TWO QUESTIONS ON WALLMAN RINGS

JOSÉ L. BLASCO OLÇINA
TWO QUESTIONS ON WALLMAN RINGS

JOSE L. BLASCO

In this paper we give an example of a Wallman ring \(\mathcal{A} \) on a topological space \(X \) such that the associated compactification \(\omega(X, Z(\mathcal{A})) \) is disconnected and \(\mathcal{A} \) is not a direct sum of any two proper ideals, herewith solving a question raised by H. L. Bentley and B. J. Taylor. Also, an example of a uniformly closed Wallman ring which is not a sublattice is given.

I. Introduction. Biles [2] has called a subring \(\mathcal{A} \) of the ring \(C(X) \), of all real-valued continuous functions on a topological space \(X \), a Wallman ring on \(X \) whenever \(Z(\mathcal{A}) \), the zero-sets of functions belonging to \(\mathcal{A} \), forms a normal base on \(X \) in the sense of Frink.

H. L. Bentley and B. J. Taylor [1] studied relationships between algebraic properties of a Wallman ring \(\mathcal{A} \) and topological properties of the compactification \(\omega(X, Z(\mathcal{A})) \) of \(X \). They proved that if \(\mathcal{A} \) is a Wallman ring on \(X \) such that \(\mathcal{A} = \mathcal{B} \oplus \mathcal{C} \) where \(\mathcal{B} \) and \(\mathcal{C} \) are proper ideals of \(\mathcal{A} \), then \(\omega(X, Z(\mathcal{A})) \) is disconnected. We shall prove that the converse of this result is not valid. But, when \(\omega(X, Z(\mathcal{A})) \) is disconnected we find a Wallman ring \(\mathcal{A}^\circ \), equivalent to \(\mathcal{A} \), which is a direct sum of any two proper ideals.

It is well-known that every closed subring of \(C^*(X) \), the ring of all bounded functions in \(C(X) \), that contains all the rational constants is a lattice. But this is not true for arbitrary closed subrings of \(C(X) \). We give an example of a uniformly closed Wallman ring on a space \(Y \) which is not a sublattice of \(C(Y) \). This corrects an assertion stated in ([1], p. 27).

II. Definitions and basic results. All topological spaces under consideration will be completely regular and Hausdorff. A nonempty collection \(\mathcal{F} \) of subsets of a nonempty set \(X \) is said to be a ring of sets if it is closed under the formation of finite unions and finite intersections. The collection \(\mathcal{F} \) is said to be disjunctive if for each closed set \(G \) in \(X \) and point \(x \in X \sim G \) there is a set \(F \in \mathcal{F} \) satisfying \(x \in F \) and \(F \cap G = \emptyset \). It is said to be normal if for \(F_1 \) and \(F_2 \) in \(\mathcal{F} \) with empty intersection there exist \(G_1 \) and \(G_2 \) which are complements of members of \(\mathcal{F} \) satisfying \(F_1 \subseteq G_1, F_2 \subseteq G_2 \) and \(G_1 \cap G_2 = \emptyset \). The collection \(\mathcal{F} \) is a normal base for the topological space \(X \) in case it is a normal, disjunctive, ring of sets that is a base for the closed sets of \(X \).

Throughout this section \(\mathcal{D} \) will denote a disjunctive ring of closed
sets in a topological space X that is a base for the closed sets of X. Let $\omega(X, \mathcal{D})$ denote the collection of all \mathcal{D}-ultrafilters, and topologize them with a topology having as a base for the closed sets, sets of the form $D^* = \{Z \in \omega(X, \mathcal{D}) : D \in D\}$ where $D \in \mathcal{D}$. Then X can be embedded in $\omega(X, \mathcal{D})$ as a dense subspace when it carries the relative topology. The embedding map takes each $x \in X$ into the unique \mathcal{D}-ultrafilter of supersets of x in \mathcal{D}. The space $\omega(X, \mathcal{D})$ is a T_1-compactification of X ([3], p. 122).

We now state some facts concerning the space $\omega(X, \mathcal{D})$ which will be needed. For a proof see ([3], p. 119, p. 123).

Proposition 2.1. The space $\omega(X, \mathcal{D})$ is Hausdorff if and only if \mathcal{D} is a normal base on X.

The following result is an interesting characterization of $\omega(X, \mathcal{D})$ due to Sanin.

Theorem 2.2. The space $S = \omega(X, \mathcal{D})$ is uniquely determined (in the usual sense) among T_1-compactifications of X by its properties

(a) $\{\text{cl}_S D : D \in \mathcal{D}\}$ is a base for the closed sets of $\omega(X, \mathcal{D})$.

(b) For F_1, F_2 in \mathcal{D}, $\text{cl}_S F_1 \cap \text{cl}_S F_2 = \text{cl}_S (F_1 \cap F_2)$.

According to the Proposition 2.1 if any Hausdorff compactification of X satisfies (a) and (b), then \mathcal{D} is a normal base on X.

III. Disconnectedness of $\omega(X, Z(\mathcal{A}))$. The next result is a necessary and sufficient condition for the disconnectedness of $\omega(X, Z(\mathcal{A}))$ being \mathcal{A} a Wallman ring on X.

Theorem 3.1. Let \mathcal{A} be a Wallman ring on a space X. Then $\omega(X, Z(\mathcal{A}))$ is disconnected if and only if there is a Wallman ring \mathcal{A}°, equivalent to \mathcal{A} (i.e., $\omega(X, Z(\mathcal{A})) = \omega(X, Z(\mathcal{A}^\circ)))$, which is the direct sum of any two proper ideals.

Proof. The sufficiency has been proved in ([1], Theorem 3.14) with $\mathcal{A} = \mathcal{A}^\circ$. Necessity. Suppose that $S = \omega(X, Z(\mathcal{A}))$ is disconnected. Then there exist nonempty disjoint closed subsets A and B of S whose union is S. Since A is a closed set of S,

$$A = \bigcap \{\text{cl}_S Z : A \subset \text{cl}_S Z, Z \in Z(\mathcal{A})\}.$$

It follows from $A \cap B = \emptyset$ that $\{B, \text{cl}_S Z : A \subset \text{cl}_S Z, Z \in Z(\mathcal{A})\}$ does not have the finite intersection property. Therefore $B \cap \text{cl}_S Z_1 \cap \cdots \cap \text{cl}_S Z_n = \emptyset$, for some $Z_i \in Z(\mathcal{A})$, $A \subset \text{cl}_S Z_i$, $1 \leq i \leq n$. This implies $A = \bigcap \{\text{cl}_S Z_i : 1 \leq i \leq n\} = \text{cl}_S \cap \{Z_i : 1 \leq i \leq n\}$. So $A = \text{cl}_S Z(f)$ where
In the same way we find that $B = \text{cl}_K Z(g), g \in \mathcal{A}$.

The set $\mathcal{A}^\circ = \{h/s: h, s \in \mathcal{A}, Z(s) = \emptyset\}$ is a subring of $C(X)$ such that $Z(\mathcal{A}) = Z(\mathcal{A}^\circ)$. So \mathcal{A}° is a Wallman ring on X equivalent to \mathcal{A}. The functions $h_i = f^i/(f^2 + g^i), h_2 = g^2/(f^2 + g^2)$ belong to \mathcal{A}° and they are the characteristic functions of the zero-sets $Z(g)$ and $Z(f)$, respectively. Since $Z(f) \cap Z(g) = \emptyset$, the ideal (h_i) of \mathcal{A}° generated by h_i is proper, $1 \leq i \leq 2$. On the other hand, $1 = h_1 + h_2$ implies that $\mathcal{A}^\circ = (h_1) \oplus (h_2)$.

The following is an example of Wallman ring which cannot be expressed as the direct sum of nontrivial ideals.

Example 3.2. Let $X = [0, 1) \cup [2, 3), \mathcal{B} = \{f \in C(X): \text{for some compact set } K \subset X, f \text{ is an integer constant on } X \sim K\}$. Since X is locally compact, $Z(\mathcal{B})$ is a disjunctive base for the closed sets of X.

Consider the following functions in $C(X)$

$$
\varphi_1(x) = e, \ x \in [0, 1) \quad \varphi_1(x) = 0, \ x \in [2, 3),
$$

$$
\varphi_2(x) = 0, \ x \in [0, 1) \quad \varphi_2(x) = e, \ x \in [2, 3).
$$

Let \mathcal{A} be the subring of $C(X)$ generated by $\mathcal{B} \cup \{\varphi_1, \varphi_2\}$. Since $\varphi_1 \varphi_2 = 0$, a function of \mathcal{A} will be of the form

$$
f = g_{00} + g_{10} \varphi_1 + g_{20} \varphi_1^2 + \cdots + g_{m0} \varphi_1^m + g_{01} \varphi_2 + \cdots + g_{0j} \varphi_2^j
$$

where g_{ij} belong to \mathcal{B} and m, j are nonnegative integers.

From the definition of \mathcal{B}, there exist compact sets $K_1 \subset [0, 1)$ and $K_2 \subset [2, 3)$ such that if $x \in X \sim (K_1 \cup K_2)$ then $g_{ik}(x) = \alpha_{ik} \in Z$ (the set of integer numbers). Therefore

$$
f(x) = \alpha_{00} + \alpha_{10} e + \cdots + \alpha_{m0} e^m, \quad x \in [0, 1) \sim K_1
$$

$$
f(x) = \alpha_{00} + \alpha_{01} e + \cdots + \alpha_{0j} e^j, \quad x \in [2, 3) \sim K_2.
$$

Since $Z(\mathcal{B}) \subset Z(\mathcal{A})$ it follows that $Z(\mathcal{A})$ is a disjunctive base for the closed sets of X and a ring of sets.

Now, we will show that $K = [0, 1] \cup [2, 3]$ is a compactification of X equivalent to $\omega(X, Z(\mathcal{A}))$. According to Theorem 2.2 it suffices to show that: (a) The family $\{\text{cl}_K Z: Z \in Z(\mathcal{A})\}$ is a base for the closed sets of K (b) For Z_1, Z_2 in $Z(\mathcal{A}), \text{cl}_K (Z_1 \cap Z_2) = \text{cl}_K Z_1 \cap \text{cl}_K Z_2$.

(a) If C is a closed set in K and $1 \in C$, then the set $C \cap [0, 1]$ is compact and $1 \in C \cap [0, 1]$. Let β be a point in $[0, 1)$ such that $C \cap [\beta, 1] = \emptyset$. Then, there exists a function $f \in C(K)$ such that $f([\beta, 1] \cup [2, 3]) = \{1\}$ and $f(C \cap [0, 1]) = \{0\}$. If g is the restriction of f to X, then $g \in \mathcal{B}, h = \varphi_1 g \in \mathcal{A}, C \subset \text{cl}_K Z(h)$ and $1 \in \text{cl}_K Z(h)$. With the point 3 a similar argument can be used (also in (b)).
(b) Let \(f, g \in \mathcal{A} \) and suppose that \(1 \in \text{cl}_K Z(f) \cap \text{cl}_K Z(g) \). From (*) there exists \(\beta \in [0, 1) \) such that \(f(x) = m_1 \) and \(g(x) = m_2 \) for every \(x \in [\beta, 1) \). By our assumption \(m_1 = m_2 = 0 \), therefore \(1 \in \text{cl}_K (Z(f) \cap Z(g)) \).

Then \(K = \omega(X, Z(\mathcal{A})) \), hence \(Z(\mathcal{A}) \) is a normal base on \(X \) and \(\mathcal{A} \) is a Wallman ring.

Now, we will show that the characteristic function of the interval \([0, 1)\) is not in \(\mathcal{A} \). Let \(h \in \mathcal{A} \). From (*) there exist \(\beta \in [0, 1), \gamma \in [2, 3) \) and \(\alpha_{ik} \in \mathbb{Z}, 0 \leq i \leq m, 0 \leq k \leq j \) such that

\[
\begin{align*}
 h(x) &= \alpha_{00} + \alpha_{01}e + \cdots + \alpha_{0\ell}e^\ell, & x \in [\gamma, 3) \\
 h(x) &= \alpha_{00} + \alpha_{10}e + \cdots + \alpha_{m0}e^m, & x \in [\beta, 1).
\end{align*}
\]

If \([2, 3) \subset Z(h)\), then \(\alpha_{00} = \alpha_{01} = \cdots = \alpha_{\ell} = 0 \) because \(e \) is a transcendental number. Therefore \(h(x) = \alpha_{10}e + \cdots + \alpha_{m0}e^m \neq 1 \) if \(x \in [\beta, 1) \).

Finally, we will show that \(\mathcal{A} \) cannot be expressed as the direct sum of nontrivial ideals. Suppose that \(\mathcal{A} = \mathcal{C} \oplus \mathcal{H} \) where \(\mathcal{C} \) and \(\mathcal{H} \) are proper ideals of \(\mathcal{A} \). Then \(1 \in \mathcal{A} \) implies that there exist \(f \in \mathcal{C} \) and \(g \in \mathcal{H} \) such that \(1 = f + g \) and \(fg = 0 \). Hence \(\{Z(g), Z(f)\} \) is a partition on \(X \). On the other hand, since \(\mathcal{C} \) and \(\mathcal{H} \) are proper ideals, the zero-sets \(Z(f) \) and \(Z(g) \) are nonempty, so \([0, 1) = Z(f) \) and \([2, 3) = Z(g)\). Therefore \(g \in \mathcal{A} \) is the characteristic function of the interval \([0, 1)\), which is a contradiction.

IV. An example of a closed Wallman ring which is not a lattice. Let \(N \) denote the set of natural numbers. By a sublattice of \(C(X) \) we mean a subset of \(C(X) \) which contains the supremum and infimum of each pair of its elements. By a closed subring of \(C(X) \) we mean a subring of \(C(X) \) which is closed in the uniform topology on \(C(X) \).

Example 4.1. Let \(\mathcal{B} \) be the set \(\{f \in C(N): \text{for some finite subset } M \subset N, f \text{ is an integer constant on } N \sim M \} \). Then \(\mathcal{B} \) is a subring of \(C(N) \) and \(Z(\mathcal{B}) = \{B \subset N: B \text{ or } N \sim B \text{ is finite} \} \). It is well-known that \(\mathcal{B} \) is a Wallman ring on \(N \) such that \(\omega(N, Z(\mathcal{B})) \) is the one-point compactification of \(N \).

Let \(\varphi \) be the function defined \(\varphi(2n) = n, \varphi(2n - 1) = -n, n = 1, 2, \ldots \). Let \(\mathcal{A} \) be the subring of \(C(N) \) generated by \(\mathcal{B} \cup \{\varphi\} \). Obviously \(Z(\mathcal{B}) \subset Z(\mathcal{A}) \). To show that \(Z(\mathcal{A}) \subset Z(\mathcal{B}) \), let \(f \in \mathcal{A} \). Then \(f = g_0 + g_1 \varphi + \cdots + g_m \varphi^m \), where \(g_i \in \mathcal{B}, 0 \leq i \leq m \). From the definition of \(\mathcal{B} \), there exist \(n_0 \in N, \alpha_i \in Z, 0 \leq i \leq m \) such that \(g_i(2n - 1) = g_i(2n) = \alpha_i, 0 \leq i \leq m \) for every \(n \geq n_0 \). If \(\alpha_1 = \cdots = \alpha_m = 0 \), then \(f(2n - 1) = f(2n) = \alpha_0 \) for every \(n \geq n_0 \) and therefore
Suppose $\alpha_{i_0} \neq 0$ for some $i_0 \geq 1$. Then, if $n \geq n_0$, $f(2n) = \alpha_0 + n\alpha_1 + \cdots + n^m\alpha_m$ and $f(2n - 1) = \alpha_0 - n\alpha_1 + \cdots + (-1)^m n^m\alpha_m$. So $Z(f)$ is finite and $Z(f) \in Z(\mathcal{B})$. Hence \mathcal{A} is a Wallman ring on X.

If $\varphi^+ = \varphi \vee 0$, then $Z(\varphi^+) = \{1, 3, 5, \cdots\} \in Z(\mathcal{A})$. Therefore $\varphi^+ \notin \mathcal{A}$ and \mathcal{A} is not a lattice. Finally, since the functions of \mathcal{A} are integer-valued, it follows that \mathcal{A} is uniformly closed in $C(N)$.

References

Michael James Beeson, *Extensionality and choice in constructive mathematics* .. 1
José L. Blasco Olcina, *Two questions on Wallman rings* 29
Peter I. Booth and J. Tillotson, *Monoidal closed, Cartesian closed and convenient categories of topological spaces* 35
Peter B. Borwein, *Rational functions with positive coefficients, polynomials and uniform approximations* .. 55
Josip Globevnik, *Fourier coefficients of the Rudin-Carleson extensions* 69
Jacob Kofner, *Quasimetrizable spaces* .. 81
Mark Mandelker, *Resolutions on the line* .. 91
Lynn McLinden, *An analogue of Moreau’s proximation theorem, with application to the nonlinear complementarity problem* 101
Atsushi Murase, *On the uniform distribution property of certain linear algebraic groups* .. 163
Nicholas Th. Varopoulos, *Zeros of H^p functions in several complex variables* .. 189