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PETER B. BORWEIN

Upper bounds are established for the uniform approxi-
mation of continuous functions on [1, 0] by rational func-
tions with positive coefficients. These bounds are obtained
by rewriting polynomials with no positive roots as rational
functions with positive coefficients.

1. Introduction. The uniform closure in C[1, 0] of the set of
polynomials with positive coefficients includes only those functions
analytic in the unit disc whose power series expansions have non-
negative coefficients. The uniform closure of the set of rational
functions with positive coefficients consists of all continuous funec-
tions which are never negative on [0, 1]. This is a consequence of
the following interesting factorization theorem.

THEOREM 1. (K. Meissner [3].) Suppose that p is a polynomial
with real coefficients and that p(x) >0 for x>0. Then there
extsts a rational function r(x) with nonnegative coefficients so that

p(x) = r(x).

We will provide an accurate bound for the degree of the above
r in terms of the degree of p and some knowledge of the loecation
of the roots of ». We will also derive some estimates concerning
how efficiently polynomials can be approximated on [0, 1] by rational
functions with positive coefficients. We will exploit these results
to prove a number of approximation theorems. For instance: if f
is analytic in some neighborhood of [0,1] and positive on [0, 1],
then there exists a sequence of rational functions {r,} where each
r, is of degree » and has nonnegative coefficients so that ||f —,||.q=
0(a~"=) for some a > 1.

We employ the following notation. Let [J, denote the poly-
nomials with real coefficients of degree at most n. Let [I} be the
sub class of [], whose elements have nonnegative coefficients. Let
R;)* denote those rational functions p,/q, where p,,q,cI[;. For
f €Cla, b] define

Hﬂ (f [ar b]) =pieI}1f ”f - p”[a,b]
(7 Lo, ) = inf | £ = ple
R:+(f: [a’y b]) =r22£+ ”f - /r||[u,b]
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where || || is the supremum norm on [a, b]. We note that all
the above infimums are attained.

2. Expressing polynomials as rational functions with non-
negative coefficients. The first two results of this section are
concerned with expressing quadratic polynomials as rational func-
tions in Rj* where m is as small as possible. The final theorem
is an extension of these results to general polynomials.

THEOREM 2. Suppose that a, 8 > 0 and suppose that a:é—ax+6
has no positive roots. Then
(a) for each € > 0 there exists a constant A, so that

2 —ax + B8 =r,®)

where

1/2+¢
rn ERET and m < A[4——a2/ﬁ] .

(b) for e = 1/14,
2 —axr+ B = r,(r)

where

it 1 1/2+1/14
eR:T and m < 20 .

4 — o*/B
Proof. The quadratic »* — ax + @ has no positive root if and

only if a® < 48. We set ¢ = a*/@ and note that 0 < ¢ < 4. Consider

(—ax+ B)@*+ax+ B) =t + @28 — o) + B
=2+ B2 — ol + B .

If ¢ <2 we have the desired factorization. In general we proceed
as follows:
Define C, inductively by

(2) Co=01/28.nd Cn+1=2’_—Cﬁ‘
Let

(1)

p”(w) — xgn—i-l + an—lcnxzn + Bgn
and let

ZT,,(‘”) — mgn+1 . Bgn—lcnxzn + /32% .
Note that, by (2)
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p”(x)ﬂx) — x2n+2 _ qucﬁxgn%{ + 252nx27111 + 62n+1
(8) =" + g7Cod™ + g
= pnﬂ(x) .

Consider the smallest n (if it exists) so that C, is nonnegative.
Then, by (1) and (3)

(x* — ax + B)(«* + ax + B) = p,
and
pl'E'ZTz" * 'E**l = Pa

where p,"--'p,_, € [I4#+1_ since each C, < 0 for k < n and where
P, € [1h+1 since C, = 0. Thus, we have

4) ¥—oaxr+ B = Do __ — R,
( B @+ ax + B)p P Purs .

Since 0 < ¢** < 2 we deduce that C,—1. We wish to find a small
n as a function of C, so that

(8) G, z0.
Suppose that
(6) c, -+, C,<0.
Then
C.=2~(C, <0
implies
(Coo)*>2 and —C, , > 2

implies

(Cos? — 2> 22 and —C,_, > (2 + 2%
and by iteration
(7) ¢>24 (24 (24 2V =G,

1/2

where (equivalently) 6, = 2 and 4, = 2 + ¢42,.

We are reduced to finding an n so that d, > ¢ = a*/g since, for
such an n (6) is contradicted and hence, (5) is satisfied.

Consider
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45, =2 —g2, =2 0ns _ 4—0,,
2+002 (24 802+ 04

(8)
2 -2 _ 1

T @HAR)@+0E) @) T @+ @ ey

It is now sufficient to pick »n so that

7 at
9 — <4 =,
( ) (2 + 21/2)n - B
A suitable choice is
4 — &
. B 4 7
n = 1 + int. part <14+ =1
P s et 2y |= +70&4_£i
IS

We deduce from (4) that
v — ax + BeRL,

where

7 47 1 1/2+41/714

=20

ot < 4

4 - & 42

B
This completes (b). Part (a) is proved analogously with the observa-
tion that in (8), for & < =,

4—b 0" .
(2 + 5};2)«»—1:

Since 6, — 4, we can replace (9) by

Fo 4«
4—e)" B

and the result follows as above.
The bound in Theorem 2 is “essentially” correct.

THEOREM 3. Let o, =2 and B, =1+ 1/k*. If
2 — ax+ B =T,€RL

then
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1
4 %

B

m=12

Proof. We first show that if p,<c ][, then p, has no roots in
T, = {#: |arg (2)| < w/n}. Suppose 9,(z) =St ,a,2" where a, =0.
Let e{0 <arg(?) <m/n}. Then a,{)"€{0 <arg(z) < hr/n} and
hence, p,() €{im (2) > 0}. Thus, p, has no roots in T,.

The quadratic o* — a,x + B, has a root at 1+ 4/ke T, and we
deduce that if 2* — a,x + B, = r. € R;™ then m > k. We finish the
result by observing that

— 1 1/2 k(l + 1/k2)1/2
V2 =
4- % V2
B

A

k.

THEOREM 4. Suppose v, € I[. has no roots in the region Q(1/h)=
{z: |larg (2)| < 1/h} and suppose that p,(x) > 0 for x > 0. Then,

(@) for each € > 0 there exists a constant B,, depending only
on €, so that

Dp = 1, € RLT where m £ B.h''t9qn .
(b) for ¢ =1/17,

D, = T €RLT where m < 10h%" -0 .

Proof. Let x* — ax + v be a quadratic factor of p,. We assume
a,v7 < 0 since otherwise x* — ax 4+ v has either nonnegative coeffi-
cients or a nonnegative root. We proceed to replace, using Theorem
2, each such factor by an element of R{*.

Set v =1/4(1/h* + 1)a* + 6 and set B = 1/4(1/h* + 1)a®. Since
2 — ax + v has no roots in £2(1/h) was see that |a® — 4v|"* = a/h
and 4v = (1/h* + 1)a® from which we deduce that 6 = 0. Consider
22 — ax + 8. By Theorem 2(b) 2* — ax + 8 — 7, € Rj* where

k é 20 1 1/2-4+1/14 — 20[h2(1/h2 + 1) ]4/7 é 20h8/7 )
4@ 4

B

We now replace 2* — ax + v by 7, + d. Since there are a maximum
of n/2 such quadratic terms to replace, we have

P, = 1T, €RLT where m < 20h%"(n/2) = 10h%n .

This completes part (b). Part (a) is proved analogously using
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Theorem 2(a) instead of 2(b).

3. Approximating polynomials. We estimate how efficiently
polynomials in the class P.P.C. can be approximated by rationals
with positive coefficients. A polynomial is in the eclass P.P.C.
(polynomials with positive coefficients in # and (1 — z), see [1]) if it
can be written Ya,x*(1 — x)° where a,; = 0. We use this estimate
and Theorem 4 to approximate polynomials with no roots in a region
containing [0, 1]. We adopt the notation R.P.C. (rationals with
positive coefficients in « and (1 — 2)) for those rational functions
which are a quotient of two elements of the class P.P.C.

LEMMA 1. Suppose D, = Sipiica @2 (1 — )" 18 a P.P.C. of degree
n. Then there exists »(x) € R} so that for xe[0, 1),

Lol nr"p, (x)
[7(@) — pu(@)| = T

Proof. We observe that for x¢[0, 1),

il—w —
?( ) 1+w-or 2™

Since a' — b =(a — b)(@™ + a0 + -+ + abT" + b7,

: B
(l+x+...+xm--1),§ .

IA

(1) }(1—x>"~

Let

and consider
(@) = 3 ap2*(s.) .
ktisn

Each term of the above sum can be brought to the common denomi-
nator (1 + x + --+ + ™" and hence, () e R,;;. Also, by (1),

7@ = p@)| £ 5, anatia
(2)

= na™ >, apat.

ktisn

Since



RATIONAL FUNCTIONS WITH POSITIVE COEFFICIENTS 61

o2, O T e Ty
1 2 i p(x)
< A — ) = P
= Ty WY =
we have
Lol < M
17 (ﬂ/) p'n-(x)l——— (1 i x)'ﬂ,

LEMMA 2. Suppose p and q are both P.P.C. of degree n. Then
there ewists r € R3; so that for any x €0, 1], satisfying (1—x)">na™,

— 2na™ . p®)
[p(@)/q(@) — r(x)| = =0 — e a@) "

Proof. By Lemma 1 we can choose s and ¢ € R}, so that for
x <0, 1),

| p(@) — s(@)] = g%pgl
and
lg(@) — ()] g%ﬂg
Then, for z<[0, 1),
p@) _ s@) | _ ip(w) _s@) | s@) _ s@)
q(x) () g®) q® q@ )
< \p(x) — s(@)] | l s(x)(g(x) — t(x))
q(x) ‘ t(x)q(x)
- na" p(x) nx™ s(x)
T 1) g 1 — ) [ t(x)
- _2na™ p(x) nxm p(x)  s(x) '
T @A -2 lq@) A —2rlq @)

The result follows with » = s/t.
We now prove an analogue of Theorem 4 for rationals in the

class R.P.C. Define a diamond-shaped region in the complex plane
G(a) by

Gla) = {z:|arg ()| = a} N {z: Jarg (1 — 2)| = a} .

LEMMA 3. Let ¢ >0. Suppose p,c1l. has no roots in the
region GA/h) and p,(x) >0 for 2€{0,1]. Then p.(x) = r,.(x) where
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r.(x) 18 a R.P.C. of degree m, m < B,h**"-n and B. is the same
constant as appears in Theorem 4.

Proof. We write p,(x) = s,(x)t,_.() where s, €[], has no roots
in {z: |arg (2)| < 1/h} and t,_, € II._. has no roots in {z: |arg (1—2)|<
1/n}. By Theorem 4,

s,(w) = U_,((D) eRft where j < B.h"k

and since t,_,(¢) = ¢._,(1 — ) where ¢,_,(1 —2) has no roots in
{#z: arg (2) < 1/h},

t,_i(®) = V,(1 — x) where V,(x)e Rf* and ¢ < B.h**(n — k) .
We set r,(x) = U;(x) V(1 — x) to complete the result.

LemMMA 4. Let €¢>0. If p,e]l. has mo 7roots in the region
G(1/h) and p,(x) >0 for xe[0,1], then there exists r € R}, where
¢ = B.h"% so that for x€l0, 1),

2na™ | p()|

|p(@) — r(@)| = 0= — one™

provided (1 — x)°* = cnx™.

Proof. By Lemma 38, there exists s an R.P.C. of degree at
most ¢n = B.h"**n so that p =s. By Lemma 2, there exists re
R, so that

@) — 7(@)] = |s@) — r@)| = — 2@ [p@]
(1 — )™ — cna™

4. Approximating analytic functions. Let p >1 and let E,
be the closed ellipse in the complex plane with foci at 0 and 1 and
with semiaxes 1/4(0 + 0™ and 1/4|p — p™'|. S.N. Bernstein proved:

THEOREM 5. ([2] p. 76.) If f 1is analytic om E, then there
exist polynomials p, €11, so that

||f - pn”[o,ﬂ = 0(1/Pn>
and p, — f uniformly on E,.

We show that positive analytic functions can be approximated
almost as efficiently by rational functions from the class R.P.C.

THEOREM 6. If f is analytic and nmever zero on E, and f(x)>0
for x €0, 1], then there exists a sequence of r,€R.P.C., », of degree
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n, 8o that for each ¢ > 0,
”f - "'n”[o,x] = 0(1/107”05)

where ¢. = BJ(tan (o + 079)/2)]7**® and B, is the same constant as
wn Theorem 4.

Proof. By Theorem 5 there exists a sequence of polynomials
P, so that

(1) I1Lf — Pallon = O1/0")

and each p, has no zeros on E,. We note that the region
ST Al
G( tan ( 5 >> C E,
and hence, by Lemma 3,
= . < Sy O 2 N
9, = 7, €R.P.C. where m < Be<tan < 5 >> n.

The result is finished by substituting », into (1).
We have the following two theorems for approximating analy-
tic functions by rational functions with positive coefficients.

THEOREM 7. Let 0 < p < 1. If f is analytic and never zero on
E, and f(x) >0 for x€[0, 1], then there exists a constant v so that

R*(f:10, o)) = O/y")

where v depends only on o and 4.

Under stronger assumptions on f we recover exponential rates
of convergence.

THEOREM 8. Let 0 <0 < 1. Suppose that f(z) = Za,z*, a, real,
18 analytic in a region containing {z: 12| < 1} and suppose that

flx) >0 for xel0, 1].
Then there exists 7 > 1 so that
B (1110, 6] = 0(1/n™)

where 7 is independent of m.

Proof of Theorem T. By Theorem 4, there exists a sequence of
polynomials p, €[], so that
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(1) 1f = Pallio,n = O/0")

where each p, has no roots in E,. Since G(tan™'[(0 + p™)/2]CE,
we deduce, from Lemma 4 with - = 1/tan™'[(0 + p7")/2] and m = in,
that there exists 7, ¢ Rj}: so that

anm H pll[o,ll

2 w — Ty | = .,
( ) Ip 7’%} (1 _ m)c’n — enxt™

From (1) and (2) we have, for fixed ¢ sufficiently large,

1 = Puallon = 0] 2 + %5

Since k, < 2icn®, the result follows.
We need the next lemma in the proof of Theorem 8. Let D,
be the open disc of radius a centered at the origin.

LEMMA 5. Let B> a. Suppose f(2) = e, ai2® is analytic on
D;. Then, for z€ D,,

S et
g 2/

f(@

where s,(f: a) is the kth Taylor polynomial of [ evaluated at «.

Proof. Let

Then,

Proof of Theorem 8. By assumption, f is analytic in some dise
D; where 8> 1. Setting a =1 in Lemma 5 yields, for ze D,,

Ms

8(f: 1z
flz) =22
=
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Since f(x) >0 for x¢[0,1], there exist N so that for »n = N,
$.(f:1) > 0 and so that >\, s,(f: 1)a* is strictly positive on [0, ].
For m = N set

é s.(f: 1)2* . éﬂsk( £ )2t
n 3

0 k=0

(1) ra(2) =

Ma

k

[}

The second term of the right side of (1) is an element of R;*. The
first term has a fixed numerator which is positive on [0, ] and by
Theorem 4, there exists a constant A, independent of m, so that
this term is an element of R};. Thus, there exists A so that for
each m = N

r. ERIE .

We finish the proof by observing that

Sl Sl hat

Nf = Pullon = ||[2=2— —
m§=lozk ;,Z='02k [0,8]
<| 3 a0 + 1 llon- |, 3 8
= 0(™) .

5. Approximating continuous functions. We prove the follow-
ing three theorems:

THEOREM 9. If feC[0,1/2] and f= 0 on [0, 1/2] then
Ri:(£:10, 1/2]) < || f lwaam2 ™ + 20(f, LV 'n) .
THEOREM 10. If feC[0,1/2], f =0 on [0,1/2] then for each
0 > 0 there exists A, depending only on 6 so that
R (f: 10, 1/2]) = A;o(f, 1/n"*?) .

THEOREM 11. If feC*0,1/2], f> 0 on [0,1/2] and f* elipa,
0 < a<l, then for each 6 > 0 there exists A; so that

1 k+a

RE*(F: 10, 1/2) < A,,[n—— ,

1/ (4+8)
where A; is independent of n.

We have use the notation w(f, -) for the modulus of continuity
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of f.
We now collect the results we need to prove the above theorems.
For fe(C[0, 1] we define the nth Bernstein polynomial by

B,(@) = B,(f:x) = kE:‘.Of (Mm(:)ov"(l — z)" 7k,

THEOREM 12. ([5] p. 15.) If feCJ0, 1] then
1 (@) — Bu(f: @)l = 20(f, 1V n) .

THEOREM 13 (Lorentz [1].) If feC*0,1], f>0 on [0,1] and
f®elipa,0<a=<l, then there exists p, a P.P.C. of degree m so
that

1\
1@ = u(@) oo < O (=)
where C is independent of n.

Proof of Theorem 9. We extend f to a continuous function on
[0, 1] by setting, for x€[0, 1/2]

e+ g)=1(=-3)-

Then the modulus of continuity of f on [0, 1] is the same as the
modulus of continuity of f on [0, 1/2].

Consider B, the nth Bernstein polynomial for f. Since f is
nonnegative on [0, 1], B, is a P.P.C. of degree n and ||B,|lp.a =
Hfllten. Thus, by Lemma 1 with £ < 1/2 and Theorem 12,

1 1

Bii(r:[0, L)) = Ra (B0, L)) + 1B = Fliuus

S 1 f lloun2*™ + 20(f, 1)V n) .

Theorem 10 is a corollary to Theorem 9. We observe that it
suffices to prove Theorem 10 under the assumption that f has a zero
on [0, 1/2] and that under this assumption 20(f, 1/v" %) =@1/0)||f]lw0.0-
The result is now completed by choosing m = n’ for small 6, and
applying Theorem 9.

Theorem 11 is proved analogously to Theorems 9 and 10. We
first extend f to [0, 1] in such a way that f >0 on [0,1] and so
that fe C*0, 1] with f*® elipa. We now approximate this extended
f by a P.P.C. as guaranteed by Theorem 13 and proceed as in the
proofs of Theorem 9 and Theorem 10.
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6. Remarks.
(1) D.J. Newman and A. R. Reddy [4] show that the best
approximant to z**' from R;" on [0, 1] is a monomial az" and that

R (@ [0, 1]) = 11w (@"*: [0, 1)) ~ ¢/m .

This should be compared to the fact ([2] p. 81) that
1

Q2n-t1 ‘

Iae=+: [0, 1]) =

(2) The restriction that f be strictly positive is essential in
Theorems 7 and 11.

LEMMA 6. Let 0<a<pB. If fla)y =0

. 1)
R (e, 6D = mLE—

Proof. Let p,/q. be a best approximant to f from R;* on [a, 8].
Then we can write

2.() = }nj, ax® where a, =0 ..
k=0

We have
p.(8) = ;E_‘(.) a8 = é —%aka" = —f‘—:pn(a)
and hence,
R (f: [a, > _ 2.(B)
(f:la, B) = F(B .8
> f(g) — £ 2@
B a* g,(a@)
Since
2D < f(@) + Ri*(f: [, B])
g.(c)
we have

Ri*(f: [, B) = £(B) — %Rﬂf: [, 8]) .

Suppose that f is continuous on [0, 1] and f(1/2) =0. If we
set « =1/2 and 8 = 1/2 + 1/2% in Lemma 6 then
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(g C(pL L 1) s S 12w
Y10, 2 Ry (52| 40 5+ |) 2 LEEEY

In particular

R,;+<<x - %) [0, 1]) > Z}f_(l i 5
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