupoid,
naturally isomorphic with S*G. (This occurs whenever we have a
strictly equivariant map of G-spaces.)

The measures also agree: p,(\) = ff and Iy = Se,, X (PP dN(8),
while B, (\W)*xp = Ss, X 9 dg, (M)(x). The latter gives the decomposi-

tion of B,(\)xu relative to r in B(S)*xG. Hence

M (B r) = o0 X (enaprt#)G)

Since dog = p, (s, x) — (8, (B(s), ¥)) takes Axg to Mx(8,(\)*p).
Since \ is quasi-invariant, [Axg] is symmetric. Hence [Mx(8,(N)*)]
is symmetrie, so A is quasi-invariant for B(S)*G. Hence there is a

strictly quasi-invariant decomposition » = S)u(ﬁ, 2)dB,.(\)(x) relative

to 8.

We must see what this implies for the strictly quasi-invariant
decomposition A = qudﬁ(u) relative to p. For each wu,

ERELEXCSIE)
is concentrated on p~*(u), because »p = d-B. Also,

[Me, 2,0 = e, mas.0@ = .

(B, (\) = SB*(M)dﬁ(u), by Lemma 1.2 of [19], since p = dog.) Thus
for almost all «, x,,:Sx(,@, 2)dB,(\)(@). Also, if d@)=7(), (M8, x)y~
MB, y'zy), since this is a strictly quasi-invariant decomposition, so
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for each x we have BLI(M(B, x)) = (MB, 2))x ~ N (B, x). Now p-Bt=1p,
so Lemma 1.2 of [19] gives

si([ms mas. @) ) = (808, 2)ds, (@)
~ (M8, 9800w

for each u. Hence Bi(:\,) ~ )\, for almost all u, so BL(\) ~ A, again
by the same Lemma 1.2.
The next lemma is the same as Lemma 1.6.

LEMMA Al1.10. Let (G, [¢]) be a measurable groupoid and let
Sy, D and (S,, [N,]) be analytic (G, [p])-spaces. Suppose f:8,— S,
and g:S,— S, are equivariant maps with fog similar to the identity
on S, and gof similar to the identity on S,. Then (S, [NM]) and
(S,, Nal) are isomorphic.

Proof. Let G, be an i.c. and let S, be analytic, G,-invariant
and conull in S, and suppose f is equivariant on S, and gof is
strictly similar to the identity on S,. By looking at ¢g7%S.),
FHeMS)H NS, --- we see that S; may be chosen so that f(S;) &
97%S,). In the same way, there is an analytic, invariant conull
S, < S, such that fog is strictly similar to the identity on S, and
9(S) € f4(S). Set S,=8S,Nf%S,) and S;=g%S;)NS,. Then
f(S) €S, and g(S;) € S,, and (f1S;)o(g]S;) is strictly similar to 4
on S; while (g|Sy)°(f|S;) is strictly similar to ¢ on S;. Thus we
may assume the original similarities were strict. Then by Lemma
Al1.7 there are G-automorphisms v, of (S, [A]) and v, of (S,, [\.])
such that fog = v, and gof = v,. Then fogov;* is the identity on S,
and vilogof is the identity on S,. Thus f is an isomorphism and
f7h=govst = 1itey.

We take & and G9x% as in §1. The next lemma is the
same as Lemma 1.7 and gives the existence of a “universal G-space”.

LEMMA Al1l. GO« % is an analytic G-space, provided the
given decomposition of p relative to r is quasi-invariant.

Proof. Everything is simple except possibly the fact that the
action is Borel. To prove that, we make use of another way of
seeing what the Borel structure is. If f is a bounded Borel func-
tion, defined at least on 7 ‘(u), then let M, denote the bounded
operator on 2 (u) = L*(¢*(r, w)) given by multiplication by f. Then
[fl. — M, is one-one from .% (u) onto the operators of multiplica-
tion by a [0, 1]-valued function on S~ (u). Let GVx ¥ (97)= U{{u}x
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L (w)): w e G} have the smallest Borel structure for which the
projection onto G is Borel, along with all the functions 4, (g, k
bounded Borel) where «,,(u, A) = (A[gl.: [k].), the inner product
being computed in 2#°(u). By reducing to the case of constant 57
[20, §1], we can see that G"*<°(2#°) has an analytic or standard
Borel structure if G+35# does, i.e., if G does. Now GU+F is
isomorphic to a Borel subset of G©*.<2(5#°) because a4, (u, My) =
vro(, [flur). Thus if the action of G on G+ (5#) is Borel and
the map (u, [fl.) — (u, M;) is equivariant we will be through with
the proof. The action of G on G“+2% is as follows: For each z
there is a positive function p(z, -) on »7(d(x)) such that (U,9)(y) =
o(x, y)g(xy) defines a unitary operator from 2#°(d(x)) onto 2 (r(x)).
This gives a right action on GV+5#. Now (r(z), A)x=(d(x), U, AU
defines an action of G on G*+.<°(27), and if we reduce to the case
where dim S#7°(u) is constant and pass to a bundle of the form
G® x 2 [20, §1], then it is clear that the action of G on G® x
(. 9") is Borel sinece x> U, is Borel [20, Proposition 3.4].

A2. Ergodic decompositions of measurable groupoids. The
numbers in this section agree with these of §2. Another approach
to this material is found in Theorem 6.1 of [7].

LEmMmA 2.1. The measurable groupoid (G, C) 1is ergodic iff
97N 57 18 one-dimensional.

Proof. If (G, C) is not ergodic, let A be a saturated Borel set
in G for which A and B = G"\A both have positive measure [19,
Corollary 6.4]. Then @,or = @,od and @zor = @zod, and these are
orthogonal elements of 57 N 52 but neither is zero.

Now if 22 N 57, has dimension greater than 1, there is a non-
zero element ge 57 N 57 which is orthogonal to the constant
functions. Then there are Borel functions f, f, in L%X) such that
fior = feod = g a.e. Thus for almost every ue G, fior(x) = fiod(x)
for n,almost all z, i.e., fior(x) = f,(u) for M.-almost all . Hence,
for X-almost every v this holds for »,(\,)-almost every . Thus
f. is almost always constant a.e. relative to [r.(\,)] (which is the
same as [7.(\)] if wev]) and for ».(n,)-almost every u that con-
stant is f,(u). This proves that f, = f, a.e., so fiod = f,od a.e. and
henee fior = fied a.e. But f, is not constant a.e. sinece fior is not,
so (G, C) is not ergodic.

DErFINITION A2.2. Let (G, [:»]) be a measurable groupoid. A
striet ergodic decomposition of (G, [\]) is a mapping ¢ of G into
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an analytic Borel space T such that if v = ¢,(X) and X:SX(q, t)dy(t)
is a decomposition of \ relative to ¢, then for wv-almost all ¢, ¢ '(t)
is saturated and (Glq7'(¢t), [\]) is an ergodic groupoid, where \' =
qud(i(q, )(u). An ergodic decomposition of (G, [\]) is a Borel
mapping q of G into an analytic space T such that for some conull
Borel set U Z G, ¢|U is a strict ergodic decomposition of (G|U,

D).

LEMMA A2.3. Let (G, [¢]) be a measured groupoid, and let a
Borel function q from GO to an analytic space T be an ergodic
decomposition. If a Borel function g from G to an analytic space
Z 1s constant on equivalence classes, then there is a Borel h: T->Z
such that hoq = g a.e. Such an h is determined a.e. relative to

H= q*(X).

Proof. Suppose ¢ is an ergodic decomposition and let X =
Sizd‘u(t) be a decomposition of X relative to ¢. Take Z < |0, 1].

Because ¢ is an ergodic decomposition, for almost all ¢ we have ¢
constant a.e. relative to X,. Therefore we can define h;: T -~ [0, 1]

by h,(t) = Sgdit and get a Borel function with h,oq = ¢ a.e. Then

h, takes values in Z a.e., so the desired h exists. The uniqueness
is easy.

THEOREM A2.4. (Uniqueness of ergodic decompositions). Let
q: G — T, and q,: G -— T, be ergodic decompositions of the meas-
ured groupoid (G, [N]). Then there are a conull Borel set U = G
and a Borel isomorphism f:q(U)— q(U) such that q, = foq, on U.
Also, q, and q, have the same level sets in U. If q, and q, are
strict decompositions, U may be taken to be saturated.

Proof. Let p, = q,,(X) and g, = ¢.,(X). By Lemma A2.2 there
exist Borel functions f,: T, — T, and f,: T,— T, such that ¢, = fi°q,
a.e. and ¢, = f,;°q, a.e. By the uniqueness part of Lemma A2.3, the
Borel set T, = {te T.: foofi(t) =t} is g-conull. Now f, is one-one
from 7, onto an analytic set T, < T, and f,| T, is the inverse of
filT,. We have f,.(¢) = tt, so T, is pt.-conull.

Let V be a conull Borel set such that ¢,|V and ¢,| V are strict
ergodic decompositions and ¢, = ficq, on V. Let T, < T, be a
conull set for which the conditions in Definition 2.2 are satisfied
for q,. Define U=V N q¢;(T,). It is easy to verify that f=filq.(U)
does what is needed.

If q, and ¢, are strict decompositions, we can take V to be



SUBOBJECTS OF VIRTUAL GROUPS 443

saturated because {u: q,(u) = foq,(w)} contains a conull saturated set.
Also, the set ¢7'(T,) is saturated, so U is then saturated.

THEOREM A2.5. If (G, [\]) is a measured groupoid, then (G, [\])
has an ergodic decomposition. If  has a (right or left) quasi-invari-
ant decomposition, then (G, [\]) has a strict ergodic decomposition.

Proof. Since (G, [M]) has an i.c. on which \ has a quasi-invari-
ant decomposition, it suffices to prove the second part of the theorem.
To begin, let M = M(X) be the measure algebra of Borel sets in
G modulo X-null sets and let M, be the sub o-algebra in M of
equivalence classes of saturated Borel sets. Let ¢:Bor (G“)— M
be the quotient homomorphism and let .94 be a countable algebra
of saturated Borel sets for which {g(4): Ae.%} is dense in M,.
Then .4 determines an analytic quotient space T of G©: if p is
the quotient map, pu) = p(v) iff {Ae . ucd}l ={4Aec. . ve Al
Let v = »,(X) and decompose X:SX,dv(t), then define A= gxudxt(u)
for teT and set G, =d(p '(t)) = 'r“l(p“‘(%)) = M p7'(t)) = G|p~'(¥).
It seems plausible that this should give an ergodic decomposition of
(G, C) [1, pages 112-117]. By construction, each p™'(f) is saturated,
so it suffices to show that for v-almost every ¢ in T, (G, [\f]) is a
virtual group.

Each G, is a Borel subset of G and hence is an analytic Borel
groupoid. TFor almost every t the measure X, is concentrated on
pt). For almost every # in G® the measure \, is a probability
measure concentrated on d (u). Combining these two facts, we see
that for almost every te T the measure )\ is concentrated on G,
and d,(A) = X,. Thus we may regard )\’ as a measure on G, with
a right quasi-invariant decomposition, so that [A’] is right invariant.
Since A is symmetric, it follows that A\f is symmetric for almost
every t. Thus almost every (G,, [\']) is a measurable groupoid.

- Now we must show that almost every (G, [\]) is ergodic. Since
T is analytic, there is a conull Borel set 7, which is standard in
the relative Borel structure, and T, can be chosen such that te T,
implies that (G,, [\']) is a measurable groupoid, and all A\, X, are
probability measures, with X, concentrated on p7(t). If (G, [\]) is
ergodic for almost every te T, then it is for almost every te T, so
there is no loss of generality in replacing G by G|p ¥(T,) and T by
T,, i.e., we may suppose T is standard and (G,, [\*]) is a measurable
groupoid for every te€T. We seek to apply Lemma A2.1.

Now define Hilbert bundles over T as follows: SZ7(t) = L*(\Y),
SE) = {for: fe L*(\)), 54(1) = {fod: fe LX(\)}, 2£7'(t) = L*(X,). For
a bounded Borel function g on G, let gd(u)zggdxu and g,(u)=Sng



444 ARLAN RAMSAY

where V(E)=1({x: xc E}) for ueG®. Then g, and g, are bounded
and Borel in G®. The Borel structure on T«># is the smallest for
which the projection onto 7' is Borel along with all functions «,

for bounded Borel g, where (¢, /) = S f@)g(x)d\'(x). The same pro-
cedure is used for Tx5#'. Now if fis in L*X,) and g is bounded
and Borel on G, g For(x)g(x)drt(x) = S Ff)g,(w)dX,(w). Hence (¢, f)—

(&, for) is Borel from T+57" to TxS5#. It is one-one since it is an
isometry on each S#7'(t), so the image is a Borel set. This image
is T+«5#. Similarly, Tx5#, is a Borel subset of T+x5#. Hence
T2 N Tx577, = T=(27 N 575) is a Borel set in Tx57.

Now let C be the set of points (¢, f) in T*(5# N 5%;) such that
f # 0 and the vector f in SZ(t) N 5#(t) is orthogonal to the vector
represented by the constant funetion which is everywhere 1. This
is {(¢, f): f == 0 and (¢, f) = 0}, so it is a Borel set. Let D be the
projection of C into T. By the von Neumann selection lemma there
is a Borel cross-section f of T*(5# N 2#;) such that f(t) =0 for
almost all t¢ D and f(t)eC for almost all ¢€ D. Taking real and
imaginary parts is a Borel operation, and the real and imaginary
parts of each f(f) are orthogonal to 1, so we may suppose each f(¢)
is real and orthogonal to 1, and f(£) == 0 for almost all te D.

Now L*) is isometric to the direct integral of the S#°(t)’s, so
there is a Borel function g on G in L*(\) such that f(¢) is the class
of g in L*(\%) for almost all ¢. There are Borel functions f, and f,
on G such that g = fior = f,od a.e., because f(t) e 92(t) N 2£4(1)
always, i.e., f is a cross-section of both images of T*5# and hence
is an image of two cross-sections.

As in Lemma A2.1, fior = fiod a.e.; by passing to an equivalent
function, we may suppose the sets A, = {u € G: fi(u) >0} and A, =
{u e GV: fi(u) < 0} are saturated. Now f; is orthogonal to 1 relative
to X, for v-almost all ¢ so {t: X, (4,) > 0} and {t: X,(4,) > 0} differ by
a null set. Also, these sets differ from D by a null set, since f; is
nontrivial relative to X, essentially for £ in D. Since A, is saturated,
N(A4) is 0 or 1 a.e.; X,(4,) =0 or 1 a.e. also, and {t: X,(4) =1}
differs from {t: X,(4;) =1} by a null set. Thus both sets are null,
so f, is null, and therefore D is null. This proves the theorem.

DEFINITION A2.6. Let (G, [¢]) be a measurable groupoid and let
(S, M) be an analytic Borel G-space with q.i. measure. The measure
% is ergodic iff (S*G, [Mxg]) is an ergodic groupoid. An ergodic
decomposition of (S, ) relative to G is a Borel mapping ¢ of S into

an analytic Borel space T such that if » = Sxtdq*()»)(t) is a decom-
position of N relative to ¢ then for g.(\)-almost all ¢ in T the set
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g¢7(t) is invariant and the measure A, is concentrated on ¢7'(t) and
is q.i. and ergodie.

COROLLARY A2.7. If (S, \) is an analytic G-space with a quasi-
invariant measure for a measurable groupoid (G, C) and C has an
element with a left quasi-invariant decomposition them S has a
decomposition into ergodic parts, which is essentially unique.

LEeMMA A2.8. The converse of Lemma A2.3 is true.

Proof. Take g to be some ergodic decomposition. Then modulo
null sets, {97'(B): B is Borel in Z} = {g”'(h™(B)): B is Borel in Z}<
{g7(B): B is Borel in T}. Thus the latter set is dense in the
saturated Borel sets, and by the proof of Theorem A2.5 we see that
g is an ergodic decomposition.

A3, Commuting groupoid actions and closing of ranges of
homomorphisms. The numbers in this section agree with those of

§3.

DErFINITION A8.1. If S is an F-space and a G-space, we say
the actions commute iff for s€S,£eF and 2ze(G, if sz and s& are
defined then so are (sx)é and (s&)x and they are equal.

THEOREM A3.2. Let (F,[y]) and (G, [v]) be measured groupoids
and let (S,N, ») and (S, N, Q) be strict (F,[p])- and (G, [v])-spaces
respectively. Suppose these actions commute. Then there is a
strictly G-equivariant function f:S— GOxF which is an ergodic
decomposition of SxF. If S is an analytic (G, [v])-space and
[ S-S is a (G, [v])-equivariant ergodic decomposition of SF,
then (GY+«F, f.(\) and (S, fi(\) are isomorphic (G, [v])-spaces.

Proof. First we describe a general method for constructing
strictly G-equivariant functions from S to G®*% and then show
how to choose the ingredients to achieve the desired goal. Let
I=10,1] and let g:S— I be any Borel function. For seS,ze@
define h(s)(z) = g(sx) if »(s) = r(z) and 0 otherwise, and let f(s) be
the element of . (p(s)) which is the equivalence class of h(s).
From the fact that (sx)y = s(xy) when either side exists, it follows
that g((sx)y) = g(s(xy)) if (sx)y exists, and hence that f(sx) = f(s)x
if (s, z)eS*G@. If k is a bounded Borel function on G, the function
taking (s, 2) €S X G to h(s)(x)k(x) is Borel, so the function taking

seS to Sh(s)(m)k(x)dv('r, p(s))(«) is Borel. Thus f is Borel.
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Now we want to find a g such that the resulting f will be an
ergodic decomposition. Let F, be an i.c. of F on which g has a
q.i. decomposition and let S, = »p {(F,®). Then S, is conull and is a
strict Fiy-space. If s S, 2eG and q(s) = »(z), while £e F and p(s)=
(&), then p(sx) = r(¢) = p(s), because the actions commute. Hence
S, is G invariant and is a strict G|{q(S,)-space. Let G, = G|q(S,).

Sets of the form ¢*(4) for AeG™ are also F-invariant so in
constructing a countable algebra .27 of Finvariant Borel sets in
S, to produce a strict ergodic decomposition of SF, as in the
proof of Theorem A2.4, we may assume .7 2{p *(4): A €.%7}, where
.97 1s an countable generating algebra of Borel sets in G". Suppose
7w:S,— T is a strict ergodic decomposition of S,+F, so obtained.
Then =(s,) = n(s,) implies p(s,) = v(s,), so there is a Borel function
q: T— G® such that gor = p. Then ¢ is automatically onto, and if
we let M =, (), ¢, (\) ~r.(v) =7,

Now let T be A-conull and Borel in T with the property that
((Sp=F) |z*(®), [(v<0)']) is an ergodic groupoid for ¢ € T’ (see the proof
of Theorem A2.4). Notice that (SyxFy)|r(t) and (SyxGo)»F (2 (t) x {x})
are isomorphic if ¢()=r(x), and 7 x4 takes S;*G onto TxG={{, z) ¢
T>G:qt)=r(x)}. Let An= Sktdk’(t) be a decomposition of ) relative to
7. If \, is concentrated on 77(¢) then v** =p*® for A,-almost all s so
Ses X vPdN(s) = A, X V1P, For each such ¢, 7.(\,) =¢, and thus

(T X 1), (N X V1) = ¢, x ., By Lemma 1.2 of [13], (x X 1), ()=
M=y, Then we see that

Jon x eadovane, o = {[on x e x vy, Have
= SM X pIOAN () = Axp .

Since \, X ¢, is concentrated on @ *(¢) x {x} if A, is concentrated on
T7Yt), we see that mw x 7 is an ergodic decomposition of (SxG)*F.
Now z(s, x) = (sz, ') defines a measure class preserving Borel
automorphism of SxG which commutes with the action of F, so if
A is F-invariant so is 7(4). If < is a countable generating
algebra of Borel sets in T+G, then &7 = {(x X 9)"Y(B): Be <%} is
a countable algebra of Borel sets in SxG. Since 7 X ¢ gives an
ergodic decomposition, .o+ must be dense in the F-invariant sets
in SxG. Let .©° be the smallest algebra containing .o+ and
invariant under z. Then .%7° is countable and dense in the F-
invariant sets so it gives rise to an ergodic decomposition 7’ of
(S«G)xF. Now 7w’ and m X ¢ have the same level sets on some
conull Borel set Z < S*@, and #’ and ©'or have the same level sets
by the r-invariance of .%7°. Thus © X 7 and (x X 7)ot have the
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same level sets on Z. Let S, be a conull Borel set in S, such that
Z is g, X v*“-conull for s€S,. Define g:S— I by letting j: T — 1
be an imbedding and taking g to be some extension of jorx.

We have f(s) = f(s) iff p(s) = p(s;) and g(sx) = g(s,x) for »**-
almost all . For s, s, eS8, if p(s) = p(s,) = u, then the set X =
{x e r(u): (8, x) and (s, x)e Z} is v*-conull. Thus for s,s,€S,
f(s)) = f(s,) implies {xec X: g(s®) = g(s;x)} is v*conull. Since ze X
implies (s, ) and (s, 2) € Z, for x ¢ X we have (g(s,x), ™) = (9(s.2),
x7h) iff (g(s), 2)=(9(sy), 2), s0 f(s)=,(s;) and s, s,€ S, together imply
g(s,) = g(s,). Conversely, let s, s,€ S, with g(s,)=g(s,). Then p(s,)=
p(s,), which we call 4, and take X as before. Then g(s;x) = g(s.x)
for xeX. Thus f(s) = f(s,). Hence f and ¢ have the same level
sets on S,.

There is a conull set S, such that if seS, £eF and s& is
defined and in S,, then g(s) = ¢g(s&). We may assume that S, is
chosen so that s € S, implies a,(e, X v**) is concentrated on S,. Then
suppose s€S, € F and séeS,. In that case, {x cr ' (p(s)):sx and
(s&)x = (sx)é are in S;} is v*“-conull, so Z(s) = h(s§) a.e., i.e., f(s) =
f(s&). Hence f is an ergodic decomposition of S*F'.

If 5’ is taken as in the statement of the theorem, then by
Lemma A2.2 there are Borel functions h: G+ — S’ and B S'—
GVx% with hof = f' a.e. and h'of’ = f a.e. By Lemma 1.5, h and
h" may be taken to be equivariant. By the uniqueness in Lemma
2.8, hoh' and h'oh are the identities on conull sets.

In the process of constructing the closure of the range of a
homomorphism, it will be necessary to construct some quasi-invari-
ant measures. The next lemma gives one of the basic ingredients.
First some preparation is needed.

Let (G, [¥]) be a measured groupoid and let E be the equivalence
relation on G induced by G, i.e., E = (r, d)}(G@) € G® x G®. Let
V' = (7, d), ().

DErFINITION A3.3. We shall say that v is (7, d)-quasi-invariant
if it has decompositions v = \v,dP(u) and v = va,udv’(v, ) such that

(a) for (v, u)e E, v,, is concentrated on »'(v) N d7(u),

(o) for (v,w)eE, (v,,) "~ v,

(¢) if 7(x) ~u, then v, ,u @ ~ Yyum and T-Yimu ~ Yrw and

@ for ueGO, v, = va,ud(fr*(vu))(v).

As we explained just after Definition 3.8, G always has an i.c.
on which the restricted measure is (7, d)-quasi-invariant.

LeEMMA A3.4. Let (G, [V]) be a measured groupoid and suppose
vy 18 (r, d)-quasi-invariant. Let N\ be a finite measure on G such
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that M(A) =0 iff D(A) =0 for Borel analytic sets A < G®. Let
Vv, = Svudx(u), and let yeG act on x€G by xxy = y~'x provided
r(x) = r(y). Then v, is quasi-invariant.

Proof. If A< G is Borel, then U = {u eG": r,(v,)(4) = 0} is
a saturated Borel set. Now 7,(v,)(4) = S'r*(vu)(A)dk(u) which is 0 iff
U is n-conull iff U is S-conull iff $(A) = Sr*(uu)(A)dD(u) is 0. Hence
r.(v) ~ ¥ and we can decompose v, = Su}‘dﬂ(u) over U relative to 7.

The proof will be complete if v;®xy=gy"WI¥ ~ pi» whenever y€G.
To this end, we seek another more convenient way to write

the decomposition. First of all, define \, = Sd*(v;‘)d(r*(»v))(u) for
ve€G®. Then v ~ w implies \, ~ A, because r,(,) ~ 7r.(v.). Also

s = [{d.onde.eowdse
= [d.ends@

- d*<gv1‘dﬁ(u))>
= N\.

Now define y? = Svu,udhv(u). Then for any we G,

e, e~ |pdrmio. e

||pendir. ) @ar.

v, AN\, () .

fl

~ g gp,,,udw*@u)xv)dm(u)
S

Hence
Sv;dﬁ(v) ~ Sguudxw(u)dﬁ(w)

- Svudh(u)

Y, .

Now v; is concentrated on 77'(v), so this is a decomposition of a
measure equivalent to v, and by essential uniqueness we have yi~y?
a.e. relative to ¥, so we may as well assume ! ~ ! always. Then
for y € G we have
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yuf ~y- Svdm,udhdm(u)
= S?l “Vain),ulNa (%)

~ Svr(u),ud)"r(y)(u)

~ V{(V) .

THEOREM A3.5. Let (F,[y]) be a measured groupoid, let (G, {v])
be o measured groupoid for which v is (r, d)-quasi-invariant and
let p: F— G be a homomorphism. Then there are i.c.’s F, and G,
of F and G, a strict (G, [v])-space (S,, \) and a strict homomor-
phism @': Fy— S,xG, such that @|F, = jo@', where j: S;xG,— G, is
the inclusion (coordinate projection).

DEFINITION A3.6. We call (S,«G, [M*v]) the closure of the range
of ¢, and will denote j by j, when necessary to identify its connec-
tion with o.

Proof of theorem. First replace F by an i.c. so that ¢ is
strict and let T = G+F® = {(x, w): d(x) = $#(u)}. By passing to an
i.c. if necessary, we may have G© = [@(F*)]. Then let G, F act
on T by (z,wy = (y 'z, %) if @) =7r(y) and (z, u)é = (@p(8), d&)
if w =2(E). It is easy to see that these actions commute and that
p(x, u) = r(x) defines the projection of T into G involved in making
T a G-space, while p'(x, u) = w defines the one for F.

Next we must construct a suitable measure on 7. First form
Y, = Svud@*(ﬁ))(u). Then v, is carried on X = d"Y(@(F?)) and X is
the projection of T into G. By Lemma A3.4, v, is quasi-invariant
under the action of G on X given by letting ye€G act on zxe X if
r(x) = r(y) and then x*y = y~*x. Also, the coordinate projection of
T onto X partitions the action of G on T over X. The measure
we need is v+t = (6 X Auo)di(@) = {03 x e)dw).

To see that y,xff is G-quasi-invariant, use the first formula for
it. Clearly the decomposition of v,*ff given above is the relevant
one for the partition of T over X and (&, X fyw)¥ = &% X oyt
so v;xfI is quasi-invariant by Theorem 2.9 of [19].

To see that yxf is F-quasi-invariant, use the second formula.
The coordinate projection of G+F‘“ onto F' partitions the action.
If (&) =u and d(¢) = v, for £e F, then (x, u) — (xP8), v) = (x, u)é
maps d(@(w)) X {u} one-one onto d(@(v)) X {v} and carries v, Xe,
to (Vpw®(§)) X €, which is equivalent to v, X ¢, because d(@(8)) =
@(v) and v,,& ~ Y, always. Again by Theorem 2.9 of [19], vx#
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is F-quasi-invariant.

By Theorem A3.2 there are an i.c. G, of G, a y*fi-conull G-
invariant set 7, < T and a Borel function f: 7 — G+« such that
J is strictly G-equivariant and an ergodic decomposition of (T+F)
and f(t&) = f(t) whenever te T, £c F and t& is defined. Then for
z,y€@G, and u € F'® with »(x)=7(y) and (z, u) € T, we have (y™z, u) €
T,. If d(z) =d(x) and zeG,, we can take y = xz™* to show that
(2, u)e T,. Let V, be the projection of T, onto F. We have
proved that T, =d*(®(V))*V,. Now T, is conull so V, is fi-conull
and hence @(V)) is @, (f)-conull. Let U, be a @,(f)-conull Borel set
contained in @(V)). Then let V, =9 Y(U,), F,=F|V, G, = G|[U,),
and T, = d%(U)*V,. Then T, is Ginvariant and conull and f: T,—
GPxF “C” GUxF is equivariant. Also (TxF)|T,= TxF,. If
we set S, = GP*F and N = (f|Tp)(,xff), then ) is quasi-invariant
since My is the image of (v, *f)=*p.

The next consideration is the strict homomorphism ¢': (F,, [¢])—
(Se*Gy, [Mv]). We want to define ¢'(8) = (f(@(r(8)), 7)), (&) as in
Theorem 7.8 of [18]. This gives jo@" = @ on F,, and we must verify
several facts. First let ¢: S, — G{” be defined by gof = p; of course
g is also the natural projection of G®*# onto G®. Then for £¢ F,,
a(f (@), 7(8)) = p(P(r(8)), (&) = P(r(8)) = r(P(&)) so (f(@(r(8), (&),
P(8)) € 8,+G, i.e., '(F)) S S,+G. Next, f(o(r©), r€)p&) =f(pr?),
r@)P©E) = f(@@7, 7)) = f((PA©), dE)E™) = f(@(d(8), d(8). From
this it follows easily that ¢’ is algebraically a homomorphism.
Clearly ¢’ is Borel. To prove ¢’ has the proper measure theoretic
behavior, let E be saturated in S,. Then f™(%) is a Borel set and
is invariant under both F and G, so its projection, V, into FJ® is
analytic and f(E)=d*@(V))*V. Since almost every v, is a
probability measure, v «fi(f*(&)) = Z(V). Thus E is null iff V is.
Since V = (¢")™Y(¥), we have the desired result.

We have constructed the closure of the range of a homomor-
phism of virtual groups if it takes values in a groupoid with an
(r, d)-quasi-invariant measure. For the general case, we observe
that (G, [v]) always has an i.ec. G, on which v is (, d) quasi-invariant,
and @ is similar to a homomorphism ¢, taking values in G,. We
need to see that S, does not really depend on the choice of @, as
the following lemma shows.

LEMMA A3.7. Let (G, [v]) be a measured groupoid in which v
is (r, d)-quasi-invariant and let @, @, be similar homomorphisms
of a measurable groupoid (F,[u¢]) into (G, [v]). Let T, = T(p,) =

{(x, ) e GX F: d(x) =@(w)} and take the measure v1=§vud(¢1*(ﬂ))(u)
on &P (F") and vxff on T,. Similarly form T,= T(p,),v, and
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vorfl. Then there are i.c.’s F, and G, of F and G and F, and G, -
invariant conull analytic sets T*S T, and TS T, which are strictly
isomorphic as F, and Grspaces under o measureclass-preserving.
Sfunction f. Hence (S,,N) and (S, \,) have strictly isomorphic
analytic conull Goinvariant subspaces.

Proof. Suppose 6: F© — G is Borel and 0-7r(E&)@,(&) = @,(£)0-d(&)
for almost every £€ F. Then there is an i.c. F, of such that ¢, @,
and the similarity are all strict on F,. Set G, = G|(e.(F™)] N
[2.(F)]) and set F, = F|(#/(G") N $'G"). Then [p(F)]=
[P(FEM)] = GO, and Ty = d™ Y@ (F)*«F is conull in T, while T3 =
A HPF")+F, is conull in T,.

Now define f(x, u) = (@0(u), w) for (x,u)eT* and g(x, u) =
(x0(u)~!, w) for (x, u)e T, as we can since 7ro8 = @, and dof = P,.
These are mutual inverses, so each is one-one and onto; each is
clearly Borel. The similarity equation forces f to be F-equivariant
and f is clearly G-equivariant. Now f,(Vy,w X &) = (VW) X e, ~
Yo,ur X & for each weF®, so f.(v*fI) ~ v,*fl, as desired. Since
T* and Ty are isomorphic, we can carry the quotient mapping of
T onto S, over to Ty via f and get a quotient mapping of T3*
onto S,, which is an ergodic decomposition of T3*+F,. Thus S, may
be used for S,,, ending the proof.

A4. Functorial properties of the range closure construction.
The numbers in this section agree with those in §4.

LEMMA A4.1. Suppose F,=((F}, [MD, ¢) and F,= ((F, [N, 9)
are in A (@), P, is strict, 4 18 a homomorphism of F| to F, and
9: F® — G is a Borel function for which 0or(E)Pyoin(E) = P(E)Fod(E)
for almost all & Then there is a G-equivariant mormalized h =
M(y, 0): S,, — S, obtained as the essential quotient of the fumction
f? from T, = G+F® to T, = G+xF defined by f'(x, u)=(x0(u), y(w)).

Proof, There is no loss of generality in supposing + and the
similarity 6 of @04 with @, are strict. Then 7.0 = ¢, implies that
x0(u) is defined when (x, u)e T,, and dof = (P,0qp)~ implies that
fi(x, u)e T,. Furthermore, if (&) =u then fo((z, u)¢) = fo(xp,(&),
d(8) = (@Py(&)0-d(&), Yod(8)) = (@Oor@)Pyonp(8), vod(8) = fix, wy(£),
while r(y) = r(z) implies f’((x, w)y) = f’«, u)y. Now suppose G, is
an i.c. of G and ¢;: T,— G+ and g, T,— GO+ are ergodic
decompositions of the actions of F, and F, which are strictly G-
equivariant on conull analytic Gy-invariant sets X, & T, and X, C T,
and have F, or F, invariant level sets on X, and X,. Then g,of’ is
constant on all F,-orbits in X, so by Lemma A2.3 there is a Borel
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function » from G+ to GV % such that hog, = g,o0f’ a.e. Since
g5, 9, f¢ are equivariant, by Lemma Al.2 we may suppose h is
algebraically strictly equivariant on a conull analytic G,invariant
set for some i.c. G, £ G,. We may as well suppose G, = G,.

Now to show that 2~* has the proper behavior on saturated
sets, let A be analytic and G -invariant in S,. Then g;'(4) is
analytic in T, and B = ¢7'(4) N X, is Gyinvariant and also F,-invari-
ant relative to X,. Now X, is invariant under some i.c. of F, so
by passing to another i.c. we may suppose X, is invariant. Then
B is Fyinvariant. Now use the fact that g has an (7, d)-quasi-

invariant decomposition on G,, and g = Syudﬂ(u). In that case, for

v = () with e F,, (o, X )6 ~ tpyaen X €an- Hence the set V=
{ve Fy: (ty,y X &,)(B) > 0} is invariant. If A is a null set, g;'(4)
is null, so B is null, and hence V is null. Because + is a homo-
morphism, 4 %(V) is null. For u e F\”, the u-section of (f%)"B) is
By,0(u)™t (a translate of the ~r(u)-section of B) which is null unless
u €4 V) because the decomposition is quasi-invariant. Thus
(fHYB) is null. Now g, (h™*(4)) differs from (f)(g;'(4)) by a
null set and (f%) T, — X,) is null, by the argument just used, so
h7H(A) is null.,

On the other hand, if A4 has positive measure, so does B, so V
has positive measure. It follows that the set + (V) has positive
measure. The u-section of (f?)~*(B) will have positive measure for
ueg V), so (f)"(B) has positive measure, and ~7*(4) has positive
measure.

LeEMMA A4.2. Under the hypotheses of Lemma A4.1, if 6 1is
another similarity of @,oqp with @, and P, is strict, then M(y, 0) is
similar to M(sp, 6).

Proof. Let F, be an i.c. of F, on which both similarities are
strict. Then T, = d Y@ (F)=F,? is F, invariant in T, = T(p,) and
is also G, = G|[p(Fy")] invariant. Hence the quotient of T, in S,
is G,-invariant and conull, so we may suppose the similarities were
strict on F,. Then define a(x, w) = x8w)d(w) ™ z™*. It is easily seen
that the product does exist and that « is Borel from T, to G. Also
[z, wya(x, w) is always defined and equal to f?(x, u), while a((x, u)&)=
a(x, w) for £e F, if (x, )¢ is defined, and a((x, w)y) = ¥y 'alx, wyy if
r(y) = r(x). Using Lemma A2.3 we see that there is a Borel
B:S,, — G such that Bog, = a a.e. Lemma Al.2 says that there is
a choice of B for which B(sy) = y'B(sy)y as long as s is in a
certain conull analytic saturated set, i.e., G-invariant for some i.c.
G,. It is not hard to see that M(y., 6)(s)B(s) = M(y, 6)(s) for almost
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all seS,, so [M(y, 0)] = [M(y, d)].
DEFINITION A4.3. Call this class of maps [M(y)].

LEMMA Ad4. If p s (7, d)-quasi-invariant on G and +: . F—
F, 18 @ homomorphism, where 7, = ((F,, [\.], ) with @, strict, and
wot (Fyy D) — (Fyy [N]) @8 @ homomorphism with [y,] = [yy] then
Vot F— F, 18 a homomorphism and [M(y)] = [M(y,)].

Proof. The first assertion follows immediately from the defini-
tion of homomorphism. We may suppose, as before, that 6, is a
strict similarity of @,oqr, with +, and that 6 is a strict similarity
of +, with . If 6,(u) = 0,(u)p,c0(u), then for £eF, we have
001(E)Pyoafra(§) = Pu(E)0,0d(E). Let flr(x, w) = (x0,(u), ¥, (w), fx(x, w)=
(x0:(u), ¥o(w)) for (x, w) € T,. Then f'(z, w)6(u) = (20,(u)P.00(w), doO(w)) =
v2(x, u) because 7°0 = 4, and dof = 4,. Hence g,0fr = g,of> which
implies that My, 6))o9, = M(yr, 6,)og;, a.e. and hence that [M(y)]=
(M, 0)] = [M(y, 65)] = [M(y)]

For a definition of M[+], see §4.

LEMMA A4.5. If o F [ — F, and v F,— F, are homomor-
phism, for F, T Fs in A(G), then M(["[’z]"["/fl]) = M[“/"?]"M[“/fs]

Proof. We may assume that p is (7, d)-quasi-invariant. By
taking i.c.’s in the proper order we may suppose (P, 9., (P, )
and (v, 4 are composable and that we have strict similarities 6,
of @yoqr, with @, and 6, of @yoqp, with @,. Then O(u) = 6,(u)f,0 9 (u)
defines a strict similarity of @,oq with @, where ¢ = aoqp;. Then
fl = floflr. Now X = {te€G+F": My, 0,)°9,(t) = gsoff2(t)} contains
a conull invariant Borel set since both functions are equivariant
and Borel and they agree a.e. Hence (f)"}(X) has the same property,
so we see that M(y,, 6,)o My, 6)0g, = My, 0)0g,0ft = g0 f° a.e.
Hence M(yp, 0,)o My, 6,) = M{y, §) a.e. which gives the desired
result.
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