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Suppose a locally compact group G (always second
countable) has a Borel action on an analytic Borel space
S so that each element of G transforms a given measure
μ into an equivalent measure. If So is the coset space for
a closed subgroup H, then there is a natural action of G
on So which comes from translations of G on itself and
there is such a quasi-invariant measure. Thus it is reason-
able to think of such a space (S,μ), for some purposes, as
a generalized sort of subgroup, or a virtual subgroup of G.
In fact, the set SxG can be given algebraic and measure-
theoretic structure so that many of the procedures used
with subgroups can be carried over to this general setting.
There is a general notion of virtual group, not necessarily
"contained in" a group, which can be derived from this,
and it turns out to include equivalence relations with suit-
able measures as a special case. These virtual groups
appear in studying group representations, operator algebras,
foliations, etc. Since there is a general setting for virtual
groups, it seems desirable to see whether the intuitive idea
of an action of a group as representing a subobject fits
into this framework in a compatible way. The purpose
of this paper is to show that "images" under homo-
morphisms, "kernels", etc. do fit together properly.

In this introduction we seek to summarize some of the motiva-
tion for the theory and give further explanation of the reasons for
developing the results presented in the paper. Let G be a locally
compact group, and let N be a closed normal subgroup. Let N
(the dual of N) denote the space of equivalence classes of irreducible
representations of JV, with the Mackey Borel structure [3]. Suppose
N is analytic, i.e., that JV is a type I group [3]. This is the
context of the paper of G.W. Mackey [12], in which he studied
the problem of finding G in such a case. There is a natural action
of G on representations of N: If L is a representation and xeG,
let Lx(y) = (xyx~ι) for yeN. This gives a (right) Borel action of
G on JV. If U is an irreducible representation of G, U\N is a
direct integral relative to an ergodic quasi-invariant measure on N.
Mackey confined his attention to the case in which for every ergodic
quasi-invariant measure λ there is a conull orbit (one whose comple-
ment has measure 0). In this case we say the action is essentially
transitive relative to λ. Mackey takes an arbitrary point in that
orbit and his constructions are done with the closed subgroup of G
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which stabilizes that point. Another point in the orbit will lead to
a conjugate subgroup, and the results turn out to depend only on
the orbit. There are many examples of pairs G, N for which there
are ergodic quasi-invariant measures λ on N for which every G-
orbit has measure zero [14, 20]. Then the class [λ] of measures
equivalent to λ is said to be a nontransitive quasi-orbit. This
generalizes the notion of orbit in the same way that measure classes
in general generalize the notion of subset of a set. For a non-
transitive quasi-orbit, there is no subgroup which can be used to
make the desired constructions. However, by introducing an
algebraic structure in N x G, Mackey reformulated the essentially
transitive case in a way which is meaningful in the general case.

Suppose S is any (right) G-space. Then for (su xλ) and (s2, x2)
in S x (?, the product is defined exactly when s^ = s2, and then
the result is (sl9 #j#2). Thus, only some pairs have a product, and
the action determines which ones, while the group product from G
shows itself in the formula for the product. With this product,
S x G is a groupoid, i.e., a small category with inverses. There
are several ways to formulate the definition of "groupoid", and we
have chosen the following one for its intuitive content, preferring
to think of the elements of a groupoid as abstractions of isomor-
phisms, i.e., mappings between objects of some type.

DEFINITION. A groupoid is a set F with a subset F{0) (of units),
a pair of functions d, r:F-*Fl0) (domain and range) and a product
xy defined for pairs (x, y) in F{2) = {(a, b) e F x F: d(a) = rψ)}. These
must satisfy the following:

(a) (associativity) d(xy) = d(y) and r(xy) — r(x), and if d(x) =
r(y) and d(y) = r(z), then (xy)z = x{yz).

(b) (units) If ueF{0) then u = d(u) = r(u). If u = d(x) then
xu = x, while if v = r(x) then vx = x.

(c) (inverses) For each xeF there is a y with xy = r(x)f yx —
d(x).

Notice that a groupoid for which there is only one unit is a
group. The y of part (c) is unique and denoted or1. In a concrete
small category with inverses, i.e., a groupoid of isomorphisms, the
units are the identity mappings of the various objects. For F =
S x G, r(s, x) = (s, e), d(s, x) = (sx, e), and (s, x)~γ = (sx, x~~ι).

If we identity S with S x {β}, we can regard r and d as maps
of S x G into S. Then points su s2 in S are in the same orbit under
G iff there is an x in G with sxx — s2 iff there is an element z in
F with r(z) = sλ and d{z) = s2(z — (su x)). In general, we call units
uy v equivalent if there is an x with r(x) = u, ώ(x) = v. A set of
units is called saturated if it is a union of equivalence classes. For
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a set A of units, its saturation [A] is r{dΓι{A)) — d{r~\A)).
Besides S x G there are many ways to construct groupoids (we

give a few):

Example 1. Let S be a set of groups and let F be the set of
isomorphisms with domain and range elements of S. If we want
the multiplication to be function composition, the other parts of
the structure follow naturally, and the equivalence classes are
isomorphism classes.

EXAMPLE 2. Let S be a partition of a set A, i.e., a collection
of nonempty disjoint sets, and let F be the set of bisections between
elements of S.

EXAMPLE 3. Let F be an equivalence relation on a set S (say
a foliation on a manifold S). Define Fi0) = diagonal, r(x, y) = (x, x),
d(x, y) = (y, y), (x, y)(y, z) = (x, z). Then (x, y)~γ = (y, x).

Return now to the case of S x G and suppose S is the space
of right cosets of a closed subgroup H, with s0 the identity coset.
There is a Borel 7: S-+G so that y(s)eS for each S G S , and y(sQ) = e.
Define ψ(s, x) = 7(s)x7(sx)~1 for (s, x) e S x G and <£>(/&) = (s0, Λ) for
heH. Then ψ: S x G —> H and φ: H-^ S x G are groupoid homo-
morphisms. Hence, if L is a representation of i ϊ then L o | is a
representation of S x G, and if i? is a representation of S x G,
then jβo<p is a representation of if. The pair (g>, ψ) establishes a
kind of equivalence between H and S x G of which one consequence
is the passing back and forth of representations. This equivalence
is called similarity [15], which is defined as follows. Let Fu F2 be
groupoids. A function φ: Fx —> F2 is a homδmorphism if when #2/
is defined so is φ{x)φ{y) and it equals φ(xy). If Ψi1ψ^F1-^F2 are
homomorphisms, a similarity of 9̂  and <p2 is a function 0: i*Y0) -> F2

such that for each x e Fl9 θ^x^φ^x) and φ2{x)θ{d{x)) are defined
and equal. We write <p1 ^ φ2, and [φt] is the similarity class of φx.
(If we think of Fx and î 2 as categories, a homomorphism is a
functor and a similarity of homomorphisms is a natural equivalence
of functors.) If Fλ and F2 are groups, homomorphisms are the same,
and since F1 has only one unit, for similarity we simply have an
element a — θ(e) in F2 such that φ2(x) — α^>

1(α;)α~1. Fx and F2 are
similar if there are homomorphisms φγ\ F1 —> î 2 and ^?2: F2-+ F such
that <5V?2 ̂  ί/Ί and φ^φ1 & iF%.

In the example above, (φ, ψ) is a similarity of i ϊ with S x G.
In fact f o ^ — iH — identity on H, but <p°ψ(s, x) — (s0, T ί̂CTίβa?)"1)-
If we define 0(*) = (so, 7(s)), then φof(s, x)θ(sx)=θ(s)(s, x). (Thus 0 is a
natural equivalence of φoψ with the identity "functor" on S x G.)
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A consequence of this similarity is that the function taking L to
L°ψ induces a one-one map of equivalence classes of representa-
tions of H onto the same for S x G. (Two representations Rlf R2

of S x G are equivalent if there is a unitary operator valued func-
tion V on S such that V(s)R1(s, x) = R2(s, x)V(sx) always.) This is
important for the theory of virtual groups, because it is part of
the basic pattern of using "virtual subgroup" (next paragraph) to
extend the subgroup concept. We want the results to be consistent
with the subgroup results in case the G-space is transitive.

Mackey used this connection between H and S x G even to
derive a definition of homomorphism. If Hx is a subgroup of Gx

with coset space Slf and H2, G2, S2 are another such triple, then we
have 7i, <pu ψx and γ2, <P2, ψv If Ψ' -Hi —> JBΓ2 is a homomorphism then
φcιoφ°rfyι should be a homomorphism and if φ'\ Sx x Gx —> S2 x G2 is
a homomorphism then <f2°φ'°φι should be a homomorphism. The
result is the one we used above. Now we want to use this to get
the "virtual subgroup" idea. If ί(h) = h for h e H, then ίoψ — ψ.
Thus ψ is related to the inclusion of H into G. If we define
js(s, x) = x, then for (s, x) eS x G we have φ(s, x)y(sx) = y(8)j8(8, x).
Thus α/r and i s are similar. Now is makes sense in general, although
ψ does not, and the notion of similarity of homomorphism allows
us to think of *js, or rather [js], as an inclusion in general, and
S x G as a virtual subgroup of G. To carry this one more step,
suppose subgroups Hx and H2 have coset spaces Sx and S2. If H^
H2, p{Hxa) — H2a defines a G-equivariant map of S± onto S2, and
i(s, x) = (ί?(s), a?) corresponds to the inclusion of i ^ into H2. Thus
we define St x G to be "contained" in S2 x G if there is an equi-
variant map p of Sx onto S2. In section 5 of this paper we consider
another way to define "subobject", also derived from group theory,
and one purpose of the paper is to show the two ways agree. So
far, we have arrived at a category of groupoids in which the maps
are similarity classes of homomorphisms, so that [js] is an "inclu-
sion".

For a coset space S, S x G also has topological and measure
theoretic structures. In this paper we are mainly concerned with
the latter, and recall here some of the facts. It is known that on
a coset space S there is exactly one quasi-invariant (σ-finite) measure,
up to equivalence. If v is a probability measure in the class of
Haar measure on G, and s0 is the identity coset, then we can define
μ(A) = v({x 6 G: sox e A}) to get a quasi-invariant μ. Then μ x v is
quasi-invariant under (s, x) —> (s, x)"1 — (sx, x~ι) (Fubini). Now μ x

» = \es x vdμ(s), where $s denotes a unit point mass at s, and μ =

r*(μ x v). Thus we have μ x v decomposed relative to r over
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r*(μ x v). Since v is quasi-invariant under left translation, for any
(s, x), the map taking (sx, y) to (β, sc#) = (s, #)(s#, y) carries esx x v
to a measure equivalent to εs x v. These properties suggest the
measure theoretic structure we will use in the general case. If
we take F = S x G and X = μ x v, then (JF, λ) is a measured
groupoid in the sense of the definition below.

It is convenient to denote the equivalence class of a measure
μ by [μ]. Then a measure μ is quasi-invariant iff [μ] is invariant
as a set. Suppose .P is an analytic Borel groupoid, i.e., it is analytic
as a Borel space and r, d, ( )~x and multiplication are Borel func-
tions. Let λ be a probability measure on F, and denote by (λ)"1

the measure whose value at a Borel set A is X({x~u. xe A}). We say
that λ is quasi-symmetric if (λ)"1 ~ λ; this is true iff [λ] is sym-
metric, and iff there is a symmetric \x ~ λ (take λx == l ^ λ + ίλ)"1)).
Now let λ = r*(λ) be the image of X in i^(0) via r, and decompose

λ over λ relative to r [15, 18], X=\XudX(u). For xeJP7 define xXd{x)

to be the measure whose value at a set A is λd(aj)({ί/: r(#) = d(x) and
a?2/6 4}) = Xd{x\x~ιA). We say the decomposition is left quasi-in-
variant if there is a λ-conull set U £ J?T(OΪ such that xXdix) - λr(a?)

when x is in the set r~\U) Π d~~\U), which is denoted F\U and
called the contraction or reduction of F to U. When 17 is conull
this is an inessential contraction (i.e.). An i.e. is a conull set in
F, but also a subgroupoid, and it is important to use an i.e. in the
definition of quasi-invariant decomposition. If the set U can be
taken to be Fl0) we say the decomposition is strictly quasi-invariant.
If X has a (strictly) quasi-invariant decomposition and Xλ ~ X let g
be a strictly positive and finite Radon-Nikodym derivative dXjdX.
If %! = r^λj), then %t — λ, so there is a strictly positive and finite
Radon-Nikodym derivative / = dX/dX^ Then

Xλ —

so we can get a (strictly) left quasi-invariant decomposition of λx

by taking XI — f{u)gXu. Thus the existence of a (strictly) left
quasi-invariant decomposition depends only on the measure class.
The same holds for right quasi-invariance, defined using d. In
particular, for F — S x G, since μ x v has a strictly left quasi-
invariant decomposition and is quasi-symmetric, it also has a strictly
right quasi-invariant decomposition, although a direct construction
of it is less obvious.

With this background, we define a measured groupoid to be a
pair {F, X) or {F, [λ]) where F is an analytic Borel groupoid and λ
is a probability measure on F which is quasi-symmetric and has a
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left (or equivalently, right) quasi-invariant decomposition. When
convenient, we may take λ to be symmetric.

Now we want to define homomorphisms for measured groupoids.
There are at least two possibilities. We have given an example in
[18, p. 282] showing why we choose the null set condition we use.
There the definition was given for virtual groups (defined below),
and here we extend it to measured groupoids in general. Suppose
φ\ Fx —> F2 is a Borel function. For φ to be a homomorphism of
measured groupoids (Flf λ2), (F2, λ2) we require two conditions:

(a) There is an i.e. of F1 on which φ is algebraically a homo-
morphism.

(b) For saturated analytic sets A Q F2

{0),

φ*$i)(A) = 0 iff X2(A) - 0 .

A measured groupoid is called ergodic, or a virtual group iff every
saturated Borel set is null or conull. Then the same is true of
saturated analytic sets, and one can show that (b) follows from a
weaker condition:

(b') λ2(A) = 0 and A saturated implies « ;̂;<(λx)(A) = 0.
If the i.e. in condition (a) can be taken to be Flt we say φ is strict
homomorphism.

We have given a brief explanation of how to derive the measure
theoretic definition of measured groupoid. For homomorphisms, the
allowance for an i.e. and condition (b) are more complicated to
motivate. One reason for (b) is given in [18]. The use of the i.e.
arises because there are necessary constructions which only produce
that amount of good algebraic bebavior. The author has been able
to sharpen this under additional hypotheses (unpublished), but only
to improve the type of i.e. By further study of the connection
between S x G and H for coset spaces S, Mackey has extended
several other group theoretic notions to groupoids. A primary
example is that of induced representation. Suppose μ is a quasi-
invariant measure on S, and let p(s, x) = (dμ(sx)/dμ(s))1/2. If R is a
unitary representation of S x G on a Hubert space K and M* =
L\μ'K), we can induce R to get a representation U of G on W\
(UJ){s) = p(s, x)R(s, x)f(sx). If R — Lor^y this is one of the standard
forms for inducing from H to G, but it is meaningful in general.

Another example of a notion extended from groups is that of
the closure of the range of a homomorphism into a group [15, 16,
18]. Suppose H1 is a closed subgroup of Gx with coset space Sλ.
Take yx: S1 —> Gλ and ^ : ^ x f ? ^ Hx as before. If φ\ Hx -> G2 is a
homomorphism, so is φλ — φ°tyi- Now S1 x Gx acts on G2 x SL as
follows: (xZf 8j)(8lf xλ) — (x2<Pι(sl9 Xj), SJXJ), and G2 acts via (x2, 8t)y, =
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(y^Xz, s j . Then orbits under S± x Gx partition G2 x S± and are
permuted by G2. The quotient space of G2 x St is analytic iff φ(Hύ
is closed, but in general there is a G2 equivariant map / of G2 x S t

onto the coset space S2 of φ(H^~ such that for any Borel equivariant
g:G2 x Si -> S there is a Borel h with g — hof. By our earlier
definition of "containment" this makes S2 x (?2 "the smallest subobject
containing φ(S± x GJ\ This construction can be carried out for
groupoids in general. It generalizes the construction of a "flow
built under a function" [16]. Details of one approach to this can
be found in [18], and another approach is spelled out in the Ap-
pendix.

These definitions are obtained by use of the similarity between
H and (G/H) x G, and we arrive at a category whose objects are
groupoids and whose maps are similarity classes of homomorphisms.
In this category we define relationships and constructions (e.g.,
subobject and range closure) by extension from the groups.
Another approach would be to apply the standard definitions of
category theory. An earlier version of this paper nearly ignored
the category theory approach, but in this one we explain some of
the relationships between the two approaches. Our primary purpose
for the theory is to have a workable extension of group and sub-
group methods to the context of ergodic group actions. If the
definitions are workable, we are not committed to agreement with
category theory. However it may be of interest to compare the
two approaches.

As one example, we point out that already the category of
groups with similarity classes of homomorphisms is noticeably
different. A group is a groupoid with only one unit, so homomor-
phisms φlf φ2 from a group G to a group H are similar iff there is
an element aeH such that for all x in G we have φ2(x) = aφ^x)^1.
Thus an inner automorphism is identified with the identity function.
This reflects the fact that stabilizers of different points in a transi-
tive (?-space are conjugate subgroups. Now suppose N is a normal
subgroup of G for which there is an inner automorphism a of G
such that a\N is outer (these are easy to find). Let φ be the
identity homomorphism of N and let ψ = a \ N. If i is the inclusion
of N into G, i°φ and ίoψ are similar homomorphisms of N into G,
but φ and ψ are not similar homomorphisms of N into N. Thus
in our category the map which is the similarity class of i is not
left-cancellable, even though we surely want to regard it as an
imbedding.

The outline of the rest of the paper is as follows. In the first
four sections we give definitions and statements of results which
are needed later. Some of these are generalizations to groupoids of
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published results on groups. The methods are not always the same,
but we have relegated most of the proofs to an appendix, in order
to get the reader more quickly to § 5. In § 1 we define measured
groupoids and actions and state a few results about them. Section
2 is about ergodic decompositions. The existence proof, in § 2 of
the Appendix, depends on a simple characterization of ergodicity
for groupoids and hence for group actions. Peter Hahn has given
an independent proof, using other methods [7, Theorem 6.1]. The
basic technical result in Section 3 is that if two groupoids have
commuting actions on a given space, then each will have an action
on the space of ergodic parts for the other. This provides a way
to construct "range closures" of homomorphism into groupoids in
the manner suggested by Mackey in [15] and close to that of K.
Lange in [10]. It is also similar to the reasoning used by C. C.
Moore in pages 112-117 of [1]. The Boolean G-spaee approach used
in [18] seems harder to implement when G is no longer a group.
The present method applies, for example to construct the "range
closure" of a homomorphism into a virtual subgroup (S x G,
[μ x v\) of a group G, without referring directly to G itself. The
result in section four is that the assignment of G-spaces to homo-
morphisms of groupoids into G is functorial.

We have mentioned above one group theoretic motivation for
thinking of S x G as a subobject of G when a group G acts on a
space S. In section five we develop another approach to this and
related questions. The general problem is to find measure theoretic
equivalences to topological and algebraic notions. For example, let
H be a subgroup of a locally compact group G. Then H is closed
iff the coset space is countably separated, and hence analytic, in the
quotient Borel structure [11]. If F and G are groups and φ:F—>G
is a continuous homomorphism, then F acts on G:g-f — gφ(f), and
φ{F) is closed iff the orbit space in G for the action of F is
analytic. Such equivalences allow us to define "closed range",
"imbedding", etc., and we show that these properties are invariant
under similarity of homomorphisms. In § 6 we show that the
relation of being a subobject is transitive and is consistent with
Maekey's definition of virtual subgroup of a group. We also show
that a composition of two homomorphisms with dense range has
dense range, and that the composition of an irreducible representa-
tion with a homomorphism having dense range is an irreducible
representation. What is different here is that these notions are
defined measure theoretically rather than topologically. In § 7, we
discuss trivial homomorphisms, imbeddings, surjections, etc., in
connection with "containment of subobjects" and various notions of
category theory. For instance, we show that a homomorphism
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which has dense range is an epimorphism in the category sense.
For most terminology and notation we refer the reader to [18,

19, 20]. We point out that measures are assumed to be finite unless
described otherwise. If Sίf is a Hubert space then <Sf(£ίf) is the
space of bounded operators on 3ί? and *&{£%?) is the (Polish) group
of unitary operators on £%f and (:) is the usual notation for the
inner product. ( )~ι is used for the function taking x to x~\ and
if μ is a measure (μ)'1 may be used for ( )l\μ). In decomposing
a measure μ relative to / the measures may be μ(f, ί), μt or μ\
We will use * instead of x for relative products of sets or
measures.

The author is indebted to Caroline Series for the opportunity
to see her Harvard thesis [21] and for results and ideas in it, and
to Raymond Fabec for pointing out an error in an earlier proof of
Lemma A. 1.7. I also thank Alain Connes, Peter Hahn and Calvin
Moore for suggesting ways to improve the paper.

1* Actions of groupoids and equivariant maps* In this
section we discuss an algebraic aspect of groupoid actions and revise
the terminology of [18] to agree with that of [5]. We also discuss
various notations of action and equivariant map when measures are
involved. We give some results relating these notions among them-
selves, and finally consider a 'universal G-space' construction for
groupoids [13]. These are technicalities, intended to make things
run more smoothly later.

Thinking only algebraically for the moment, let G be a groupoid
with a right action on a set S, and set F — S*G = {(s, x) e S x G:
sx is defined}. We want to make a groupoid of F, in precisely the
same way as when G is a group. Thus we want (s, x)(t, y) to be
defined iff sx = t, and then the product is (s, xy). For this to define
a product in F> xy and s(xy) must be defined whenever sx and (sx)y
are defined. In other words, to make S*G a groupoid by the defini-
tion used when G is a group, the action must be true [18, p. 258].
Therefore we will adopt the following definition of action, in agree-
ment with [5].

DEFINITION 1.1. If G is a groupoid and S is a set, an action
of G on S (on the right) is a pair (p, a) where p is a function
from S onto G(0) and α is a function from £*G = {(s, x) e S x G:
p(s) = r(x)} to S such that whenever (s,x)eS*G and (x,y)eG{2),
then p(a(s, x)) = d(x) and a(s, xy) = a(a(s, x), y). If G and S are
Borel, we say the action is Borel iff p and a are Borel functions.
We also will refer to (S, p, a) as a (Borel) G-space if (p, a) is an
action (a Borel action) of G on S. If Gt is a contraction of G and
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BζZ S, we say B is ^-invariant iff seB, xeG and (s, x) eS*G
imply α(β, x) e B. To give a weak action of G on S, we give for
each xeG sets D(&) and J2(a?) £ S and a bijection ψ(x): D(x)-*R(x).
If ^KaO(s) is denoted sx, we require

(1) S= Ό{D(x):xeG}
( i i ) tc € G(0) and s 6 jD(tc) imply su = s
(iii) (x, y) e G{2) and s e JO(cc) imply s# e D(y), s e D(xy) and (sx)y~

s(xy).
This is Borel if F and (s, x) h-> (sx, aΓ1) are Borel.

REMARKS. (1) (α(β, a?), y) eS*G because p(a(s, x)) = d(x).
(2) We will ordinarily write sx for α(s, #) and refer to the

G-space (S, p). We may even let the function p be implicit and
refer to the G-space S.

(3) The associative law holds under this definition, i.e., if
either of s(xy) and (sx)y is defined, then the other is also defined
and they are equal. We leave it for the reader to verify that S*G
is in fact a groupoid.

(4) j8(8, x) = x defines a homomorphism of S*G into G called
the inclusion.

(5) B is G-invariant iff {(s, p(s)): seB} is saturated in S*G,
and B is G^invariant iff B Γ) P'^GfO is Gi-invariant.

(6) Define s± ~ s2 iff there is an x with 8λx — s2. Then ~ is
an equivalence relation on S.

DEFINITION 1.1 is suitable when no measures are involved, but
when we deal with measured groupoids, there may be null sets
which we want to discard. This needs to be considered in making
the definitions. For homomorphisms of measured groupoids, we
found it convenient to have the most used term include the possi-
bility of some null sets on which there is imprecise behavior. This
avoids repetitions of such phrases as "there is an i.e. Go on which
φ is a homomorphism." We simply say, "φ is a homomorphism."
For the same kind of reason, we want to allow for a carefully
controlled amount of algebraic imprecision in the definitions for
(G, [μ])-spaces and (G, [μ])-equivariant functions. This is one way
to simplify the statements of theorems.

Suppose (S, p, a) is a G-space and G1 is a contraction of G, and
set Sx = p-\Gί0)). Then S, is GΓinvariant. If p(Sϋ = G[o) and S1 is
Grinvariant, let px = p \ S1 and αx = a \ S^Gΰ then (Slf pu αx) is a
Grspace. Also notice that S1^G1 is the contraction of S*G to
{(s, p(s)): s e S J . For S1 Q S, the contraction to {(s, p(s)): s e SJ is
Si*Gi iff S1 is invariant under Gx =
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DEFINITION 1.2. Let (G, [μ]) be a measured groupoid, let S be
an analytic Borel space, let p be Borel from S onto G(0) and let
a:S xG->S.

(a) (S, p, a) is a (G, [μ])-space if there is an i.e. Gx of G such
that Sx = p-^GTO is a Gi-space under pIS^ and αlS^G. A measure
λ on S is then called quasi-invariant iff p*(λ) ~ μ and λ has a

decomposition λ — \λwd/Z(w) such that (Xr(x))x ~ Xd(z) for almost all x
in G. In this case we call (S, λ, p, α) or (S, λ) or even (S, [λ]) a
(G, [μ])-space.

(b) If we can take G1 = G we call S a strict G-space, and if
(Xr{x))x ~ λdU) for every x, we say λ, or its decomposition, is strictly
quasi-invariant.

Let (S, p) be a strict (G, [//|)-space and let λ be a finite Borel

measure on S with j>*(λ) — μ. Decompose λ as IXudμ(u) relative to

p. By Theorem 2.9 of [16], λ is quasi-invariant iff λ*μ is quasi-

invariant under τ(s, x) = (so?, ίc"1), the inverse map in £*G. Suppose

λ is quasi-invariant and let

K X μudμ(u) = lλ r { x ) x sxdμ(x) = \εs X μp(s)dX(s)

[16, pages 63, 64]. We have r(β, α) = (s, r(α)) and d(β, α?)= (sec, d(a )),
and (S*G)(0) is just the graph of p, which is isomorphic to S via

the coordinate projection onto S. Hence r*(v) = \λβ x εudβ(u), by

Lemma 1.2 of [19]. This is just the image of λ in (S*G)(0), so the
last formula for v above is its decomposition relative to r, i.e.,
»(r, 0, p(s))) = εs x μp{s). Let Gx be an i.e. of G such that xeG,
implies αμd(x) ~ μr™ for ^eG x [19, Lemma 6.2], and let S^p-^Gί").
Then £>!*(?! is an i.e. and for (s, x)eS1*G1 we have (s, a;)[εsa; x ^d(a;)] =
εs x {xμdw) ~ es x μr(a?). Hence (S*G, [v]) is a measured groupoid.
Thus the process of forming S*G does not give a new kind of
object when applied the second time.

Here are some examples of G-spaces.

EXAMPLE 1. Any G-space for a group G is a strict G-space.
Any quasi-invariant measure on it is strictly quasi-invariant.

EXAMPLE 2. Let G be a groupoid, S = G(0), p = the identity
function. Then S*G = {(r(x), x):xeG}. Define a(r(x), x) = d(x). If
(G, [μ]) is a measured groupoid, μ is strictly quasi-invariant. The
orbit of ueG{0) is its equivalence class. Thus every equivalence
relation is induced by an action.

EXAMPLE 3. Suppose U Q G(0) meets each equivalence class in
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G<0) and let S = r~\U). Let p = d\S. Then S*G = S x G n G(2).
If (s, x)eS*G, let α(s, a?) = s#. The orbit of s e S is then r-1(r(8)).
In the proof of Theorem 3.5, we show how to get some quasi-
invariant measures.

EXAMPLE 4. Let φ be a homomorphism from G to a groupoid
H. Let Γ(9>) .= {(£, u)eHx G{0): d(ζ) = ?>(tθ}. Define p(£, N) = w.
Then Γ(?>)*G - {((£, r(a?)), x):ξeH,xeG and <Z(£) = ro^(a )}. Define
α((£, r(aj)), a;) = (ζφ(x), d(x)). This generalizes correctly the action of
one group on another via a homomorphism. We use this space to
construct the "closure of the range" of φ, in section three.

The term for a function between spaces on which a group acts,
which preserves the group action, is equivariant. Next we want
to define this word in the context of groupoid actions.

DEFINITION 1.3. Let (G[μ\) be a measured groupoid.
(a) If (Su λ j and (S2, λ2) are (G, [μ])-spaces and /: ^ -> S2 is

Borel, we say / is (G, [μ])-equivariant if
( i ) there are an i.e. Go of G and conull (?0-invariant analytic

sets S3 £ Sj_ and S4 £ S2 such that when (s, x) e S8*G0 then (/(s), ») e
S4*Go and f(sx) = f(s)x, and

(ii) for saturated analytic sets A £ S2, \(f~\A)) = 0 iff X2(A) = 0.
(b) If we can take Go, S3 and S4 so that (a) holds and / takes

Sz one-one onto S4, we call / an isomorphism.
(c) If we can take Go = G, S3 = Sx and S4 = S2, we say / is

strictly equivariant or a strict isomorphism.
(d) If S2 has no measure, we delete the requirement that S4 be

conull, as well as condition (ii) in (a).
(e) We say / is almost equivariant if {(s, x) eS1*G:f(s)x is

defined and equal to f(sx)} is conull [21].
It may be of interest to note that for an equivariant map

f, /*(^i) ~ V This means they are what C. Series called normalized
[21]. This is Lemma A1.4 in the Appendix. Another useful fact
is the following regularization result for almost equivariant maps.
It is a little stronger than we can get by applying the homo-
morphism regularization lemma to f*if and its proof is also in the
Appendix, as Lemma Al.l.

LEMMA 1.4. Let (G, [μ]) be a measured groupoid, let (S, λ, p)
be an analytic Borel (G, [μ\)-space and let T be a strict analytic
Borel (G, [μ])-space. If f:S-+T is almost (G, [μ\)-equivariant, then
there is an equivariant function f:S—>T which agrees with fx a.e.
Furthermore, /ls|s(λ) = /*(λ) and is quasi-invariant. The function
f exists even if T is a weak G-space.
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We also need a notion of similarity of equivariant functions.
Suppose /, g: (Sl9 \) —> (S2, λ2) are strictly (G, [μ])-equivariant and let
θ'.Sx—ϊS^G give a strict similarity of f*ί and g*ί, i.e., suppose
0(*)(/(s), a?) = (flr(β), x)θ(sx) for (s, a?) e Sλ*G. Let 0(«) = (α(«), β(s))
where a:Sι—^S2f β'.Sί-^G. Then the similarity equation is equiv-
alent to these: a — g, g(s)β(s) — f(s) for s e S1 and β(s)x = xβ(sx) for
(β, £c) 6 Si*G. This motivates our definition.

DEFINITION 1.5. (a) Let /, g: (Su \) —> (S2, λ2) be strictly
(G, [μ])-equi variant. They are strictly similar iff there is a Borel
function β: Sί-^G such that g(s)β(s) = f(s) for s e Sx and β(s)x =
xβ(sx) for (s, a?) 6 S^G.

(b) Let /, g: (Slf λx) -> (S2, λ2) be (G, M)-equivariant. They are
similar if there are an i.e. Gx and conull strict (Gu [^])-spaces S3^S1

and S4 £ S2 such that /1S3 and g \ S3 are strict and strictly similar,
from S3 to S4.

Let Γ = {t 6 G: r(ί) = d(t)}, which is the "union of the stabilizers"
if G comes from a group action. Let p = d\T and define ait, x) =
a '̂ α? for (ί, a;) e Γ*G. Then the equation β(s)x = xβ(sx) just says
that /5 is strictly equivariant from Sx to T. The next lemma is
proved as Lemma Al.lO.

LEMMA 1.6. Let (G, [μ]) be a measurable groupoid and let
(Si, [λj) and (S2, [λ2]) δe analytic (G, [^])-8^αcβs. Suppose f: S1—>S2

and g: S2 —> Sx are equivariant maps with fog similar to the identity
on S2 and g°f similar to the identity on Sx. Then (Su [λj) and
(S2, [λ2]) are isomorphic.

Now let us turn to the construction of a 'universal G-space\
For groups the locally square-integrable functions make a good
space, but we have no topology and hence no compact sets. How-
ever, we work with finite measures, so any bounded function is in
L2. For each unit u eG(0) and each Borel /: G —> [0, 1] we can define
[f]u = {d 9 is Borel from G to C and g = f a.e. dμ(r, u)}. Then let
^ ( w ) = {[/]«:/ is Borel from G to [0,1]}. Now ^"{u) may be
regarded as a subset of L2(μ(r, u)) and as such it is a weakly closed
norm-bounded set and hence is weakly compact. We now form a
bundle over G(0) as one does with Hubert bundles. Let G{0)*^ =
U {{u} x ^(u):ueG{0)}9 and give G ( 0 ) * ^ the Borel structure it
inherits as a subset of G ( 0 ) * ^ = U {{u} x L\μ(r, u)):ueG{0)}, which
is a Hubert bundle [18, 20]. This is the smallest Borel structure
for which the projection onto G(0) is Borel along with all the func-
tions ψg1 for bounded Borel functions g where



402 ARLAN RAMSAY

Ψa(u, [f]u) = \fQd(μ(r, u)) .

If ,_$sf is a countable algebra generating the Borel sets then G(

(O, [/]«) 6 fi101*^: A e .9/ implies 0 <; ψΦA(u, [/]„) <̂  1}. Hence
is a Borel subset of G ( 0 ) * ^ and must be analytic. Now G acts on
G™*^* as follows: (r(α), [/]r(ίB))α = (d(x), [g]dix)) where #(?/) = f(xy)
for ?/ e r~\d(x)) and #(?/) = 0 otherwise. This is well defined if μ
has a left quasi-invariant decomposition. The next lemma is proved
as Lemma Al.ll.

LEMMA 1.7. G(0) **#""" is an analytic G-space, provided the given
decomposition of μ relative to r is quasi-invariant.

2. Ergodic decompositions of measurable groupoids* John
von Neumann proved that a measure preserving flow can be decom-
posed into ergodic flows [17]. This decomposition into ergodic parts
has also been done for other groups of transformations [2, 9]. We
shall need to decompose groupoids of transformations into ergodic
parts. This follows from a decomposition of measurable groupoids,
since we can simply form the new groupoid S*G. It will be con-
venient to begin with a Hubert bundle characterization of ergodic
groupoids. It is possible to work with measure algebra bundles,
but Hubert bundles are more familiar, so we shall use them instead.

Let (G, C) be a measurable groupoid and suppose X e C is a
symmetric probability measure and has a quasi-invariant decomposi-
tion X = \xudx(u) relative to d. Define j%?r = {/or: / eL2(λ)}, <Dίfd =
{f°d:feL2(X)}. Since almost every fiber measure is a probability
measure, f~>f°r and f—>f°d are isometric imbeddings of L2(λ)
into L2(λ). If (Jf)(x) = /(αΓ1), J is a unitary operator on L2(λ) with
J 2 = /, and J(<%%) = Sίfd. Notice that 3tfτ Π^̂ f d contains the con-
stant functions.

LEMMA 2.1. The measurable groupoid (G, C) is ergodic iff £%fr{\
dίft is one-dimensional.

DEFINITION 2.2. Let (G, [X]) be a measurable groupoid. A strict
ergodic decomposition of (G, [λ]) is a mapping q of G(0) into an

analytic Borel space T such that if v = g*(λ) and λ = \x(p, t)dv{t) is

a decomposition of λ relative to q, then for v-almost all t, q~~\t) is
saturated and (G\q~ι(t), [V]) is an ergodic groupoid, where
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An ergodic decomposition of (G, [X]) is a Borel mapping q of G(0>

into an analytic space T such that for some conull Borel set UQG{0),

q\ U is a strict ergodic decomposition of (G\ U, [λ]).
If U is conull in G(0), then it is conull for almost every X(q, t).

Thus GI (q I U)"1^) is [almost always an i.e. of G\q~~x(t), so the basic
difference between strict and nonstrict decompositions is that in the
strict case the sets q~\t) are almost all saturated, whereas in the
nonstrict case there is a conull set U such that the sets q~\t) Π U
are almost all saturated relative to G | U.

There is a property which characterizes ergodic decompositions
and which is more useful than the definition in most cases. This
property is stated in terms of factoring of functions. This is a
measure theoretic version of a familiar procedure in elementary
algebra: If / maps X onto Y and g maps X to Z and is constant
on level sets of / then there is an h: Y-> Z with g — h°f. After
this lemma we state first the uniqueness and then the existence of
ergodic decompositions.

LEMMA 2.3. Let (G, [μ]) be a measured groupoid, and let a
Borel function q from G(0) to an analytic space T be an ergodic
decomposition. If a Borel function g from (?(0) to an analytic
space Z is constant on equivalence classes, then there is a Borel
h: T —> A such that h°q — g a.e. Such an h is determind a.e. relative
to μ = tf*(λ).

THEOREM 2.4. (Uniqueness of Ergodic Decompositions). Let
qx\ G{0) —» TΊ and q2: G

{0) —> T2 be ergodic decompositions of the measured
groupoid (G, [X]). Then there are a conull Borel set UQG{0) and
a Borel isomorphism f: q^U) —> q2(U) such that q2—f°qx on U.
Also, qx and q2 have the same level sets in U. If qx and q2 are
strict decompositions, U may be taken to be saturated.

THEOREM 2.5. // (G, [λ]) is a measured groupoid, then (G, [λ])
has an ergodic decomposition. If λ has a (right or left) quasi-
invariant decomposition, then (G, [λ]) has a strict ergodic decomposi-
tion.

DEFINITION 2.6. Let (G, [μ]) be a measurable groupoid and let
(S, λ) be an analytic Borel G-space with q.i. measure. The measure
λ is ergodic iff (S*G, [λ*μ]) is an ergodic groupoid. An ergodic
decomposition of (S, X) relative to G is a Borel mapping q of S into

an analytic Borel space T such that if X = \xtdq*(X)(t) is a decom-

position of X relative to q then for q^OO-almost all ί in Γ the set
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q^ζt) is invariant and the measure λt is concentrated on q~\t) and
is q.i. and ergodic.

COROLLARY 2.7. If (S, λ) is an analytic G-space with a quasi-
invariant measure for a measurable groupoid (G, C) and C has an
element with a left quasi-invariant decomposition then S has a
decomposition into ergodic parts, which is essentially unique.

LEMMA 2.8. The converse of Lemma 2.3 is true.

3* Commuting groupoid actions and closing of ranges of
homomorphisms* In constructing the closure of the range of a
homomorphism φ:F-+G, the idea is to make a G-space out of the
space of ergodic parts for the action of F on G*Fi0)[16, 18]. The
reason this should work is that F and G have actions on G*F{0)

which commute in the sense of Definition 3.1 below. Theorem
3.2 is a precise formulation of a theorem needed for working with
such pairs of actions, and we apply it in Theorem 3.5 to construct
range closures. Parts of the proof seem easier than when done as
in [18].

DEFINITION 3.1. If S is an F-space and a G-space, we say the
actions commute iff for seS, ξ e F and xeG, if sx and sζ are
defined then so are (sx)ξ and (sξ)x and they are equal.

THEOREM 3.2. Let {F, [μ]) and (G, [v\) be measured groupoids
and let (S, λ, p) and (S, λ, q) be strict (Ff [μ])- and (G, [v])-spaces
respectively. Suppose these actions commute. Then there is a
strictly G-equivariant function f:S-+Gw*^~ which is an ergodic
decomposition of S*F. If S' is an analytic (G, [v])-space and
f':S-+S' is a (G, [v])-equivariant ergodic decomposition of S*F,
then (G{0)*^~, /*(λ)) and (S', /*(λ)) are isomorphic (G, [v])-spaces.

In the process of constructing the closure of the range of a
homomorphism, it will be necessary to construct some quasi-invariant
measures. The next lemma gives one of the basic ingredients.
First some preparation is needed.

Let (G, [v]) be a measured groupoid and let E be the equivalence
relation on G(0) induced by G: E = (r, d)(G) £ G(0) x G(0). We take
i/ = (r, d)*(v) and are interested in a special kind of decomposition
of v relative to i/. The important thing about v is that one of
these decompositions exist.

DEFINITION 3.3. We shall say that v is (r, (Z)-quasi-invariant if
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it has decompositions v — \vudv{u) and v — \vVtUdv'(v, u) such that

(a) for (v, u) eE, vv>u is concentrated on r~\v) Π d~ι(u),

(b) for (v,u)eE, ( I O " 1 ~ pUιV.
(c) if r(x) ~ u, then vu>r{x)-x ~ vu>d{x) and x-vd{x)tU ~ vr{x),uf and

(d) for ueGw, vu = \vVt%d(rM)(v).

If we assume v is (r, d)-quasi-invariant, we mean that such
decompositions should be used. By Lemma 6.8 of [19] there is a
measure v* ~ v and an i.e. Go of G such that v*|G 0 is (r, d)-quasi-
invariant. Now take p to be an everywhere positive and finite
version of cZv/dv*, p' the same for dv*Ίdι>' and define vViU — pr(v, u)pvΐ>u.
If Go = G\ Uo and JEΌ = E\ Uo, then (a) (b) and (c) hold for Eo and

Go. Hence vtt = \vυ>ud(r*(vu))(v) for almost all uf by uniqueness of

decompositions. By removing another null set, we see that we have
an i.e. Gx on which v is (r, c?)-quasi-invariant. Thus in matters where
we can safely pass to an i.e., we may assume that v is (r, c£)-quasi-
invariant for technical convenience. Of course in concrete situations
one would expect this to hold globally anyway.

LEMMA 3.4. Let (G, [v]) be a measured groupoid and suppose v
is (r, d)~quasi-invariant. Let X he a finite measure on G(0) such
that X(A) = 0 iff v(A) — 0 for saturated analytic sets A £ G(0). Let

»ί = \vudx(u), and let y eG act on xeG by x*y = y~xx provided

r{x) — r(y). Then vλ is quasi-invariant.

THEOREM 3.5. Let (F, [μ]) be a measured grupoid, let (G, [v])
be a measured groupoid for which v is (r, d)-quasi-invariant and
let φ:F~>G be a homomorphίsm. Then there are i.c.'s FQ and Go

of F and G, a strict (Go, [v\)~space (SΦ, λ) and a strict homomorphism
φ'\ FQ —> SΦ*G0 such that φ \ Fo = j°φ', where j : SΦ*GQ —> Go is the
inclusion {coordinate projection).

DEFINITION 3.6. We call (SΦ*G, [x*v]) the closure of the range
of <p, and will denote j by j φ when necessary to identify its con-
nection with <p.

Notice here that SΦ*G — SΦ*GQf and that the proof is by a
construction. The very statement of the theorem allows some
ambiguity in the choice of SΦ, because Fo and Go are not unique.
The construction, given in the Appendix, produces SΦ as an ergodic
decomposition space of T(φ) = {(x, u)eG x F{0): d(x) = <p(u)} for a
certain action of F on T(φ) and a natural measure on T(φ) (see
Lemma 3.7). As such, it is determined up to isomorphism modulo
null sets, which is sufficient. This also depends on v being (r, d)-
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quasi-invariant, but we know that (G, [v\) always has an i.e. Go on
which v is (r, d) quasi-invariant, and φ is similar to a homomorphism
<p0 taking values in Go. We need to see that SΦQ does not really
depend on the choice of <pQ, as the following lemma shows.

Lemma 3.7. Let (G, [v]) be a measured groupoid in which v is
(r, d)-quasi-invariant and let φu φ2 be similar homomorphisms of
a measurable groupoid (F, [μ]) into (G, [v]). Let T1=T(φ1) = {(x, u)e
G x F{0): d(x) = φx{u)} and take the measure vx — \vnd{φ^{μ)){u) on

d'^φ^F^)) and vx*μ on Tx. Similarly form T2—T(φ2), v2 andv2*μ.
Then there are i.c.'s Fo and Go of F and G and FQ and Go-invariant
conull analytic sets 2\* c 2\ and T2* c T2 which are strictly isomor-
phic as Fo and GQ~spaces under a measure-class-preserving function
f. Hence (SΨl, λ j and (Sψ2, λ2) have strictly isomorphic analytic
conull Go-invariant subspaces.

Starting with an arbitrary φ, if we choose a Go on which v is
(r, d)-quasi-invariant and a φ0 similar to φ taking values in Go, we
have i.c.'s F1 and Gx and φ[\ Fx->Sφ*G such that jΌφ^ΨolF^ Then
J°φΌ ~ φ\Flf but we do not have equality. In fact, there probably
would not be a φ'\ F1—>S9o*G1 with j°φ' = <p\Flf because φ may not
carry Fx into Gx. Thus we speak of SψQ*G as "the" range closure of
φ in the following sense: it is constructed from φ by way of a
choice of GQ and φ0 ~ φ, but if we choose instead an i.e. Gx on
which v is (r, ώ)-quasi-invariant and a φι ~ φ taking values in Glf

then there is a φ2 — φ taking values in G2 = Go Π Gx, and Lemma
3.7 says we have isomorphisms Ŝ o — Sψ2 and SΨl — S 2̂, so Ŝ o ~ S9l.
Since we could never have an Sφ determined more than within
isomorphism, it is agreeable to take Sφ = SψQ. Also, we actually
can choose SΨl = Ŝ 2 whenever φx ~ φ2.

It seems natural to ask about the uniqueness of Sψ in the fol-
lowing way. Suppose φ:F—>G and there exists a G-space S and a
homomorphism φ': F —> S*G such that joφf ~ φ. i s Sf determined
up to isomorphism? According to Lemma 4.1, there is a map
M(φ'): Sάoψl -> Sjm We have S£.φ, ~ Sφ. By Lemma 6.3, S3 ~ S and
by Theorems 6.7 and 6.11, M(φ') is an isomorphism, so the answer
is, yes.

4* Functorial properties of the range closure construction*
It seems worthwhile to extend some of the results of [10] to our
situation. We restrict our attention to a few facts, but presumably
the other results extend also.

Recall from [18] that if (F, [λ]) and (G, [μ]) are measurable
groupoids and ψ: (F, [μ]) —> (G, [μ]) is a homomorphism then [̂ , F] or
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[ψ] denotes the set of homomorphisms similar to ψ. If ψ: (F, [λ]) ->
(G, [μ]) and φ: (G, [μ]) -> (JET, [v]) then there are ψx ~ -f and an i.e.
Gx so that φ is strict on Gi and ψx{F) £ Gx, i.e., (φ, ψx) is composable
[18, Definition 6.7]. Then [φ°ψ^\ depends only on [ψ] and [φ] and
is denoted [9]°[^]. This operation is associative [18, Lemma 6.13].

If (G, [μ]) is a measured groupoid, let ^C(G) denote the class
of pairs ((F, [λ]), φ) where (F, [λ]) is a measurable groupoid and
φ: (F, [λ]) —> (G, [μ]) is a homomorphism. If we insist that F £
[0, 1] as a Borel space, then ^#(G) becomes a set. For J^\ = ((Flf

[\]), <Pι) and ^ 2 = ((F2, [λ2]), φ2) in ^f(G), a homomorphism
is a homomorphism ψ: (i^, [λj) —> (F2, [λ2]) such that [̂ 2]°
We denote by M{(F, [λ]), φ) the G-space (Sφ, v) for which the
groupoid (Sφ*G, [v*μ]) is the closure of the range of φf and we
want to define M[ψ] so as to make a functor out of M. We have
a series of lemmas generalizing those of [10, § 2]. The proofs are
clearly related to those of [10], but are not identical, because we
have a groupoid for G and because we have a different construction
for Sφ. Since we start with homomorphisms which need not be
strict, we will expect to product G-space maps which are not strictly
equivariant. In fact, we may need to restrict to a conull analytic
set which is invariant for some i.e. Go in order to get strictness.
Thus if we take some i.c.'s in the process nothing will be lost, and
we can work with strict homomorphisms when necessary.

LEMMA 4.1. Suppose j^Γ - ((Fi9 [λj), φt) and jς = ((F2> [λj), φ2)
are in ^S{β), φ2 is strict, ψ is a homomorphism of J^[ to J^2 and
θ:Fio)-*G is a Borel function for which β°r(ζ)φ2oψ(ξ) = φ^θodiξ)
for almost all ζ. Then there is a G-equivariant normalized h =
M{ψ, θ): SΨί —> Sφ2 obtained as the essential quotient of the function
f from T, = G*F1O) to T2 = G*JP2

(0> defined by fe(x, u) = (xθ(μ),

LEMMA 4.2. Under the hypotheses of Lemma 4.1, if δ is another
similarity of φ2

0ψ with φx and φ2 is strict, then M(ψ, 3) is similar
to M(φ, θ).

DEFINITION 4.3. Call this class of maps [M(ψ)].

LEMMA 4.4. If μ is (r, d)-quasi-invariant on G and ψ{. ̂ [—>
^l is a homomorphism, where J^*2 — ((F2[X2])f φ2) with φ2 strict, and
ψ2> (-Fi> Pw]) ~* (F2, [\]) is a homomorphism with [ψ2] — [ψt] then
Ψ2' ^1 —> ^2 is a homomorphism and [M(ψJ\ = [M(ψ2)].

Now we can define M[ψ] for any ψ:^-*^ by M[ψ] =
where (φ2, ̂ x) is composable and ψx ~ φ. Indeed, in such circum-
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stances we may pass to an i.e. F4 of F2 on which φ2 is strict and
an i.e. F3 of Fλ such that ψχ(Fz) Q F4, and the construction of M^)
is valid. If also ψ2 ~ α/r and (φ2, ψ2) is composable, there are i.c.'s
F5 of Fx and FQ of F 2 such that ψ2(F±) £ F 6 and ^ l i ^ is strict.
Hence F4 Π i7^ is an i.e. on which φ2 is strict, and there is a ψ3: Fί-^
F2 such that ^(F,) £ JP4 Π .Fβ and ψ3 ^ ψ. Then ^ 3 — ^ and by
Lemma 4.4 we have [Λf(^3)] = [Λf(τh)L similarly [M(ψ3)] = [M(τ/r2)].
Thus M[f] is well defined.

Finally, we can remove the restriction that μ be (r, d)-quasi-
invariant on G, as follows. If J?Ί = ((i\, [λj), 9 )̂ and ^ = ((F2,
[λj)> ^2) are in ^/t{G)f there is an i.e. Go on which μ is (r, d)-quasi-
invariant and then there are ψ3 ~ φ1 and. φ4 ~ φ2 taking values in
GQ. TO construct a space called SΨl in § 3, we used Sφ3, and also
S,2 = SΨ4. If ψ: (Fu [λj) -> (jp;, [λ2]) then [φ2Πψ] = faΠf] and
[φ3] = [̂ >J, so π/r is an t/^((?)-homomorphism of ^ to ^ ^ iff it is
such from ((Fu [λj), φ3) to ((F2, [λ2]), φ4). To get a class of maps
M[ψ] from S 9 l to So2, we may use the ones we constructed from
Ϋ using φd and φ4. Suppose now that we choose instead φ5 ~ φx

and φQ ~ φ2. We want to see that M\ψ] is invariant. We may
assume we have θx\ FΓ} -> G and θ2: F2

(o) -> G so that θ1or(ξ)φδ(ζ) =
<Pz(ζ)θi°d(ζ) for ξeF, and Θ2oT(η)φQ(η) - φlη)θ2od{rj) for 5?eF2. We
start with a 0: JFY0) -> G so that θoT(ζ)φsf(ζ) = φz(ξ)θ<>d(ς) for f eFly

and define <9'(u) = θ^uY^ujθ.o^u) for ueFf0). Then θΌr(ζ)φ6of(ζ) =
<p4(ζ)θΌd(ξ) for f e f p There are isomorphisms /x: T(φ3)-+ T(φ5) and
/2: Γί^*) ~> r(^ 6) given by fx(x, n) = (x^(^), w) and /2(a?, %) =(xθ2(u), u)
(proof of Lemma A3.7). These satisfy f0'*^ = f2°f

θ and induce
isomorphisms S 9 s —> S 5̂ and S9 4 —> £y6. Hence Jfcf(̂ , 0) is equivalent
to M(ψ, θr) under these isomorphisms, so the class M[ψ\ transfers
from maps of S9s to SΨi to maps of SΨδ to Sφϋ in a consistent way.

LEMMA 4.5. // ^ i : ^ 7 " > ^ ϊ α ^ ^f^^l—>^~l are homomor-
phisms, for JΓ19 jr^ jrz i n ^{G)1 then Λf([^2]o[^J) = M[ψ2]oM[ψ,].

5. Special properties of groupoid homomorphisms* Here we
give definitions of several properties a homomorphism of measured
groupoids may have. In keeping with the viewpoint expressed in
the introduction, we begin with an interpretation of certain proper-
ties of continuous group homomorphisms in ways which apply to
groupoids. Suppose F and G are locally compact groups and
φ:F~*G is a continuous homomorphism. Then F acts on G via φ
by x-ξ — xφ(ζ), and we have the following equivalences, by which
we learn how to define the terms for groupoids:

(1) φ is one-one iff F acts freely on G iff the groupoid G x F
(thinking of G as an F-space) is principal.
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(2) φ(F) is dense in G iff the natural homomorphism of φ{F)~
into G is an isomorphism onto.

(3) φ{F) is closed in G iff the space of orbits in G under the
action of F, G/F, is analytic [11, Theorem 7.2].

(4) φ{F) = G iff φ has dense, closed range iff GIF consists of
one point up to a null set.

(5) φ is a topological embedding iff φ is an isomorphism of
F onto <p(F)~ iff G x ί7 is principal and G/F is analytic.

DEFINITION 5.1. Let (i*7, [μ]) and (G, [v]) be measurable groupoids
and let φ: (F, [μ]) —> (G, [v]) be a strict homomorphism, and suppose
φ* ~ φ and 9* takes values in an i.e. on which v is (r, d)-quasi-
invariant. Set T = T(φ*) = {(a?, u) eG x F ( β l : d(α?) - φ*(u)},

and λj = Pi*/Σ. Form the measured groupoid (T*F, [\*μ]). Let
(Sy, λ) = (S9*, λ) as in Theorem 3.5.

(a) φ is called strictly immersive iff T*F is principal.
(a') φ is called immersive iff φ\F1 is strictly immersive for

some i.e. Fx of F.
(b) We say φ(F) is dense or φ has dense range iff there is an

i.e. Go of G and a conull strict G0-spaee S0QSφ such that j\S0*G0

is an isomorphism onto Go.
(c) We say φ{F) is closed or φ has a strictly closed range

iff the orbit space T/F is analytic.
(c') We say φ has closed range iff φ\Fγ has strictly closed

range for some i.e. Fx of F.
(d) We say φ is surjective iff φ has a dense closed range.
(e) We say ψ is a strict imbedding iff T*F is principal and

Γ/JP is analytic.
(e') We say φ is an imbedding iff φ \FX is a strict imbedding

for some i.e. Fx of F.

REMARKS. (1) There can always be sets of measure zero which
are basically irrelevant, as when a null set of units is adjoined to
a group, and the nonstrict forms of the definitions are to take
account of such cases, even though they should be exceptional. The
nonstrict definitions may also be much easier to verify in concrete
cases, even when the strict definitions are satisfied. The extra
freedom makes the machinery a little more tractable.

(2) We will see in Theorem 6.7 that for any homomorphism
φ the φ' associated with it by Theorem 3.5 has dense range. (3)
The definition of "dense range" is phrased so that it says the range
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closure is isomorphic to G (up to null sets) under its natural imbed-
ding. This sounds natural. However another formulation is more
convenient for applications of the concept. The function p taking
(x, u) to r(x) is the projection of T{φ) onto G(0) relative to which
the action of G on T(φ) is defined and it is constant on F-orbits.
Thus it factors through the ergodic decomposition /: T(φ) -> Sφ via
the projection q: Sφ —> (?(0) in the definition of the action of G on Sφ.
The units of Sφ*G are just the graph of g, and if j \ (S^*G)(0) is one-
one a.e., that means q is one-one a.e. Thus whenever φ has dense
range the projection p is an ergodic decomposition. We use this
in Theorems 7.16, 7.17 and 7.18.

(4 ) Let (S, μ) be an ergodic Z-space and let φ: S x Z —> R be
a homomorphism for which the function / defined by f(s) '= φ(s, 1)
has constant sign, say / > 0 everywhere. Then the set T0 = {(s, x)e
S x R: —f(s) < x <> 0} meets each Z-orbit exactly once. Hence φ
has closed range. Furthermore, Z acts freely on almost all of S
and hence on S x R, so φ is in fact an imbedding. (The set To is
the space for the flow built under /; see [16].)

Before proceeding to our main objective, we prove the follow-
ing theorem, which asserts that a properly ergodic groupoid cannot
be mapped onto a group. A consequence is that in Corollaries 2.1
and 3.3 of [22], "dense range" cannot be strengthened to "onto".

THEOREM 5.2. If (F, [μ]) is a measurable groupoid which has
a homomorphism φ onto a locally compact group G, then (F,[μ]) is
similar to a group, i.e., is essentially transitive.

Proof. The groupoid (G x F{0))*F has a homomorphism into F
and the assumption that φ is onto implies that (GxFw)*F is essen-
tially transitive. It follows that F is essentially transitive.

Now we want to show that these definitions are similarity
invariant in ^IΓ(G). The first lemma is immediate from Lemma 3.7.

LEMMA 5.3. Suppose ((Fu [μj), φx) and ((F2f [μ2]), <Pd are similar
elements of ^*C(G). Then φ1 has dense range iff φ2 has dense range.

LEMMA 5.4. Suppose {{Fu [μj), φx) and ((F29 [μ2]), Ψi) are similar
elements of ^f(G). Then φx has closed range iff φ2 has closed
range.

Proof. Because of the symmetry, we need only prove one
implication. Let fa: Fx -> F2 and fa: F2 —> Fx be a similarity. These
may be replaced by similar homomorphisms, if needed, so we may
begin with (φlf fa) composable. Then we may choose an i.e. F4 of
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F2 such that if φA = φ2 \ F± and ψ>4 = γ2 \ F± then φ4 and ̂ 4 are strict,
φλof4 is strictly similar to φ4 and T(φ4)/F4 is analytic. Next, choose
^ and an i.e. Fz of F x so that γz = ψ1\F3 is strict, ψd(Fz) Q F4,
ψ = ψ4o^ is strictly similar to the identity on Fd, and φ^^ is
strictly similar to <ps — <Pι\F%.

There exist strict similarities 0u θ2 and θ:

for ξ

= <Pt(ξ)θ2od(ξ) for ξ

and

θoT(ξ)f(ζ) = ζθod(ζ) for ξ.eF3

Define fix, %) = (a?ίι(^), ^(w)), for (a?, w) 6 Tfa), f\x, u) = (xθ2(u),
for (a?, u) 6 Γ(^2) and f(x, u) = {xφ^θ{u), u) for (a?, u) e ϊ 7 ^ ) -

Then (a?, %)-(y, t;) in T(φ3)^f\xf u)~f\y, v) in T(<p2). If /^(aj, w)-
fOl(y,v) in T(9>2), then f°^f^{χ9u) is in T(%) because ψ(u)eF,w,
and so is fθ2°fh(y, v), and these are equivalent under i^3 because
they are equivalent under Fx and both units are in Fz(φ(u) and
φ(v)). Thus (xθ1(u)θioψ1(u)9 ψ(u)) - (yθMθ^ψ^v), ψ(v)).

Now w e JP3

(0) ==> d°θ(w) — ψ(w) and r°θ(w) = w, so we can operate
on the points with θiu)"1 and θ(v)~\ getting two points which are
equivalent in T(φz):

(xθάufaoψ^φMu)-1), U) - (yθάvfao^WφMv)-1), v) .

Now φz°θ is a similarity (strict) of φ3oγ with φz> so the function /
defined above is an isomorphism of T(φ3) onto T(φ3oψ). Hence there
is a ζ e Fz with r(ί) = u, d(ζ) — v and

Since ψ — ψ^^^F^, the similarity equations give

Thus (a;, %)f = (l/, ̂ ) i n T(φB), i.e., (a;, %) — (y, v). Hence / ^ induces
an imbedding of T(φz)/Fz into T(φ2)/F2, as a G-spaee.

The next proof includes the fact that immersiveness is equivalent
to a sort of one-one-ness.

LEMMA 5.5. Suppose ((Fu [μλ])f φλ) and {{F2y [/Λ]), φ2) are similar
elements of ^(G). Then φx is immersive iff φ2 is.

Proof. Again the symmetry means we need to prove only one
implication. By passing to similar homomorphisms, as permitted
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by Definition 5.1 and Lemma 3.7, we may arrange that φx and φ2

take values in an i.e. on which v is (r, ώ)-quasi-invariant and then
that (φlf ψ2) is composable. Next choose an i.e. F4 of F2 on which
φ2 and ψ2 are strict, <Pi°ψ*2 is strictly similar to φ2 and φ2 is strictly
immersive. Then there is a choice of ψλ and an i.e. F3 of Fλ such
that φλ\F3 is strict, ψx\F^ is strict, ψί(F3) £ F4, ψ2oψt is strictly
similar to the identity on F3f and φ2^ψ1 is strictly similar to φλ on

Now we will show that φ2 is one-one on sets of the form
r'\v) Π d~\u) for w, v 6 i*7^ Suppose r(f) = rφ) = v, d(£) = d(^) = n
and d(α ) = <p2θ), and let φ2(ξ)=φ2(η). Then (α, v)ξ = (xf v)η, so £ = 3?.

From this we see that the same holds for φx on Fz. Suppose
£, V e ί\, d(f) = <%), *"(£) = r(η) and ^(f) = φ^η). Then % o^(f) =
Ψi°ψι{V) because of the similarity. Hence ψ^ξ) — ̂ (57), so ^2°^i(ί) =
ψ2°ψi(V) By u s e °f the strict similarity of ^oψ i with the identity
on FZ1 we see that ξ = η. By reversing the argument for φ2 above,
we see that φx\F% is strictly immersive.

COROLLARY 5.6. If ((Fl9 [μj), φd and ((F2, [μ2]), φ2) are similar
elements of ^(G)> then φ1 is an imbedding iff φ2 is an imbedding.

6. Some results about immersions, imbeddings, etc* A variety
of questions arise naturally about the definitions of § 5. We prove
that a composition of imbeddings is an imbedding and a composition
of homomorphisms with dense range has dense range. We prove
that the homomorphism φf of Theorem 3.6 has dense range, i.e.,
that "the range of φ is dense in the closure of the range of g>"
There are other results here, and some obvious questions are not
answered. Our purpose is to develop some useful facts and answer
enough of these questions to justify the definitions.

The first lemma is a rather obvious fact, and we tend to use
it without explicit reference, but it may help to state it once. It
says that a homomorphism which is an isomorphism of i.c.'s is
actually a monomorphism in the sense of category theory.

LEMMA 6.1. Let (F, [λ]), (G, [μ]) and (H, M) be measured
groupoids and let ψ: (G, [μ]) -> (H, [v]) be a homomorphism such that
there are i.e.'s Go of G and Ho of H with <f\GQa strict isomorphism
of Go onto Ho. If φlf φ2 are homomorphisms of (F, [λ]) into (G, [μ])
With [ψMφ,] = [ψ]o[φ2], then [φ,] = [φ2].

Proof We may assume that φ^F) U <P2(F) £ Go, so ψoφ^F) U
ψ°φJJ?) £ Ho. In that case, a similarity θ of ψoφ± to ψoφ2 must
take values in Ho and (ψ|G0)~l0^ is a similarity of φt to <p2.
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Next we give the characterization of imbeddings in terms of
groupoids given by actions. The first step is a lemma related to
the notion of the kernel of a homomorphism. For homomorphisms
of virtual groups F into compact groups G, the ergodic groupoids
into which (G x F(0))*F decomposes correspond to the kernel [13].
This relates to condition (b) of Lemma 6.2.

LEMMA 6.2. Let {F, [μ\) be a measured groupoid and let (T, X)
be an analytic strict (F, [μ])-space. These conditions are equivalent:

(a) There are an i.e. Fx of F and a conull analytic Fx-invariant
set Tx £ T such that Tx*Fλ is principal and TJF1 is analytic.

(b) Almost every groupoid in an ergodic decomposition of
(T*F, [X*μ]) is similar to the trivial group.

Proof. To prove (a) => (b) we may suppose Tx = T, F1 = F.
Then S = T/F is analytic. Let q: T—>S be the quotient map and
let St be standard and g^λj-conull. By the von Neumann selection
lemma there are a Borel function c: S —» T and a conull Borel set
So £ 5>! such that qoc is the identity on So. Denote the saturation
of A by [A] as usual and define Gs = (T*F)\[c(8)] for seS. Now
Q({c(SG)]) = So and the level sets of q on [c(S0)] are exactly the F-
orbits. Thus the decomposition of T*F given by q produces transi-
tive groupoids which are therefore ergodic, so q is an ergodic
decomposition. Since F acts freely, T*F is principal. Then the
decomposition of [c(S0)]*F must produce principal groupoids. Since
a principal transitive groupoid is similar to the trivial group, condi-
tion (a) implies condition (b).

For the converse, suppose q: T—>S is an ergodic decomposition
of T*F. Let So be a conull set in S such that Gs = (T*F)\q~1(s)
is similar to {1} for seS0. Then Gs is essentially transitive and
essentially principal, so there is an equivalence class in Gι

s

0) = q~\s)
which is conull and to which the contraction of Gs is principal. Let
λ = iλ.dή^λXs) be the decomposition of λ relative to q which we

are using. Let E = {(ί, tx)eT x T: (ί, x) eT*F}. Then seS0 implies
that λs is concentrated on some orbit, and that orbit is [t] iff εt x
\(E) > 0, and then q(t) = 8. Choose Borel sets El9 E2 with J ^ C J & C

E2 so that λ*λ(JEf2 - Ed = 0. Define K = {t e T: \{t)([t]) > 0} - {t e
T: εt x \{t)(E) > 0}, and define Kt={te T: εt x X^M) >0} (i = 1, 2).
We have K^KQKz and λ*λ = leίxλί(t,(ίλ(ί), so that 6txλff(i)(J51) =
εt x \{t)(E2) for almost all ί, so X(K2 - Kx) = 0 and λs(iζ> - iΓJ = 0
for almost all s. Thus 1£ is measurable for λ and for almost all λs

and teK implies [t] £ K, so seS 0 implies XS(X/K) = 0. Hence Iζ
is conull. Thus g(jKΊ) is conull and the von Neumann selection lemma
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gives rise to a Borel function c: S —> T such that the Borel set Sλ =
{s'e SQ: q°c(s) e KJ is conull. Then Tί = [cζSJ] is contained in K, and
2\ is analytic, conull and invariant. The set F1 = {ξ eF:ξ and f"1

act on ΓJ is an i.e. of F, T^F,. is principal and TJFί is Borel
isomorphic to g(2\), which is analytic.

LEMMA 6.3. Le£ (S, λ, p) 6β α (G, [v]) space ami /orm F = S*G
and μ = λ*v and let j : S*G —> G be the coordinate projection. Then
j is an imbedding, and the space Ss is isomorphic to S.

Proof. First, F{0) is the "graph" of p, which is naturally
identified with S. Hence G*Fw = T(j) is isomorphic to {(x, s)eGxS:
sx"1 is defined}, and the action of (s, y)eF on (a?, a) e T{j) is
(x, s)(s, y) = (xj(s, y), sy) = (sci/, as/). Hence (α, s)(β, x"1) = (r(x), sx'1),
s o l = {(p(a), a): seS} meets each orbit. Now if (xu sx)(s, i/) = (a?2, 2̂)
then s = 8X and 3/ = acf1 ,̂ so the action of F on T(j) is free. It
follows that X meets each orbit only once. Hence the quotient
space T(j)/F is isomorphic to X, and hence to S, so it is analytic.

THEOREM 6.4. Let (G, [v]) 6e a measured groupoid and suppose
^r = ((ir? [JM])̂  cp) e ^T(G). Seί (S9, [λ])=Af(^) as m § 4 a^ώ ̂  =
((Sφ*G0, [λ*v]), i) where j projects SΨ*G0 onto Go. TΛe^ 9 ia α^
imbedding iff there is a homomorphism ψ: Sr

9 —> ά?" such that
(φ\ α/r) is α similarity.

Proof. If such a homomorphism exists, then Corollary 5.5 and
Lemma 6.3 combine to show that φ is an imbedding. The rest of
the proof is somewhat tedious, so to help keep the parts straight
we shall announce the major divisions in the proof. We only need
to find ψ: ̂  —> ^ so that (φ\ ψ) is a similarity of (F, [μ]) with
(S<p*G, [λ*z/j). By restricting to i.c.'s, we may assume φ is a strict
imbedding.

The existence of ψ: Let T = G*F (0), let p be the quotient map
of T onto TfF, and form vι and λL = v^μ as before. By the proof
of Lemma 5.3, p is an ergodic decomposition of (Γ, [λj). Since the
actions commute, T/F is already a G-space, and we can use it for
Sφ. Set Fφ = Sφ*G. Recall that φ'(ξ) - ( p θ r ( ί ) , r(f)), ?(?)) for
ξ e F. The von Neumann selection lemma gives us a Borel function
c:Sφ—>T such that the Borel set Sλ = {s e Sφ: p°c(s) = s} is conull
relative to p#((φ x i)*(fi) + λx). This latter measure is used because
it gives weight to the image under p of the "graph of φ" in
G*F (0). Let Ti = p-'OSϋ. Then 2\ is F-invariant, Borel and conull
and [cCSJ] = ^ because c<>p(t) - ί if p(t) e S,.
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Now let E = {(tl9 t2) 6 T2: tx ~ t2), which is the one-one image of
T*F in Γ2 under the map (ί, ξ) -> (£, tξ). By composing the projec-
tion of T*F onto F with the inverse of this function, we get a
Borel function f:E->F such that (tl9 t2) e E implies txf{tu £2) = &>•
Define θ on 2\ by θ(t) = /(c°j>(ί),1). Then for ί e 2 \ we have
cop(t)θ(t) = t, and 0 is Borel. If (s, a?) 6 i ^ | Slf then s and so? eS17

and s = p(ί) for some teT± with £# defined. Then c(s) is in the
F-orbit of t since p(£)=poc(s)=s, so c(s)x is defined. Then p(e(s)#) =
p(c(s))x = s#, so c(s)# — c(sίc). Since the action of F is free, there
is exactly one element of F which carries c(s)x to c(sx) and we shall
call it ψ(8, x). This defines ψ on Fφ\Sx. Let ^ be constant on the
rest of Fφ. For teT19 cop(t)θ{t) = ί so if ( ^ ^ e ^ l ^ we have
(cop(t)x)θ(t) = ία?. Hence ψ{p{t), x) = θ(t)θ(tx)~\ so ψ* is Borel on
JFVISi and hence Borel.

α/r is a homomorphism of measurable groupoids: Suppose (s, x)
and (sx, y)eFφ\Sίf and that ζ,ηeF are such that c(s)xξ — c(sx) and
c(sx)yτ] = c(sxy). Then c(s)xyζr] = c(sxy), and by the uniqueness
defining α/r we see that ψ(s, a?y) = ψ(s, x)ψ«(sx, y). Thus 'f is algebra-
ically a homomorphism of i^lS^. For the measure theoretic part
let A £ Fi0) be analytic, saturated and null for μ. The set G*A =
{(α?, tt)eGxi: d(&) = 9(%) and ueA} is null in Γ and is invariant
under both F and G. Thus p(G*A) is null for λ = p*(ι>i*μ). Now
c(s)xψ(s, x) is defined for (s, aj) 6 Fφ \ Slf so c(s)ψ(s, x) is defined and
hence ψ(s, p(s)) = roψ(s, x) is the second component of c(s), so
^(s, p ( s ) ) e i iff c(s)eG*A iff sep(G*A). Hence t~2(A) is null.

[9]o[f] = [j, Fφ] and [φ']°[ψ] — [ί, F]: First notice that (φ, ψ)
and (φ', ψ) are composable since φ and 9/ are strict homomorphisms.
Write c = (α, δ), so α: Sφ -> G, δ: Ŝ  -> F ( 0 ) and for each s, φob(s) =
doa(β). Also (φ°b(έ), δ(s))α(s)~1 = (α(β), δ(s)) = c(s), and p(φ°b(s),
δ(s))α(s)"1 is defined and equal to p°c(s), which is s if s e Slβ Let
^(s) = (p(φob(s), δ(s)), α(s)"1). Then 0X is Borel from Ŝ  to Fφ and
doθx(s) — s if seSi, so 0i(s)(s, α?)01(βίc)"'1 makes sense if (s, x)eFφ\S1.
We must show this product is in fact φ'°ψ(s, x). If (y, u) = teT,
s = ^(ί) and (s, a?) e i^ | S^ then with θ as used in constructing ψ we
have (α(s), b(s))θ(t) = c(s)0(ί) = t = (y, u) so a(s)φoθ(t) = ?/. Similarly
α(sίc)̂ o (̂ίcc) ^α;"1]/, so φ°ψ(s, x) = φoθ^φoθitxY1 = α^ '^α^ίc) . This
shows <p°ψ> ̂  i . Now r°ψ(s, x) = r°θ{t) = δ(s) since c(s)θ(t) is defined,
so

(8), 6(8)), α(s)"^α(^))

r°ψ(s, x), r°ψ(s, x))f φ°ψ(s, x))

8, a?) ,
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as desired.

[h F]: Since S1 is p*({φ x i)*(fi) + λj-conull, the set
U = {u6F(0): p(9>(w), u) 6 S J = {%6i^(0): φ'(u) e i ^ | S J is conull in FίQ\
Hence (ψ, φ') is composable. The function Θ from above is Borel on
3Γi so u —> #2(^) = θ{φ{u), u) is Borel on Z7. Also c{p(φ(u), u))θ2(u) =

), u) by the definition of θ. Now if £ 6 F\ U, then 9?(f) e G and
e JP̂  IS19 and since the actions commute the following makes

sense:

By the defining property of ψ, ψ°φ'(ξ) — 02°r(ζ)ξθ2od(ξ)~'\
It is desirable for a subobject of a subobject to be a subobject,

in a natural way. The characterization of imbeddings given by
Theorem 6.4 makes one form of this property relatively easy to
establish, as we see below. Notice that having S^G a subobject
of S2*G involves a map of Sλ onto S2 as G-spaces, as expected [16].

THEOREM 6.5. Let (G, [μ]) be a measured groupoid and let
(So, [λ0]) be a strict (G, [μ])-space. Let F — S0*G so that (F, [λo*μ])
is a measurable groupoid, and let (Su [λj) be a strict (F, [λo*/fj)-
space. Then (Slf [λj) is also a strict (G, [μ])-space in such a way
that (S^F, IX*0V^)]) is isomorphic to (S^G, [\*μ]), by mean of an
isomorphism φ such that j\oφ = j0ojf where j \ : Sλ*G —> G, j 0 : S0*G —•
G, and j : Sλ*F -> F are the natural projections.

Proof. Let po:So->G{O) be such that sx is defined iff po(s) — r(x),
i.e., S0*G = {(s, x) e So x G: pQ(s) = r(a?)}. Let p2: Sx -> So be such that
5x(s, α?) is defined iff Pjfo) = s, for sx e Sx and (s, a?) 6 F . Set ί) = po°
p t . Now if p(sj = r(x)9 then (^(s j , x) eF and ^(^(Si), α;) is defined,
so we can define sxx = s^p^sj, x). Now in that case,

is defined, so p^x) = ̂ (sOίc. If ^ i ) = r(a?) and d(x) = r(i/) then

i(Pi(βi), ^2/) = «i((ί>i(«i), »)(Pi(βi)«, 1/)) = («i(Pi(βi), «))(:Pi(Si)&, 1/) =

), y) = (s1x)yf and if p1(81)=r(α?), p1(β1aj) = r(i/) then d(x)-=r(y)
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and the calculation is reversible. Thus we do have a strict action
of G on St (pOSJ = G(0) because po(So) = Gm and p^SJ = So). The
action is clearly Borel.

From Pi*(^i) ~ \ and po*(\) ~ β it follows that ^ ( λ j ~ μ. By-
changing λ0 and then Xx we may arrange that Pι*(\) — λ0 and
Po*(K) = μ. Then p*(λx) = μ. Let 9>(β2, ( p ^ ) , x)) = fo, a?); then 9?
is a Borel groupoid isomorphism of S±*F onto 5X*G. If the measures
agree then (SX*G, |\*μ]) is a measured groupoid and the isomorphism

statement is proved. Let μ = \μudμ(u) be a decomposition of μ

relative to r. Then λo*μ = lεs x μPoi8)dXo(s) and this is the decompo-

sition of λo*μ relative to r. Thus XL*(XQ*μ) = \es x (ePι{,) x μ^dX^s)

which maps to Xt*μ = \ε8 x μp{s)dX1(s) under φ.

To complete the proof, we observe that j\°φ = jo°j is obvious.
For measured groupoids, similarities are like isomorphisms for

many other categories. The next result shows that this idea is
compatible with the idea that a surjective imbedding should be like
an isomorphism, namely a similarity.

THEOREM 6.6. Let (F, [λ]) and ((?, [μ]) be measured groupoids
and let φ: F~>G be a homomorphίsm. There is a homomorphism
ψ:G —> F such that (φ, ψ) is a similarity, iff φ is both surjective
and an imbedding.

Proof. If φ is an imbedding, Theorem 6.3 says there is a
homomorphism ψx\ S(φ)*G —* F such that (<£>', ψx) is a similarity. If
φ is also surjective, then φ has dense range (by definition), so the
inclusion j : S(φ)*G -» G (i.e., coordinate projection) is a strict isomor-
phism of some S0*G0 onto Go where Go is an i.e. of G and So is a
conull strict G0-space in S(φ). Let j0 = j\(S0*G0) and take φ0 to be
similar to φ with φo(F) £ Go. Then (<p0, ψx°jo

ι) is a similarity, so
the desired ψ exists.

Now suppose (φf ψ) is a similarity. We prove first that for
u,veFm, φ takes r~\v) Π d~~\u) one-one onto r " 1 ^ ) ) Π i " 1 ^ ) ) .
If r(x) — v and d(x) — u, then ψoφ(χ) = θ(v)xθ(u)~\ If vt — ψoφ(v)
and ux — ψ°φ(u), this shows that ψoφ takes r'^v) Π dΓ\u) one-one
onto r~\vύ Π cZ""1^). In particular φ is one-one on r~\v) Π cί"1^).
By symmetry, ψ is one-one on r~\φ(v)) Π d " 1 ^ ^ ) ) , but it also must
take this set onto r~\v^) Π dΓ\u^). Thus φ(r~\v) Π d~\u)) = r~\φ(vj) Π

Now let (α, u) and (^, ^ ) 6 Γ(?>) = {(2/, v)eG x F{0): d(y) = φ(v)},
and suppose r(&) = rfo). Then α?"1^ e r~\φ(u)) Π d" 1 ^^!)) , so there
is a £ 6 r" 1 ^) n d~\u^ with ^(f)^^" 1 ^. Then (a?, u)ξ = (xlf uΣ). Thus
the level sets of r+(r+(cc, w) = r(x)) are exactly the F-orbits Hence
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φ has a dense range and a closed range.
Thus S(φ)*G is essentially isomorphic to G via the projection j .

Under this isomorphism, φ corresponds to φf and the fact that {φ, ψ)
is a similarity means that (φ\ ψ°j) is a similarity. Thus φ is an
imbedding, by Theorem 6.3.

The following theorem is another result which is not surprising
in its basic content. We have defined separately the terms range
closure and dense range. For φ:F—>G, Sφ*G is the range closure
and φ = joφr (Theorem 3.5) is the formula that says φ factors
through this subobject. We will discuss this further in § 7, but
now we prove the fact that the range is dense in the range closure.

THEOREM 6.7. Let (F, [λ]) and (G, [μ]) be measured groupoids
and let φ be a homomorphism from (F, [λ]) to (G, [/*]). Take S(φ)
and φr as in Theorem 3.5. Then φf has dense range.

Proof. Let T(φ) = {(x, u)eG x F{0): d(x) = φ(u)}. The method
used in Theorem 3.6 was that of Theorem 3.2, which produces a
map / : T(φ) ->G ( 0 )*^^. In fact we may take S = S(φ) = f{T(φ)).
If p: S —• G(0) is the function such that sx is defined iff p{s) = r(x),
then p°f{x, u) = r(x) for (x, u) 6 T(φ). Define q(u) = f(φ(u), u) for
u e F ( 0 ). Then ξ e F implies φ'{ξ) = (q(r(ξ))9 φ(ζ)), and

{(β, a, iθ = ((βf x), u) 6 (S G) x F^: {sx, d(x)) - φ\u)}

If we define g(s, x, u) = (sc, ̂ ), gr is a Borel space isomorphism of
T{φ') onto T(φ). A simple calculation shows that g is a strict F-
space isomorphism.

Now let us verify that g preserves the relevant measure classes.

Let v be the image on S of μ*% under /. Then v*μ=\ ε8xμp(8)dv(s)
is the measure on S*G, so (v*μ){s>p{8)) = εs x μp{s) is the integrand in
the decomposition of v*μ relative to r over v = r*(v*μ). Thus
(β8 X μ*™)"1 is the integrand if we decompose (v^μ)"1 relative to d
over v — d*((v*μ)~ι). Since (v*^)"1 — v*jtβ, the measure class on T(φ')

is that of I (εq{u) x ^ ( ί i ) ) ~ 1 x eud\(u). For almost all w we have
Jί w

^ ( u ) - {μΨ{U)Yι. Define Λ on T(φ) by Λ(a?, w) = ((q(u\ x~ι)~\ u): note
that (q(u), x"x)eS*G. Then Λ( , u)*(μφ{u)) ~ {eq{u) X μ^)"1 x εw for
almost all w e F{0). Now (?(w), a?"1)"1 = (?(w)»"1, %), so g*(h(-, u)*(μφ{u))) =
μφM x εβ. Thus ^ is a measure class isomorphism, giving an isomor-
phism of T(φ')*F onto T(φ)*F.

Define f\q(u)x~\ x, u) = /(a?, %). Then /' : Γ(p') -> S is an ergodic
decomposition of T(φ')*F. Now S is a strict S*G space by the
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formula s(s, y) = sy, and T(φ') is a strict S*(?-spaee by the formula
0, sc, w)(β, 2/) = (s^Γ1, y~% u). Now if s = f(x, u), sy = f{y~ιxf u).
Thus / ' is a strict S*G-space map. Hence we may use S as S(φ').
Let p' be the map of S to (S*(?)(0) = S involved in the S*G-space
structure. As above for S*G, we have p'°f'(s, x, u) = s. Also s =
q{u)x~ι — f(φ(u), u)x~ι = f((φ(u), u)x~x) = /(sc, w) Hence p' is the
identity on S. Thus 9/ has dense range.

The next theorem is of minor interest, and will not be used, so
the proof is omitted. After that we have a useful technical lemma.

THEOREM 6.8. Let (Fly [μj), (F2, [μ2]) be measured groupoids
with associated equivalence relations (Eu [vj) and (E2, [v2]), respec-
tively. If ijr:F1-*F2 has dense range, then ψ0 = (ψ x ψ)\E1 has
range dense in E2.

LEMMA 6.9. Let (Flf |/ίj), (F2, [μ2]) be measured groupoids and
let φ: Ft —> F2 be a homomorphism with dense range. If p: F2

{0) —> S
is an ergodic decomposition of F2, then p^φ is an ergodic decomposi-
tion of JF\.

Proof. Define q: T{φ) -> Fiΰ) by q(x, u) = u, r+: T(φ) -> F2

(Q) by
r+(x,u) = r(x). We will use Lemma 2.8. Suppose g: Fx

{0) -> Z is
Borel and constant on equivalence classes, where Z is countably
separated. If x e F2, ξe Fx and (a, r(ξ)) e T(φ), then q((χ, r(ζ))ζ) =
d(ξ) ~ r(ί) = g(», r(ί)). Hence goq is constant on equivalence classes,
and there is a Borel function gλ: F2

(0) —> Z such that ^or + = goq a.e.,
because r + is an ergodic decomposition. If (x, u) e T{φ) and r{x) =
r(y), where y e F2, then g((a;, w)j/) = q(y~% u) = u = q(x, u), so
g°q((x, u)y)=goq(χ, u). Now g1°r

+=g°q on some conull set Kζ=T(φ).
Then If is ft,^) x ε^-conull for /^-almost all u, and for any such
u, gx is constant on {r(x): d{x) — φ(u) and (xf u) e K}. Thus ^ is
essentially constant on almost every orbit in F2

0). There is a g2

which agrees a.e. with g1 and is constant on almost every orbit:

regard Z £ [0, 1] and define g2(u) = \gιdr*(μu) for almost all u. Now
there is an h: S-> Z with hop = gr2 a.e. Then h°p°r+ = sr2or+ = ̂ o^
a.e. Let 2̂  = {ί 6 T(φ): hopoT

+(t) = g<>q(t)}. Then 2\ is conull and
invariant under both ί\ and JP2. If y(u) = (9>(̂ ), w) for ueFf0), this
implies that τ(tθ € Tt for almost all u. Thus hopor+oj = #0307 = #
a.e. Now >+o7 = <̂ , so we have g = hopoφ a.e. Thus p©^ has the
factorization property and is, therefore, an ergodic decomposition,
by Lemma 2.8.

LEMMA 6.10. Let (Fu [μt]) and (F21 [μ2]) be measured groupoids
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and let ψ: F1 —> F2 have dense range. Let (S, [v]) be an (F2, [μ2])-
space with p: S —> F2

{0) determining when sx is defined. Then ψ
can be used to make an Fxspace of S*Fΐ0) — {(s, u): p(s)=ψ(u)}, and
S*Ft = {(s, x): p(s) ~ ψoγ(x)} is a groupoid. The function ψ+: S*F1-^
S*F2 defined by ψ+(s, x) = (s, ψ(x)) is a homomorphism with dense
range.

Proof. First, we suppose ψ is strict. We define (su £Ci)(s2, x2) =
(su xλx2) for (su xλ) and (s2, x2) e S*Flf when s^Xj) = s2 and d(xx) =
r(x2). It is easy to verify that this makes a groupoid, and (S*F1)

(0) =
S*F~W, while ψ+ is algebraically a homomorphism.

Now let v = \vudμ2(u) be a decomposition of v relative to p>
and observe that {x: vr[z)x ~ vd[x)} is closed under multiplication. It
is conull because we assumed [v] is invariant [19, Theorem 2.9].
Thus the set contains an i.e. Since we may replace ψ by a similar
homomorphism, we may assume ψ takes values in this i.e. Then
Theorem 2.9 of [19] shows that [v] is jFVinvariant, and (S*FU [v*μj)
is a measured groupoid.

Now T(f+) = {((β, x\ (sx, u)) e (S*F2) x (S*ί\)(0): d(x) = ψ(u)}, and
if (β, a?) e S*.P 2, ί e ^ a n d ^ ° r ( f ) = d(α) , t h e n

((8, x\ (sx, r(ξ)))(sx, ί) - ((β, a?)^+(s^, ξ),

= ((8, z f (f)), ((βa )f (f),

Thus T(<\jτ+) is naturally isomorphic to S*(F2*Fχ{0)), carrying the
action to the one in which Fι operates only on the factor F2*Fl0),
as in the construction of S(ψ). Thus every invariant set is of the
form A*B where A £ S and B is invariant in F2*Ff0). Hence
(s, xf u) -> (8, r(x)) is an ergodic decomposition relative to Fx. Trans-
ferred to T(ψ+), this says ψ+ has dense range.

THEOREM 6.11. Let (Flf [^J), (F2, [μ2]) and (G, [λ]) be measured
groupoids, and suppose that ψ: F1 -> F2, φλ: F1 —> G and φ2. F2—>G
are homomorphisms such that [9>2]°[ψ'] = [97i] If Ψ has dense range,
then M[ψ] is an isomorphism.

Proof. By taking i.c.'s and replacing homomorphisms by similar
ones, we may arrange that φ2 and ψ are strict and that φ2oψ — φx.
Then φ1 is also strict. Now T(φ2) is an F2-space so T(φ2)*F}0) —
{((x, v), u) 6 T(φ2) x F?u. ψ(u) = v] is an ^-space, and carries an
invariant measure class. This space is naturally isomorphic to
T(φx) = {(x, u)eG x Ff0): d(x) = φ(u)} as an ^-space, via g, where

g(x, u) — ((x,ilr(u)), u). The measure on T(φ^ is λ*/Σl=lλί,(1l) x Sudμ^u),
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which g carries to \pW,(tt) x εψ{u)) x εjίμ^u). Now the measure we

use on T(φ2) is Yλv x εvdμ2(v), so the measure we want on T(φ2)*Fί

w,

as in Lemma 6.10, is just g*Q**βύ- Also, under this isomorphism
with T(φ2)*F1

{Q), the function (x, u)t-*(x9ψ(u))f which has M(ψ):
S(<Pί) —> S(φ2) as a quotient, just corresponds to (ψ+)~. If / : T(φ2) —>
S(φ2) is a G-equivariant ergodic decomposition of T(φ2)*F2, then
f°(ψ+)~ is a G-equivariant ergodic decomposition of T{φ^Fγ. Hence
(x, u) h-> /(a?, ψ(w)) is a G-equivariant ergodic decomposition of T(φ^)*
F± and may be used to establish S(φ2) as S(<£Ί), and M(ψ) becomes
the identity. Thus M(ψ) is an isomorphism.

Consider now homomorphisms φ: (F, [λ])->(G, [μ]) and <f: (G, [μ])->
(H, [v]). The following theorem makes precise the intuitive content
of the statement that the closure of the range of ^-restricted-to-
the-closure-of-the-range-of-£> is the closure of the range of ψoφf i.e.,

THEOREM 6.12. // (F, [λ]), (G, [μ]) and (H, [v]) are measured
groupoids and φ: F-* G, ψ:G-> H are homomorphisms, then S(ψoφ)
and S(ψ°j) are isomorphic as H-spaces, where j : S(φ)*G —> G is the
inclusion homomorphism of the closure of the range of φ into G.

Proof. We have ψoφ = ψojoφ\ and φf has dense range, so
M(φr) is an isomorphism of S(ψ°φ) with S(ψ°j) (mod null sets).

Now we can show that similar groupoids have the same actions,
as isomorphic groups have the same actions.

THEOREM 6.13. Let (Flf |X|) and (F2, [μ2]) be similar measured
groupoids. Then there is a natural one-one correspondence between
(Fl9 \μ^)-spaces and (FZf [μ2])-spacβs.

Proof Let φλ: F1 -• F2 and φ2: F2 —> Fx be the similarity. If
(Si, [λj) is an (Fί9 [^J)-space, let j \ : S^Fj, ~> Fx be the natural homo-
morphism. We define τ(S^ = S2 to be SfaojJ. We define r2 the
same way for (F2, [μ2])-spaces. If S2 = r^SJ, then Theorem 6.12
shows that τt(S2) = S(φ2oji)^S((p2oφ1oj1)^S(<Ji)=S19 i.e., z^τ^S^S^
Similarly T^T^SZ) is always isomorphic to S2.

Now if St and SI are FΓspaces, and /: Sλ —> SI is equivariant,
then φ = / x i is a homomorphism of S1*F1 to S[^F1 with φ1oj[oφ =
φ^j^ Then φ induces an F2-space map of τ^SJ to τ^SΪ).

The next lemma and Theorem 6.16 are additional ways of saying
that containment is transitive for measured groupoids.

LEMMA 6.14. Let <p: (F, [λ]) —> (G, [μ]) be an extensive homo-
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morphism of measured groupoids and let (S, u) be an (F, [X])-space.
If φ is an imbedding, so is φoj, where j is the inclusion of S*F
into F.

Proof. We identify the units of S*F with S. Then T(φoj) =
G*S = {(£, s): d(ξ) = φoj(s, p(s)) = φ(p(s))} and S*F acts on G*S as
follows: (£, s)(β, a;) = (ζφ(x), sx). We also have F acting on G*S by
(£, «)a? = (£<?>(#), *#) when p(β) = r(#), so the orbits in G*S are the
same for the action of S*F as they are for the action of F. Also,
the function / taking (£, s) to (£, p(β)) is algebraically strictly F-
equivariant from T(φ<>j) onto T(φ). The measure on T(φ°j) is

\i"ί>(p(.» x e»dv(8) and on T(φ) we have \μφ{u) x εttdλ(w). Since p*(v)~

λ, / is strictly F-equivariant and normalized.
Suppose now that Fx is an i.e. of F and T2 is a conull F r

invariant set in T(φ) such that Fx acts freely on Γ2 and TJF1 is
analytic. Let S, = p~\F^) and Γx = f~\T2). Then 2\ is conull and

If (ί, s) e Γi, (β, a?) 6 S1*F1 and (f, s)(s, α;) = (f, s), then ^ = s so
r(x) = p(s) — d(x), and f?>(α;) = ξ so <£>(#) is a unit. Because 2? is an
imbedding, x is a unit, namely p(s). Hence S^i^ acts freely on 2V

Since T2/JF\ is analytic, there is a cross-section 7: 21

2/ î —> T2

which will give rise to a Borel set B S T2 whose saturation is
conull and which meets each orbit at most once. Suppose (£, s) and
(f, s)(s, x) - (f, 8)aj are both in f~\B). Then f(ξ, s) and /((f, s)cc) -
f(ξ, s)x are both in B. Hence x is a unit, so f~\B) meets each
orbit only once. Now the saturation of f~\B) is f~\[B])f which is
conull. Another contraction of Flf to the image in Ff0) of [B] will
complete the argument.

LEMMA 6.15. Let φ: (F, [λ]) -> (G, [μ]) and γι (G, [μ]) -> (fΓ, [v])

be composable homomorphisms. Then (ψ°φ)' = (ψojv)'°φ'.

Proof. We may assume that ψ̂  and >̂ are strict homomorphisms.
Let qx: T{ψ°j<p) —> S(ψojφ) be a suitable ergodic decomposition. As in
Lemma 4.1 and Theorem 6.11, (x, u)\-+ (x, φ'(u)) takes T(ψoφ) to

and the function ĝ : T{<f°φ) -> S(φ°jφ) defined by ^(α;, %) =
s a G-equivariant ergodic decomposition. Using qlf we

may take S(ψojφ) as S(ψ°φ). Then according to the way we define
( )', Theorem 3.6, for ξ e F we have



SUBOBJECTS OF VIRTUAL GROUPS 423

THEOREM 6.16. Let φ: (F, [λ]) -» (G, [μ]) and ψ: (G, M)->(jff, M)
δβ composable homomorphisms. If both of them are imbeddings, so
is ψoφ. If both of them have dense range, so does ψoφ.

Proof (ψ°φ)' — (ψo3<p)r°φr, and in the first case each of φr and
(ψ°jφY is half a similarity, so (ψ°φ)' is half a similarity.

In the second case, jΦ is an isomorphism, so S(ψ°jφ) = S(ψ) as
if-spaces, and S(ψ) = Hw as an iϊ-space because ψ has dense range.
Also we have S(foφ)^S(ψojφ) by Theorem 6.12, so S(ψ°φ) ^ H(0)

as an if-space.

7* Order among subobjects and some category theory*

For virtual subgroups S x G and T x G of a group G, Mackey
defined S x G to be smaller than T x G if there is a G-equivariant
map of S onto Γ. This is a definition by extension: if S = G/fl"
and Γ = G/iί, if is conjugate to a subgroup of K iff such a map
exists. This does not behave as well as ordinary containment for
subgroups, but there are a number of facts which can be formulated
in terms of this ordering in a congenial way.

In this section we want to develop some of these facts and to
relate some of the properties of Section 5 to notions from category
theory. Some of the results we state are due to Caroline Series
[21]. She studied homomorphisms in terms of the size of kernel or
range closure, and gave several of the definitions we use here [21,
Chapter II, Section 3 and Section 4]

We begin with three definitions. The first and third are as
formulated by Series and the second is equivalent to one of hers.
Following the definitions we will discuss them and their relation-
ships.

DEFINITION 7.1. Let φ: (F, [λ]) -> (G, [μ]) be a homomorphism
of measured groupoids.

a) φ is trivial if it is similar to a homomorphism φ' such that
φ\F) S G(0).

b) If (S, v) is a (G, [μ])-space, we say φ takes values in S*G
provided there is a homomorphism ψ: (F, [X]) —> (S*G, [v*μ]) such
that φ = js°ψ-

c) The kernel of φ is (T(φ)*F, [(μ*λ)*λ]), denoted Ker(^).
This property of triviality for φ depends only on the similarity
class, and generalizes the one for group homomorphisms. However,
at first it seems to have a difficulty, as follows. If φ{F) £ G(0),
then φ is constant on each equivalence class. If F were ergodic,
φ would be essentially constant, so G would be essentially transitive.
We might want the kernel of φ to be ergodic, and then it appears
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that in general φ could not be trivial on its kernel. Mackey
pointed out in section 7 of [16] that for a homomorphism φ into a
compact group G, T{φ)*F decomposes into isomorphic ergodic
groupoids, any one of which is a good candidate to be called the
kernel of φ. If this worked in general we would face a choice
between ergodic kernels and having φ trivial on its kernel. However
an unpublished example of Series shows that what we have called
Ker<pcan have distinct integrands. Therefore it is easier to decide
to allow Ker φ to remain as given here.

This definition of taking values in the subobject S*G is motivated
by the fact that for groups, <p takes ordinary function values in
the subgroup H iff it factors through the inclusion homomorphism
of H. Next we want to show that this definition agrees with that
of Series, and that the property is invariant under similarity.

LEMMA 7.2. φ takes values in S*G iff there is a Borel function
β: F{Q) > S such that

( i ) for some i.e. Fo of F, xeF0 implies β(d(x)) = β{r{x))φ{x)
makes sense and is true.

(ii) β~\E) is null ifEQS is negligible.
If φ takes values in S*G and φ' is similar to φ, then φf takes
values in S*G.

Proof. If such a β exists, define ψ(x) = (β(r(x))t φ{x)) for xeF.
Let p be the mapping of S to G(0) such that sx is defined iff p(s) =
r(x). Then condition (i) on β implies that ψ carries Fo into S*G.
o-r I Fo is a homomorphism because φ is and G acts on S, and because
EQS is negligible iff {(s, p(s)): s e E} is negligible in (S*G)(0), while

For the converse, suppose φ — js°ψ Then there is a function
βL:F->S such that ψ(x) = (β^x), φ(x)) for xeF. If d(x) = r(y),
then ψ(x)ψ(y) is defined, so βλ{x)φ(x) = β^y). Thus βt(y) depends
only on r(y), and there is a β: F{0) —> S such that βx = βoγ. If ^
is strict on Fo, condition (i) follows easily, and so does (ii).

For the last statement, suppose β is given and that θ is a
similarity of φ to φ\ Define β\u) = βiu^uf1 for ueFw. It is
not hard to show that this makes sense, and that βf satisfies (i)
and (ii) for φf.

Next we want to show that these notions are properly related.
In Theorem 7.8, we give another result of the same kind. Part
of the idea involved here is that G*G "is" the trivial subobject of
G (see Theorem 7.9). Also, one can show G*G^G ( 0 > .

LEMMA 7.3. (a) φ: (F, [λ]) ~> (G, [μ]) takes values in G*G iff φ
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is trivial.
(b) φ\¥Leτφ, i.e., φ°jT«p), is trivial.

Proof, (a) Notice that if (ψlf ψ2) is a composable pair of homo-
morphisms and either is trivial, so is ψx°ψ2. If φ = jG°ψ, we can
therefore prove φ is trivial by proving jG is trivial. Define θ(s) = s
for seG. Then θ(s)jG(s, x)θ{sx)~x — r(s) for (s, x) e G*G, which implies
jG is trivial.

If φ is trivial define β — ψ to show that φ takes values in G*G.
(b) Given φ:F->G, define θ: T(φ) -> G by 0(&, w) = α. Then

for ζeί and #eG with

(a, r(£)) 6 T{φ\ θ(x, r(ζ))φojnφ)((χ, r(ζ)), ξ)θ(xφ(ξ)9 d®)"1 = r(z) .

Thus φ°jT(<p) is trivial.
We remark that φ is an imbedding iff Ker ψ is trivial in a

certain sense, according to Lemma 6.2. Thus Ker φ is sensitive to
more than just whether φ is immersive. Our next results need
definitions of order or "containment" among groupoids. One of
these is due to Mackey [15] and the other to Series [21].

DEFINITION 7.4. Let (S, λ) and (ϊ7, μ) be (G, [v])-spaces.
a) S*G < JΓ*G iff there is a normalized (G, [v])-equivariant map

f:S-*T.
b) S*G •< T*G iff there is a (G, [v])-equivariant map f:S-+T.
c) S is quasi-equivalent to T iί I xS and I xTare isomorphic,

where I = [0, 1] and G acts trivially on /.
d) S*G < Γ*G iff (/ x S)*G < (I x 2>G.
One difficulty with these order relations is that we can have

S*G < Γ*G < S*G without having S equivalent to T. In fact, let
A — ΐ[nezZ/AZ and let Z act on A by coordinate shifts, which are
automorphisms, and form G = A e Z. Let H = {x e A: xn = 0 for
w < 0} and let K = {xeA: xn = 0 ίoγ n < 0 and #0 = 0 or 2}. Then
Jϊ is conjugate to a subgroup of iΓ and vice versa, but they are
not conjugate. Series has given another example [21, page 33].

Leaving that aside, we want to exhibit some more affirmative
results. We follow the notation used by Series for types of standard
measure spaces. For n = °°, 1, 2, , Jn is a space with n atoms.
For n = 0, Jn = I, the unit interval, with Lebesgue measure. For
n — — oo, —1, —2, , Jn = /U e7_Λ. We will say a space is of type
J if we do not want to specify a particular Jn.

LEMMA 7.5. [21, Proposition 13.6]. Lei X δe cm analytic Borel
space with atom-free probability measure μ. Let f be a Borel
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function into an analytic Borel space Y. Let μ = \μydf^{μ)(y) be

a decomposition of μ relative to f and suppose that almost every
μy is of the same type J. Let p be the coordinate projection of
J X Y onto Y. Then X is isomorphic (mod null sets) to J xY via
a Borel function g:X-+ J x Y such that p°g = /.

The proof is omitted (see [21]), but a comment or two may-
help the reader. The discrete parts of the μy can be dealt with
using the von Neumann selection lemma and an exhaustion argument.
For the continuous case one can take X £ / and regard all the
measures as being on I. Then h(x, y) — μy([0, x\) defines a Borel
function and the necessary function g can be defined by g(x) =
(h(x, f(x)), f(x)).

A lemma we will use in conjunction with Lemma 7.5 is a
structure theorem for quotient mappings, as follows. It also is
proved using cross-sections and an exhaustion argument.

LEMMA 7.6. Let X be an analytic Borel space with probability
measure μ. Let f be Borel from X to an analytic space Y and

let μ— \μydf*(μ)(y) be a decomposition of μ relative to f. Then
there are disjoint Borel sets Yng=Y for weZU{+°°, -co} whose
union is conull and such that if y e Yn then μy is of type Jn and
is concentrated on f~\y).

LEMMA 7.7. Let X be an analytic Borel space with probability
measure μ and let f be a Borel function from X into an analytic
Borel space Y. Let m be Lebesgue measure on I, form I x Y and
let p: I x Y—> Y be the projection. Then there is a Borel function
g: I x Y—> X such that fog — p a.e. and g*(m x /*(/*)) ~ μ*

Proof This is easy if I = J x F, so we may apply Lemma
7.6 and Lemma 7.5.

THEOREM 7.8. A homomorphism φ: (F, [λ]) -> (G, [μ]) is trivial
iff Iχ F=(Ix FW)*F < T(φ)*F = Ker (φ).

Proof If φ is trivial, then for (a?, r(f)) 6 T(φ) and ξ e F we
have (x, r(ξ))ζ = (xφ(ξ\ d(ξ)) = (a?, d(ξ)), so the action of F on T(φ) =
G*F{0) is essentially that of the action of F on F{0) with "multipli-
city" added by the fibers. By Lemma 7.7 there is a Borel function
g: I xF{0)—>T(φ) such that p(g(a, u))=u for almost all pairs (a, u)e
I x Fl0) and g*(m x λ) ~ ^*λ, where m is Lebesgue measure (see
the proof of Theorem A3.5 regarding ^*λ). Then g is almost
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equivariant, so we can choose it to be equivariant, and we do have
I x F < Ker φ.

Let j : Ker φ —• F be the inclusion, j τ i φ ) f and let h: I xFL0)-+T(φ)
be equivariant and take m x λ t o μx*X. Then <p°jo(h x i) is trivial
because φ<>j is. Suppose θ: I x F ( 0 ) ->(? is a Borel function for
which φ'(af ξ) = 0(α, r ( f M ) ί ( α , d φ Γ 1 is almost always in G(0). Then
there is an a such that <p\a, ξ) e G(0) for almost all ξ. If we define
θo(u) = 0(α, %), 00(r(ξ))φ(ξ)θ0(d(ζ))~'1 defines a homomorphism with values
in G(0) a.e., so φ is trivial.

For a group G, the trivial subgroup corresponds to the action
of G on itself by translation. Thus, if S is a transitive G-space we
have G x G < S x G. For groupoids, one G-space is / x G and we
might not have (?*(? < (/ x G)*G. Thus the following theorem is
a reasonable analogue of the idea that the subgroupoid corresponding
to (?*(•? is the smallest one.

THEOREM 7.9. Let (G, [μ]) be a measured groupoid and let
(S, λ, p) be an analytic Borel (G, [μ])-space. Then (I x G)*G < S*G.

Proof. Let λ = \xudμ(u) be a decomposition of λ relative to p

over μ9 and apply Lemma 7.8 to SfX,p and G(o), to get a Borel
function g: I x G(0) —> S such that j>o^(ί, %) = % for (ί, w) in a set
K Q I x G(o) conull relative to m x μ, and g*(m x μ) ~ λ. Then
^ ( m x ett) — λw for almost all w, because g*(mxμ) = \g*(mxεu)dμ{u)
and g*(m x εu) is almost always concentrated on p~\u). Now extend
^ to ί x G as follows: if (t, r(x)) 6 if, let g(tf x) — g{t> r(x))x; if
(t, r{x)) έ K, let flr(ί, a?) - g(t, r{x)). If (ί, r(a )) e K, and d(a ) = r(y),
then flr(ί, xy) = g(t, r(x))(xy)= g(t, x)y. Thus ^ is algebraically almost
equivariant, so there is an equivariant /: I x G —> S which agrees
with g a.e.

Now let us show that g is normalized, so / i s . Let Gx be an
i.e. such that xeGt implies Xr{x)x ~ λd(ίC), such that ueGί0) implies
g*(m x εu) ~ Xu9 and such that for u e G[o) the ^-section Ku is m-
conull in /. Then g*(m x ex) — λr(a.)# ^ λd(β) for a? e Gx. Hence

ex)dμu(x)dμ(u)
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DEFINITION 7.10. If (Γ, λ) is a (G, [μ])-space, we call it trivial
iff for every (G, [μ])-space (S, v) we have T*G < S*G.

The next theorem gives another way to construct trivial sub-
groupoids of G, because (I x T)*G < S*G implies (Γ*G) < S*G.

THEOREM 7.11. Let (G, [μ]) be a measured groupoid, let Gt be
an i.e. on which μ has a right quasi-invariant decomposition, and
let A be a Borel set in G(0) with [A]=G(0). Then there is a measure
X on G{0) concentrated on A such that X(B) = 0 iff μ(B) = 0 for

saturated Borel sets B, and if we set v = \μudX(u), v is quasi-invariant

on r'\A) and ( Ix r'\A))*G < G*G.

Proof. The existence of X was proved in the proof of Theorem
6.17 of [18]. Then v is quasi-invariant by Lemma 3.4, and d*(v) —

\^μu)dX(u) ~ μ.

By Lemma 7.8 there is a Borel function f: I x A —> άΓ\A) such

that /*(m x εu) ~ μu a.e. and f*(m x λ) ~ \μudx(u), and there is a

conull s e t l g ί x i such that eZ°/(ί, u) = ueGf1 for (t, w ) e l and

ro/(t, u) 6 Gί0) for (ί, u) e X.
Let S = r"\A) and let Γ = {(ίf s)elx S: (t, r(s)) 6X}. Then Γ

is conull in J x S relative to m x v. Define g: I x S —> G by taking
<7(ί, β) = /(*, ήs))s when (t, β) 6 Y and ff(t, β) = /(*, r(s)) if (ί, s) $ Y.
Then r̂ is Borel and almost algebraically equivariant. By Lemma
1.4, we only need to prove g*(m x v) ~ μ.

Now g*(m x εx) ~ μr{x)x — μd{x) for xeG19 so u e GJ implies

flr^ίm x μu)

Hence

^^(m x v ) - ^μvd(d^(μu))(v)dX(u)

The next lemma characterizes trivial subobjects of measured
groupoids. It is closely related to Lemma 6.1. Notice that the
proof of the "only if" part of the lemma does not require the map-
ping / to be normalized.

THEOREM 7.12. Let (F, [X]) be a measured groupoid and let
(S, μ, P, a) be an (F, [λ])-spαce. Then (I X S)*F < F*F iff there are



SUBOBJECTS OF VIRTUAL GROUPS 429

an i.e. Fx of F and a conull analytic Fx-invariant set Sx £ S such
that S1*F1 is principal and the orbit space SJF1 is analytic.

Proof. First, suppose /: / x S —> F is equivariant, and let U £
J x S and V Q F™ be conull sets such that p(U) = V, U is F\ V-
invariant, and f\U is strictly F\ V-equivariant. There will be a
teT such that the ^-section Ut is conull in S. Then p(Ut) Q Fand
is conull, so there is a conull Borel set Vx^p{Ut). Now Ut is F | F -
invariant, so if we take F1 = F | Fx and Sx = jΓ^ VO Π i/<, then 5X

is conull and ^-invariant. Define g(s) = f(t, s) for seSx. Then #
is strictly i*\-equivariant.

Now suppose (s, x) e SX*FX and sx = s. Then x = ̂ (s)~1(βr(s)x) =
θisy^sx) = gisy^is), so α; is a unit. Thus Fx acts freely on Slf i.e.,
S^Fj. is principal.

To show that SJFX is analytic, we will show that g'XF^) is a
Borel set meeting erch orbit exactly once. In fact, if seS19 then
Oisgis)'1) = g(s)gis)-1 e F}0). Also, if flr(βx) = fif(β2) e F{0) and there is
an x with ^αs = s2, then g(s2) — gfax) — g(s^x — g(s2)x, so x is a unit
and sx = s2.

For the converse, begin with Slf JFΊ, and let Y = Sj/î Ί with
qiSi—> Y the quotient map. Let 7: Y-^Sx be a measurable cross-
section and let Yo be a conull Borel set on which 7 is a Borel
function. Let SQ.= q~\Γo), Fo = F\p(S0). Now So is a union of
orbits so p(S0) is saturated in i<Y0), and So is conull, so p(S0) is conull
in Fx

(0). Since JPX acts freely on Sl9 Fo acts freely on SQ. Thus
^: (2/, x) h-> τ(i/)ίc is one-one and Borel fromF *F 0 = {(y, x) e 7xf 0 : p°
Ύ(y) = r(αj)} onto So. For (y, α?) e F*F0, let px(y, x) = d(x), and let
(y, x)xt = (2/, awej if r(^) = d(x). Then F*i^0 is an jFVspace and g is
algebraically strictly equivariant. Going from So to Y*F0 by gr"1

and then projecting to Fo gives an algebraically strictly JFVequiv-
ariant Borel function /: f(s) = x iff y(q(s))x = s. Hence the proof
will be complete if g preserves the measure class.

The measure on S0*FQ is \e8 x Xp{s)dμ(s), which "is" its decom-
position relative to r (taking (S0*F0)

{0) — So). We may assume the
decomposition of λ is left quasi-invariant, so the decomposition for
S0*FQ is also. Then the measures a*(ε8 x λp(s)) are in the same class
as long as s varies only within one jFVorbit. Thus, if q(s) ~ y,
α,(εs x λ*(*>) - a(s, )*(Xpίs)) - a(y(y), )*(λ'(r(ιr))). Hence

μ \a(8f



430 ARLAN RAMSAY

Thus g carries g*(μ)*λ to a measure equivalent to μ, which is what
we wanted to know.

THEOREM 7.13. Let (F, [λ]) and (G, [μ]) be measured groupoids
and let φ: (F, [λ]) —» (G, [μ]) be a homomorphism. Then φ is trivial
iff the range closure of φ is trivial, and this occurs iff φ takes
values in a trivial subobject of G.

Proof. Let j φ : S(φ)*G -> G and <p': F->S(φ)*G be as in Theorem
3.5. Then φ = jφ°φ'9 so φ takes values in a trivial subobject of G
if the range closure oί φ is trivial. If j:S*G-^>G is an inclusion
and <ιlr:F->S*G is a homomorphism with φ=j°ψ, then M(ψ): S(φ)->
S(j) — S is equivariant, by Lemma 4.1. Hence S(φ)*G < S*G (see
also [21, Proposition 4.5 of Chapter II]). This establishes the last
equivalence.

Now suppose φ(F) £ G(0). Then the action of F on T(φ) is
trivial, so the function g: T(φ) —> G taking (sc, w) to αΓ1 is constant
on i^-orbits. Also, g is strictly G-equivariant, and g carries the

measure used on T(φ), namely \μφ^u) x εud%(u), to a measure equiv-

alent to ^dφ^xXv), which is quasi-invariant on S = r~ι(φ(Fw))

and relative to which S is a G-space with S*G < G*G. If <j: T(φ)-^
S(φ) is a strictly G-equivariant ergodic decomposition of T(φ)*F,
there is a G-equivariant /: S(<£>) —> S with f°q = g. Then / is
normalized.

Now suppose S*G is trivial, i is its inclusion and ψ:F-*S*G
is such that φ = io^r. To show that 9 is trivial it will suffice to
show that j is trivial. That S*G is trivial means there is an
equivariant normalized equivariant function /: I x S-^>G. Since /is
strictly equivariant on a conull set, there is a ί with g = /(£, )
equivariant from S to G. Define Θ:S-*G by 0(s) = fif(s)"1. Then
θ(sx)"1 = g(sx) = 0(«)a? for almost all (s, a?), so j(s, x) = θ(s)θ(sx)~1 a.e.,
as we wanted to show.

Rephrasing a result of Series [21, Proposition 4.6 of Chapter II],
we can characterize trivial homomorphisms in terms of kernels.

THEOREM 7.14. Let (F, [λ]) and (G, [μ]) be measured groupoids
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and let φ:F->G be a homomorphism. Then φ is trivial iff IxF~
(Ix F{0))*F<Keγφ.

Proof. To say φ is trivial means that φ is trivial on FW*F
(which is F). Then by Proposition 4.6 of Chapter II of [21], we have
(/ x F(0))*F < Ker φ.

Now if (Ix F{0))*F < Ker φ, Proposition 4.6 of Chapter II of [21]
says that there is a conull set UζZlxF{0) and a Borel θ: U-+G such
that if (t, r(x)) and (t, d(x)) e U, then <p(x) = θ(t, r(x))θ(t, d(x))~1. Choose
t such that the section Ut is conull in F{0), and let Fλ = F\ Ut, θt =
θ(ty •)• Then xeFt implies φ{x) = 0i(r(ίc))0i(d(αO)~S so φ is trivial.

Now for the other extreme, the kernel can be used to charac-
terize imbeddings.

THEOREM 7.15. Let φ:(F, [λ]) —>((?, [μ]) be a homomorphism of
measured groupoids. Then φ is an imbedding iff Ker φ is a trivial
subgroupoid of F.

Proof If we take S = T(φ) in Theorem 7.12, this result is
immediate.

THEOREM 7.16. Homomorphisms with dense range are epimor-
phisms in the sense of category theory.

Proof. Let (F, [λ]), (G, [μ]) and (H, [v]) be measured groupoids
and let ψ: F->G be a homomorphism with dense range. Let φl9 φ2:
G~+H be homomorphisms such that [<Pi]°[ψ\I — [^]OW By taking
an i.e. of G, replacing ψ by a similar homomorphism, and then
replacing F by an i.e., we may arrange that <plf φ2, ψ are strict
(then φxoψ and φ^ψ exist) and that φ^ψ and φ2°ψ are strictly
similar. Let θ:Fm—>H be a Borel function such that for every
ξ 6 F, θor(ξ)φ1oψ(ζ)θod(ζ)-1 = φ2oψ(ξ).

Now if (x,u)eT(φ)9 i.e., xeG,ueFi0) and d{x) = ψ(u), then
d°φλ(x) = <Pi°d{x) = φ^f{u) = doθ(u), so θivήφ^xY1 is defined. Also
roθiu) = <p2

oψ(u) — φ2°d(x) — d°φ2(x), so φ2{x)θ{u) is defined. Thus
we can define 0(3, u) = ψJ^θ^φ^xY1 for (x,u)eT(ψ). Then gr is
constant on .F-orbits, because if (», r(f)) e Γ(α/r), then

The assumption that ^ has dense range just means that the
function /: (#, w) \-+ r(x) is an ergodic decomposition of T(ψ) relative
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to the action of F. Hence there is a Borel function h: G(0) —> H such
that g(x, u) = h(r(x)) for almost all (x, u). We have G acting on
T{ψ) by x(y, u) — (xy, u) if d(x) = r(#), and on G(0) by #*c?(α;) = r(x).
Also G has a weak (left) action on a subset of if, given by

x*ς = φJ&ζφ&Y1

when the product is defined. Then g and / are both equivariant,
so we can take h to be equivariant on a conull set ί 7 £ G(o). Thus
for x e G \ U, h(r(x)) = 9>2(β)fr W^))?^)"1- Thus φx and <p2 are similar
via h.

The method used to prove this theorem also works to prove a
theorem about representation of groupoids. If L1 and L2 are
representations of (G, [μ]), i.e., Borel homomorphisms to the groups
of unitary operators on Hubert spaces J%^ and ,%%, then the space
of intertwining operators R(Ll9 L2) is defined to be the set of
bounded Borel functions A: G{0)-> £f(<βέri, <%%) such that A(r(x))L1(x) =
L2(x)A(d(x)) for x in some i.e. of G. We identify functions which
agree a.e., and supply the essential sup norm. We say Lx and L2

are equivalent if there is a unitary valued A in R(LU L2); they are
disjoint if R(LU L2)~{0}; Lx is irreducible if R(LU Lx) has dimension
1. Of course A*(u) = A(u)* defines an element of R(L2, Lλ) and
point wise composition maps R(L2, L3) x R(LU L2) to R(Llf L3). A
special case of the following theorem was proved and used on page
47 of [20]. This strengthens a theorem of Peter Hahn [6, Theorem
5.19].

THEOREM 7.17. Let γι (F, [λ]) -> (G, [μ]) be a homomorphism
with dense range, and let Llf L2 be strict representations of {G, [μ]).
For AeR(Lu L2) define ψ\A) = i ° | . Then ψ' is an isomorphism
of R(Llf L2) onto R(Lxoψ, L2°ψ). This operation preserves sums,
products and adjoints. In particular, if L is irreducible so is

Proof Most of this is easy, so we only discuss the fact that
φ' is onto. If BGRζL^ψ, L2°ψ), we can define g on T(ψ) by
g(x, u) = L2(sc)JB(tt)L1(ίe)~1. As in Theorem 7.16, there is a Borel A
on G(0) such that A(r(x)) = L^BiujL^Y1 a.e. in T(ψ), and A can
be chosen to be equivariant. Thus A e R(Ll9 L2). Hence, L2(x)Ao
f{u)Lx{xYι = A(r(x)) = L^B^L^xY1, so Aoψ = B a.e.

It was suggested by Peter Hahn that the method we have
used in the last two proofs could be used to generalize a result of
Robert Zimmer on amenability [Theorem 3.3, 23]. Zimmer defined
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amenability of group actions in a way which can apply to groupoids
[8], using an analog of the fixed-point property, and he proved
that a group action which is the range closure of a homomorphism
defined on an amenable group action is also amenable.

The definition goes as follows. Let E be a separable Banach
space and let A be the group of isometric isomorphisms of E, with
the strong operator topology and Borel structure. Let E* be the
dual of E, with the weak* topology, and let Ef be the unit ball in
E*. If G is a measured groupoid, let γ:G —>A be a Borel homo-
morphism and define y*(x) — TOE"1)* for xeG. A function assigning
a compact convex set Ku Q E* to each ueG{0) is called an invariant
Borel field of compact convex sets if {(u, f) eG(0) x E?:feKu} is
Borel and 7*(x)Kd{x) — Krix) for almost every x. Then there is an
i.e. of x's for which y*(x)Kd{x)=Krix). This is the appropriate analog
of an action of a group on a compact convex set, and the analog
of a fixed point is an invariant section, i.e., a Borel function
σ: G(0) -> JSi* such that σ(u) e Ku for almost all u, and y*(x)σ(d(x)) =
σ(r(x)) for almost all x (again an i.e. of x's will satisfy the condi-
tion).

We say G is amenable if every invariant Borel field of compact
convex sets has an invariant section.

Given any homomorphism φ, the φf of Theorem 3.5 has dense
range by Theorem 6.7, so to deal with range closures it is sufficient
to prove a result about homomorphisms with dense range. Hence
our next theorem does generalize Theorem 3.3 of Zimmer [23].

THEOREM 7.18. Suppose (F, [λ]) is amenable and there is a
homomorphism ψ: (F, [λ]) —> (G, [μ]) which has dense range. Then
(G> [μ]) is amenable.

Proof. Take E, 7, K as in the definition just above. For u e
F{0), let Cu = Kf{u) and β = τ°ψ. Let Go be an i.e. of G such that
xeG0 implies y*{x)Kd{%) = Krix) and τ|G 0 is strict. By passing to
an equivalent ψ and an i.e. of F, we may assume ψ is a strict
homomorphism and carries F into Go. We may also suppose that
q: (x9 u) —> r(x) is an ergodic decomposition projecting T(φ) = {(x, u) e
G x F{0): d{x) = ψ(u)} onto a conull subset of G{

0

0), since that is
essentially what "dense range" means. Then it is clear that C is
an invariant Borel field of compact convex sets for β, and since
F is amenable there must be an invariant section p. By replacing
ί7 by an i.c, we may arrange that β(ξ)ρ(d(ζ)) = p(r(ξ)) for all £ in F.

Now define g: T(ψ) -> E? by g(x, u) = y*(x)p(u). Then g(xy, u) =
7*(x)y*(y)p(u) = y*(x)g(y9 u) if r(y) = d(x) and ψ(u) = d(y). It follows,
by using αΓ\ that g is strictly equivariant from T(ψ) to Ef. We
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also have

= r(x)β(ξ)p(d(ξ))

whenever d(x) — ψ(r(x)), so g is constant on F orbits in T(ψ).
Hence g factors through σ:G(0) —• E*f i.e., there is a Borel a such
that σ(r(x)) = g{x, u) for almost all (a?, w) e T(^). By Lemma A1.2,
there is an equivariant choice of σ, i.e., σ(r(x)) = 7*0Md(#)) for
almost all x. Thus G is amenable. For λ-almost every ueF{0), we
have σ(r(x)) = y*(x)p(u) for /Vuralmost every a?. In particular, for
almost every w there is such an x for which σ(r(x)) = y*(x)σ(d{x)) —
v*(x)σ(φ(u)). Hence p = O Ό ^ a.e.

Here is another result on epimorphisms, whose proof is omitted.

THEOREM 7.19. Let ^ : (F, [λ]) —> (G, [/̂ ]) be a homomorphism
such that for ueFw, ψ takes r"\u) Π d~\u) onto r~\ψ(u)) Γ\ d~\f(u)).
Then if is an epimorphism.

Finally, we have one result on imbeddings which is in the
direction of saying that imbeddings are monomorphisms. This may
be the closest to that statement that is true. Even it fails for
immersions, as we see from examples with groups.

THEOREM 7.20. Let φ: (F, [λ]) —> (G, [μ]) be a homomorphism
and let ψ: (G, [μ]) —> (JHΓ, [V]) be an imbedding. If [ψ]°[φ] is trivial,
so is \φ].

Proof. S(ψoφ) ^ S(<xlrojψ) as iϊ-spaces and S(<p)*G — S(ψΌjφ)*H

as groupoids. Then S(φ)*G is principal and S(φ)/G is analytic (up
to a null set), so φ is trivial by Theorems 7.12 and 7.13.

Appendix* The four sections of the appendix give proofs of
results in the first four sections of the body of the paper.

LEMMA Al.l {Lemma 1.4). Let (G, [μ]) be a measured groupoid,
let (S, λ, p) be an analytic Borel (G, [μ])-space and let T be a strict
analytic Borel (G, [μ\)-space. If f:S-+T is almost (G,[μ\)-equiv-
ariant, then there is a (G, [μ\)-equivariant function f:S-+T which
agrees with f a.e. Furthermore, /1Hί(λ) = /*(λ) and is quasi-invari-
ant. The function f exists even if T is a weak G-space.

Proof. There is no loss in generality if we assume to begin



SUBOBJECTS OF VIRTUAL GROUPS 435

with that (S, λ, p) is a strict (G, [/f|)-space and that μ — \μ(r,u)dμ(u)

is a left quasi-invariant decomposition of μ into probability measures.
To see this, use Lemma 6.2 of [19] and Definition 1.1 together with
the remarks preceding Definition 1.2.

Let Sx be a conull Borel set in S such that if s e Sx then f^sx) —
r

fx{s)x for μp{8)-almost almost all x. Decompose X=Yλ,udμ(u) relative
to p and let U be a conull Borel set in G(0) such that w 6 U implies
that λtt is a nontrivial measure concentrated on p~\u) Π Sx. In the
groupoid S*G, the set of units is the graph of p and can be identified
with S, and the decomposition of the measure relative to r has
integrands ε8 x μ{r, p(s)). Then d*(εs x μ(r, p(s))) is identified with
a measure concentrated on {s#: r(x) = p(s)}, which is the equivalence
class of s in S. Since the decomposition of μ relative to r is quasi-
invariant, \dX{s)d*(εs x μ(r, p($))) is equivalent to λ (i.e., the image
of λ in the graph of p), so we can also assume U is chosen so that
S1 is d*(s8 x μ(r, p(s)))-conull for λu-almost every s when ue U.

Now let Go = G\ U and let So = {s e S: p(s) e U and Si is d*(es x
μ(r, 2>(s)))-conull}. Then So is an invariant conull Borel set by the
proof of Lemma 6.3 of [19]. Now take T £ [0, 1] and define f(s) =
[f1(8x)x"1dμ(r9 p(s))(x) for s 6 So. Notice that if * 6 ̂  then /.(ex) =f1(s)x
for / (̂r, p(s))-almost all x so that /Ksα OαΓ1 is defined and equal to
/iθ) for almost all x in r~\p(s)). Thus / = f± on Sx Π So. If s e So,
there is a # with ST/ 6 Sx. Then sa; = (sy)y~1x and f^sxXy^xy1 is
defined for almost all x, so /iOaOaΓ1 is defined for almost all x. If
we define F^s, x) ^= f1(sx)x~1 when this is valid and F1(8,x) = 0

otherwise, Fx is Borel and f(s) = [F^S, x)dμ(r, p(s))(x), so / is well

defined and Borel from So to [0, 1]. To see that /(So) £ T and / is
equivariant, let s e So and choose y with sy e Sx. Since So is invari-
ant, we have sy eSi Π So. Now if r(#) = p(s), then r(x) = r(y), and
by quasi-invariance we have AdsyXy^xz^^f^syXy^xz) for μ(r, d(α?))-
almost all 2. Thus f{sx)=[f1{{sy){y~1xz))z~1dμ(ry d(x))(z) =f1(sy)y~1x.

If we take x = p(s) this gives f(s) = f1(sy)y~1 e T, and applying it
again we get /(βa?) = f(s)x for (s, α?) e S0*G0. Observe that this
proof is valid if T is even a weak G-space.

To see that /*(λ) is quasi-invariant, notice that X*μ is mapped
to /*(λ)*μ by (β, a?) —> (/(β), «) and (ex, x~x) goes to (f(s)x, x~ι) under
this function. Thus quasi-invariance of λ implies the same for /*(λ).

The next lemma is useful in constructing equivariant functions.

LEMMA A1.2. Let (G, [μ]) be a measured gvoupoid and let
(S υ pa, (S2, p2) and (S3, p3) be analytic strict (G, [μ])-spαces. Suppose
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λ is a finite quasi-invariant measure on Sx. Letf:S1-^S2 and
g: Si —> S3 be equivariant, and suppose ht: Sz —> S3 is a Borel function
with h1of=g a.e. Then (S2, /*(λ), p2) is a strict (G, [μ])-space and
there is an equivariant h: S2-^ S3 which agrees with ht a.e. relative
to Λ(λ).

Proof. By Lemma Al.l we know that /*(λ) is quasi-invariant,
and that it suffices to prove that hλ is almost equivariant.

Let λ = \λsd/5fί(λ)(s) be a decomposition of X relative to / and

let Ex = {s e S^. hof(s) = g(s)}. Then there is a conull Borel set
E2 £ S2 such that for seE2 the measure λs is a probability measure
concentrated on 2jr1n/"1(β). By Theorem 2.13 of [19], we also know
that {(s, x) € S2*G: X8x — Xsx) is conull. Hence {(s, x) e S2*G: s e E2t

sx e E2 and Xsx ~ X8X\ is conull. If (s, x) is in this set, then Et is
conull for X8 and λsίc, so there is an 81eE1Π f~\s) with s
Then

which completes the proof.
Now we want to inquire whether the requirement that an

equivariant function be normalized is very stringent. For homo-
morphisms of groupoids it eliminates many [18, §4], but between
G-spaces it is equivalent to an apppaently weaker condition. We
begin with an easy lemma about invariant sets.

The next two lemmas show that all equivariant functions
(Definition 1.3(a)) are normalized in the sense used by C. Series [21].

LEMMA A1.3. Let (G, [μ]) be a measured groupoid, let (S, λ, p)
be a strict (G,[μ])-space, and let Gx be an i.e. of G. If NQp~\Gί0))
is analytic, null and G^invariant, then its G-saturation, [N], is
also null.

Proof Let seN, xeG with r(x) = p(s) and sx £ N. Now p(sx) —
d(x) and if d(x)eG{

1

0) we would have xeGλ so sxeN. Thus sx£
p~\Gί0)). Thus [N] - NQ S - p~\Gί0)), which is of measure 0.

LEMMA A1.4. Let (G, [μ]) be a measured groupoid, let (Su Xlf

plf αx) and (S2, λ2, p2, α?) be strict analytic (G, [μ])-spaces, and let
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/: Sx -> S2 be strictly (G, [μ])-equivariant. Then f(Sx) is G-invariant
and f^(Xt) ~ λ2.

Proof. It is easy to show that f(Sλ) is invariant. The rest of
the proof is based on the uniqueness of the measure classes in the
equivalence classes of units.

Let μ — \μ(r, u)dμ{u) be a decomposition of μ relative to r.

By Lemma 6.2 of [19], there is an i.e., G19 of G such that ueGί0)

implies μ(r, u) is a probability measure concentrated on Gx Π r " 1 ^ ) ,
and this decomposition is quasi-invariant under Gx. Let S5 = pϊ1(G\0))f

S4 = p2\Gϊ0)). Then Xλ*μ = lε8 x μ(r, p^s^dX^s) and λ2*μ = U x
μ{r, P2(s))dX2(s) are quasi-invariant on S3*Gλ and S4*Gv For s e S3,
the measure v\ = α^e, x μ(r, p^β))) is concentrated on its orbit,
and the class [vl] is the same for all s in a given orbit. Also,
ΛM) = α2*(ε/(*) x M*% P2(/(s))))> which we denote by yj.

For a Borel set JB £ Sif B is null iff B f] S, is null and this
happens iff the saturated Borel set Q — {seS4: v\{B) > 0} is null.
If A = Γ\B), let P - {s e S3: i4(A) > 0}. Then P - /^(Q), and P is
also saturated and Borel. Our hypothesis about the measure implies
that λx(P) = 0 iff X2(Q) = 0, so λx(A) = 0 iff X2(B) = 0, as desired.

LEMMA A1.5. Suppose f, g are weakly equivariant and βx: Sλ—>G
is Borel, with f(s)β1(s) = g(s) for almost all s and βχ(sx) = x^β^x
for X^μ-almost every (s, x). Then there are a Borel function
β: Sx —> (?, an i.e. Gx and an analytic conull strict (Gu [μ])-space
S3 £ Si such that β ~ βλ a.e., β(sx) = x~1β(s)x for (s, x) e S^GX and
f(s)β(s) = g(s) for s e S3.

REMARK. If the action of G on S2 is free, one can prove that
β1 satisfies what is required of β, but the proof fails otherwise.

Proof. Choose β via Lemma Al.l, and choose Gx and Si so
that β, f, g are strictly equivariant on St. Now f(s)β(s) is still
defined for almost all s, and it is not hard to see that the set of
s 6 Si for which the product is defined is invariant. On that set
f(s)β(s) = g(s) a.e., and since both functions are Borel and equiv-
ariant, the set S3 where they agree is invariant.

The next three results are useful in establishing the existence
of strictly quasi-invariant decompositions of measures.

LEMMA A1.6. // (G, [μ]) is a measured groupoid and μ has a

strictly left quasi-invariant decomposition μ = \μwdμ(u), then there

is also a strictly right quasi-invariant decomposition.
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Proof. Set X^(μ)~\X(A)-=μ({χ-1: x e A})). Then d^(X) = r^μ)=μf

and λ = \{μu)~ιdμ{u) is a strictly right quasi-invariant decomposi-
tion. Set μ+ = d*(μ). Then μ+ ~ p. and X ~ μ, so we can choose
strictly positive and finite Radon-Nikodym derivatives / = dμ/dμ^
and g = dμ/dX. Then

Take Λ - (g)(fod)(μu)~\

COROLLARY A1.7. Let H be a locally compact group with m a
probability measure equivalent to Haar measure. If v is a quasi-
invariant measure on an H-space S, then (S x H, [v x m\) has
strictly quasi-invariant decompositions on both sides.

LEMMA A1.8. Let (G, [μ]) be a measured groupoid with strictly
quasi-invariant decompositions. If (S, λ, p) is a strict (G, [μ])-space,
then X has a strictly quasi-invariant decomposition.

Proof. Let μ = \μudμ(u) be a strictly quasi-invariant decomposi-

Xudμ(u) be any decomposition of X relative to p.

We have assumed that the Borel set G1 = {x e G: (Xrix))x — λi(aί,} is
conull, so the Borel set U1 = {u e G(0): μu(Gλ) = 1} is conull in G(0).
Set Ϊ72 = [J7J, G2-=G\U2. We shall construct a λ '~ λ with a
strictly quasi-invariant decomposition. For u £ U2, let X'u — 0. For

ue U29 let λ'tt= \(\ω)xdμu(x). For ue Uί9 X'u ~ Xu. Also, u\->X'u is
J r

Borel, so we can form λ' = \x'udμ{u). Then λ'^λ, so we can choose
a Radon-Nikodym derivative g = dxjdx' which is positive and finite
everywhere.

If v e U, there is an x such that d(x) = v and u = ?•(») is in i7x.
Then {y: (Xr{y))y — λL} is /^-conull. Since {μu)x — μυ,

If we also have w e U2 and z e r~\v) Π ̂ ( w ) , then (K)xz ~ X'w by
the same argument. Hence (X[)z ~X'W. If v = r(z) and w = d(») are
not in tf?, λ'y = 0, X'w = 0, so (X)z = λl,.

Now we can replace λu by gX'u for each ueG{0) and get a strictly
quasi-invariant decomposition of λ.

REMARK. This generalizes Proposition 2.6 of C.C. Moore [1,
Chapter 2], The next two lemmas show that similar G-spaces are
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isomόrphic.

LEMMA A1.9. Let (S, λ, p) be an analytic strict (G, [μ])-space
and suppose β: S-+G is Borel, sβ(s) is defined for seS, and
β(sx) = x"1β(s)x holds for all (s, x) e S*G. Define β+(s) = sβ(s) for
all seS. Then β+ is a G-automorphism of (S, p) preserving [X].

Proof. To show that β+ preserves [λ], we show first that X
is quasi-invariant under another groupoid. Let G' — {x e G: r{x)—d{x)}.
This is a G-space under the action x*y = y~xxy which is defined
when d(x) — r(y). Thus d: Gf —> G{0) is the projection we need. We
have assumed that β:S-*G' is strictly equivariant. By Lemma 1.4,
/3*(λ) is quasi-invariant, so we can make G'*G a measured groupoid
with the measure β*(X)*μ. We can define s(β(s), x) = sx if seS
and (/3(s), x)eG'*G, because in that case p(s) = doβ(s) = r(x). This
makes (S, β) a strict /3(S)*G-space, and S*(/5(S)*G) is a groupoid,
naturally isomorphic with S*G. (This occurs whenever we have a
strictly equivariant map of G-spaces.)

The measures also agree: p#(λ) = μ and X*μ — \ε8 x μp{8)dX(s),

while β*(X)*μ = U,, X μd{x)dβ*(X)(x). The latter gives the decomposi-

tion of β*(X)*μ relative to r in β(S)*G. Hence

- Jεs x
Since d<>β = p, (s, a;) H* (S, (/S(β), x)) takes λ*jW to X*(β*fa)*μ)

Since λ is quasi-invariant, [λ*/i] is symmetric. Hence [λ*(/3*(λ)*/i)]
is symmetric, so λ is quasi-invariant for /3(S)*G. Hence there is a

strictly quasi-invariant decomposition λ = lλ(/3, x)dβ4ί(X)(x) relative

to β.

We must see what this implies for the strictly quasi-invariant

decomposition X = VXudμ(u) relative to p. For each u,

3, x)dβ*(Xu)(x)

is concentrated on p~\u), because p = doβ. Also,

= λ .

(β*(X) — \β*fa«)dβ(u)f by Lemma 1.2 of [19], since p = d<>β.) Thus

for almost all u, λtt = lλ(/3, x)dβ*(\u)(x). Also, if d(x)=r(y), (X(β, x)y~

Mβ, y^xy), since this is a strictly quasi-invariant decomposition, so



440 ARLAN RAMSAY

for each x we have βi(X(β, x)) = (λ(/3, x))x ~ λ(β, x). Now p°β+ = p,
so Lemma 1.2 of [19] gives

/3ί(Jλ(/S, αOd/9«00(aθ) = j/3ί(λ(/9, aθ)d/9

for each w. Hence /3j(λtt) ~ Xu for almost all w, SO βi(X) ~ λ, again
by the same Lemma 1.2.

The next lemma is the same as Lemma 1.6.

LEMMA A1.10. Let (G, [μ]) be a measurable groupoid and let
(Sι> Iλil) and (S2y [λ2]) be analytic (G, [μ])-spaces. Suppose f: S1—> S2

and g: S2 —> Sx are equίvariant maps with fog similar to the identity
on S2 and gof similar to the identity on SL. Then (Su [λj) and
(S2, [λ2]) are isomorphic.

Proof. Let Go be an i.e. and let S3 be analytic, G0-invariant
and conull in Si and suppose / is equivariant on S3 and g°f is
strictly similar to the identity on S3. By looking at g~\S3),

Π S3, we see that S3 may be chosen so that /(S8) £
In the same way, there is an analytic, invariant conull

S4 Q S2 such that fog is strictly similar to the identity on S4 and
g(S4) ^ Γ\S4). Set Sδ = Ssf]f-\S4) and S6 = g-\S3) Π S4. Then
f(Sδ)QS6 and βr(Sβ) £ S5, and (/|S5)o(#|S6) is strictly similar to i
on iS6 while (flr|jSβ)<>(/|Sβ) is strictly similar to i on Sδ. Thus we
may assume the original similarities were strict. Then by Lemma
A1.7 there are G-automorphisms τx of (Slt [λj) and τ2 of (S2f [λ2])
such that fog = γ2 and βτo/ = γ1# Then fogoj-1 is the identity on S2

and Ύϊ^gof is the identity on Sx. Thus / is an isomorphism and
f'1 = goΊϊ1 = lϊ'og.

We take &~ and G™*^ as in § 1. The next lemma is the
same as Lemma 1.7 and gives the existence of a "universal C?-space".

LEMMA Al.ll. G(0)*«^ is αw analytic G-space, provided the
given decomposition of μ relative to r is quasi-invariant.

Proof. Everything is simple except possibly the fact that the
action is Borel. To prove that, we make use of another way of
seeing what the Borel structure is. If / is a bounded Borel func-
tion, defined at least on r~\u), then let Mf denote the bounded
operator on ^f{u) ~ L\μ\r, u)) given by multiplication by /. Then
[f]u —> Mf is one-one from J^~{u) onto the operators of multiplica-
tion by a [0, l]-valued function on ^f{u). Let (ί(0
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): u e G(0)} have the smallest Borel structure for which the
projection onto G(o) is Borel, along with all the functions ψgΛ (g, h
bounded Borel) where ψg,h(u, A) — (A[g]u: [h]u), the inner product
being computed in 3ίf{u). By reducing to the case of constant £ίf
[20, § 1], we can see that Gm^^{^f) has an analytic or standard
Borel structure if Gw*£έf does, i.e., if G(0) does. Now G l 0 ) * ^ is
isomorphic to a Borel subset of G 1 0 1 * ^ ^ because ψv,A(w, -M/) =
Ya(u, [f]uύ Thus if the action of G on G(0)*£f(3l?) is Borel and
the map (u, [/]J —• (u, Mf) is equivariant we will be through with
the proof. The action of G on G ( α ) * ^ is as follows: For each x
there is a positive function p(x, •) on r~\d{x)) such that (Uxg)(y) =
/>(&, y)g(xy) defines a unitary operator from 3if(d{x)) onto ^g^(r(a;)).
This gives a right action on Gw*£tf. Now (r(a?), ii)& = (d(aθ, U.AU?1)
defines an action of G on G**Jίf{£έf)9 and if we reduce to the case
where dim £ίf(u) is constant and pass to a bundle of the form
G(o) x 3ίΓ [20, § 1], then it is clear that the action of G on G(0) x

is Borel since x-±Ux is Borel [20, Proposition 3.4].

A2* Ergodic decompositions of measurable groupoids* The
numbers in this section agree with these of § 2. Another approach
to this material is found in Theorem 6.1 of [7].

LEMMA 2.1. The measurable groupoid (G, C) is ergodic iff
Sίfτ Π 3έfd ̂  one-dimensional.

Proof. If (G, C) is not ergodic, let A be a saturated Borel set
in Gi0) for which A and B = G{0)\A both have positive measure [19,
Corollary 6.4]. Then φA<>r — φA°d and φBor = φBod, and these are
orthogonal elements of £(fr Π £$f<L but neither is zero.

Now if έ%fr Π Sίfd has dimension greater than 1, there is a non-
zero element g 6 έ%fr n £έf<ι which is orthogonal to the constant
functions. Then there are Borel functions flff2 in L2(λ) such that
far = fad = g a.e. Thus for almost every ueG{0), ft°r(x) = f2

Qd(x)
for λtt-almost all x, i.e., fλ<>r(x)•= f2(u) for λtt-almost all x. Hence,
for X-almost every v this holds for r^CλJ-almost every u. Thus
/x is almost always constant a.e. relative to [r^λj] (which is the
same as [r^λj] if ue[v]) and for r^λj-almost every u that con-
stant is f2(u). This proves that fx — f2 a.e., so fad = fad a.e. and
hence far — fad a.e. But fλ is not constant a.e. since far is not,
so (Gt C) is not ergodic.

DEFINITION A2.2. Let (G, [λ]) be a measurable groupoid. A
strict ergodic decomposition of (G, [λ]) is a mapping q of Gm into
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an analytic Borel space T such that if v — q*(X) a n d λ = l λ ( g , t)dv(t)

is a decomposition of λ relative to q, then for ^-almost all t, q~\t)

is saturated and {G\q~\t), [λ*]) is an ergodic groupoid, where λ* =

\xud(X(q, t))(u). An ergodic decomposition of (G, [λ]) is a Borel

mapping q of G(0) into an analytic space T such that for some conull

Borel set U Q Gw, q\U is a strict ergodic decomposition of (G\U,

M).

LEMMA A2.3. Let (G, [μ]) 6e α measured groupoid, and let a
Borel function q from G{0) to an analytic space T be an ergodic
decomposition. If a Borel function g from G(o) to an analytic space
Z is constant on equivalence classes, then there is a Borel h: T >Z
such that hoq — g a.e. Such an h is determined a.e. relative to
μ = <?*(λ).

Proof. Suppose q is an ergodic decomposition and let λ =

\%tdμ(t) be a decomposition of λ relative to q. Take Z Q [0, 1].

Because q is an ergodic decomposition, for almost all t we have g
constant a.e. relative to λt. Therefore we can define hx: T —> [0, 1J

by hλ(t) = \gd%t and get a Borel function with hx°q — g a.e. Then

h1 takes values in Z a.e., so the desired h exists. The uniqueness

is easy.

THEOREM A2.4. (Uniqueness of ergodic decompositions). Let
qx: G(0) —> 2\ and q2: G

(0) --> T2 be ergodic decompositions of the meas-
ured groupoid (G, [λ]). Then there are a conull Borel set U Q G{0>

and a Borel isomorphism f: q^U) —> q2(U) such that q2 — f°qx on U.
Also, qx and q2 have the same level sets in U. If qx and q.2 are
strict decompositions, U may be taken to be saturated.

Proof. Let μλ = q14t(x) and μ2 — q2*fr)- By Lemma A2.2 there
exist Borel functions fx: 2\—> T2 and /2: T2~~> Tx such that q2 = f1oq1

a.e. and q1 = f2°q2 a.e. By the uniqueness part of Lemma A2.3, the
Borel set Γ3 = {t e Tx\ /2°/i(ί) ~ t} is ^-conull. Now fx is one-one
from T3 onto an analytic set T4 C T2 and f21 T4 is the inverse of
fx\ JΓ3. We have f^iμd = μ2f so T4 is /vconull.

Let V be a conull Borel set such that qλ \ V and q2 \ V are strict
ergodic decompositions and q2 = / ^ ^ on F. Let Γ5 S J Γ 3 be a
conull set for which the conditions in Definition 2.2 are satisfied
for qλ. Define U^VΠ qϊ\T5). It is easy to verify that / = /1(gι(ϊ7)
does what is needed.

If qt and q2 are strict decompositions, we can take V to be
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saturated because {u: q2(u) = foq^u)} contains a conull saturated set.
Also, the set qr\T5) is saturated, so U is then saturated.

THEOREM A2.5. If (G, [λ]) is a measured groupoid, then (G, [λ])
has an ergodic decomposition. IfX has a (right or left) quasi-invari-
ant decomposition, then (G, [λ]) has a strict ergodic decomposition.

Proof Since (G, [X]) has an i.e. on which X has a quasi-invari-
ant decomposition, it suffices to prove the second part of the theorem.
To begin, let M = Λf(λ) be the measure algebra of Borel sets in
G(0) modulo λ-null sets and let Mo be the sub (/-algebra in M of
equivalence classes of saturated Borel sets. Let q: Bor ((?(0)) —> M
be the quotient homomorphism and let J ^ be a countable algebra
of saturated Borel sets for which {q(A): A e J^} is dense in Mo.
Then J*fo determines an analytic quotient space T of G{0): if p is
the quotient map, p(u) = p(v) iff {A e j*fQ: ueA} = {Ae *s*ζ: veA}.

Let v — p*(X) and decompose X — \xtdv(t), then define Xt=\xudXt(u)

for t e T and set Gt = d-\p-\t)) = r~\p-\t)) = r~\p-\t)) - G\p'\t).
It seems plausible that this should give an ergodic decomposition of
(G, C) [1, pages 112-117]. By construction, each p~\t) is saturated,
so it suffices to show that for v-almost every t in T, (Gt, [λ*]) is a
virtual group.

Each Gt is a Borel subset of G and hence is an analytic Borel
groupoid. For almost every t the measure Xt is concentrated on
p~\t). For almost every u in G(0) the measure Xu is a probability
measure concentrated on d~\u). Combining these two facts, we see
that for almost every teT the measure λ* is concentrated on Gt

and d*(V) = V Thus we may regard λ* as a measure on Gt with
a right quasi-invariant decomposition, so that [V] is right invariant.
Since λ is symmetric, it follows that λ* is symmetric for almost
every t. Thus almost every (Gt, [λ*]) is a measurable groupoid.

Now we must show that almost every (Gtf [λ*]) is ergodic. Since
T is analytic, there is a conull Borel set To which is standard in
the relative Borel structure, and To can be chosen such that t e To

implies that (Gu [λ*]) is a measurable groupoid, and all λ*, Xt are
probability measures, with Xt concentrated on p~\t). If (Gu [λ*]) is
ergodic for almost every teT0 then it is for almost every teT, so
there is no loss of generality in replacing G by G\p"\T0) and T by
To, i.e., we may suppose T is standard and (Gt, [λ*]) is a measurable
groupoid for every teT. We seek to apply Lemma A2.1.

Now define Hubert bundles over T as follows: £έT(t) = L2(λ*),
J%ϊ(t) - {for: feL\Xt)}, 3ί?M = if°d: feL\xt)}, &f\t) = L\Xt). For
a bounded Borel function g on G, let gd(u)^=\gdxu and gr(u) = \gdxu
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where Xu(E)^Xu({χ-u. xeE}) for u e G(0). Then gr and gd are bounded
and Borel in G(α). The Borel structure on T*έ%f is the smallest for
which the projection onto T is Borel along with all functions ψg

for bounded Borel g, where ψg(t, f) — \f(x)g(x)dX\x). The same pro-

cedure is used for T*βέf'. Now if / is in L2(xt) and g is bounded

and Borel on G, [for(x)g(x)dXt(x) = \f(u)gr(u)dXt(u). Hence (£, /) -+

(£, for) is Borel from T*3ίf' to T*έ%f. It is one-one since it is an
isometry on each ^f\t)f so the image is a Borel set. This image
is T*£έ?r. Similarly, T*3t?d is a Borel subset of T*£ίf. Hence
Γ*<%^ Π Γ*^g1 = T * ^ Π Jgi) is a Borel set in T*3ff.

Now let C be the set of points (£, /) in Γ * ^ n ̂ 5) such that
/ Φ 0 and the vector / in <^(ί) Π ̂ U(ί) is orthogonal to the vector
represented by the constant function which is everywhere 1. This
is {(ί, f):fΦθ and ̂ x(i, /) = 0}, so it is a Borel set. Let D be the
projection of C into Γ. By the von Neumann selection lemma there
is a Borel cross-section / of T*(£έfr Π Sίfϊ) such that /(«) = 0 for
almost all i £ D and f{t) 6 C for almost all t e D. Taking real and
imaginary parts is a Borel operation, and the real and imaginary
parts of each f(t) are orthogonal to 1, so we may suppose each f(t)
is real and orthogonal to 1, and f(t) Φ 0 for almost all t e D.

Now L2(λ) is isometric to the direct integral of the J%*(t)'s, so
there is a Borel function g on G in L2(λ) such that f(t) is the class
of g in L2(λ*) for almost all t. There are Borel functions ft and /,
on G(o) such that g = far = /2od a.e., because /(ί) e <5ĝ (<) Π <a?5(ί)
always, i.e., / is a cross-section of both images of T*£if' and hence
is an image of two cross-sections.

As in Lemma A2.1, far = fad a.e.; by passing to an equivalent
function, we may suppose the sets Ax = {ueG^if^u) > 0} and A2 =
(weff101:/^) < 0} are saturated. Now ft is orthogonal to 1 relative
to λ# for u-almost all t so {ί: XtiAJ > 0} and {t: Xt(A2) > 0} differ by
a null set. Also, these sets differ from D by a null set, since /ί is
nontrivial relative to Xt essentially for t in D. Since Ax is saturated,
λ^Ai) is 0 or 1 a.e.; Xt(A2) = 0 or 1 a.e. also, and {t: ̂ ( i i j = 1}
differs from {ί: λ^^) = 1} by a null set. Thus both sets are null,
so /x is null, and therefore D is null. This proves the theorem.

DEFINITION A2.6. Let ((?, [μ]) be a measurable groupoid and let
(S, λ) be an analytic Borel G-space with q.i. measure. The measure
X is ergodic iff (S*G, [λ*/f|) is an ergodic groupoid. An ergodic
decomposition of (S, λ) relative to G is a Borel mapping q of S into

an analytic Borel space T such that if λ = \xtdq*(X)(t) is a decom-

position of X relative to q then for £*(λ)-almost all t in T the set
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q~\t) is invariant and the measure Xt is concentrated on q~\t) and
is q.i. and ergodic.

COROLLARY A2.7. If (S, λ) is an analytic G-space with a quasi-
invariant measure for a measurable groupoid (G, C) and C has an
element with a left quasi-invariant decomposition then S has a
decomposition into ergodic parts, which is essentially unique.

LEMMA A2.8. The converse of Lemma A2.3 is true.

Proof Take g to be some ergodic decomposition. Then modulo
null sets, {g~\B): B is Borel in Z) = {q~\h~\B)): B is Borel inZ}C
{q~\B): B is Borel in T). Thus the latter set is dense in the
saturated Borel sets, and by the proof of Theorem A2.5 we see that
q is an ergodic decomposition.

A3* Commuting groupoid actions and closing of ranges of
homomofphisms* The numbers in this section agree with those of
§3.

DEFINITION A3.1. If S is an F-space and a G-space, we say
the actions commute iff for seS, ξ eF and xeG, if sx and sξ are
defined then so are (sx)ξ and (sξ)x and they are equal.

THEOREM A3.2. Let (F, [μ]) and (G, [v]) be measured groupoids
and let (S, λ, p) and (S, λ, q) be strict (F, [μ])- and (G, [v])-spaces
respectively. Suppose these actions commute. Then there is a
strictly G-equivariant function f: S —> Gl0)*^ which is an ergodic
decomposition of S*F. If S' is an analytic (G, [v])-space and
/ ' : S —> S' is a (G, [v\)-equivariant ergodic decomposition of S*F,
then (Gl0)*^~, /*(λ)) and (S\/£(λ)) are isomorphic (G, [v])-spaces.

Proof. First we describe a general method for constructing
strictly G-equivariant functions from S to G ( 0 ) *,^ and then show
how to choose the ingredients to achieve the desired goal. Let
I = [0, 1] and let g: S-> I be any Borel function. For seS, xeG
define h(s)(x) = g(sx) if p(s) = r(x) and 0 otherwise, and let f(s) be
the element of ^{p{s)) which is the equivalence class of h(s).
From the fact that (sx)y = s(xy) when either side exists, it follows
that g((sx)y) — g(s(xy)) if (sx)y exists, and hence that f{sx) — f(s)x
if (8, x) 6 S*G. If k is a bounded Borel function on G, the function
taking (s, x) 6 S x G to h(s)(x)k(x) is Borel, so the function taking

s 6 S to U(8)(a0fc(o0dv(r, 3>(«))(«) is Borel. Thus / is Borel.
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Now we want to find a g such that the resulting / will be an
ergodic decomposition. Let Fu be an i.e. of F on which μ has a
q.i. decomposition and let So = p~\Ff0)). Then So is conull and is a
strict ίVspace. If seS, xeG and q(s) = r(x), while ξeF and p(s) =
r(f), then p(sx) = r(ζ) = p(s), because the actions commute. Hence
SQ is G invariant and is a strict G|?(50)-space. Let Go — G\q(S0).

Sets of the form q~\A) for A e G(0> are also jF-invariant so in
constructing a countable algebra ,S>/ of JFy invariant Borel sets in
So to produce a strict ergodic decomposition of S0*F0 &s in the
proof of Theorem A2.4, we may assume ^/"S{p~\A): A e <s>4\, where
• i>< is an countable generating algebra of Borel sets in GΓ Suppose
π: So —> T is a strict ergodic decomposition of S 0 *JF 0 SO obtained.
Then π(sλ) = π(s2) implies p(s1) ~ p(s2), so there is a Borel function
q: T~^G{oo) such that qoπ = p. Then g is automatically onto, and if
we let λ' — π*(X), #*(λ') — r^(v) = 55.

Now let T' be λ'-conull and Borel in T with the property that
((So*^)!^" 1^), [(λ*/ί)*]) is an ergodic groupoid for teT' (see the proof
of Theorem A2.4). Notice that (SQ*F0)\π-\t) and (SQ*G0)*F0\(π-\t) x {α;})
are isomorphic if q(t) = r(x), and π x ΐ takes S0*G onto T*G — {(ty x) e

TxG: q(t) = r(x)}. Let λ=ιλ tcίλ'(£) be a decomposition of λ relative to

π. If λ« is concentrated on π~\t) then yp ( 8 )=v f f ί t ) for λ r almost all s so

\e8 x vpί8)dλt(s) = λ j X vq{t). For each such ί, π*(Xt) = εt and thus

(π x ^^(λ, x v9(ί)) = εt x v9ίί>. By Lemma 1.2 of [13], (π x i)*(λ*y) =
λ'*v. Then we see that

x εβ)d(V*v)(ί, x) - JJ(λ, x ejdίε, x v^){t\ x)dx\t)

= ίλ t x vq{t)dX\t) = λ^v .

Since λέ x εx is concentrated on TΓ"1^) X {X} if Xt is concentrated on
π~\t), we see that r x i is an ergodic decomposition of (S*G)*F.

Now r(s, x) — (sx, x"1) defines a measure class preserving Borel
automorphism of S*G which commutes with the action of F, so if
A is jF-invariant so is τ(A). If £%f is a countable generating
algebra of Borel sets in T*G, then J ^ + = {(TΓ X %γ\B)\Be&\ is
a countable algebra of Borel sets in S*G. Since π x ί gives an
ergodic decomposition, j ^ + must be dense in the F-invariant sets
in S*G. Let j y r be the smallest algebra containing ,J^+ and
invariant under τ. Then j ^ Γ is countable and dense in the F-
invariant sets so it gives rise to an ergodic decomposition πf of
(iS*G)*jP. Now πf and π x i have the same level sets on some
conull Borel set Z £ S*G, and πf and πΌτ have the same level sets
by the r-invariance of jV r. Thus π x i and (π x i)<>τ have the
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same level sets on Z. Let Sx be a conull Borel set in So such that
Z is e8 x vp(s)-conull for s e Sx. Define g:S->I by letting j:T-+I
be an imbedding and taking g to be some extension of j<>π.

We have /fo) = f(s2) iff pfo) = p(s2) and f̂eα;) = 0(s2α) for vp{sϋ-
almost all x. For slf s2 e Sί9 if p(βj = p(s2) = w, then the set X =
{xer~\u): (sl7 x) and (s2fx)eZ} is vw-conull. Thus for slfs2eSlt

/(*i) — /fe) implies {#eX: ^(s^) = #(s2#)} is vtt-conull. Since a e l
implies (sί9 x) and (β2, x) eZ, for a e l w e have (gfax), x~ι) = (g{s2x),
x"1) iff (gfe), ίc) = (^(s2), α?), so /(β^^/fe) and s^ s26Si together imply
#(si) = ^(s2). Conversely, let su s2eS1 with g(s1)=g(s2). Then p(8i) =
p(8g), which we call u, and take -X" as before. Then g&x) = #(s2a?)
for sceX. Thus /(s^ = /(s2). Hence / and # have the same level
sets on Ŝ .

There is a conull set S2 such that if seS2, ξeF and sξ is
defined and in S2, then flr(β) = flr(sf). We may assume that Sx is
chosen so that seS1 implies α*(εs x vp{8)) is concentrated on S2. Then
suppose seSlfξeF and 8ξeSt. In that case, {xer'^pis)): sx and
(8f)a? = (βx)ξ are in SJ is vp(8)-conull, so h(s) = fo(sξ) a.e., i.e., /(s) =
f(sξ). Hence / is an ergodic decomposition of S*F.

If / ' is taken as in the statement of the theorem, then by
Lemma A2.2 there are Borel functions h:Gl0)*^~ ~> S' and h': S'—>
G{0)*J?~ with h°f= f a.e. and hΌf = f a.e. By Lemma 1.5, h and
h' may be taken to be equivariant. By the uniqueness in Lemma
2.3, hohr and hΌh are the identities on conull sets.

In the process of constructing the closure of the range of a
homomorphism, it will be necessary to construct some quasi-invari-
ant measures. The next lemma gives one of the basic ingredients.
First some preparation is needed.

Let (G, [v]) be a measured groupoid and let E be the equivalence
relation on G(0) induced by G, i.e., E = (r, d)(G) £ Gί0) x G(0). Let
v9 - (r, d)M-

DEFINITION A3.3. We shall say that v is (r, d)-quasi-invariant

if it has decompositions v — \vudv(u) and v — \vv>udv'(v, n) such that

(a) for (v, u) 6 E, vυ>u is concentrated on r~\v) Π d~ι(u),
(b) for (v,u)eE, (vv,J"1 - v,
(c) if r(x)~u, then vu,rl9)-x - vuMx) and x vd{κ),u - vr{x),u, and

(d) for ueG™, vu - \vv>ud(rM)(v).

As we explained just after Definition 3.3, G always has an i.e.
on which the restricted measure is (r, ώ)-quasi-invariant.

LEMMA A3.4. Let ((?, [v]) be a measured groupoid and suppose
v is (r, d)-quasi-invariant. Let X be a finite measure on G{0) such
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that X(A) - 0 iff ΰ(A) = 0 for Borel analytic sets A £ Gw. Let

v1~\vudX{u)9 and let yeG act on xeG by x*y = y~ιx provided

r(x) = r{y). Then vι is quasi-invariant.

Proof. If AQ Gw is Borel, then U= {ue G(0): r*{vv){A) = 0} is

a saturated Borel set. Now r*(v^)(A) = \r*(pu)(A)d\(u) which is 0 iff

U is λ-conull iff U is v-conull iff ϊ>{A) — \r*(vu)(A)dv(u) is 0. Hence
r*(Vi) ~ $ a n ( i w e can decompose v1 = \v?dv(u) over v relative to r.

The proof will be complete if vΓ<v)*2/ = 3/""1 Γ̂(v> ^ f̂(2/) whenever ί/eG.
To this end, we seek another more convenient way to write

the decomposition. First of all, define Xυ = \d*(i>ΐ)d(r*(vv))(u) for

v eG ( 0 ) . Then v ~ w implies Xυ — Xw because r*(vv) — r*(vw). Also

= x .
r

Now define v\ = l^^dλ^u). Then for any weG{

Hence

ivJcZy(i ) ^ \\

Now 2̂ is concentrated on r \v), so this is a decomposition of a
measure equivalent to vx and by essential uniqueness we have v\~v\
a.e. relative to V, so we may as well assume v\ ~ v\ always. Then
for y eG we have
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THEOREM A3.5. Let (F, [μ]) be a measured groupoid, let (G, [v])
be a measured groupoid for which v is (r, d)-quasi-invariant and
let φ:F-*G be a homomorphism. Then there are i.c.'s Fo and Go

of F and G, a strict (GQf [v])-space (Sφ, λ) and a strict homomor-
phism <p':F0-+ Sφ*GQ such that φ\Fo = j°φ', where j: Sφ*G0->GQ is
the inclusion (coordinate projection).

DEFINITION A3.6. We call (SΨ*G, [X*v]) the closure of the range
of p, and will denote j by jφ when necessary to identify its connec-
tion with ψ.

Proof of theorem. First replace F by an i.e. so that Φ is
strict and let T = G*F{0) = {(x, u): d(x) = φ(u)}. By passing to an
i.e. if necessary, we may have G(0) = [φ(Fw)]. Then let G, F act
on T by (x, u)y = (y~% u) if r(x) = r(y) and (x, u)ξ = (xφ(ξ), d(ξ))
if u = r(ζ). It is easy to see that these actions commute and that
p(x, u) = r(x) defines the projection of T into <?(0) involved in making
T a G-space, while p\x, u) = u defines the one for F.

Next we must construct a suitable measure on T. First form

vx = [vud(φ*(μ))(u). Then vx is carried o n l = d~l{cp{Fm)) and X is

the projection of T into G. By Lemma A3.4, vγ is quasi-invariant
under the action of G on X given by letting y 6G act on xeX if
r(x) = r(y) and then x*y = y~λx. Also, the coordinate projection of
T onto X partitions the action of G on T over X. The measure

we need is v^μ = \(eβ x βdi^dv^x) = I (*>?•<«> x εu)dμ(u).

To see that ĵ !*/? is (?-quasi-invariant, use the first formula for
it. Clearly the decomposition of vx*μ given above is the relevant
one for the partition of T over X and (εx x βd{x))y = εy~

x

x x μi{y~
x

x)

so Vi*/? is quasi-invariant by Theorem 2.9 of [19].
To see that vx*μ is i^-quasi-invariant, use the second formula.

The coordinate projection of G*F{0) onto F{0) partitions the action.
If r(ξ) — u and d{ξ) — v, for ξeF, then (x, u) ι-* (xφ(ζ), v) = (x, u)ξ
maps d~\<p(v)) x M one-one onto d~\φ{v)) x {#} and carries i^U ) x εtt

to (ι>φ(U)φ(ζ)) x εv which is equivalent to vφM x εv because d(φ(ζ)) —
Φ(v) and vr{z)x ~ vd{x) always. Again by Theorem 2.9 of [19], vx*β



450 ARLAN RAMSAY

is jF-quasi-invariant.

By Theorem A3.2 there are an i.e. Gx of G, a v^μ-conull Gr

invariant set 2\ £ T and a Borel function /: T - ^ G ( 0 ) * ^ such that
/ is strictly G-equivariant and an ergodic decomposition of (T*F)
and f(tξ) = /(ί) whenever teTu ζeF and if is defined. Then for
x,y eG1 and ueF{0) with r{x)=r{y) and (a?, w) 6 2\ we have (sΓ1^ w) e
2\. If d(«) = d(x) and 2 e Gί9 we can take 7/ = xz"1 to show that
(z9u)eT1. Let Fx be the projection of T1 onto F ( 0 ) . We have
proved that T1 = d^φiV^VΊ. Now T1 is conull so Vx is μ-conull
and hence φ(V^ is φ*(μ)-conull. Let Uo be a ^(/Q-conull Borel set
contained in <p(Yd. Then let Vo = ^(CTo), JP0 = *Ί FOf Go = G\[U0],
and Γo = d^(U0)*VQ. Then Γo is G0-invariant and conull and /: To->
G!,0)*Jf " £ ' ? G^tJ^ is equivariant. Also (T*F)\T0 = T0*F0. If
we set Sy = GΓ* ̂  a n d λ = (/| Γo)*(Pi*/0, then λ is quasi-invariant
since λ*y is the image of {v^f£)*v.

The next consideration is the strict homomorphism φ'\ (F09 [μ])-*
(Sφ*GQ, [λ*v]). We want to define φ\ξ) = (f(φ(r(ξ)), r(£)), φ(ξ)) as in
Theorem 7.8 of [18]. This gives ό°Ψf — Ψ on Fo, and we must verify
several facts. First let q: Sφ —> G^o) be defined by qof = ?̂; of course
q is also the natural projection of G^*^ onto G^o). Then for ξ eF0,
qifWr®), r(f))) - p(φ(r®)), r(ί)) = 9>(r(f)) = r(φ(ί)) so (/(^(r(ί)), r(ξ)),
φ(ξ)) € S,*G, i.e., φ\F0) £ S,*G. Next, /&(?(£)), r(ξ))φ(ξ)=f((<p(r(ξ)),
rψφ(ξ)) = f{φ{ξY\ r(ξ)) = Mφ(d(ξ)\ dφJΓ 1) = f(<P(d(ξ)), d(ξ)). From
this it follows easily that φf is algebraically a homomorphism.
Clearly 9/ is Borel. To prove 9/ has the proper measure theoretic
behavior, let E be saturated in Sφ. Then f~~\E) is a Borel set and
is invariant under both F and (?, so its projection, V, into Fo

l0) is
analytic and f~\E) — d~\<p(V))*V. Since almost every vu is a
probability measure, v^μ{f\E)) = μ(V). Thus £? is null iff V is.
Since V = (φ'y1^), we have the desired result.

We have constructed the closure of the range of a homomor-
phism of virtual groups if it takes values in a groupoid with an
(r, (ί)-quasi-invariant measure. For the general case, we observe
that ((?, [v]) always has an i.e. Go on which v is (r, d) quasi-invariant,
and φ is similar to a homomorphism <p0 taking values in Go. We
need to see that SΨo does not really depend on the choice of φ0, as
the following lemma shows.

LEMMA A3.7. Let (G, [v]) be a measured groupoid in which v
is (r, d)-quasi-invariant and let φu φ2 be similar homomorphisms
of a measurable groupoid (F, [μ]) into (G, [v]). Let T1 = T(φt) =

{(x,u)eGxFw:d(x) = φ1(u)} and take the measure v1 = \vud{φ1^{μ)){u)

on d^dp^F0)) and v^μ on 2\. Similarly form T2 = T(φ2), v2 and
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v2*μ. Then there are Lc.'s Fo and GQ of F and G and Fo and Go-
invariant conull analytic sets JΓI*£2\ and T*S=T2 which are strictly
isomorphic as Fo and G0-spaces under a measureclass-preserving
function /. Hence (SΨί, λj and (Sψ2, λ2) have strictly isomorphic
analytic conull G0-invariant subspaces.

Proof. Suppose Θ:F{O)->G is Borel and Θor(ξ)φ2(ξ) = <px(ξ)θod(ξ)
for almost every ζeF. Then there is an i.e. Ft of such that φl9 φ2

and the similarity are all strict on F , Set Go = G|([9i(i<T))] Π
[<P*(F}0))]) and set Fo = F | ( £ r W ) Π ̂ ( G Γ ) ) . Then faffi")] =
[Ψ2(FO

W)] = G<0), and Γ* = c Γ ^ i ^ ) ) * ^ is conull in ϊ\ while T2* =
d-\φ2{F™))*F0 is conull in Γ2.

Now define /(a:, u) = (α?0(tθ, w) for (&, t&) 6 Γj* and g(x, u) =
(xθiuY1, u) for (a?, w) € Γ2*, as we can since ro^ = φx and cίo^ — φ2.
These are mutual inverses, so each is one-one and onto; each is
clearly Borel. The similarity equation forces / to be i^-equivariant
and / is clearly G-equivariant. Now f*(v9liu) x εtt) = ipφ^u)θ{u))xεu^
Vφ2iU) x &u for each ueFQ

m, so f*(Pi*μ) ~ »t*βt as desired. Since
Γi* and Γ2* are isomorphic, we can carry the quotient mapping of
Ti* onto SΨι over to Γ2* via / and get a quotient mapping of Γ2*
onto SΨl which is an ergodic decomposition of T2**FQ. Thus S9ι may
be used for S?2, ending the proof.

A4 Functorial properties of the range closure construction*
The numbers in this section agree with those in §4.

LEMMA A4.1. Suppose ^Γ=((f\, [λj), φ,) and &\= ((F2f [λj), <p2)
are in <^(G)} φ2 is strict, ψ is a homomorphism of ^\ to J^ and
θ: F Γ -> G is a Borel function for which θor(ζ)φ2of(ζ) = φ^θodiξ)
for almost all ξ. Then there is a G-equivariant normalized h =
M(ψ, θ): SΨl —> JS>̂ 2 obtained as the essential quotient of the function
f from 2\ = G*i\(0) to T2 = G*F2

(0) defined by fθ(x, u) = (xθ(u), ψ(u)).

Proof, There is no loss of generality in supposing ψ and the
similarity θ of φ2oψ with φx are strict. Then r°0 = φx implies that
xθ{u) is defined when (x, u) 6 Tlf and d<>θ = (<P2°ψ)~ implies that
f\x, u) 6 T2. Furthermore, if r(£) = u then f\{x, u)ξ) =
d(£)) - (xφ^θodiζ), ψod(ξ)) = (xθor(ξ)φtoγ(ξ), ψod(ξ)) = /β(a
while r(y) = r(a?) implies /tf((α?, %)#) = /*(«?, w)i/ Now suppose Go is
an i.e. of G and g^T^G™*^ and #2: Γ 2->G ( 0 )*^^ are ergodic
decompositions of the actions of Fx and F2 which are strictly Go-
equivariant on conull analytic Go- invariant sets Xx £ 2\ and X2 £ Γ2

and have Fλ or i^ invariant level sets on Xx and X2. Then ^2°/^ is
constant on all FΓorbits in Xλ so by Lemma A2.3 there is a Borel
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function h from G { 0 )*J^to G(0)oj^such that hog, = g2of a .e. Since
Qu 02, fθ are equivariant, by Lemma A1.2 we may suppose h is
algebraically strictly equivariant on a conull analytic Gγ-invariant
set for some i.e. Gx £ GQ. We may as well suppose Gι = Go.

Now to show that hΓ1 has the proper behavior on saturated
sets, let A be analytic and (?0-invariant in S9i. Then g2\A) is
analytic in T2 and B = ̂ ΓX(A) Π X2 is G0-invariant and also ίVinvari-
ant relative to X2. Now X2 is invariant under some i.e. of F2, so
by passing to another i.e. we may suppose X2 is invariant. Then
B is F24nvariant. Now use the fact that μ has an (r, ̂ -quasi-
invariant decomposition on Go, and μ = l̂ ttd!/Z(w). In that case, for

v = r(f) with ί ei^2, (/^2(v) x sv)£ — /V2c«i<f» x £<*(*>• Hence the set F =
{veF2

{0): (μφ2w x εv)(I?) > 0} is invariant. If A is a null set, g2\A)
is null, so B is null, and hence V is null. Because f is a homo-
morphism, ψ~\V) is null. For ueFf0), the ^-section of (fθ)~ι{B) is
Bψiuβiuy1 (a translate of the ̂ r(u)-section of B) which is null unless
ueψ~\V) because the decomposition is quasi-invariant. Thus
{fθ)'\B) is null. Now gr\hr\A)) differs from (/TWCA)) by a
null set and (fθ)~\T2 — X2) is null, by the argument just used, so
h~\A) is null.,

On the other hand, if A has positive measure, so does B, so V
has positive measure. It follows that the set ψ~\V) has positive
measure. The ̂ -section of (fθ)~\B) will have positive measure for
ueφ~\V), so (f0)"1^) has positive measure, and h"\A) has positive
measure.

LEMMA A4.2. Under the hypotheses of Lemma .4.4.1, if δ is
another similarity of φ2

oψ with φλ and φ2 is strict, then M(ψ, δ) is
similar to M(ψ, θ).

Proof. Let F 3 be an i.e. of Fx on which both similarities are
strict. Then T3 - d^φ^F^))^^ is F3 invariant in ϊ\ = T(φ,) and
is also Gλ = G \ [φ(F'j0))] invariant. Hence the quotient of T3 in Sn

is Grinvariant and conull, so we may suppose the similarities were
strict on Fx. Then define a(x, u) = xθiijήδ^)"^1. It is easily seen
that the product does exist and that a is Borel from Tx to G. Also
fθ(x, u)a{xy u) is always defined and equal to fδ(x, u), while a((x, u)ξ) —
a(x, u) for ζeFi if (x, u)ξ is defined, and a((x, u)y) — y^aix, u)y if
r(y) = r(x). Using Lemma A2.3 we see that there is a Borel
β: SΨl —> G such that βogι = a a.e. Lemma A1.2 says that there is
a choice of β for which β(sy) = y~1β(sy)y as long as s is in a
certain conull analytic saturated set, i.e., G0-πrvariant for some i.e.
Go. It is not hard to see that M(ψ, θ){s)β{s) = M(ψ, δ)(s) for almost
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all seSΨι, so [M(f, θ)] = [M(f, 8)].

DEFINITION A4.3. Call this class of maps [M(ψ)].

LEMMA A4.4. // μ is (r, d)-quasi-invariant on G and ψt: J^l—>
J^ is a homomorphism, where ^ = ((F2f [λ2], φ2) with φ2 strict, and
ψ2: (Flf [λj) —> (F2, [λ2]) is a homomorphism with [ψ2] — [ψx] then
fa'^i-**^ is a homomorphism and [M(ψJ\ = [M(ψ2)].

Proof. The first assertion follows immediately from the defini-
tion of homomorphism. We may suppose, as before, that θλ is a
strict similarity of φ2°ψλ with ψx and that θ is a strict similarity
of ψ2 with fλ. If Θ2{n) = θx(v)φz°θ(u)t then for ξeF1 we have
02°r(ζ)φ2oψ2(ζ) = 9i(ί)^«°d(f). Let f^(xf u) = (xθM, ψifa)), fHx, u)=-
(xθ2(u), ψi(u)) for (x, u) e T,. Then f^(xf u)θ{u) = (xθMφ^Oiu), doθ{u)) =
/2

92(^, w) because ro^ = ψλ and cίo/9 = ψz. Hence g^f'1 = ft0^2 which
implies that Af(ψΊ, ̂ )°fifi = M(ψ2, Θ2)og1 a.e. and hence that
[M(ψu θd] =

For a definition of M[φ], see § 4.

LEMMA A4.5. If ^{.^[—^^\ and <f<i\άϊr<i-*ά^l are homomor-
phism, for J^, JFl, J^7 in ^(G), then

Proof. We may assume that j« is (r, d)-quasi-invariant. By
taking i.c.'s in the proper order we may suppose (φ5, ̂ 2 ) , (<p2, ψλ)
and (ψ2, ψύ are composable and that we have strict similarities θ±

of φ2°ψι with φx and ^2 of φ3

oψ2 with y>2. Then ί(%) = θ^tήθ^ψ^u)
defines a strict similarity of φ^ψ with φ19 where ψ = ^2°^i- Then
/^ = //20//1. Now X - {ί 6 G*-F2

(o): M(ψ2, Θ2)og2(t)^ = fto^Cί)} contains
a conull invariant Borel set since both functions are equivariant
and Borel and they agree a.e. Hence (ff*)~\X) has the same property,
so we see that Λf(y2, Θ2)oM(ψlf ί^ft = M(ψ2, Θ2)og2ofh = ^3o/^ a .e.
Hence ϋf(^2, θ2)oM(ψlf θt) = M(f, θ) a.e. which gives the desired
result.
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